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Abstract. Research in Bid Tender Forecasting Models (BTFM) has been in progress since the 1950s. None of the 
developed models were easy-to-use tools for effective use by bidding practitioners because the advanced mathematical 
apparatus and massive data inputs required. This scenario began to change in 2012 with the development of the Smartbid 
BTFM, a quite simple model that presents a series of graphs that enables any project manager to study competitors using 
a relatively short historical tender dataset. However, despite the advantages of this new model, so far, it is still necessary 
to study all the auction participants as an indivisible group; that is, the original BTFM was not devised for analyzing the 
behavior of a single bidding competitor or a subgroup of them. The present paper tries to solve that flaw and presents a 
stand-alone methodology useful for estimating future competitors’ bidding behaviors separately. 
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Introduction 

The volume of economic transactions conducted by 
competitive bidding emphasizes the importance of the 
study of auctions as a part of basic research in economics 
and management science (Stark, Rothkopf 1979), and the 
assistance that bidding practitioners can derive from 
advances in auction theory (Rothkopf, Harstad 1994). 
Competitive bidding is a transparent procurement method 
in which bids from competing contractors, suppliers, or 
vendors are invited by openly advertising the scope, 
specifications, and terms and conditions of a proposed 
contract; as well as the criteria by which bids will be 
evaluated. Competitive bidding aims to procure goods 
and services at the lowest price by stimulating 
competition and preventing favoritism (OECD 2007; 
OECD 2009). 

Research in the area of competitive bidding strategy 
models has been in progress since the 1950s (Rothkopf 
1969; Näykki 1976; Engelbrecht-Wiggans 1980, 1989; 
Naoum 1994; Rothkopf, Harstad 1994; Deltas, 
Engelbrecht-Wiggans 2005; Dikmen et al. 2007; Lo et al. 
2007; Harstad, SašaPekec 2008; Ye et al. 2008). 
Numerous competitive bidding strategy models have 
been developed that predict the probability of a bidder 

winning an auction (Näykki 1976; Engelbrecht-Wiggans 
1980), or being awarded a project (Vergara 1977; 
Ravanshadnia et al. 2010). Most of these models are 
based on games theory, decision analysis, and operational 
research concepts whose application to real-world 
business is difficult given the complex mathematical 
formulations required by the models and/or because the 
models do not suit the actual practices (Engelbrecht-
Wiggans 1980; Rothkopf, Harstad 1994; Harstad, 
SašaPekec 2008). 

Because of the multiple technical and financial 
criteria involved in public tendering (Näykki 1976; 
Engelbrecht-Wiggans 1980; Rothkopf, Harstad 1994; 
Fayek 1998; Skitmore et al. 2001; Skitmore 2002, 2004; 
Harstad, SašaPekec 2008) there is still a need for new 
tools to help decision makers and improve the selection 
process for bidders (Watt et al. 2009). 

A completely new Bid Tender Forecasting Model 
(BTFM) was devised by Ballesteros-Pérez (2010) and 
extended by Ballesteros-Pérez et al. (2012a, b, 2013a) as 
a practical tool to help bidders improve their competitive 
bidding strategies and increase their chances of winning a 
contract. This tool, informally referred by its authors as 
the Smartbid model (Ballesteros-Pérez et al. 2013b) (used 
hereinafter for the sake of simplicity) enables bidders to 
place their bids using statistical procedures based on 
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previous bidding experiences that share the same 
Economic Scoring Formula (ESF). 

The economic criterion is usually one of the most 
important evaluation criteria and Economic Scoring 
Formulae are used to rate different proposals. The 
variables of these formulae are termed Scoring 
Parameters (SP) (Ballesteros-Pérez et al. 2012b). 

Taking into account that predicting a company’s 
closest rivals’ future behaviors is always highly 
advisable, the present work builds a methodology for 
studying one competitor or a subgroup of competitors 
bidding patterns, complementing the Smartbid model, but 
running independently. The methodology described in 
this paper has been derived from capped tenders. Capped 
tender contract value is upper-limited by the contracting 
authority and this limitation is clearly stated in the tender 
specifications. Bidders must underbid that estimation. 
Nevertheless, the model is not restricted to capped 
tenders. The proposed model can be extended to any 
other type of tender by simply reformulating some 
expressions and adding new hypotheses. 

