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The rich dataset of ensemble predictions from the TIGGE project has supported a wide range of 
scientific studies and new products for forecasting severe weather

THE TIGGE PROJECT AND ITS 
ACHIEVEMENTS

by RichaRd Swinbank, MaSayuki kyouda, PieRS buchanan, Lizzie FRoude, ThoMaS M. haMiLL, 
TiM d. hewSon, JuLia h. keLLeR, Mio MaTSueda, John MeThven, FLoRian PaPPenbeRgeR, 

MichaeL ScheueReR, heLen a. TiTLey, LauRence wiLSon, and Munehiko yaMaguchi

T he Observing System Research and Predictability 
 Experiment (THORPEX) was a decade-long 
 international research and development pro-

gram to accelerate improvements in the accuracy 

and benefits of high-impact weather forecasts up to 
two weeks ahead (WMO 2005; Shapiro and Thorpe 
2004a,b). THORPEX was established in 2003 as part 
of the World Meteorological Organization (WMO) 
World Weather Research Program (WWRP). The 
execution phase of THORPEX lasted a decade, from 
2005 to 2014. It is thus an opportune time to take 
stock of the achievements of the THORPEX program 
and its component parts. This paper is focused on 
achievements related to The International Grand 
Global Ensemble (TIGGE) project, while subse-
quent articles will cover the broader achievements of 
THORPEX.

TIGGE was established to support a range of 
THORPEX research activities by providing op-
erational ensemble forecast data to the international 
research community. The original name of TIGGE, 
“THORPEX Interactive Grand Global Ensemble,” 
reflected the THORPEX vision for the development 
of a future global interactive forecast system (GIFS), 
including the use of ensemble prediction systems 
(EPSs) that would be configured interactively in re-
sponse to varying weather situations and user needs.

The THORPEX program covered three major 
research areas: predictability and dynamical pro-
cesses, data assimilation and observing systems, and 
ensemble forecasting. These correspond to the three 
WWRP–THORPEX working groups: predictability 
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and dynamical processes (PDP), data assimilation and 
observing system (DAOS), and GIFS-TIGGE. TIGGE 
provides forecast data to support all three of these 
research strands. Although on-demand ensemble pre-
dictions are not yet a routine operational reality, there 
has been an increasing use of techniques to combine 
ensemble predictions for operational forecast products. 
TIGGE has proved particularly valuable as a dataset to 
support research on predictability and dynamical pro-
cesses and the development of ensemble-based forecast 
products. By making ensemble prediction data from 
leading operational forecast centers readily available for 
research, TIGGE has enhanced cooperation between 
the academic and operational meteorological com-
munities. Because of the value of the data, it has been 
agreed that TIGGE will be continued for at least a fur-
ther 5 yr. A new name, “The International Grand Global 
Ensemble,” has been adopted to reflect the completion 
of THORPEX, while retaining the TIGGE acronym.

The TIGGE database contains ensemble predic-
tions from 10 global numerical weather prediction 
(NWP) centers and is available via three archive 
centers: ECMWF, NCAR (until 2015), and CMA 
(see Table 1 for a list of TIGGE partners and their 
acronyms, as used in this article, and see the side-
bar on “Accessing TIGGE data” for information on 
accessing the data). Since the basis of TIGGE is to 
support research, and not operations, the technical 
setup (Worley et al. 2008) is not designed to support 
real-time exchange of data. Instead, the data are 
made available to users 48 h after the initial time 
of each forecast. A TIGGE-Limited Area Model 
(LAM) panel was also established to apply TIGGE 
concepts to limited area model ensembles. Several 
European regional ensembles are now available from 

a TIGGE-LAM archive established at ECMWF dur-
ing 2014.

Because of the huge data volume, it was not feasible 
to include a full range of model fields at all levels in 
the TIGGE database; instead fields were selected 
taking into account user requirements discussed 
at a workshop hosted by ECMWF (Richardson 
et al. 2005). Documentation of the archived fields is 
available on the TIGGE project website (http://tigge 
.ecmwf.int) and in Bougeault et al. (2010). The TIGGE 
data are stored in gridded binary (GRIB2) format, 
the standard established by WMO for the storage of 
gridded binary data that was designed to cater for 
ensembles. The TIGGE partners agreed upon a series 
of standards and conventions to enable users to read 
forecast data from any of the TIGGE partners using 
the same computer code. The TIGGE data portals 
include links to tools contributed by TIGGE users, 
which are designed to help new users read and plot 
the TIGGE data, including tools to convert the GRIB2 
data to NetCDF format if required.

Since it was launched on 1 October 2006, the usage 
of the TIGGE archive has increased steadily. During 
calendar year 2013, there were at least 110 active us-
ers of the archive each month, and about 800 TB of 
data were accessed from the database over the year.

Bougeault et al. (2010) described some early results 
from TIGGE and pointed out that multimodel grand 
ensemble systems—combining predictions from sev-
eral TIGGE models—have been demonstrated to give 
additional skill for some types of forecast parameters. 
The section on the “Verification, combination, and 
calibration of TIGGE forecasts” of this paper reviews 
the result of recent research on that topic plus other 
studies evaluating the quality of the TIGGE forecasts.

Table 1. TIGGE project partners.

Center Country Acronym

Bureau of Meteorology Australia BoM

China Meteorological Administration China CMA

Canadian Meteorological Centre Canada CMC

Centro de Previsão de Tempo e Estudos Climáticos Brazil CTPEC

European Centre for Medium-Range Weather Forecasts Europe ECMWF

Japan Meteorological Agency Japan JMA

Korea Meteorological Administration Korea KMA

Météo-France France MF

Met Office United Kingdom UKMO

National Center for Atmospheric Research United States NCAR

National Centers for Environmental Prediction United States NCEP

National Climatic Data Center United States NCDC

50 JANUARY 2016|

http://tigge.ecmwf.int
http://tigge.ecmwf.int


A n overview of TIGGE, with links to  further 
 information and documentation, is given online (http://

tigge.ecmwf.int/).
The TIGGE data are available from the following web 

portals:
• ECMWF (http://apps.ecmwf.int/datasets/);
• CMA (http://wisportal.cma.gov.cn/wis/); and
• NCAR (http://rda.ucar.edu/; data up to the end of 

2014, available until the end of 2015).

