
Scoring rules and competitive behavior in 
best value construction auctions 
Article 

Accepted Version 

BallesterosPérez, P., Skitmore, M., Pellicer, E. and Zhang, X. 
(2016) Scoring rules and competitive behavior in best value 
construction auctions. Journal of Construction Engineering 
and Management, 142 (9). 04016035. ISSN 07339364 doi: 
https://doi.org/10.1061/(ASCE)CO.19437862.0001144 
Available at http://centaur.reading.ac.uk/54927/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1061/(ASCE)CO.19437862.0001144 

Publisher: American Society of Civil Engineers 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


Central Archive at the University of Reading 

Reading’s research outputs online



THANKS FOR DOWNLOADING THIS PAPER 

This is a post-refereeing version of a manuscript published by the American Society of Civil 

Engineers (ASCE) 

 

 

Please, proper citation of the paper is: 

 

Ballesteros-Pérez, P., Skitmore, M., Pellicer, E., Zhang, X. (2016). “Scoring rules and 

competitive behavior  in best-value construction auctions”. Journal of Construction 

Engineering and Management, 142, in print, 

http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001144 

 

 

The authors recommend going to the publisher’s website in order to access the full paper. 

If this paper helped you somehow in your research, feel free to cite it. 

 

This authors’ version of the manuscript was downloaded totally free from: 

https://www.researchgate.net 

https://www.researchgate.net/


1 
 

SCORING RULES AND COMPETITIVE BEHAVIOR IN BEST-VALUE 

CONSTRUCTION AUCTIONS 

Pablo Ballesteros-Péreza; Martin Skitmoreb; Eugenio Pellicer*c; Xiaoling Zhang d1 

 

Abstract 

This paper examines the extent to which engineers can influence the competitive behavior of 

bidders in Best Value or multi-attribute construction auctions, where both the (dollar) bid and 

technical non-price criteria are scored according to a scoring rule. From a sample of Spanish 

construction auctions with a variety of bid scoring rules, it is found that bidders are influenced by 

the auction rules in significant and predictable ways. The bid score weighting, bid scoring 

formula and abnormally low bid criterion are variables likely to influence the competitiveness of 

bidders in terms of both their aggressive/conservative bidding and concentration/dispersion of 

bids. Revealing the influence of the bid scoring rules and their magnitude on bidders’ 

competitive behavior opens the door for the engineer to condition bidder competitive behavior in 

such a way as to provide the balance needed to achieve the owner’s desired strategic outcomes. 
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Introduction 

Competitive bidding is the regular procurement method for many goods and services. Moreover, 

the requirement to ensure transparency, publicity and equality of opportunity in public 

procurement, means that clear procedures have to be followed by bidders (de Boer et al. 2001; 

Falagario et al. 2012; Panayiotou et al. 2004) to minimize the risk of unfair bias or corruption 

(Auriol 2006; Celentani and Ganuza 2002; Csáki and Gelléri 2005). 

The traditional means of doing this is by the lowest bid auction, which assumes that the 

lowest (most competitive) bid is the best for the owner and therefore wins the auction (Ioannou 

and Leu 1993; Waara and Bröchner 2006; Wang et al. 2006). The lowest bid auction method 

provides the best incentive for cost reduction (Bajari and Tadelis 2001) and dominates both the 

public and private sectors in the United States (e.g. Art Chaovalitwongse et al. 2012; Shrestha 

and Pradhananga 2010), European Union (e.g. Bergman and Lundberg 2013; Rocha de Gouveia 

2002) and many countries worldwide.  

However, despite of its common use, the lowest bid auction method is considered by many to 

be a recipe for trouble (e.g. Holt et al. 1994a; Latham 1994; Williams 2003), especially when 

there is little work around and bidders are shaving their bids (Hatush and Skitmore 1998; 

Ioannou and Leu 1993; Oviedo-Haito et al. 2014). In fact, many previous studies point to the 

lowest bid often not being best bid in terms of final cost (Dawood 1994; Hatush and Skitmore 

1998; Wong et al. 2001), time (Lambropoulos 2007; Shen et al. 2004; Shr and Chen 2003), 

quality (Asker and Cantillon 2008; Choi and Hartley 1996; Molenaar and Johnson 2003), or risk 

(Finch 2007). 

In the construction sector, selection of the best price-quality bid in the form of Best Value 

auctions, also known as multi-attribute, multi-dimensional or two-envelope auctions (David et al. 
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2006; Karakaya and Köksalan 2011), has been promoted for a long time (Erickson 1968; 

Simmonds 1968). In Best Value auctions, bidders' proposals comprise two parts or envelopes: 

the economic (dollar) bid and the technical proposal, which contains purely non-price features. 

This way an optimum outcome (Choi and Hartley 1996; Wang et al. 2013) or the best value for 

money (Holt et al. 1995) is obtained for the owner, as the engineer seeks to maximize benefits 

for a certain dollar budget. 

Traditionally in many countries, the engineer is both the auctioner (the agent who designs the 

auction rules and decides how the contract is to be awarded) and the auctioneer (the agent that 

implements the auction rules and awarding process) (Chen 2013). Therefore, the engineer is 

usually in charge of designing the scoring rules, which enable both the bids and technical 

proposals to be rated and ranked in order to select the best bidder (Ballesteros-Pérez et al. 2012a, 

2012b). The term ‘Bid Scoring Formula (BSF)’ (also named Economic Scoring Formula) is used 

here to refer to the set of scoring rules that transform a bid into a bid score (Ballesteros-Pérez et 

al. 2012b; 2015b; 2015c), while ‘Technical Scoring Formula (TSF)’ denotes the set of scoring 

rules that transform a bidder’s technical proposal into a technical score. Each are then weighted 

by a respective weighting factor and the sum of the weighted bid score and weighted technical 

score provides the final overall score that determines the best bidder. 

Having clarified this, the aim of this paper is to analyze the relationship between the BSF and 

competitive bidding behavior by means of a BSF dataset gathered in the Spanish construction 

industry. This is done by monitoring variations of the BSF subcomponents, called Scoring 

Parameters, in multiple auctions with similar characteristics. 

The paper is divided into six remaining sections. The next section presents a literature 

review. This is followed by a section detailing the methodological elements needed to analyze 
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the changes in bidding behavior associated with different BSF configurations. The fourth, fifth 

and sixth sections provide the calculations, results and validation tests. The last section, entitled 

“Discussion and Conclusions”, closes the paper in providing further insights into the problem 

analyzed. 

Literature Review 

The Bid Scoring Formula (BSF) is a mathematical expression that translates bids for an auction 

into scores. The BSF can also encompass another mathematical expression that determines 

which bids are abnormal or risky (Abnormally Low Bids Criterion, ALBC) when the engineer 

wants to set an approximate threshold beyond which bids will be disqualified (Ballesteros-Pérez 

et al. 2012a, 2012b). 

However, despite extensive research on competitive bidding over the years (see Holt  (2010) 

for a recent review), BSF selection remains a relatively poorly researched area. With very few 

exceptions, such as Dini et al. (2006) and Asker and Cantillon (2008, 2010), little has been done 

to bridge the gap between the theoretical analysis of scoring rules and their practical application 

in procurement practice (Bergman and Lundberg 2013). Likewise, abnormal (or unrealistically 

aggressive bidding) has also received very little attention in the literature to date (Ballesteros-

Pérez et al. 2013b, 2015b; Chao and Liou 2007; Hidvégi et al. 2007; Skitmore 2002). 