1. Literature background 

A great body of knowledge exists on the theory of 
auctions and competitive bidding that is relevant for 
construction contract tendering. Most of this work, 
however, contains assumptions – such as perfect 
information – that are unlikely to be met in practice 
(Skitmore 2008). Bidding theory and strategy models (see 
Stark, Rothkopf 1969, for an early bibliography) 
frequently make use of so-called ‘statistical hypotheses’ 
because auction bids are assumed to contain statistical 
properties such as fixed parameters and randomness 
(Skitmore 2002). 

Initial studies (e.g. Friedman 1956) assumed that 
each bidder drew bids from a probability distribution 
unique to that bidder, with low-frequency bidders being 
pooled as a special case. Pim (1974) analyzed a number 
of projects awarded to four American construction 
companies. His study pointed out that the average number 
of projects awarded is proportional to the reciprocal of 
the average number of bidders competing – the 
proportion that would be expected to be won by pure 
‘chance’ alone. This observation suggested an extremely 
simple ‘equal probability’ model in which the expected 
probability of entering the lowest bid in a k-size auction, 
that is, an auction in which k bidders enter bids, is the 
reciprocal of k. 

McCaffer and Pettitt (1976) and Mitchell (1977) 
assumed non-unique and homogeneous probability 
distributions, enabling a suitable distribution shape to be 
empirically fitted (uniform, in the case of McCaffer, 
Pettitt 1976) and the derivation of other statistics based 
on an assumed (Normal) density function. 

Since then, most of the bidding literature has been 
concerned with setting a mark-up, m, so that the 
probability, Pr(m), of entering the winning bid reaches a 
desired level (Skitmore et al. 2007). Friedman (1956) 
assumed either interdependence or perfect estimation. 
Gates (1967), used a Weibul probability distribution 

function. Carr (1982) assumed homogeneous variances. 
Skitmore (1991) used a lognormal probability distribution 
function. 

All these models are based on the same statistical 
model but differ in their detailed assumptions of its 
specification. Nevertheless, previous work in auction 
bidding has been carried out to a large extent without any 
real supporting data. In fact, in the context of construction 
contract auction bidding, it has been considered as 
doubtful that sufficient data could be gathered for each 
bidder for any effective predictions to be made (Skitmore 
2002). Moreover, Skitmore (1991) showed that the 
homogeneity assumption was untenable for real datasets 
of construction contract auctions, at least insofar as its 
superiority in predicting the probability of lowest bidders 
is concerned (Runeson, Skitmore 1999; Skitmore 2002). 

No other remarkable BTFMs were developed from 
1991 onwards until Ballesteros-Pérez et al. (2012a, b, 
2013a) devised the Smartbid model for bidding 
practitioners and professionals. This model basically 
consists of three types of graphs: the iso-Score Curve 
Graph (iSCG), the Scoring Probability Graphs (SPG) and 
the Position Probability Graph (PPG); and solves the 
main limitations encountered in previous Bid Tender 
Forecasting models (Skitmore, Runeson 2006) as it 
enabled: (1) studying bidding behaviors with a 
significantly smaller databases than previous works; 
(2) forecasting the probability of obtaining a particular 
score and/or position among competitors; (3) analyzing 
time variations between tenders; and (4) measuring tender 
forecast performance. 

However, the major flaw of the BTFM above is that 
it needs to study the whole competition as an indivisible 
group, which is not devised for analyzing the behavior of 
a single bidding competitor or a particular subgroup of 
bidders. Hence, the methodology proposed right after 
tackles that current limitation. 

Some recent conceptual models have also been 
developed for use by contractors as part of a more 
reliable approach for identifying key competitors and as a 
basis for formulating bidding strategies (Oo et al. 2008a, 
2010). Competitiveness between bids is examined using 
linear mixed models that employ variables such as project 
type and size; work sector; nature of the work; market 
conditions; as well as the number of bidders (Drew, 
Skitmore 1997; Oo et al. 2008a,  2008b, 2010). Some of 
these variables can also be considered as useful indicators 
(project type and size; work sector; work nature; and 
market conditions) but they are normally difficult to 
quantify. 