The TIGGE-LAM archive enables researchers to have 
access to forecasts from several European regional EPSs. 
The forecasts are produced at high resolution (between 
12-km and 2-km grid spacing) and provide detailed 
forecasts up to a few days ahead. TIGGE-LAM data are 
available via the ECMWF portal shown above.

ACCESSING TIGGE DATA

TIGGE has opened up the opportunity for re-
searchers to use the ensemble data for a wide range of 
studies, particularly on predictability and dynamical 
processes. At the time of writing, around 120 TIGGE-
related papers have been published. Highlights of 
studies of dynamics and predictability of both mid-
latitude and tropical systems are presented in the 
section on “Dynamics and predictability.” A wide 
range of information about TIGGE is displayed on 
the TIGGE Museum website (see the sidebar on “The 
TIGGE Museum”), and several examples of graphi-
cal products from the website are used to illustrate 
this article.

Despite the fact that the TIGGE database was not 
designed to cater for real-time use, the section on 
“Applications for the forecast user community” shows 
that TIGGE has proved invaluable for the develop-
ment of products to support forecasts and warnings 
of high-impact weather as part of the vision for 
GIFS. The final section of the paper looks beyond the 
THORPEX program and explores how the achieve-
ments of TIGGE should be built on in the future.

VERIFICATION, COMBINATION, AND 
CALIBRATION OF TIGGE FORECASTS. 
Verif ication. The TIGGE database is designed to 
facilitate comparative verification of the ensembles 
contained therein, and many examples have been 
published. Figure 1, from the TIGGE Museum web-
site, compares root-mean-square (RMS) errors of 
500-hPa geopotential height for the Northern Hemi-
sphere in winter 2013/14. The relative ordering of skill 
is typical of many other cases; ECMWF has lower 
errors than other centers, with tight competition for 

second place. Hamill (2012) found a somewhat similar 
relative ordering for precipitation over the contiguous 
United States. In a more extreme case of error dif-
ferences, Hagedorn et al. (2012, their Fig. 3) showed 
that, in 2008/09, the 2-m temperature forecasts at the 
1-week range from the ECMWF system were simi-
lar in quality to several of the least skillful forecast 
systems at the 1-day range. Of course, each system 
has been upgraded during the course of TIGGE, so 
these results will not necessarily reflect the precise 
relative or absolute performance of these systems at 
the current time.

Though it is preferable when available to verify 
against observations, analyses are often used instead 
to provide information on forecast quality that in-
cludes observation-sparse areas. Unfortunately, the 
relative performance of various modeling systems 
can depend strongly on which analysis is used for 
verification. For example, for low-level tropical 
regions, the model whose analysis was used as the 
verification field appeared to be the most accurate 
(see Park et al. 2008, their Fig. 14). The yearly mean, 
analyzed, 2-m temperature from five of the TIGGE 
systems was shown to vary by almost 5 K between 
the warmest and coldest analyses for a location in 
the Amazon basin (Fig. 2). Large differences were 
also commonplace for some upper-air variables and 
for data at other locations. Given these differences, 
verifying against more than one analysis is preferable 
because if a given model is unambiguously higher in 
skill than another regardless of which analysis was 
used, this lends credence to the result. Alternatively, 
a consensus of the more skillful analyses might be 
used.

T he TIGGE Museum website was established by Mio  
 Matsueda, with Tetsuo Nakazawa. The website is cur-

rently hosted by the University of Tsukuba (at http:// 
gpvjma.ccs.hpcc.jp/TIGGE/). It displays a variety of graph-
ical information based on the TIGGE dataset, including

•  statistical verification of TIGGE forecasts;
•  ensemble-based forecasts of severe weather;
•  forecasts of the Madden–Julian oscillation and 

blocking; and
•  sample scripts to show how to download and plot 

TIGGE data.

The TIGGE Museum products are regularly updated 
with a 2–3-day delay and are available for noncommer-
cial use.

THE TIGGE MUSEUM
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Fig. 1. Comparison of the skill of Northern Hemisphere 500-hPa forecasts 
from systems contributing to TIGGE for Dec 2013 through Feb 2014. Each 
forecast is verified against its own analysis. Solid lines show the RMS error 
of the ensemble mean, and dashed lines show the control member of each 
ensemble. Refer to Table 1 for forecast center abbreviations. The number 
following the center name indicates the number of ensemble members 
used.

Combination. Probabilistic 
forecast skill and reliability 
can be improved through 
the combination of TIGGE 
data, that is, the generation 
of a mult imodel grand 
ensemble by combining 
raw ensemble predictions 
from multiple centers. As 
mentioned in Hagedorn 
et al. (2005), “the key to 
the success of the mul-
timodel concept lies in 
combining independent 
and skillful models, each 
with its own strengths and 
weaknesses.” Two underly-
ing assumptions behind 
the success of combina-
tion are that 1) the mod-
eling systems may have 
independent (or nearly 
so) systematic errors, thus 
providing some benefit 
through cancellation, and 
2) the modeling systems 
collectively may provide 
more realistic estimates 
of event probabilities than 
individually. Several stud-
ies have demonstrated such 
improvement, including 
Matsueda a nd Ta na ka 
(2008), Park et al. (2008), 
Johnson and Swinbank 
(2009), Candille (2009), 
Hagedorn et a l. (2012), 
and Hamill (2012). Large 
benefits have been found 
for quantities relevant to 
weather impacts such as 
surface air temperature, 
surface wind, and pre-
cipitation. Hamill (2012) 
showed that multimodel 
combination improved the 
overall skill and reliability 
of precipitation forecasts 
over the contiguous United 
States; similar results are 
shown in Fig. 3. There are 
both practical and theo-
retical considerations that 