Therefore, very little is known of the relationship between BSFs and bidder behavior. As a 

result, BSF selection by auctioneers in practice is invariably a highly intuitive and subjective 

process (Holt et al. 1994a, 1994b) involving few theoretical or empirical considerations. This 

produces scoring rules that are often poorly designed (Bergman and Lundberg 2013) and 

affected by internal consistency and validity problems (Borcherding et al. 1991). Likewise, the 

allocation of weights to the bid and technical components of a proposal (which must be disclosed 
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in the Request For Proposals) are generally based on subjective judgments (Lorentziadis 2010). 

Fixed criterion weights are often used, therefore, to ensure objectivity and reduce the risk of 

unfairness and corruption in the evaluation of proposals, providing they accurately reflect the 

relative importance of the evaluation factors of the engineer (Falagario et al. 2012). However, it 

is still possible to create an unfair evaluation system in which too much emphasis is placed on 

particular evaluation factors (Rapcsák et al. 2000) thus favoring, intentionally or otherwise, those 

bidders that score highly in these corresponding factors (Vickrey 1961). 

Hence, at present, there is increasing attention paid to the criteria and weightings used to 

assess the dollar bids and associated technical proposals (Jennings and Holt 1998; Palaneeswaran 

and Kumaraswamy 2000). Nevertheless, there is as yet no regular prevailing method for 

assessing dollar bids or technical proposals for Best Value. Engineers frequently use the same 

BSF for all projects, but different engineers generally favor different BSFs (Ioannou and Leu 

1993; Rocha de Gouveia 2002). 

The European Union has addressed this issue (Bergman and Lundberg 2013; Rocha de 

Gouveia 2002),  and the dubious actions taken by overly aggressive bidders to recover their 

subsequent losses – a recurring theme in the theoretical literature from as long ago as 1971 

(Capen et al. 1971). In 1993, the European Union stated that quality was as important as price 

(European Union 2002), incorporating this into Directive 93/97/EEC which, for the first time, 

allowed an auction to be awarded to the Best Value bidder (Rocha de Gouveia 2002). 

Nevertheless, only since 1999 have clear recommendations been made for a more methodical, 

consistent and auditable appraisal of auctions to meet the Best Value criterion (Carter and 

Stevens 2007; Rocha de Gouveia 2002). These aim to remedy the shortcomings of the traditional 
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lowest bid criterion by discouraging the undesirable effects of unrealistic or abnormally 

aggressive bids on the industry (Conti and Naldi 2008; Crowley and Hancher 1995). 

However, the difficulty for researchers is that longitudinal data concerning bids and profit 

from individual bidders are limited due to confidentiality and competitive issues. Therefore, 

empirical analysis has been severely restricted to a small number of cases (Vanpoucke et al. 

2014), the main conclusion to date being that the decision to bid aggressively or conservatively is 

very “complex” (Carter and Stevens 2007). 

Hence, despite the current number of theoretical models from the economic theory of 

auctions, there is still a lack of fieldwork concerning the extent to which engineers are able to 

influence bidder competitiveness. The difficulties in obtaining appropriate data generally prevent 

any convincing conclusions to be reached. However, the use of Best Value auctions calls for the 

implementation of scoring rules in which both bid and technical criteria are involved. This 

situation provides an opportunity to examine how the responses of bidders change under a 

variety of scoring auction rule configurations. This is the point of departure of this research, 

which aimed to shed more light on this complex issue by examining evidence of the effect of 

different BSFs on bidder competitiveness. 

Materials and Methods 

Methodology Outline 

Before studying how economic auction rules affect bidding competitiveness, it is necessary to 

state the problem in a way that will allow an effective analysis. First, an auction X is taken to 

exhibit a higher level of bidding aggressiveness compared to an auction Y when these two 

conditions occur simultaneously: 

1. The average bid for auction X is proportionally lower than its estimated cost than for auction Y. 
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2. The lowest bid for auction X is proportionally lower than its average bid than for auction Y. 

This means that, when comparing the results of two auctions X and Y of different economic 

sizes (e.g., different average bid values), the only way to be certain that X is more competitive 

than Y (i.e., X evidences more aggressive bidding) is by knowing that the ratio of their 

respective bid average and estimated cost is lower for auction X and the ratio between the lowest 

bid and the average bid is also lower for X. Fulfilling only one of the conditions – such as one 

auction having a proportionally lower average bid with the other having a proportionally lower 

lowest bid - makes it uncertain which is more competitive. 

On the other hand, an auction X is defined as having a higher level of bid dispersion 

compared to auction Y if the following three conditions occur simultaneously: 

1. the lowest bid is proportionally lower in auction X than in auction Y, 

2. the highest bid is proportionally higher in auction X than in auction Y, and 

3. the bid standard deviation is proportionally higher in auction X than in auction Y. 

This case is easier to understand, since an auction X will inevitably have a higher bid 

dispersion – equivalent to a lower bid concentration – compared to an auction Y, which might 

also have a different economic size, when the relative proportional distances between the highest 

bid/average bid, the average bid/lowest bid and the bid standard deviation/average bid are 

simultaneously higher in auction X. 

Therefore, the variations of the relative values of estimated cost, bid average, lowest bid, 

highest bid and bid standard deviation are the key variables to be monitored. These are named 

here Scoring Parameters, since they coincide with the variables usually found in BSFs. For 

instance, examples of BSFs commonly found in practice are: 

minmax

max

bb
bb

S i
i −

−
=

 
   

i
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Where iS  is the bid score (expressed on a scale of 0 to 1) produced by bidder i’s bid ( ib ) in 

an auction, where minb , mb , maxb  and s  are the minimum bid (lowest bid), the average (mean) 

bid, the maximum (highest) bid and the bid standard deviation respectively of an auction (see 

“Notation List”). 

Scoring Rules Dataset 

The dataset analyzed comprises 124 auction specification documents with 47 different groups of 

BSFs and ALBC for different Spanish owners, and enough auction data to enable a first 

quantitative analysis to be made. This is displayed in Table 1 and the terminology used will be 

explained later. The data are quite representative of the Spanish bidding system, as they comprise 

auctions from public authorities (city councils, local councils, semi-public entities, universities, 

ministries, etc.) and private companies. 

The dataset spans 5 years. Ideally, a good dataset should comprise as many auctions as 

possible within the shortest time. However, in order to be representative of the wide variety of 

scoring rules applied by many organizations, many of which are national bodies and do not 

regularly conduct construction auctions, it has been necessary to extend this time to 5 years 

(2003-2008). The period chosen seems to be in line with other similar auction datasets; for 

example, a very recent study making use of twelve international auction datasets for modeling 

the number of bidders in construction auctions (Ballesteros-Pérez et al. 2015a) spanning from 2 

to 10 years, making our 5-year scoring rule dataset length quite reasonable. Spain enjoyed a 

period of economic prosperity from approximately 1997 to 2008 and hence the dataset is not 

expected to be influenced by a volatile market. As is seen later in the “Test of the Model” 

section, as soon as market conditions change, the bidders’ behavior also gradually changes too. 