2. Basic definitions 

Contracting authorities in different countries use different 
terms to refer to the same tender concepts. Spanish 
tendering terminology is mainly used because this study 
was carried out in Spain, although some new terms are 
included. Therefore, for clarity we will define some of the 
terms used in this work. 

‘Economic Scoring Formula’ (ESF) refers to the 
mathematical expressions used to assign numerical scores 
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to each bidder from the bid price expressed on a 
monetary-unit basis. ESF comprises the mathematical 
operations that provide the score and the mathematical 
expression that determines which bids are abnormal or 
risky (Abnormally Low Bids Criteria -ALBC). ALBC has 
received much less attention in the literature than the 
analysis of bidding behaviors (Kayhan et al. 2002; Chao, 
Liou 2007). 

‘Bidder’s Drop’ (Di) is the discount or bid reduction 
on the initial price of a contract (A) submitted by a 
contractor i for a particular capped tender. It is 
mathematically expressed in Equation (1). 

       
 ,  (1) 

where: Di is the Drop (expressed in per-unit values) of 
bidder ‘i’; Bi is the bid (expressed in monetary values) of 
bidder ‘i’; and A is the initial Amount of money (in 
monetary value) of the tender (generally set by the 
contracting authority in many countries) in capped 
tenders (tenders whose price is upper-limited). 

In Spanish tendering practice, when referring to bid 
amounts, it is usual to use a ‘discount’ on the contract 
value A. This ‘discount’ is called ‘baja’ in Spanish, 
meaning literally drop or decrease. This term has been 
translated merely as ‘Drop’ because no other similar 
concept has been found in the international bibliography. 
However, the Spanish bidding background will not 
change any of the principles underlying the methodology 
proposed later, since both the Score’s and Position’s 
performance of one or several bidders will be calculated 
by means of a relative scale (specific score or position 
achieved compared to the best score or position possible), 
no matter the original Bid was calculated in Drops or 
monetary-based values, allowing the following method to 
be applied in any other bidding scenario.  

Therefore, the ESF scores are obtained by either 
using the bidders’ bids (Bi) in monetary values or 
converting bids into drops (Di) in per-unit values.  

‘Scoring Parameter’ (SP) is the variable used in 
ESFs and it is calculated from the distribution of the bids 
in a tender. The main SPs in capped tendering are: mean 
Drop (Dm), maximum Drop (Dmax); minimum Drop 
(Dmin); Drops’ standard deviation (σ); and abnormal Drop 
(Dabn). In uncapped tendering, equivalent but monetary-
based values are used instead: mean Bid (Bm); maximum 
Bid (Bmax); minimum Bid (Bmin); Bidders’ standard 
deviation (S); and abnormal Bid (Babn). 

3. Review of tendering specifications 

To obtain a number of representative capped tenders with 
different combinations of Scoring Parameters (SPs) and 
therefore different Economic Scoring Formulas (ESFs), 
120 tender specifications documents gathered from 
Ballesteros-Pérez (2010) and coming from Spanish public 
administrations and private companies were reviewed. 

The dataset collected and analyzed is representative 
and comprises of: tender contests and auctions; all types 
of public administrations (city councils, regional 
governments, semi-public entities, universities, 

ministries, and so on), private contracting authorities; a 
great variety of civil engineering works and services; 
representation from various geographical regions 
(including the islands), and a wide range of tender 
amounts. 

Although the sample only contains Spanish tender 
documents, the ESF and SP analyzed are similar to those 
used in any country where the administration sets an 
initial tender amount (A) against which candidates 
underbid (capped tendering or upper-limited-price 
tendering). 

The specification of an initial tender amount (A) 
enables the use of bid Drops as the Drop indicates a 
discount or reduction in the price relative to an initial 
amount A. The tool presented in this paper works well 
with both tender amounts directly and bid Drops, 
although the examples presented here have been 
calculated using bid Drops expressed in per-unit values. 