Fig. 2. Time series of daily (0000 UTC) 2-m temperature analyses from four 
different TIGGE analyses, here for a grid point in the Amazon basin (10°S, 
60°W). The numbers associated with the legend indicate the yearly mean 
analyzed temperature. Thin, lighter-colored lines provide the daily analyses, 
and thicker, darker-colored lines provide the smoothed analysis, an average 
of ±15 days.
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Fig. 3. Reliability diagrams for T + 48 to T + 72 h accumulated precipitation forecasts on 
a 1° grid over the contiguous United States, for (a)–(d) individual EPSs and for the (e) 
multimodel ensemble. This used the Jul–Oct 2011 ensemble dataset as in Hamill (2012), 
but here the reliability diagrams were populated with forecasts from both 0000 and 1200 
UTC initial conditions. Brier skill score (BSS) computations were performed as in Wilks 
(2006). The inset histogram shows the frequency with which forecasts were issued; hori-
zontal solid lines therein denote the frequency distribution of climatological forecasts.
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will affect how much benefit users derive from 
multimodel ensemble combination. Practically, the 
global EPSs in TIGGE contain forecasts with dif-
fering qualities. Hagedorn et al. (2012) showed that 
the combination of the four highest-performing 
ensembles led to forecasts that were statistically 
significantly better than the raw ensemble guidance 
from the best-performing system. However, when 
the combination included data from all available 
TIGGE systems, there was no unambiguous statisti-
cal advantage, showing that some account needs to 
be taken of relative quality. More theoretically, as 
EPSs are upgraded (e.g., higher resolution, improved 
initialization procedures, and improved parameter-
izations), the systematic biases in each center’s mean 
forecast will decrease. Should the prediction systems 
also incorporate more sophisticated methods for 
simulating the model uncertainty, their spread will 
also become more consistent with the ensemble-
mean error, as expected by theory. In this (desir-
able) situation, the simple combination of ensemble 
prediction data would become less beneficial, aside 
from the reduction in sampling error from the use 
of a larger ensemble. There will also be less benefit of 
combining data from current-generation EPSs if the 
combination is attempted after some postprocessing 
to remove bias and calibrate spread. The supple-
mental information (available online at http://dx.doi 
.org/10.1175/BAMS-D-13-00191.2) provides further 
discussion of how ensembles might be combined in 
the presence of correlated errors.

Calibration. Whether in combination or alone, the 
information provided by EPSs often requires some 
statistical postprocessing to reduce systematic errors 
as well as to deal with sampling error. TIGGE has 
provided a rich set of data that have enabled research 
on a range of potential methods for the calibration 
of ensemble predictions, contributing to the large 
body of literature on the subject (see, e.g., Jolliffe and 
Stephenson 2011). Which approach works best often 
depends on the variable in question; a postprocessing 
method that works well with temperature is probably 
not optimal for precipitation because of the different 
characteristics of their probability distributions.

The accuracy and reliability of postprocessed 
guidance may depend on the amount of training data 
available, particularly for more uncommon, high-
impact events such as heavy precipitation. How does 
one obtain a sufficiently large sample when forecast 
models are updated every year or so, which may 
change the model’s error characteristics? An ideal 
method is to use a reforecast dataset, incorporating a 

large number of forecasts of past cases that have been 
rerun with the current NWP system. The advantage 
of using training samples from a reforecast dataset for 
the calibration of surface temperature data is clearly 
shown in Hagedorn et al. (2012), although the results 
for precipitation from Hamill (2012) are less clear cut. 
Ideally the retrospective forecasts will have the same 
error characteristics as the operational model. Should 
the forecast modeling system change significantly, a 
new reforecast dataset should be generated. Because 
of the computational expense, many centers seek to 
provide statistically adjusted guidance using shorter 
training datasets, such as the 30-day training period 
used in part for the calibration in Hagedorn et al. 
(2012) and the 40-day training period used in Wilson 
et al. (2007). Shorter training periods have been 
shown to produce acceptable results for shorter-range 
forecasts of variables such as surface temperature, 
but larger sample sizes are increasingly valuable for 
longer-range forecasts and for forecasts of more rare 
events such as heavy precipitation.

DYNAMICS AND PREDICTABILIT Y. 
Extratropical cyclones and storm tracks. Extratropical 
cyclones, and the associated baroclinic waves, are 
the primary cause of variability in weather across the 
midlatitudes. Mesoscale features embedded within 
cyclones, such as fronts, can bring both damaging 
surface winds and heavy precipitation leading to 
impacts such as widespread flooding.

The regions where extratropical cyclones fre-
quently occur are often called storm tracks; the most 
prominent storm tracks in the Northern Hemisphere 
span the Atlantic and Pacific (PA) Oceans. The 
heat and moisture f luxes associated with cyclones 
dominate the poleward transport of energy in the 
atmosphere and therefore have a crucial influence 
on climate. Using TIGGE data, individual cyclones 
were tracked and systematic errors were diagnosed 
for the global ensemble forecasts from the 10 centers 
(Froude 2010, 2011; Fig. 4). This methodology has 
revealed valuable information about the representa-
tion of cyclones in numerical weather prediction 
models and their lower-resolution cousins—climate 
models. The ECMWF ensemble was found to have 
the highest level of performance in predicting cyclone 
position, intensity, and propagation speed. However, 
there may be some bias as all the ensembles were 
verified against the ECMWF analysis (as discussed 
in the section on “Verification”). Figure 4a also shows 
that the intensity of the cyclones was not predicted 
as well by the ensembles with lower spatial resolu-
tions (NCEP, BoM, and CPTEC), perhaps indicating 
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Fig. 4. Bias in (a) intensity and (b) propagation speed of extratropical cyclones tracked in forecasts from the 
different global centers contributing to TIGGE, as a function of lead time (Froude 2010).

some systematic errors in simulating the contraction 
and intensification of ascent into narrow regions as 
a result of latent heat release. An intriguing, but as 
yet unexplained, forecast error is that all the EPSs 
were found to underpredict the propagation speed 
of cyclones (Fig. 4b). Froude (2011) also assessed this 
bias in the ECMWF high-resolution forecast, and the 
bias was found to be significantly smaller than the 
lower-resolution EPS.