Seven more Spanish auctions from 2009 and 2010 – a period in which the European Union and 
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Spanish economic recession began – are compared to the model developed for the first 124 

auctions, showing that bidders in an economic downturn tend to be more aggressive in situation 

of work scarcity. 

The 124-auction dataset comprises a wide range of civil works (irrigation systems, 

desalination and waste water treatment plants, drinking water treatment stations and water supply 

systems, sewage lines and pumping stations, libraries, landfill sites, and small road networks) 

together with operation and maintenance services (dams, airports, touristic beaches, waste 

management, cinema studios, hospitals, seaports, amusement parks, university technological 

equipment) all involving construction or reconstruction activities to some extent. The more 

recent seven-auction dataset comprises buildings and hydraulic civil work auctions. 

Terminology 

For the sake of clarity, several terms used later are defined first. Each group of n auctions under 

the 47 different combinations of BSFs and ALBC in the 124 dataset is classified as what are 

called ‘capped tenders’ (in British English) or ‘capped auctions’ (in American English). In this 

form of auction, the engineer sets an upper bid limit (A) (sometimes also called ceiling price), 

which is stated in the auction specifications and against which bidders must underbid. That is, in 

capped auctions, bidders offer a ‘drop’ ( id ) from the bid limit (A). The relationship between the 

monetary bids ( ib ) and drops ( id ) in these auctions is straightforward as 

 
A
bd i

i −=1  (1) 

Therefore, in capped auctions, bids can be equally analyzed as monetary bids ( ib ranging 

from 0 to A) or as drops ( id  ranging from 0 to 1 or, equally, from 0% to 100%). In uncapped 

auctions – auctions in which the engineer does not set a maximum or a minimum price and in 
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which bidders can freely submit the bids they want – the bids can only be expressed as monetary 

bids ( ib ), since there is no set limit from which calculate the drop. 

It is quite usual that some countries use the capped bidding approach while others resort to 

the uncapped approach. However there is a large number of countries that adopt both approaches 

depending on their respective traditions, preferences or specific needs (Ballesteros-Pérez et al. 

2010). In this case, capped bidding is used more frequently whenever there is a previous and 

well-developed project that clearly defines the scope of the works to be carried out. On the other 

hand, when the request for proposals invites the bidders to submit a bid for the design, build and 

sometimes the operation of the works auctioned, it is often more convenient to resort to 

uncapped bidding since the scope of work is less defined. 

Here, for the comparison of bids in different auctions with different initial upper limits (A), it 

is preferable to use drops rather than monetary-based bids, although the results are not expected 

to be different for uncapped auctions. Using drops always also has the advantage of involving the 

same 0 to 1 scale for analyzing the scoring parameter variations and therefore also range from 0 

to 1 when expressed in drops, since the bidders’ drops ( id ) themselves also range within that 

interval of variation (Ballesteros-Pérez et al. 2014). Therefore, the Scoring Parameters of mean 

bid, maximum bid, minimum bid and bid standard deviation can be expressed either in 

monetary-based values (bm, bmax, bmin and s, ranging from 0 to A) or in their respective drop-

based version in capped auctions (dm, dmin, dmax and σ, ranging from 0 to 1 and obtained replacing 

the bm, bmin, bmax and s values respectively in Equation 1 when the auction maximum price limit 

A has been set). 

Furthermore, there are four aspects of scoring methods that can be analyzed (Ballesteros-

Pérez et al. 2015c): (a) the way the bid score is calculated (BSF); (b) the way the technical score 
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is calculated (TSF); (c) the way the weights the bid and the technical scores are set; and (d) how 

the ALBC is defined. Since this paper only focuses the on the bid score, (b) is ruled out, and the 

three main variables become the BSF, bid score weighting and ALBC. Table 1 shows these three 

variables for the dataset under study. From right to left these are the Bid Scoring Formulas 

(BSF), ALBC width (tk), and bid weighting (wk). The latter represents the weight of the bid score 

(with 10 ≤≤ kw ) versus the technical score (which generally equals kw−1 ) in a multi-attribute or 

Best Value auction. The former is related to the unique generic mathematical expression of 

ALBC found in the dataset, which is ( ) mkabn btb −= 1  (in monetary bids) or, alternatively, 

( )( )mkabn dtd −−−= 111  (when expressed in drops by means of replacing in the former variables 

bm and babn by ( )Adm−1  and ( )Adabn−1  respectively according to Equation 1). This is the most 

common mathematical expression in use in European Union countries for setting a cut-off limit 

beyond which all bids are ineligible. The variable abnb  (dabn) denotes the abnormal bid (drop) 

threshold value below (above) which every bid ib  (di) is disqualified; whereas variable tk (ALBC 

width) is a parameter set by the engineer for a BSF in many ways –Belgium, France, Italy and 

Spain, for example, use ranges mostly varying between tk=0.10 and 0.15) (European Union 

1999). As will be seen later, both wk and tk variables are important parameters for promoting 

bidding competitiveness. 

Scoring Parameter Relationships 

The bid scoring rules comprise, in addition to the weighting factor, two mathematical 

expressions: (1) the Bid Scoring Formula (BSF), which are expressions similar to the ones 

shown in Table 1 formulated as a function of bidder i’s bid bi (or di when expressed in drops) and 

generally with at least one or more Scoring Parameters (bm, bmax, bmin and s, in monetary bids, or, 
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analogously, in drops, dm, dmin, dmax and σ, respectively); and (2) the Abnormally Low Bids 

Criteria (ALBC) which are the mathematical expression of a cut-off limit beyond which, any bid 

bi, or its equivalent drop di, are no longer eligible. The first converts the bids bi (or di) into 

scores, whereas the ALBC determines which bids are ex-ante ineligible as being too cheap or too 

expensive. 

Now, the mathematical expressions of almost all BSFs and ALBC are defined by a 

combination of one or more Scoring Parameters (SP): bm, bmax, bmin and s, or dm, dmin, dmax and σ 

(Ballesteros-Pérez et al. 2015c), which are variables that are only known after the auction has 

taken place and the price bids are known. Hence, these SP constitute, at the same time, a 

descriptive set of auction bid statistics (average, minimum, maximum and standard deviation) to 

calculate the bidders’ scores. 

Therefore, if the variations of these individual SP can be traced with respect to the BSF and 

ALBC settings, it is possible to identify when an auction is more aggressive/conservative and 

more concentrated/dispersed. For example, translating what was said in the “Methodology 

Outline”, an auction X is more aggressive than another auction Y when the ratios bo/bm 

(equivalent to dm/do) and bmin/bm (equivalent to dmax/dm) are lower for auction X, where bo and do 

are the estimated cost of the auction expressed in money or drops, respectively. Analogously, an 

auction X evidences a higher level of bid dispersion when these three ratios: bmin/bm, bmax/bm and 

s/bm (or equivalently in drops dmax/dm, dmin/dm and σ/dm) are larger in auction X compared to 

auction Y. 

The problem is that these SP ratios do not follow a linear relationship, because the SP 

variation itself is not generally linear either; thus, its relative variations must be carefully 

measured and compared. This is the aim of the present section, describing the major features of 
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the SP and how they are interconnected with each other, so their relative variations can be 

properly registered and used later for linking them to more aggressive/conservative bidding 

behavior and to a higher concentration/dispersion of bids. 