Although the methodology explained below was 
validated through its application to nearly all 120 
contracting authorities, one contracting authority was 
selected to illustrate the proposed methodology using a 
numerical example. The selected public administration is 
the ‘Agencia Catalana del Agua’ (Catalan Water 
Agency), ACA hereinafter, a semi-public contracting 
authority that manages most of the waste water treatment 
system in the Catalan region of Spain. ACA managed 51 
construction tenders in approximately one year (from 
May 2007 to June 2008) and used the same ESF in its 
tender specifications. 

4. Assessing the Scoring and Position performance of 
a single bidder. 

This section describes how to measure the bidding 
performance of one bidder, regarding the score levels 
reached (Si) out of the maximum possible score (Smax), as 
well as its positions occupied (j) out of the total number 
of bidders (N) in each previous encounter. Therefore, 
both absolute variables: score (Si) and positions (j), are 
expressed as relative variables Si* and j*, respectively, 
with values ranging from 0 to 1 (which is more 
convenient when comparing many values). 

However, as a necessary previous step to 
establishing bidding performance through variables Si* 
and j*, the previous tendering registers in which the 
studied bidder participated must be collected. Once the 
historical tender dataset has been analyzed, standard beta 
distributions (also ranging from 0 to 1) can be fitted to 
both relative variables (Si* and j*). 

The following sub-section shows how to combine 
the performance assessments of several bidders in order 
to study subgroups of bidders. 

4.1. Gathering previous tenders 

As a general first step, an historical dataset is necessary 
for a performance assessment of the bidder. In this case, a 
tender dataset of previous tenders in which the bidder 
under assessment took part must be composed. The 
bidder’s proposed bids (Di) plus past scorings (Si) and 
positions occupied (j) (out of a maximum possible score  



Table 1. Scoring (Si*) and Position (j*) beta distribution parameter estimation α and β 

 
 

or out of the total number of bidders in each case, Si* and 
j*, respectively) must be identified as well. 

Every tender must include a register of, at least, the 
following data: tender code/ID; tender deadline; nature of 
work; economic tender amount; number of bidders, N; 
number of bidders considered abnormally low, Nabn; 
mean Drop, Dm (or mean Bid, Bm,); maximum Drop, Dmax 
(or maximum Bid, Bmax); highest but not abnormally high 
Drop, D*max (or Lowest but not abnormally low Bid, 
B*min); minimum Drop, Dmin (or minimum Bid, Bmin); and 
abnormal Drop, Dabn (or abnormal Bid, Babn). 

As happens to the Smartbid model, it is necessary to 
start with a collection of previous tenders that are 
homogeneous with the tender to be forecasted. By the 
term ‘homogeneous’ we understand that previous and 
future tenders must be identical, or very similar, in terms 
of: scope of works; economic scoring formula (ESF); and 
geographical region. 

It is also desirable that the tender datasets are fairly 
recent. If that is not the case the proposed methodology 
becomes less accurate, and it will be necessary to check 
for a variation because of changes in the economic 
situation or the potential competition (for instance: 
acquisition of new means or practices, even state-of-the 
art pieces of equipment that might allow some bidders to 
be more competitive than before), or because of a sudden 
and steady bidder’s scoring and positions improvement 
on recent tenders (for example: bidders’ learning 
phenomenon over past unsuccessful tenders and/or recent 
contracts’ performance). Additionally, it is advantageous 
if the contracting authority is the same. 

Finally, an advisable requirement is that the bidder 
under assessment, or whose bidding performance is going 
to be part of a bid tender forecast, must have taken part in 
a minimum of two analyzed tenders so that beta 
distributions, which were found to be the best statistical 
distribution for this particular data regression, can be 
calculated. 

In the following numerical example, the first step is 
a calculation of the scoring and position performance of 
the bidder. The bidder will be referred to as ‘DAM’ or, 
simply, ‘Bidder 1’. In the example, it will be assumed 
that the aim is to discover the performance of Bidder 1 on 
tenders for building waste water treatment plants 
(WWTP) with tender amounts from 1 to 8 million Euros. 

For the sake of clarity, in the following tables, some 
data has been removed, such as tender deadlines, nature 
of work and economic amounts, and these can be 
considered as close to the tender scenario which is to be 
assessed. As a result, a real historical and homogeneous 
9-tender sub-dataset is presented in Table 1. 