Ensembles of cyclone tracks can be displayed to 
illustrate uncertainty. This is illustrated for T + 72 h 
forecasts in Fig. 5 for the high-impact St. Jude’s storm 
case on 28 October 2013 (see also Hewson et al. 
2014). This intense cyclone caused a trail of severe 
damage across highly populated areas including 
southeast England, the Netherlands, and Denmark. 
Both the Met Office and ECMWF run the Hewson 
and Titley (2010) cyclonic feature identification and 
tracking methodology on their global ensembles, 

and the results are used by operational forecasters. 
The cyclonic features are detected using a combina-
tion of vorticity maxima and pressure minima. In 
Figs. 5a and 5b, the dots locate the centers of cyclonic 
features with intensities indicated by the colors. The 
scatter provides an immediate visual impression of 
the uncertainty in feature locations represented by 
the ensembles. The analyzed storm center reached 
Denmark at about 1400 UTC. Approximately half 
the Met Office ensemble clustered toward Denmark, 
the other solutions showing the cyclone nearer the 
United Kingdom. In contrast, all members of the 
ECMWF ensemble predicted the cyclone moving 
too slowly. The feature points and associated values 
were used to create forecasts of strike probability 
in Figs. 5c and 5d. They are somewhat analogous 
to the “cone of uncertainty” plots employed in 
hurricane forecasts (e.g., Majumdar and Finocchio 
2010). The marked difference between the ECMWF 
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Fig. 5. Ensemble forecasts for a high-impact extratropical cyclone crossing the United Kingdom and Denmark. 
The circle shows the observed location of the cyclone at 1200 UTC 28 Oct 2013. (top) “Dalmatian plots” repre-
senting cyclonic features in the T + 72 h ensemble forecast from (a) ECMWF and (b) Met Office. The features 
are colored by maximum wind speed (see scale in knots) within a 300-km radius at 1-km altitude. Note that the 
features from every ensemble member are overlain, so the location of the cyclone is indicated by 52 or 24 dots 
for ECMWF and Met Office forecasts, respectively. Mean sea level pressure from the control run is also shown 
for both centers. (bottom) Cyclonic feature strike probability estimated from (c) ECMWF and (d) Met Office 
ensemble forecasts (T + 72 h) using cyclonic feature tracking. At each point the color represents the probabil-
ity that a moving cyclonic center associated with wind speeds over 60 kt (1 kt = 0.5144 m s–1; at 1-km altitude, 
within 300 km of the center) will at some point, within a centered 24-h window, be less than 300 km away.

and Met Office probability forecasts illustrates that 
ensemble forecasting systems are not perfect and 
more research is required to transform ensemble 
predictions into accurate probability forecasts for 
weather events.

Jet stream variability: Large-scale f low regimes and 
blocking. TIGGE has facilitated studies of large-scale, 
low-frequency variations in the jet stream. The jet 
stream is characterized by very large-scale mean-
ders and the phenomenon of Rossby wave breaking. 

Low-frequency variability is dominated by a few 
large-scale patterns [e.g., Cassou et al. (2004) identi-
fied four in the Euro-Atlantic (EA) sector]. It might 
be anticipated that low-resolution models would be 
able to simulate such patterns. However, Dawson et al. 
(2012) showed that lower-resolution (T159) simula-
tions fail to capture the observed variability, while 
the free-running ECMWF model at the resolution 
of the ECMWF EPS (T511) captures the structure 
and variance of the large-scale patterns over the 
Atlantic. Doubling the resolution again to T1279 
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obtains similar results, indicating convergence in 
the ECMWF model representation of low-frequency 
dynamics.

The TIGGE database was used by Matsueda (2009) 
to show that ensemble forecasts perform well in simu-
lating the frequencies of EA and PA blocking, even 
after a lead time of 9 days. However, probabilistic 
forecasts of blocking over the PA sector were more 
skillful than those for the EA sector. Frame et al. 
(2011, 2013) took a different approach in quantifying 
the skill in the prediction of the probability of tran-
sition between three states of the North Atlantic jet 
stream (south, middle, and north). They showed that 
forecast centers (ECMWF, CMC, and UKMO) exhib-
ited consistent flow-dependent predictability; predic-
tive skill is greatest when the jet is in the south state, 
linked to greater persistence of that state. Ensemble 
forecasts diverge most rapidly passing through the 
north jet state. The sensitivity to initial conditions 
is associated in this case with Rossby wave breaking 
and split jet formation.

Patterns associated with persistent behavior have 
a major inf luence on regional weather extremes 
and their impacts. Matsueda (2011) used TIGGE to 
investigate the predictability of surface temperature 
in Eurasian blocking events such as the Russian heat 
wave of 2010 (Dole et al. 2011). While the blocking in 
June–August of 2010 was predictable on average, even 
for a lead time of 9 days, there was little skill beyond 
6 days in predicting the particular blocking event 
that brought the severe heat wave (30 July–9 August). 
Most of the forecasts predicted a decay of the blocking 
earlier than that observed. At the same time a trough 
over Pakistan, downstream of the Russian blocking 
anticyclone, in conjunction with a monsoon depres-
sion brought extreme precipitation and flooding to 
northwest Pakistan (e.g., Galarneau et al. 2012). A 
key lesson from this case study is that simultaneous 
extreme events can be linked via Rossby waves but 
have differing predictability.

Gray et al. (2014) have used TIGGE forecasts to 
quantify systematic errors in the representation of 
Rossby waves on the jet stream using diagnostics 
that were not sensitive to longitudinal phase displace-
ments of waves, namely, the total area occupied by 
ridges and the average horizontal potential vorticity 
(PV) gradient across the tropopause. Both ridge area 
and PV gradient decrease with lead time. None of 
the models can maintain a gradient as tight as that 
observed in the face of numerical dissipation, imply-
ing that the jet stream is weaker than observed. The 
decrease in ridge area points to a decline in wave 
activity in the forecasts. This may be because overly 

smooth PV gradients resulted in faster dispersion of 
Rossby wave activity or because incorrect represen-
tations of the diabatic processes resulted in a loss of 
amplitude. Further dynamics research is required to 
identify the processes responsible for these systematic 
errors and their consequences for weather events 
downstream.