Therefore, as noted above, in both uncapped and capped auctions, the Scoring Parameters 

have particular mathematical relationships with each other; however, from now on, only SP 

relationships expressed in drops will be considered. These relationships are described and 

justified in Ballesteros-Pérez et al. (2012a, 2013a, 2015c) and, when they are expressed as a 

function of the scoring parameter mean drop (dm), they are as described in the first column of 

Figure 1. As can be seen, each of these expressions is known when the respective ‘regression 

coefficients’ (λ, α, β and γ, respectively by rows) is determined. 

Specifically, these four regression coefficients have the following meanings: 

• λ relates the estimated cost (do) to the mean bid (dm) when expressed in drops. The larger this 

coefficient is, the larger the mean drop will be compared to the estimated cost (aggressive 

bidding); whereas the smaller is λ, the mean drop will also be smaller (more conservative 

bidding). 

• α  relates the mean bid (dm) to the maximum drop (dmax). The larger this coefficient is in a 

particular auction, the closer is dmax to dm , meaning more conservative bidding. We therefore use 

‘ α− ’ instead of ‘ α+ ’, because ‘ α− ’ will be read the same way as λ is read (the larger α−  

denoting more aggressive bidding). This coefficient also indirectly means the 

concentration/dispersion of bids, since the distance between the lowest and the average value of 

bids indicates how dispersed the bids are. 

• β  is a very similar coefficient to ‘ α− ’, sharing the same mathematical expression, but relating 

the highest bid (lowest or minimum drop dmin) to dm. The larger β  is, the further dmin will be 



14 
 

located from dm and vice versa. Thus, this coefficient allows analysis of the concentration (with 

small β  values) or dispersion (with large β  values) of a bids in the same way as coefficient α . 

• γ connects the bids standard deviation (σ ) with the mean bid (dm), but is expressed in drops. 

Again, the bigger is γ , the greater is the dispersion of bids. 

The expressions for calculating the ‘regression coefficient averages’ (λ ,α , β  and γ ) are 

shown in the second column of Figure 1; further details and justification of the regression 

coefficient mathematical expressions can be found in Ballesteros-Pérez et al (2015c). These 

expressions are formulated as a function of the scoring parameter values obtained for the number 

of n auctions in Table 1 (the complete auction data having not been displayed for the sake of 

brevity), which share the same BSF description (coded as ID in Table 1). The ‘regression 

coefficient averages’, however, are presented in the last four columns of Table 3, while a 

numerical example is also given in Table 2. 

The third and last column in Figure 1 displays how each regression coefficient average 

potential value is associated with different levels of bidding aggressiveness and/or dispersion. In 

particular, each graph represents how different intervals of the regression coefficient values 

produce different curves. These indicate how the relative distances or ratios between do, dmax, 

dmin or σ, respectively, to dm, evolve. Table 2 shows a numerical example detailing how the four 

average regression coefficients are calculated according to the second column of Figure 1 for a 

particular BSF (BSF ID=1 from Table 1) with two auctions (n=2). 

All the variables used in Table 2 have been introduced above with, as noted earlier, do 

corresponding to the estimated cost for each auction expressed in drops. This value was given by 

the same bidder for each of the 124 auctions, i.e., unlike dmax, dm, dmin and σ, it cannot be derived 

from the list of bids submitted by the bidders in each auction. 
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In short, these ‘regression coefficient averages’ are important as they are the variables whose 

variations allow the comparisons between pairs of scoring parameters, which allows us to 

compare more aggressive with more conservative bidding (and more dispersed bids with more 

concentrated bids), for different auctions with different BSFs as stated in the “Methodology 

Outline” sub-section. 

Hypotheses 

The strategy is to study how different BSF features affect the ‘regression coefficient average’ 

values of λ , α , β  and γ . In doing this, coefficient α  will be replaced by α− , since this 

better aligns its direction of variation with the rest of scoring parameters. 

The central block in Table 3 (second to fourth columns) presents the three variables most 

influential on the regression coefficient averages: the bid weighting ( kw ), ALBC width ( kt ) and 

the BSF (simplified by its gradient kg ) (Ballesteros-Pérez et al. 2015c). As explained earlier, the 

value of kw indicates the importance of the bid (Si) relative to the technical proposal (Ti). It 

ranges from 0 (when the engineer is only interested in the technical proposal) to 1 (when the 

engineer is only interested in the bid value: an auction where the only selection mechanism is the 

highest drop or lowest bid). When 10 << kw , the proposals are evaluated according to a mixture 

of economic (bid) and technical criteria.  

The ALBC width is a measurement of how narrow the cut-off for unrealistic ineligible bids is 

in terms of relative distance, kt , from the mean drop dm. Usual values found for this variable in 

European Union countries range from 0.04 to 0.25 whenever an ALBC is implemented. 

Otherwise, when there is no ALBC (∄ tk), kt  is considered as 1 (cut-off always at zero). 
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Finally, the BSF gradient is concerned with the bidders' perception of how quickly they score 

reduces as a function of how far apart they are from the best-scored bid (theoretically from the 

first ranked bidder, see last column of Figure 2). This is easily visualized by plotting the Si curve 

for an auction. However, the interest is really in the shape of the curve: (1) a concave curve 

indicating the bid score reduction is larger near the best bid; (2) a convex curve indicating the bid 

score reduction is smaller near the best bid; and (3) a linear curve indicating the bid score 

reduction is constant no matter what the distance to the best bid. 

The expectation now is that, with a higher bid score weighting ( kw ), bidders will bid lower 

(with bigger drops) in order to win the auction as they have less possibility of gaining any 

advantage through having a superior technical proposal. Similarly, when the ALBC width is 

wide (larger values of kt ) and excludes very few bidders, bidder behavior is expected to be more 

aggressive since there is less chance of being disqualified for bidding too low. Analogously, 

concerning the BSF gradient, bidders whose di values are close to the maximum drop dmax, are 

more likely to compete strongly whenever they feel that their score will be reduced even though 

their bids are quite similar; this only happens with concave BSF gradients. This increased 

bidding aggressiveness for auctions with a specific combination of kw , kt  and kg  values will 

therefore be demonstrated for a set of auctions if the λ  and α−  values are larger than for 

auctions with different kw , kt  and kg  values. 

Calculations 

In order to validate and measure the extent to which conservative-aggressive bidding is actually 

influenced by the three independent variables of bid score weighting kw  (now X1), ALBC width 

kt  (now X2), and BSF gradient (now X3), that is, to what extent different values of X1, X2 and X3 
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can alter the values of λ , α− , β  and γ , four multiple linear regression analyses are carried 

out (one for each ‘regression coefficient average’: λ , α− , β  and γ , as a function of the three 

independent variables X1, X2 and X3 identified above). The aim of this approach is to determine if 

the regression coefficient averages (λ , α− , β  and γ , now dependent variables Y1, Y2, Y3 and 

Y4, respectively) are actually conditioned by the three variables X1, X2 and X3, whose test results 

of their interdependence will be presented later in Figure 3 as Covariation and Correlation 

matrices. 