One of the variables presented in Table 1 is 
particularly important: the ‘Participation rate’, which is 
the number of tenders the bidder under study participated 
in, divided by the total number of tenders analyzed. 
Ideally, but not necessarily, the total number of tenders 
analyzed should be equal to all available and similar 
recent tenders being forecasted. 

The ESF and the ALBC used by the administration 
to calculate the variable Si for each bidder were always 
the same and coincident with those of the future tender. 

4.2. One-bidder Scoring and Position performance 
calculations 

Once the tender dataset has been compiled, Si* and j* can 
be calculated for every tender register using Equations (2) 
and (3). 

          ⁄ ;  (2) 

         ⁄ .  (3) 

A beta distribution with shape parameters α and β 
can then be fitted for each variable using the method of 
moments, as indicated in Equations (4) and (5) (being  ̅ 
the sample mean and   the sample variance). 

   ̅ ( ̅(   ̅)   );  (4) 

Bidder's name: DAM

Max pos. Score (Smax): 50 Tenders entered: 8 Particip. rate: 0.889 ESF: Si = [1-((D*max-Di)/(D*max-Dmin))]*Smax 

Total tenders anal.: 9 Tenders abnorm.: 1 Abnormality rate: 0.125 ALBC:              Dabn=1-(1-0,05)*(1-Dm)

Tender Code ID N Nabn Dmax D*max Dm Dmin Dabn Di Position (j) Scor. (Si) Si* j*

CT08000389 8 22 5 0.2732 0.2109 0.1813 0.0514 0.2222 0.2066 7 48.65 0.9730 0.7143

CT07002822 18 14 2 0.2367 0.2146 0.1854 0.1028 0.2261 0.2311 2 Abnormal 0.0000 0.9231

CT07002921 19 14 1 0.2833 0.2562 0.2262 0.1818 0.2648 0.2287 3 31.51 0.6302 0.8462

CT07002108 24 22 4 0.2390 0.2082 0.1765 0.0955 0.2177 0.2037 6 48.00 0.9601 0.7619

CT07001934 27 16 3 0.2200 0.1700 0.1277 0.0325 0.1714 - - - - -

CT07001972 28 10 2 0.2800 0.2435 0.2097 0.1550 0.2492 0.2022 6 26.67 0.5333 0.4444

CT07002052 29 9 3 0.2985 0.2654 0.2361 0.1489 0.2743 0.1489 9 0.00 0.0000 0.0000

CT07001903 33 9 2 0.1500 0.1222 0.0855 0.0105 0.1312 0.1222 3 50.00 1.0000 0.7500

CT07001602 36 9 2 0.2450 0.1564 0.1199 0.0374 0.1639 0.1033 5 27.69 0.5538 0.5000

Average : 13.8889 Average : 0.5813 0.6175

Desvest: 5.2784 Variance : 0.1442 0.0773

α: 0.3999 1.2690

Observation:  When a bidder is considered as 'abnormal', Si*=0  while j* includes abnormal positions. β: 0.2881 0.7861



  (   ̅) ( ̅(   ̅)   ).  (5) 
With a beta distribution adjusted for variables Si* 

and j* both beta distribution curves and Y-axis values can 
be calculated (Table 2) and represented (Fig. 1). 

Table 2. Scoring (Si*) and Position (j*) beta distribution 
representations 

 
In Table 2, quadratic correlation coefficients (R2) have been 
calculated to establish if the beta regression curves fit the tender 
dataset well enough. According to other experiments, the R2 
coefficients corresponding to j* values are usually above 0.90 
and the Si*’s R2 values are almost always above 0.75. 
Nevertheless, unlike variable j*, variable Si* depends on the 
particular ESF that the tender dataset is using for producing the 
scores (if linear, Si*’s R2 values will be as high as j*’s R2 
values). 

 
Fig. 1. Single bidder Scoring (Si*) and Position (j*) 

performance representation 
In addition to R2 calculations, Table 2 shows the 

averages of the second and third columns (estimated Si* 
and j* values), although those values could also be 
obtained with the data of the last two columns. 