Madden–Julian oscillation. The Madden–Julian oscilla-
tion (MJO; Madden and Julian 1972) is the dominant 
mode of intraseasonal variability in the tropics and 
influences tropical weather and extratropical circula-
tions via large-scale teleconnections. There is only a 
partial understanding of the dynamics of the MJO 
and its interaction with convective processes and the 
surface layers of the ocean, and its prediction remains 
a major challenge. Although the forecast range of 
the TIGGE ensembles is shorter than the period of 
the MJO, the TIGGE data allow a good comparison 
of the MJO forecasts over about half a cycle of the 
oscillation.

Matsueda and Endo (2011) assessed the MJO 
forecast performance of operational medium-range 
ensemble forecasts by using the TIGGE data for the 
period of 1 January 2008–31 December 2010 (see 
the example forecast comparison in Fig. 6). Wheeler 
and Hendon (2004) defined a bivariate index of the 
amplitude and phase of the MJO that provides a 
convenient framework for evaluating the forecasts. 
Matsueda and Endo (2011) found that ECMWF 
and the Met Office generally yield the best perfor-
mances in predicting the MJO; however, they do not 
always show similar skill. ECMWF performs well in 
simulating the maintenance and onset of the MJO in 
phases 1–4 (where the region of enhanced convection 
progresses from East Africa across the Indian Ocean 
and to the Maritime Continent), whereas Met Office 
and NCEP perform well in phases 5–8 (where the 
enhanced convection progresses from the Maritime 
Continent across the Pacific and on to Africa). They 
also found that simulations of the MJO generally 
show a slower phase speed and a larger amplitude 
than that observed. Predicted amplitude over the 
Maritime Continent (phases 4 and 5), however, tends 
to be smaller than that observed, suggesting that most 
models still face the Maritime Continent predict-
ability barrier (Seo et al. 2009). The quasi-real-time 
MJO forecasts based on TIGGE data are available via 
the TIGGE museum (see the sidebar on “The TIGGE 
museum”).

Tropical cyclones. Tropical cyclones (TCs) are one of 
the most destructive atmospheric disturbances on 
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Fig. 6. (a) ECMWF analysis for the Real-time Multivariate MJO index for the 90 days prior to the initial date 
of the forecast. Real-time Multivariate MJO index forecasts by (b) BoM, (c) CMA, (d) CMC, (e) CPTEC, (f) 
ECMWF, (g) JMA, (h) KMA, (i) NCEP, and (j) Met Office, initialized at 1200 UTC 1 Apr 2009. The black circle 
and black line with numbered circles correspond to each analysis (note that there are considerable differences 
between some of the analyses). The numbers in the colored circles indicate the number of days from the initial 
date. The colored lines indicate ensemble members. The color changes reflect the lead time of the forecast. 
Analyses and forecasts generally travel in a counterclockwise direction. [Figure from Matsueda and Endo (2011).]

Earth and pose the greatest threat to life and prop-
erty (King et al. 2010). Establishing effective warning 
systems and strengthening international cooperative 
frameworks are of fundamental importance for di-
saster risk reduction of TCs. This need is addressed 
both by improving the underlying TC predictions 
(discussed in this section) and by developing new 
informative forecast products (see the section on the 
“Applications for the forecast user community”).

One of the great benefits of TIGGE is that it is 
now feasible to create and evaluate a multimodel 
grand ensemble of TC predictions (e.g., Majumdar 
and Finocchio 2010; Yamaguchi et al. 2012; Mat-
sueda and Nakazawa 2014). Yamaguchi et al. (2012) 
demonstrated the objective statistical benefits of 
track forecasts based on a multimodel grand en-
semble compared to a single-model ensemble for the 

western North Pacific basin. However, Majumdar 
and Finocchio (2010) pointed out that there are some 
circumstances where combination of ensembles does 
not improve track forecast skill. On most occasions 
the observed track should be well within the spread 
of forecast tracks, but, as shown in Fig. 7, there will 
be some occasions when the actual track falls on the 
edge of the forecast ensemble.

It is sometimes necessary to forecast the most 
likely TC track; in general this will be given by the 
ensemble-mean track, but Qi et al. (2014) and Tsai 
and Elsberry (2013) have developed some more 
sophisticated approaches. Tsai and Elsberry (2013) 
showed that, in situations where there was a track 
bifurcation (two clusters of forecast tracks), the track 
cluster with a percentage greater than 70% can be 
reliably selected as the better choice. For situations 
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when later observations are 
available, Qi et al. (2014) 
developed an approach by 
which larger weight is given 
to ensemble members that 
are closer to the observed 
TC locations.

For probabilistic predic-
tions of TCs, it is important 
that the ensemble initial 
perturbations are a realistic 
representation of the uncer-
tainties in the initial condi-
tions. TIGGE has helped 
analyze and interpret the 
initial perturbations and 
their impact on TC forecasts 
(e.g., Hamill et al. 2011; 
Magnusson et a l. 2014). 
Yamaguchi and Majumdar 
(2010) demonstrated that 
singular, vector-based per-
turbations grow through a 
baroclinic energy conver-
sion in a vortex, which am-
plifies the ensemble spread 
of TC tracks. TIGGE has 
a lso contributed to the 
analysis of the sensitivity of 
forecasts to initial condition 
perturbations, which can 
be used for the targeting of 
observations to improve TC 
forecasts (e.g., Majumdar 
et al. 2011).