To do this, we use a simple trichotomic scoring (-1, 0, +1) as in Figure 2, according to 

particular pre-set levels by rows of the three independent variables involved. In particular, 

possible values of  independent variable X1 ( kw ) are divided into three equally wide intervals 

each of which depicts the situation of a bid up to 33.3%, 66.7% and 100.0% respectively of the 

overall score (technical + bid) since this variable can range from 0 to 100%. Independent 

variable X2 ( kt ) variation is divided again into three intervals. In this case however, despite kt  

also theoretically ranging from 0 to 1, the usual values implemented in European Union 

countries range from 0.00 to 0.25 as noted above, so it was found preferable to adapt the three 

intervals to the most common range of actual kt  values found in practice ( kt  up to 0.05, 0.15 and 

1.00). Finally, independent variable X3 ( kg ) was directly classified according to the three only 

possible shapes the BSF curve can have: concave, convex or constant (linear). 

This way, according to the three main column values shown in the second and central block 

of Table 3, the trichotomic scoring for variables X1, X2 and X3 can be assigned according to the 

three levels from Figure 2, whereas the results of this assignment to the three independent 
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variables kw , kt  and kg  is shown on the right block of Table 3 in columns ‘X1’, ‘X2’ and ‘X3’, 

respectively. 

Analogously, the regression coefficient average values for λ , α− , β  and γ , are shown 

on the right block of Table 3 in columns Y1, Y2, Y3 and Y4, respectively. These are calculated 

according to the expressions shown in Figure 1 (column ‘Calculation’) and as exemplified in 

Table 2 for each different set of n auctions with the same ID from Table 1. 

Independent variables kw  and kt  are ratios from 0 to 1 and, therefore, they could be used as 

continuous variables. However, the four multivariate analyses performed here opted instead for 

three-level categorical variables. The reason is that preliminary analyses (not included here due 

to lack of space) indicated non-linear contributions of kw  and kt . Unfortunately, non-linear 

analyses usually require far more data when the contribution of each independent variable is still 

to be researched, and the present dataset is not extensive enough to allow such an extensive 

analysis. However, the adopted three-level system equally allows two important aspects to be 

analyzed: the degree of contribution of each independent variable ( kw , kt  and kg ) as well as the 

direction in which each variable influences bidding behavior. Both facets are of primary 

importance in providing the first set of results and concluding where future research is still 

required. 

Results 

The results of the four regression analyses performed – one for each dependent variable, that is, 

Y1 (coefficient λ ), Y2 (coefficient α− ), Y3 (coefficient β ) and Y4 (coefficient β ) – are shown in 

Figure 3 arrayed horizontally, along with other intermediate calculations. However, the most 

representative results are the coefficients of determination (R2) and significance tests for each 

Yi’s multiple linear regression coefficient (Mi), both checked as a group (M0 to M3 together 



19 
 

passing the F-Fisher test) and individually (each Mi  passing the Student t-test). The covariance 

and correlation matrices are also provided at the bottom of Figure 3. 

Summarizing the results of Figure 3, four major conclusions can be stated. First, all the 

coefficients of determination (R2) in Figure 3 are large enough to indicate that there is a moderate 

or high degree of correlation between the independent variables selected (X1= kw , X2= kt and 

X3= kg ) and each of the dependent variables (Y1=λ , Y2= α− , Y3= β  and Y4=γ ). This means 

that the bid score weighting ( kw ), ALBC width ( kt ) and BSF gradient ( kg ) are correctly 

identified as significant and influential variables. 

Second, the multiple linear regression coefficient values M1, M2 and M3 (but for the 

coefficient M3 when relating ‘Y3=γ ’) are positive, meaning that Figure 2 is therefore correctly 

ordered, i.e., from the scenario where bidders’ bid more aggressively and more dispersed in the 

top row (row with scoring +1), to more conservative bidding with more concentration in the bid 

values in the bottom row (row with scoring -1). 

Third, the covariance and correlation factors found in the covariance and correlation matrices 

outside the diagonal between the independent variables (X1= kw , X2= kt  and X3= kg ) themselves 

are generally small. The only exception is the comparatively larger 0.271 correlation between 

independent variables X1 and X3. This significant, but still moderately weak, correlation 

originates when auctioners implement BSF for a Best Value or multi-attribute auction and they 

have the common habit of using high bid score weightings (X1=+1) along with concave BSF 

gradients (X3=+1), as well as low bid score weightings (X1=-1) with convex BSF gradients 

(X3=+1); the first combination promotes bidding aggressiveness, whereas the second promotes 

bidding conservativeness. Nevertheless, the relatively small correlation factors suggests that, 

even though there is some combined effect of the three independent variables, they are expected 
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to be minor, i.e., every variable depicts a relatively independent single component that affects 

bidding behavior. 

Conversely, it is worth highlighting that the regression analysis found the linearity 

assumption to be reasonably satisfied. However, as noted above, this was not necessarily because 

the correlations among variables analyzed behave linearly. The data has been organized into a 

three-level ordinal scale that does not provide any information for the possible development of 

underlying mathematical functions that might have been identified by working with continuous 

variables in a larger BSF database. This issue remains in need of further research. 

Fourth, Figure 4 shows the Q-Q plots of the standardized residuals for the four multiple 

linear regression analyses. As can be easily seen, most data fit a straight line, indicating that the 

residuals follow approximately a Normal distribution. 

Finally, the last step was to carry out an Analysis of Variance (ANOVA) – summarized in 

Figure 5 – to test if the multiple regression linear coefficients ‘Mi’ values were significantly 

different from each other in order to rank the three independent variables (X1= kw , X2= kt  and 

X3= kg ) by decreasing the order of importance. Initially, inspection of the coefficients M1’s, M2’s 

and M3’s values in Figure 3 revealed that M1> M2> M3 for Y1 and Y2, and that M2> M1> M3 for 

Y3 and Y4, so the bid score weighting and ALBC width may be equally important, but both 

having more influence when compared to the BSF gradient. 

In particular, an ANOVA was carried out by studying the Fisher’s Least Significant 

Difference (LSD) intervals, which is a statistical method for comparing the means of several 

variables and does not require correction for multiple comparisons. The main results of this 

analysis are shown in Figure 5. 
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The major results from the ANOVA also indicated that both the bid score weighting and 

ALBC width are almost always more important than the BSF gradient (their Fisher LSD 

intervals rarely intersect), whereas the bid score weighting was not always more influential than 

the ALBC width (since their Fisher’s LSD intervals are partially overlapped for most Y 

variables). Therefore, the results of this latter analysis confirm that the variables bid score 

weighting, ALBC width and BSF gradient are already ranked in decreasing order of importance, 

but the first two almost always have a quite similar influence on bidder behavior. 

Summarizing, as said in the “Hypotheses”, the expectation was that the higher the bid scoring 

weighting (X1= kw ), the lower the bidders would bid, as they would have had less possibility of 

gaining any advantage through having a superior technical proposal. Similarly, when the ALBC 

is lenient (because it excludes very few bidders by a very large or even non-existent X2= kt  

value), bidder behavior was expected to be more aggressive since there is less chance of being 

disqualified for bidding too low. Analogously, it was claimed that bidders who are close to the 

lowest (maximum drop) would be more likely to compete strongly with concave BSF curves as 

they would feel that their score might be reduced even though their bids are quite similar. 

Hence, for example, it can be seen that BSF ID=6 from Table 1, with all the trichotomic 

variables set at -1 (low wk, narrow tk and convex gk), causes a higher level of bidding 

conservativeness and bid concentration as demonstrated by its small Y values from Table 3. 