These figures coincide with the bidder’s Scoring 
and Position performance (Bidder 1). Scoring 
performance is equal to 0.56 and Position performance is 

equal to 0.61. Both performance indicators can range 
from 0 to 1, with 1 meaning a perfect performance, (i.e. a 
bidder that has always scored 100% and occupies the first 
positions). Such a perfect performance would be, of 
course, a rare exception. 

Again, whereas Si* performance assessment is 
highly tied to the particular ESF and ALBC (because 
there are more or less lenient or tight-fisted ESFs and 
ALBCs) which produce higher or lower scores for all 
bidders according to their respective Di values); j* 
performance assessment is a good indicator of how well a 
particular bidder is performing. A coefficient of 0.50 
means that, on average, that particular bidder is obtaining 
positions expected to be occupied by pure chance alone, 
and as long as its performance j* indicator is above 0.50, 
the bidder can be considered as bidding more wisely than 
the competition. 

4.3. Complementing the Smartbid bid tender 
forecasting model 

Once the single bidder’s Scoring performance beta 
distribution is known, the X-axis (see Table 2 or Fig. 1) 
reveals the equivalent different score levels represented 
by score curves in the Smartbid’s scoring probability 
graph (for instance, some common values in type-a SPGs 
are 1.0, 0.9, 0.8, …, 0.1, 0.0). In a tender forecast, the 
probability that the studied single bidder surpasses all the 
score levels in the SPG curve will then be known. 

However, the problem becomes more complicated 
when studying likely future positions because to 
determine the probable positions that each competitor 
will occupy, it is necessary to delimit the number of 
potential bidders who will probably bid in the tender. 
Indeed, an extensive literature has focused on the study of 
the potential number of bidders (Banki et al. 2008; Carr 
2005; Ngai et al. 2002); nonetheless, no variable has yet 
been proven to be reliable enough to forecast the number 
of bidders that will take part in a future tender. 

Therefore, the present methodology considers the 
variable ‘number of bidders’ (N) as a random variable 
following a Normal distribution, which is a valid 
approach as proven when homogeneous tenders are 
analyzed (Ballesteros-Pérez et al. 2013a). Hence, variable 
N can be delimited through the average (Nm) and 
standard deviation (Nσ) of the N-values dataset from 
previous similar tenders. 

The following paragraphs explain a series of 
successive calculations aimed at obtaining Figure 3, that 
is, the calculations of the probabilities of surpassing every 
possible position in a future tender. This graph implicitly 
includes calculations about the likely possible number of 
bidders N (from 1 to infinite, in theory), and the 
likelihood of occupying any possible position by the 
bidder under study, whose j* beta distribution is already 
known. 

Extended calculations are shown in Table 3, 
although intermediate columns and rows have been 
removed because of the large number. In this particular 
case, the top number of bidders studied is N = Nm + 3Nσ =  

 

X-axis Si* j* Si* j* Cum Si* Cum j*

0.00 1.0000 1.0000 2 1 0.7500 0.8750

0.05 0.8550 0.9830 0 0 0.7500 0.8750

0.10 0.8066 0.9587 0 0 0.7500 0.8750

0.15 0.7699 0.9304 0 0 0.7500 0.8750

0.20 0.7388 0.8991 0 0 0.7500 0.8750

0.25 0.7109 0.8651 0 0 0.7500 0.8750

0.30 0.6849 0.8287 0 0 0.7500 0.8750

0.35 0.6602 0.7901 0 0 0.7500 0.8750

0.40 0.6362 0.7492 0 0 0.7500 0.8750

0.45 0.6126 0.7062 0 1 0.7500 0.7500

0.50 0.5891 0.6611 0 1 0.7500 0.6250

0.55 0.5653 0.6136 1 0 0.6250 0.6250

0.60 0.5409 0.5639 1 0 0.5000 0.6250

0.65 0.5155 0.5116 1 0 0.3750 0.6250

0.70 0.4887 0.4566 0 0 0.3750 0.6250

0.75 0.4598 0.3984 0 2 0.3750 0.3750

0.80 0.4276 0.3366 0 1 0.3750 0.2500

0.85 0.3906 0.2703 0 1 0.3750 0.1250

0.90 0.3449 0.1978 0 0 0.3750 0.1250

0.95 0.2805 0.1154 0 1 0.3750 0.0000

1.00 0.0000 0.0000 3 0 0.0000 0.0000

Average : 0.58 0.61 R^2 : 0.7973 0.9236

R : 0.8929 0.9610

Estimated values Actual values



Table 3. Analysis of a single bidder’s Position (j*) performance for an upcoming tender 