TIGGE has facilitated 
studies on understanding 
TC dynamics and their pre-
diction across TC basins 
worldwide. Majumdar and 
Torn (2014) showed that 
ensembles have potential 
for probabilistic prediction 
out to 5 days. Although the reliable prediction of 
TC formation is in its infancy, studies using TIGGE 
data demonstrate skill in predicting formation using 
multimodel grand ensembles (e.g., Belanger et al. 
2012; Halperin et al. 2013). Given that TC intensity 
changes and genesis events are often affected by en-
vironmental influences such as wind vertical shear 
and tropical waves (e.g., Kepert 2010; Tory and Frank 
2010), even relatively low-resolution ensemble data 
could be beneficial.

Extratropical transition of tropical cyclones. TCs can 
also have a profound effect on the synoptic evolution 
in midlatitudes. A poleward moving TC interacts 
with the midlatitude Rossby waveguide and may 
undergo extratropical transition (ET), transforming 
from a tropical into an extratropical cyclone (Jones 
et al. 2003). The outflow and circulation of the TC 
may amplify or even trigger the development of a 
midlatitude Rossby wave train, leading to the poten-
tial for high-impact weather in regions downstream 

Fig. 7. Track predictions (thin lines) by multimodel grand ensemble (top) for 
Typhoon Megi initiated at 1200 UTC 25 Oct 2010 and (bottom) for Typhoon 
Conson initiated at 1200 UTC 12 Jul 2010. The black line is the observed 
track, and blue, green, purple, orange, and red denote prediction times of 
1–5 days, respectively (after Yamaguchi et al. 2012).
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of the TC itself. The difficulties in representing ET 
often lead to a decrease in forecast skill, which can 
be investigated using ensemble forecasts, as demon-
strated by Harr et al. (2008), Anwender et al. (2008), 
and Harr (2010).

TIGGE has opened up the possibility of using a 
range of ensembles to address the impact of tran-
sitioning TCs on predictability in downstream re-
gions. Keller et al. (2011) showed that TIGGE offers 
a broader range of possible forecast scenarios for ET 
events and the downstream impact than an ensemble 
generated by a single forecasting system. Whether 
these additional scenarios provide a reasonable rep-
resentation of the uncertainty of the actual develop-
ment requires further investigation. In a dynamical 
study using TIGGE data, Archambault et al. (2014) 
investigated the role of transitioning TC Malakas on 
the amplification of a midlatitude wave train and 
the consequent high-impact weather over North 
America. Both studies highlight the use of TIGGE 
to further advance our knowledge of ET events and 
their impact on predictability.

APPLICATIONS FOR THE FORECAST 
USER COMMUNITY. Tropical cyclone forecast-
ing. During the THORPEX Pacific Asian Regional 
Campaign (T-PARC), several TIGGE partners started 
to exchange tropical cyclone track predictions in 
near–real time, using an extensible markup language 
(XML)-based format that was developed for the 
purpose (cyclone XML or CXML format; see www 
.bom.gov.au/cyclone/cxmlinfo/). Ensemble forecast 
products based on the CXML data proved invalu-
able for the North Western Pacific Tropical Cyclone 
Ensemble Forecast Project (NWP-TCEFP) that was 
launched in 2009. During TCEFP, the ensembles 
were utilized by forecasters from the Economic and 
Social Commission for Asia and the Pacific (ESCAP)/
WMO Typhoon Committee and also the Southeast 
Asia region of the WMO Severe Weather Forecast 
Demonstration Project (SWFDP; see the section on 
“Early warning products” below). Surveys carried out 
in conjunction with TCEFP confirmed the usefulness 
of ensemble TC forecast products for operational 
forecasting (Yamaguchi et al. 2014).

Although TC track predictions have become sig-
nificantly more accurate over the past few decades, 
there is room for improvement in quantifying and 
communicating uncertainty in the forecasts (e.g., 
Heming and Goerss 2010). As discussed in the section 
on “Tropical cyclones,” multimodel grand ensembles 
generally give objectively more skillful forecasts than 
single-model ensembles. These new TC products 

provide forecasters with additional information by 
summarizing the forecast uncertainty from the grand 
ensemble and so increase the level of confidence in 
the forecasts.

Some examples of multimodel ensemble products 
are shown for the forecasts of Hurricane Sandy in 
Fig. 8. Sandy developed in the Caribbean Sea and was 
declared a hurricane on 24 October 2012. During its 
lifetime, Sandy underwent a complex evolution, mak-
ing landfall in Jamaica, Cuba, and the Bahamas. After 
tracking over the Atlantic, Sandy turned westward 
and made landfall unusually far north, near Atlantic 
City, New Jersey, at 0000 UTC 30 October 2012, with 
sustained winds of 80 mi h–1 (35.8 m s−1) and a central 
pressure of 945 hPa. Because of its huge size, Sandy 
caused a storm surge along the entire East Coast but 
particularly in New York and New Jersey, leading to 
around $50 billion (U.S. dollars) in damage and at 
least 147 fatalities. The National Hurricane Center 
(NHC) produced a comprehensive report on Sandy 
and its impact (Blake et al. 2013), while Magnusson 
et al. (2014) investigated the skill of medium-range 
forecasts of Sandy.

Figure 8 shows 5-day forecasts of strike probability, 
individual track, and ensemble-mean track based on 
three ensembles (ECMWF, NCEP, and Met Office), 
giving an early warning of the landfall. These plots 
are produced from 96 equally weighted ensemble 
members. In this case, the actual track of the storm 
sits within the areas of highest probability in the strike 
probability. The ensemble-mean tracks (right-hand 
side) are plotted for each individual center and the 
consensus of the three centers.

Early warning products. Using TIGGE data, Matsueda 
and Nakazawa (2014) have developed a prototype suite 
of ensemble-based early warning products for severe 
weather events, using both single-model (ECMWF, 
JMA, NCEP, and Met Office) and multimodel grand 
ensembles. These products estimate the forecast 
probability of the occurrence of heavy rainfall, strong 
winds, and severe high and low temperatures based on 
each model’s climatology, that is, using information 
from the climatological probability density function 
to determine appropriate thresholds for severe weath-
er events. The products are now routinely available as 
part of the TIGGE Museum.