Conversely, the traditional lowest-wins auction with no ALBC (∄ tk), which is perfectly concave 

and is actually represented by BSF ID=36 in Table 1, produces on average the largest λ , α− , 

β  and γ values in Table 3. That is, it generates the highest bidding aggressiveness and bid 

dispersion. This accords well with the literature concerning traditional bidding and the very 

raison d'être for the introduction of BSF and non-price features in general. 
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Test of the Model 

For an additional check, several more recent auctions were gathered from the same country 

(Spain) where the original auctions for developing the Multiple Linear Regression Analysis were 

collected. This new sub-dataset comprises a total of seven buildings and hydraulic civil work 

auctions from years 2009 and 2010 grouped under three sets of auctions with common BSF 

features in each of the three groups. Results of actual versus estimated λ , α− , β  and γ values 

by using M0, M1, M2 and M3 values according to Figure 3 (left column) are presented in Table 4. 

As can be seen, per-unit deviations between actual and estimated values generally remain 

below 10%. However, there are two exceptions for λ  (the regression parameter that specifies the 

linear relationship between do and dm) with deviations up to 20%. It must be noted however, that 

years 2009 and 2010 were the first officially considered in the economic recession in Spain; 

hence, it is expected that with equivalent cost estimates (do) the bidders bid more aggressively 

(lower mean bids, dm) compared to the previous period of 2003-2008. However, these deviations 

were found only for the dependent variable Y1 (λ ) , not for the other three ( α− , β  and γ ). 

Therefore, overall, it can be considered as a highly satisfactory result. 

Discussion and Conclusions 

There are many scoring formulas currently in use for evaluating bid proposals in Best Value 

auctions. These affect bidder conservativeness-aggressiveness in profound ways but their design 

in practice is invariably a highly intuitive process, involving few theoretical or empirical 

considerations. To date, the vast literature of theoretical competitive models has relied almost 

exclusively on a combination of the foundational axioms of economics and intuition together 

with scarce experimental results that many perceive as being of uncertain veracity. The 
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contribution here adds to the relatively tiny amount of complementary field studies in this area, 

providing some confidence in the theoretical developments so far. 

In this paper, an analysis aimed at bridging this gap through the empirical study of a sample 

of 131 Spanish procurement auctions is provided in order to establish the changes in bidding 

competitiveness that occur, at least partially, in response to the mathematical scoring rule chosen 

by the engineer in the auction specifications. In doing this, three major variables are 

hypothesized as being likely to influence the competitiveness of bidders in terms of both their 

aggressive/conservative bidding and concentration/dispersion of their bids. These variables are 

the bid score weighting (how relatively important is the bid in contrast with the technical 

proposal), the ALBC measured by its width (how narrow is the cut-off that sets a threshold 

beyond which a bid is disqualified), and the BSF measured by its gradient (the concavity, 

linearity or convexity of the scoring curve that makes bidders realize how quickly their score 

decreases the more they exceed the lowest bid). For example, aggressive bidding is expected to 

occur with a high bid score weighting (hardly any non-price features allowed), no abnormal bid 

detection and a concave scoring curve. From this, it is easy to show that the traditional lowest-

wins auction prompts the most aggressive behavior from bidders and, hence, all the negative 

outcomes associated with aggressive bidding. 

In terms of industry practice, the findings concern both the bidders and the entities that 

design and/or eventually award the auctions. On one hand, bidders can benefit from 

understanding how different BSF and ALBC mathematical configurations force them to submit 

more competitive price bids, that is, to renounce to higher profits for the sake of obtaining higher 

scores. Indeed, bidders who understand these effects even before their first bidding experience 

might gain a clear competitive edge over their rivals. 
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On the other hand, the findings of the research indicate the potential for individual engineers 

or owners to control the aggressiveness of bidders’ bids to a level that strikes a desired balance 

between the monetary costs of under-competitiveness and the increased risk of problems 

associated with over-competitiveness. Previous research into optimal auction design is far from 

incorporating such practical issues as non-price features, unrealistic bid detection and actual 

individual auctioneer risk preferences. The conceptual framework developed in this paper, 

therefore, offers a potential means of doing this through the design of enhanced scoring formulas 

for individual engineers. In its present form, however, the analysis is restricted to providing a 

general qualitative configuration. The next logical step is the development of a quantitative 

means of determining how small variations in the BSF mathematical expressions might affect the 

level of bidder aggressiveness and bid dispersion for a future Best Value auction. This could be 

done, for example, by unbalancing the importance of the bid versus the technical proposal, 

adjusting the ALBC width or just by implementing BSF curves with different levels of 

concavity/convexity. All this is with the intention of promoting an equilibrium between 

competitiveness and risk among bidders’ bids, since in public construction contract auctions, for 

instance, both practitioners and researchers are aware that overly conservative bidding tends to 

waste public funds (i.e., a situation in which bidders make unreasonably high profits when 

winning the auction), whereas overly aggressive bidding causes problems such as poor quality, 

prolonged construction duration and ‘false economy’, that are said to ruin the health of the entire 

industry in the long run (Drew and Skitmore 1997; Flanagan et al. 2007). 

For future empirical research, the analysis needs to be repeated in other contexts in order to 

study whether the importance, and the order of importance, of the three variables identified 

influence bidder behavior to the same extent, regardless of other uncontrolled variables. Also 
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needed is an examination of the indirect effects of scoring technical proposals. For instance, 

recent empirical studies have found that, whenever the score for technical proposals is increased, 

bidders are encouraged to be more innovative and hence more focused on cost savings (Pellicer 

et al. 2014), an issue that may also eventually be reflected in the monetary component of the 

auction. In addition, analysis of a much larger dataset would help measure quantitatively, and 

with higher accuracy, how the particular configuration of scoring rules influences bidder 

behavior in other industries. 

Notation List 

The following variables are used in this paper. 

A   Maximum price possible to be submitted in a capped tender/auction 

babn  Abnormal bid threshold (expressed in money) 

bi  Bidder i’s bid (expressed in money) 

bm  Mean (average) bid (expressed in money) 

bmax  Maximum (highest) bid (expressed in money) 

bmin  Minimum (lowest) bid (expressed in money) 

bo  Estimated cost, expressed in bid (in money) 

dabn  Abnormal drop threshold (expressed in /1) 

di  Bidder i’s drop (expressed in /1) 

dm  Mean drop (average bid) (expressed in /1) 

dmax  Maximum drop (lowest bid) (expressed in /1) 

dmin  Minimum drop (highest bid) (expressed in /1) 

do  Estimated cost, expressed in drop (in /1) 
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gk  Bid Scoring Formula curve gradient in auctions with the same BSF ID and 

converted into a X3 later (in trichotomic score) 

M0…M3 Multiple linear regression coefficients relating X1, X2 and X3 with each of the four 

Y1, Y2, Y3 and Y4 independent variables. 

n  Number of auctions with the same combination with the same BSF and ALBC 

and engineer 

s  Bid standard deviation (expressed in money) 

Si  Score awarded to bidder i as a function of bi or di (expressed in /1) 

Ti  Score awarded to bidder i as a function of its Technical proposal (in /1) 

tk  Abnormally low bids criterion (ALBC) width in auctions with the same BSF ID 

(expressed in /1) and converted into a X2 later (in trichotomic score) 

wk  Bid score weighting in auctions with the same BSF ID (expressed in /1) and 

converted into a X1 later (in trichotomic score) 