 
 

13.889 + 3·5.278 ≈ 30 bidders. Each column then 
displays the scenario with 1, 2, 3,… up to N = 30 bidders. 

The first four rows (which constitute the first block 
at the top of Table 3) calculate the probability that each 
scenario with N bidders takes place. The average and 
standard deviation values of the Normal distribution of N 
bidders are known. However, a final correction is 
sometimes needed as shown in the fourth row (Weight 
N). 

Initially, ‘Prob N’ and ‘Weight N’ rows are quite 
similar but they differ in the fact that ‘Weight N’-values 
have been calculated out of the area (probability) of the 
normal distribution that is effectively possible (values 
below N = 1 – 0.5 = 0.5 bidders and above N = 30 + 0.5 = 
30.5 bidders are left out) and so ‘Weight N’-values are re-
calculated by dividing ‘Prob N’-values by 0.9992 – 
0.0056 = 0.9936. This correction might be especially 
important when N = Nm – 3Nσ < 0, although this is not the 
case here. 

N Average (Nm): 13.889 Desvest (Nσ): 5.278 j* α: 1.269 β: 0.786

N 1 2 3 4 5 … 25 26 27 28 29 30

Prob N-0.5 0.0056 0.0095 0.0155 0.0245 0.0376 … 0.9778 0.9861 0.9916 0.9950 0.9972 0.9984

Prob N+0.5 0.0095 0.0155 0.0245 0.0376 0.0560 … 0.9861 0.9916 0.9950 0.9972 0.9984 0.9992

Prob N 0.0039 0.0060 0.0090 0.0131 0.0184 … 0.0083 0.0055 0.0035 0.0021 0.0013 0.0007

Weight N 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0083 0.0055 0.0035 0.0022 0.0013 0.0007

j Pj = (N-j)/N N+3σ

1 0.0000 0.5000 0.6667 0.7500 0.8000 … 0.9600 0.9615 0.9630 0.9643 0.9655 0.9667

2 0.0000 0.0000 0.3333 0.5000 0.6000 … 0.9200 0.9231 0.9259 0.9286 0.9310 0.9333

3 0.0000 0.0000 0.0000 0.2500 0.4000 … 0.8800 0.8846 0.8889 0.8929 0.8966 0.9000

4 0.0000 0.0000 0.0000 0.0000 0.2000 … 0.8400 0.8462 0.8519 0.8571 0.8621 0.8667

5 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.8000 0.8077 0.8148 0.8214 0.8276 0.8333

… … … … … … … … … … … … …

25 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.0000 0.0385 0.0741 0.1071 0.1379 0.1667

26 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.0000 0.0000 0.0370 0.0714 0.1034 0.1333

27 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.0000 0.0000 0.0000 0.0357 0.0690 0.1000

28 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.0000 0.0000 0.0000 0.0000 0.0345 0.0667

29 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.0000 0.0000 0.0000 0.0000 0.0000 0.0333

30 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

j Prob j* > Pj

1 1.0000 0.6611 0.4936 0.3984 0.3366 … 0.0969 0.0940 0.0913 0.0887 0.0863 0.0841

2 1.0000 1.0000 0.8032 0.6611 0.5639 … 0.1664 0.1614 0.1567 0.1523 0.1482 0.1444

3 1.0000 1.0000 1.0000 0.8651 0.7492 … 0.2277 0.2209 0.2145 0.2086 0.2030 0.1978

4 1.0000 1.0000 1.0000 1.0000 0.8991 … 0.2840 0.2756 0.2677 0.2603 0.2534 0.2469

5 1.0000 1.0000 1.0000 1.0000 1.0000 … 0.3366 0.3267 0.3175 0.3088 0.3007 0.2930

… … … … … … … … … … … … …

25 1.0000 1.0000 1.0000 1.0000 1.0000 … 1.0000 0.9878 0.9719 0.9549 0.9376 0.9203