Objective verification of these products demon-
strates that the construction of multimodel grand 
ensembles by combining four single-model ensembles 
can improve the skill of probabilistic forecasts of 
severe events (Matsueda and Nakazawa 2014). The 
grand ensemble provides more reliable forecasts than 
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Fig. 8. The 5-day forecasts of (a) individual ensemble tracks, (b) strike probability, and (c) ensemble-mean track 
forecasts for Hurricane Sandy from 1200 UTC 25 Oct 2012. The strike probability is the probability that the 
center of the storm will pass within 75 mi (approximately 120 km) during the forecast period. The observed 
track is indicated by a thicker black line with diamond symbols in 6-hourly increments and with a gray line 
before the forecast period.

single-model ensembles for all lead times, although 
the grand ensemble is still overconfident, especially 
for lead times greater than 216 h.

An example of this type of forecast product is 
shown in Fig. 9 for a heavy precipitation event in West 
Africa on 1 September 2009 that caused severe flood-
ing in Ouagadougou, Burkina Faso. In all ensembles, 
there is an indication of the risk of heavy rainfall over 
West Africa 4–5 days ahead of the event. However, 
the location of the peak rainfall in Burkina Faso was 
captured only 2–3 days ahead (not shown). Mesoscale 
convective systems (MCSs), which lead to such events, 
are not well predicted by the current ensemble sys-
tems. The multimodel ensemble produces a smoother 
probability map, suggesting that the main benefit of 
combination for this region is achieved by increas-
ing the ensemble size. Using TIGGE data, Hopsch 
et al. (2014) showed that the link between large-scale 
circulation and MCSs could potentially be exploited 
to improve their prediction.

Since the skill of these TIGGE forecast products 
has been demonstrated, there is a strong incentive to 
implement them in real time, avoiding the 2-day delay 
in accessing data from the TIGGE archive. A system 
is currently being set up to supply these early warning 
products to the WMO SWFDP forecasters in real time.

The SWFDP (www.wmo.int/pages/prog/www 
/swfdp/) enables countries in some of the less de-
veloped regions of the world to benefit from state-
of-the-art numerical model predictions. The global 
NWP centers generate graphical products that are 
tailored to support regional SWFDP initiatives. The 
current SWFDP products will be supplemented both 
by the ensemble-based early warning products and 
the multimodel tropical cyclone products developed 
using TIGGE. Designated regional forecast centers 
disseminate these products, and associated forecast 
guidance, to neighboring national meteorological 
services. The first region to be covered by SWFDP 
was southern Africa, with Pretoria, South Africa, as 
the primary regional center; the project has since been 
extended to cover the South Pacific islands and, more 
recently, East Africa and Southeast Asia

DISCUSSION AND FUTURE PROSPECTS. 
The TIGGE project has provided a valuable dataset to 
facilitate research on ensemble techniques, including 
demonstrating the benefit of combining predictions 
from several EPSs—this conclusion also carries 
through to hydrological applications (see sidebar 
on “Hydrological forecasting”). Although combina-
tion has proved a pragmatic approach to improving 
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Fig. 9. Occurrence probabilities of heavy rainfall on 1 Sep 2009, when there was severe flooding in Ouagadougou 
(marked with an X). The shading indicates occurrence probabilities by the (a) multimodel grand ensemble, 
(b) ECMWF ensemble, (c) JMA ensemble, (d) NCEP ensemble, and (e) Met Office ensemble, initialized at 
1200 UTC 27 Aug and showing rainfall for 1200 UTC 31 Aug to 1200 UTC 1 Sep 2009. Contours in (b)–(e) indicate 
predicted sea level pressure in each control run. The climatological 90th percentiles of the models at each lead 
time were used to define the predicted extremes. (f) Observed rainfall from the Global Satellite Mapping of 
Prediction (GSMaP) dataset, relative to observed climatology, and observed pressure (contours).

probabilistic forecast skill, we expect less benefit from 
the technique in the future, as systematic errors in 
ensembles are reduced. TIGGE has also supported a 
wide range of research on dynamics, the fundamental 
nature of predictability, and development of forecast 
applications.

In view of TIGGE’s success, it has been agreed 
that the project should continue for 5 yr further 
beyond the completion of the THORPEX research 
program at the end of 2014. (Any extension beyond 
2019 will be considered nearer the time.) The great 
majority of TIGGE partners will continue to par-
ticipate and provide ensemble predictions for use 
by the research community. Both ECMWF and 
CMA will continue to host TIGGE archive centers. 
Building on the success of THORPEX, WWRP has 

established three THORPEX legacy projects: the 
Subseasonal to Seasonal Prediction (S2S) and Polar 
Prediction (PPP) projects are already underway, 
while the High-Impact Weather (HIWeather) project 
kick-off meeting has been scheduled for April 2016. 
S2S explores the longer-range prediction problem, 
when the interactions between the atmosphere and 
other elements of the Earth system, especially oceans, 
are increasingly important. S2S is a joint initiative 
between World Climate Research Program (WCRP) 
and WWRP. This project is underpinned by the 
S2S database, which went live during 2015. This S2S 
database is based closely on the TIGGE database, 
using similar data formats and conventions, which 
should facilitate research on seamless predictions 
ranging from 1 day to 2 months ahead, using both 
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Hydrological models act as nonlinear 
filters and integrators of rainfall 

predictions. They are therefore ideal 
for understanding the impact of defi-
ciencies in the ensemble forecasts for 
downstream applications.

TIGGE was first used for hy-
drometeorological forecasting when 
Pappenberger et al. (2008) demonstrated 
the potential of grand ensembles for early 
flood warning, applying the European 
Flood Awareness System (EFAS, Thiel-
en et al. 2009) to a hindcasted flood 
event in Romania. Figure SB1, from this 
study, shows forecasts of river level 
for a point on the river Jiu that was se-
verely flooded in October 2007, based 

on seven single-model ensembles and 
a multimodel grand ensemble. While 
all the ensembles predict the onset 
of the rising river level correctly, only 
two single-model ensembles and the 
multimodel ensemble bracket the flood 
peak. The conclusion of the study was 
that if grand ensemble forecasts had 
been used, flood warnings could have 
been issued 8 days before the event, 
whereas warnings based on a single en-
semble system would only have allowed 
for a lead time of 4 days.