α  Regression parameter that specifies the parabolic relationship between dmax and dm 

in drops (or bmin and bm in bids) 

α   Average of the n values of α with the same ID (k value), renamed later as -Y2 

β  Regression parameter that specifies the parabolic relationship between dmin and dm 

in drops (or bmax and bm in bids) 

β   Average of the n values of β with the same ID (k value), renamed later as Y3 

γ  Regression parameter that specifies the mathematical relationship between σ and 

dm in drops (or s and bm in bids) 

γ   Average of the n values of γ with the same ID (k value), renamed later as Y4 
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λ  Regression parameter that specifies the linear relationship between do and dm in 

drops (or bo and bm in bids) 

λ   Average of the n values of λ with the same ID (k value), renamed later as Y1 

σ Drop standard deviation (expressed in /1) 

Standard statistical variables, such the ones used in Figures 3 and 5 (e.g. R2, SE, F, t, df), are not 

displayed. 
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Table 1: BSFs and ALBCs dataset 
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BSF ID 

(k) 
Auction ID 

Upper Price 

limit (A) 
Auction ID 

Upper Price 

limit (A) 
n 

(∑Auction IDs) 

1 1 320,032.00 € 2 1,585,015.00 € 2 

Bidder 

(i) 

Bid (monetary 

value) (bi) 

Drop (/1 

value) (di) 

Bid (monetary 

value) (bi) 

Drop (/1 

value) (di) 

Lowest = 1 173,361.33 € 0.458 683,152.58 € 0.569 

2 198,419.84 € 0.380 767,798.23 € 0.516 

3 201,620.16 € 0.370 810,121.06 € 0.489 

4 204,820.48 € 0.360 852,443.89 € 0.462 

5 208,020.80 € 0.350 871,758.25 € 0.450 

6 211,221.12 € 0.340 871,758.25 € 0.450 

7 216,021.60 € 0.325 894,766.72 € 0.435 

8 217,621.76 € 0.320 935,158.85 € 0.410 

9 221,587.19 € 0.308 937,089.54 € 0.409 

10 224,022.40 € 0.300 951,009.00 € 0.400 

11 230,423.04 € 0.280 979,412.37 € 0.382 

12 279,227.92 € 0.128 1,014,409.60 € 0.360 

13 1,021,735.20 € 0.355 

Highest =14 1,233,349.34 € 0.222 

Scoring Parameters (SP) 

do 0.235 0.358 

dmax 0.458 0.569 

dm 0.327 0.422 

dmin 0.128 0.222 

σ 0.066 0.072 

Regression coefficients 

(calculated according to Figure 1, 2nd column) 
Averages 

λ 1.136 1.111  = 1.123 

α 0.599 0.602   = 0.601 

β 0.905 0.821   = 0.863 

γ 0.182 0.221   = 0.202

Table 2: Example of BSF ID=1’s Regression Coefficient (, ,  and ) calculations 
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ID 

(k) 

BS Weigh. 

(wk) 
ALBC width 

(tk ) 
BSF Gradient 

(gk) 

X1 

f(wk) 
X2 

f(tk) 
X3 

f(gk) 
Y1 

( )

Y2 

(- ) 

Y3 

( ) 

Y4 

( ) 

1 0.50 ∄ tk Convex 0 1 -1 1.123 0.601 0.863 0.202 

2 0.40 0.10 Convex 0 0 -1 1.070 0.589 0.561 0.140 

3 0.45 0.05 Constant 0 0 0 1.070 0.590 0.630 0.130 

4 0.50 0.05 Convex 0 0 -1 0.990 0.551 0.693 0.159 

5 0.30 0.06 Convex -1 0 -1 0.835 0.327 0.422 0.134 

6 0.30 0.04 Convex -1 -1 -1 0.641 0.227 0.291 0.104 

7 0.28 0.04 Constant -1 -1 0 0.703 0.278 0.329 0.076 

8 0.55 0.10 Constant 0 0 0 1.078 0.564 0.693 0.149 

9 0.40 0.10 Convex 0 0 -1 1.060 0.524 0.706 0.165 

10 0.40 0.10 Constant 0 0 0 1.100 0.651 0.634 0.140 

11 0.40 0.10 Constant 0 0 0 1.045 0.620 0.660 0.177 

12 0.30 0.10 Convex -1 0 -1 0.764 0.323 0.432 0.134 

13 0.30 ∄ tk Constant -1 1 0 1.082 0.541 0.728 0.131 

14 0.40 ∄ tk Constant 0 1 0 1.283 0.777 0.789 0.187 

15 0.50 ∄ tk Convex 0 1 -1 1.088 0.653 0.780 0.169 

16 1.00 0.10 Concave 1 0 1 1.448 0.892 0.865 0.191 

17 0.20 ∄ tk Convex -1 1 -1 0.884 0.459 0.644 0.165 

18 0.50 ∄ tk Convex 0 1 -1 1.088 0.614 0.764 0.173 

19 0.13 ∄ tk Constant -1 1 0 1.113 0.551 0.553 0.158 

20 0.40 ∄ tk Constant 0 1 0 1.170 0.706 0.780 0.205 

21 0.40 0.20 Constant 0 1 0 1.321 0.733 0.913 0.144 

22 0.45 ∄ tk Constant 0 1 0 1.346 0.696 0.913 0.153 

23 0.45 0.10 Convex 0 0 -1 0.940 0.551 0.620 0.150 

24 0.50 0.10 Constant 0 0 0 1.100 0.577 0.574 0.143 

25 0.35 0.10 Convex 0 0 -1 1.010 0.535 0.640 0.134 

26 0.50 ∄ tk Constant 0 1 0 1.346 0.696 0.888 0.189 

27 0.40 0.20 Constant 0 1 0 1.207 0.777 0.747 0.191 

28 0.30 ∄ tk Constant -1 1 0 1.050 0.530 0.585 0.129 

29 0.40 0.15 Convex 0 1 -1 1.100 0.700 0.730 0.180 

30 0.30 0.10 Constant -1 0 0 0.924 0.398 0.494 0.136 

31 0.35 0.10 Convex 0 0 -1 0.980 0.578 0.713 0.131 

32 0.40 0.10 Constant 0 0 0 1.034 0.632 0.667 0.167 

33 0.35 ∄ tk Convex 0 1 -1 1.229 0.719 0.706 0.178 

34 0.30 0.18 Constant -1 1 0 1.124 0.562 0.741 0.123 

35 0.40 ∄ tk Constant 0 1 0 1.283 0.681 0.822 0.158 

36 1.00 ∄ tk Concave 1 1 1 1.701 1.102 1.091 0.204 

37 0.51 0.10 Convex 0 0 -1 1.050 0.556 0.581 0.126 

38 0.35 0.10 Constant 0 0 0 1.034 0.651 0.693 0.155 

39 0.20 ∄ tk Convex -1 1 -1 0.941 0.464 0.592 0.173 

40 0.50 0.10 Constant 0 0 0 1.177 0.670 0.581 0.179 

41 0.40 ∄ tk Constant 0 1 0 1.245 0.733 0.813 0.178 

42 0.70 0.04 Constant 0 -1 0 0.930 0.535 0.500 0.114 

43 0.55 0.10 Constant 0 0 0 1.144 0.583 0.739 0.135 

44 0.70 0.10 Constant 1 0 0 1.081 0.667 0.623 0.128 

45 0.33 0.20 Constant -1 1 0 1.008 0.498 0.605 0.152 

46 0.30 ∄ tk Constant -1 1 0 1.040 0.498 0.676 0.128 

47 0.60 0.25 Constant 0 1 0 1.219 0.681 0.772 0.148 

Table 3: Analysis of BSFs 
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ID 