Several studies have now shown 
that a TIGGE-based approach in-
creases lead time and skill across many 
climatic regions (e.g., Bao and Zhao 

2012; Pappenberger et al. 2008). The 
information gain in applying TIGGE for 
hydrological forecasts has proven to 
be consistent in a way that is indepen-
dent of the hydrological model applied. 
However, there is a clear sensitivity 
to catchment size: the smaller the 
catchment, the more important en-
semble postprocessing, calibration, and 
combination becomes, as shown by He 
et al. (2009) for a mesoscale catchment 
area in the Midlands area of the United 
Kingdom. It is clear that the TIGGE 
archive has been of incredible value for 
furthering research in hydrometeoro-
logical forecasting and demonstrating 
the potential of earlier flood warning.

HYDROLOGICAL FORECASTING

Fig. SB1. River discharge predictions for a point on the river Jiu, Romania, where flooding was observed. The 
5th and 95th percentiles of predictions are shown for the different forecasts with a 5-day lead time. The dashed 
horizontal lines show the four EFAS warning thresholds. “Observed” discharges refer to simulations based on 
observed meteorological input. [Figure from Pappenberger et al. (2008).]
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datasets. PPP is concerned with the prediction of 
weather in high latitudes and its link with lower 
latitudes (e.g., Jung and Matsueda 2015). The main 
focus of PPP will be preparing for, coordinating, and 
analyzing results from the Year of Polar Prediction 
(YOPP), a combined modeling and field campaign 
that is planned to take place between mid-2017 and 
mid-2019. TIGGE will play a key role in providing 
ensemble prediction data for PPP, and some enhance-
ments to TIGGE may be implemented to support 
the requirements of PPP or other WWRP projects. 
The HIWeather project addresses the improvement 
of forecasts and warnings of high-impact weather, 
with a focus on five hazard areas: urban flooding, 
localized extreme wind, wildfire, urban heat and air 
quality, and disruptive winter weather. A key aspect 
of the project will be understanding vulnerability and 
risk and improving the communication of warnings 
of high-impact weather.

Looking forward, increases in computer perfor-
mance allow short-range convective-scale ensemble 
forecasts that will be a major step forward to the 
prediction of details of hazardous weather. Currently 
both Deutscher Wetterdienst (DWD) and the Met 
Office are running operational ensemble systems 
with around a 2-km grid; Météo-France and other 
centers also have high-resolution systems under de-
velopment. The U.S. Hazardous Weather Testbed 
project has been running for more than a decade, 
comparing experimental ensemble forecasts run 
at 4-km resolution across the central United States 
(Clark et al. 2012). The recent establishment of the 
European TIGGE-LAM archive means that forecasts 
from high-resolution ensembles will be more readily 
available to the research community, and it is hoped 
that similar facilities will, in the future, be developed 
on other continents. These datasets will provide in-
valuable data to underpin the focus on improving the 
detailed prediction of high-impact weather events at 
short time scales and should prove especially valuable 
for the HIWeather project.

Ensemble methods are also being increasingly em-
ployed in data assimilation in both purely ensemble 
approaches to data assimilation (e.g., Houtekamer 
et al. 2005) and hybrid ensemble–variational methods 
(e.g., Clayton et al. 2013). An ensemble of model states 
provides a good framework to specify the relation-
ship between uncertainties in model variables; that 
is, well-specified ensemble perturbations should be 
closely related to the background error covariance 
information that is used for data assimilation. A very 
large ensemble is needed in order to satisfactorily 
represent the error covariance information in an 

ensemble data assimilation system, while hybrid 
techniques permit the use of fewer ensemble mem-
bers by combining f low-dependent information 
from an ensemble with static climatological error 
covariances.

A new WWRP working group on predictability, 
dynamics, and ensemble forecasting (PDEF) has 
been established to address the theoretical basis of 
ensemble forecasting and its relation to the dynamics 
of the atmospheric phenomena and coupled systems. 
Research with TIGGE has highlighted some key as-
pects of flow-dependent predictability on the large 
scale and connections with high-impact weather 
events. The new generation of convective-scale en-
sembles raises many important issues: the suitability 
of data assimilation approaches developed for the 
synoptic scale, the construction of ensembles, the 
role of stochastic parameterization in representing 
model uncertainty, and the fundamental nature of 
predictability itself on finer spatial and temporal 
scales. The PDEF working group will be scientifically 
responsible for the development of the TIGGE and 
TIGGE-LAM datasets to promote and support ongo-
ing scientific research and especially the THORPEX 
legacy projects. The working group will consider 
enhancements to TIGGE to support future research 
needs, for example, possible additional variables to 
support WWRP projects. PDEF will bring dynami-
cal expertise from the academic community to bear 
on these exciting new challenges, ultimately driving 
toward improved probabilistic prediction.

In recent years, there has been a rapid growth 
in the utilization of probabilistic forecasts by both 
industry and government organizations to manage 
risks. The TIGGE project has been at the forefront 
of these developments, making a major contribution 
to the development of ensemble methods to provide 
these risk-based forecasts. The multiyear ensemble 
forecast dataset has been an unparalleled resource 
to the applied science research community. TIGGE 
has also provided a rich stream of data that has been 
used for a range of studies, covering research on at-
mospheric dynamics, improvement of predictive skill 
of models, and development of ensemble techniques. 
Ensemble techniques are increasingly important 
for prediction at both short space and time scales, 
extending the limits of predictability and data as-
similation. Looking forward, we expect TIGGE and 
TIGGE-LAM to support a range of exciting develop-
ments, underpinning further improvements to the 
use of ensemble techniques in both data assimilation 
and prediction and also the developments of a rich 
collection of risk-based forecasting applications.
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