(k) 

Nº auctions 

(n) 

BSF description Bid Score Weighting 

(wk) 
ALBC width 

(tk ) 
BSF Gradient 

(gk) 
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Estimated Actual Deviations (/1) 

ID 

(k) 

X1 

f(wk) 
X2 

f(tk) 
X3 

f(gk) 
Y1 

( )

Y2 

(- ) 

Y3 

(  ) 

Y4 

( ) 

Y1 

( )

Y2 

(- ) 

Y3 

(  ) 

Y4 

( ) 

Y1 

( )

Y2 

(- ) 

Y3 

(  ) 

Y4 

( ) 

1 0 0 -1 0.977 0.539 0.616 0.150 1.092 0.549 0.677 0.154 0.12 0.02 0.10 0.03 

2 -1 -1 0 0.740 0.296 0.326 0.093 0.888 0.287 0.334 0.087 0.20 0.03 0.02 0.07 

3 1 0 1 1.413 0.887 0.852 0.176 1.425 0.965 0.902 0.186 0.01 0.09 0.06 0.06 

Table 4: Validation of the Multiple Linear Regression expressions with a 

recent sub-set of auctions 
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Coefficient λ 's Multiple Linear regression Y 1 = λ = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

M 0  = 1.099 SE M 0  = 0.013 F Y -value = 116.523 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.193 SE M 1  = 0.018 t M 1 -value = 10.910 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.166 SE M 2  = 0.015 t M 2 -value = 10.910 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = 0.122 SE M 3  = 0.018 t M 3 -value = 6.959 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? OK

R² = 0.890 SE Y  = 0.063 n = 47 df 1 = 3 df 2  = 43

Coefficient -α 's Multiple Linear regression Y 2 = -α = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

M 0  = 0.613 SE M 0  = 0.009 F Y -value = 182.709 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.200 SE M 1  = 0.012 t M 1 -value = 16.976 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.117 SE M 2  = 0.010 t M 2 -value = 11.526 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = 0.074 SE M 3  = 0.012 t M 3 -value = 6.317 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? OK

R² = 0.927 SE Y  = 0.042 n = 47 df 1 = 3 df 2  = 43

Coefficient β 's Multiple Linear regression Y 3 = β = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

M 0  = 0.653 SE M 0  = 0.013 F Y -value = 72.100 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.162 SE M 1  = 0.018 t M 1 -value = 9.032 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.166 SE M 2  = 0.015 t M 2 -value = 10.750 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = 0.038 SE M 3  = 0.018 t M 3 -value = 2.117 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? OK

R² = 0.834 SE Y  = 0.064 n = 47 df 1 = 3 df 2  = 43

Coefficient γ 's Multiple Linear regression Y 4 = γ = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3 →    Y 4 = γ = M 0  + M 1 *X 1 + M 2 *X 2

M 0  = 0.146 SE M 0  = 0.004 F Y -value = 19.202 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.025 SE M 1  = 0.005 t M 1 -value = 4.830 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.027 SE M 2  = 0.004 t M 2 -value = 6.091 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = -0.004 SE M 3  = 0.005 t M 3 -value = -0.749 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? No

R² = 0.573 SE Y  = 0.019 n = 47 df 1 = 3 df 2  = 43

Covariance Matrix (CvM) Correlation Matrix (CrM)
X 1 X 2 X 3 X 1 X 2 X 3

X 1 0.302 -0.016 0.083 X 1 1.000 -0.048 0.271
X 2 -0.016 0.380 0.030 X 2 -0.048 1.000 0.088
X 3 0.083 0.030 0.309 X 3 0.271 0.088 1.000

Figure 3
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Expected (Normal distr.) Y1= λ resid. Y2 =-α resid. Y3 = β resid. Y4 =γ resid.

Figure 4
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Coefficient λ 's M 1 , M 2  and M 3 's LSDs Y 1 = λ = M0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.193 SE M 1  = 0.018 s M 1  = 0.019 0.166 0.220 M 1 's and M 2 's LSD intervals intersect, as
M 2  = 0.166 SE M 2  = 0.015 s M 2  = 0.018 0.141 0.191 M 2 's with M 3 's. Hence, X 1 's M 1  value seems
M 3  = 0.122 SE M 3  = 0.018 s M 3  = 0.019 0.095 0.149 more important than X 3 's M 3  value.

n = 47 N = 141 N-1 (α=5%)  = 1.977

Coefficient -α 's M 1 , M 2  and M 3 's LSDs Y 2 = -α = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.200 SE M 1  = 0.012 s M 1  = 0.016 0.178 0.222 No LSD intervals intersect,
M 2  = 0.117 SE M 2  = 0.010 s M 2  = 0.015 0.0964 0.138 then, X 1  is more important than X 2

M 3  = 0.074 SE M 3  = 0.012 s M 3  = 0.016 0.052 0.0958 and, X 2  is more important than X 3 .
n = 47 N = 141 N-1 (α=5%)  = 1.977

Coefficient β 's M 1  and M 2 's LSDs Y3 = β = M 0 + M1 *X 1 + M2 *X 2 + M 3 *X 3

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.162 SE M 1  = 0.018 s M 1  = 0.020 0.134 0.189 M 1 's and M 2 's LSD intervals intersect,
M 2  = 0.166 SE M 2  = 0.015 s M 2  = 0.018 0.140 0.191 then, X 1  and X 2  are equally important.
M 3  = 0.038 SE M 3  = 0.018 s M 3  = 0.019 0.010 0.065 Both are more important than X 3 .

n = 47 N = 141 N-1 (α=5%)  = 1.977

Coefficient γ 's M 1  and M 2 's LSDs Y4 = γ = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3 →   Y 4 = γ = M0  +  M 1 *X 1  + M2 *X 2

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.025 SE M 1  = 0.005 s M 1  = 0.011 0.010 0.040 M 1 's and M 2 's LSD intervals intersect,
M 2  = 0.027 SE M 2  = 0.004 s M 2  = 0.010 0.014 0.041 then, X 1  and X 2  are equally important.
M 3  = -0.004 SE M 3  = 0.005 s M 3  = 0.010 -0.019 0.011 X 3 was deemed meaningless.

n = 47 N = 141 N-1 (α=5%)  = 1.977

Cell Formulae
LB LSD intervals: Lower Bound of Fisher's Least Significant Difference Intervals LB = M i - 0.707*t N-1 *s Mi

UB LSD intervals: Upper Bound of Fisher's Least Significant Difference Intervals UB = M i + 0.707*t N-1 *s Mi

Figure 5
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Figure 1: Scoring Parameter relationships in capped auctions 

Figure 2: Trichotomic scoring of the three independent BSF variables kw , 
kt  and 

kg

Figure 3: Multiple linear regression analysis 

Figure 4: Normality test of Residuals (Q-Q plots) 

Figure 5: Least Significant Difference intervals analysis 
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