26 1.0000 1.0000 1.0000 1.0000 1.0000 … 1.0000 1.0000 0.9884 0.9731 0.9569 0.9402

27 1.0000 1.0000 1.0000 1.0000 1.0000 … 1.0000 1.0000 1.0000 0.9889 0.9743 0.9587

28 1.0000 1.0000 1.0000 1.0000 1.0000 … 1.0000 1.0000 1.0000 1.0000 0.9894 0.9754

29 1.0000 1.0000 1.0000 1.0000 1.0000 … 1.0000 1.0000 1.0000 1.0000 1.0000 0.9898

30 1.0000 1.0000 1.0000 1.0000 1.0000 … 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

j (Prob j* > Pj)*Weight N

1 0.0039 0.0040 0.0045 0.0053 0.0062 … 0.0008 0.0005 0.0003 0.0002 0.0001 0.0001

2 0.0039 0.0061 0.0073 0.0087 0.0104 … 0.0014 0.0009 0.0005 0.0003 0.0002 0.0001

3 0.0039 0.0061 0.0091 0.0114 0.0138 … 0.0019 0.0012 0.0008 0.0004 0.0003 0.0001

4 0.0039 0.0061 0.0091 0.0132 0.0166 … 0.0024 0.0015 0.0009 0.0006 0.0003 0.0002

5 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0028 0.0018 0.0011 0.0007 0.0004 0.0002

… … … … … … … … … … … … …

25 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0083 0.0054 0.0034 0.0021 0.0012 0.0007

26 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0083 0.0055 0.0035 0.0021 0.0012 0.0007

27 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0083 0.0055 0.0035 0.0021 0.0012 0.0007

28 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0083 0.0055 0.0035 0.0022 0.0013 0.0007

29 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0083 0.0055 0.0035 0.0022 0.0013 0.0007

30 0.0039 0.0061 0.0091 0.0132 0.0185 … 0.0083 0.0055 0.0035 0.0022 0.0013 0.0007

j Cumulative by rows (Prob j* > Pj)*Weight N

1 0.0039 0.0079 0.0124 0.0176 0.0239 … 0.1749 0.1754 0.1758 0.1759 0.1761 0.1761

2 0.0039 0.0099 0.0173 0.0260 0.0364 … 0.2940 0.2949 0.2954 0.2958 0.2959 0.2960

3 0.0039 0.0099 0.0190 0.0305 0.0443 … 0.3944 0.3956 0.3963 0.3968 0.3971 0.3972

4 0.0039 0.0099 0.0190 0.0323 0.0489 … 0.4821 0.4836 0.4846 0.4851 0.4855 0.4856

5 0.0039 0.0099 0.0190 0.0323 0.0507 … 0.5597 0.5615 0.5627 0.5633 0.5637 0.5639

… … … … … … … … … … … … …

25 0.0039 0.0099 0.0190 0.0323 0.0507 … 0.9868 0.9923 0.9957 0.9977 0.9989 0.9996

26 0.0039 0.0099 0.0190 0.0323 0.0507 … 0.9868 0.9923 0.9958 0.9979 0.9991 0.9998

27 0.0039 0.0099 0.0190 0.0323 0.0507 … 0.9868 0.9923 0.9958 0.9980 0.9992 0.9999

28 0.0039 0.0099 0.0190 0.0323 0.0507 … 0.9868 0.9923 0.9958 0.9980 0.9993 1.0000

29 0.0039 0.0099 0.0190 0.0323 0.0507 … 0.9868 0.9923 0.9958 0.9980 0.9993 1.0000

30 0.0039 0.0099 0.0190 0.0323 0.0507 … 0.9868 0.9923 0.9958 0.9980 0.9993 1.0000

Observation: Generally, it is enough to calculate from N=0 to N=Nm+3Nσ



The next four lower blocks of Table 3, separated by 
a gray heading with ‘j’ written on the top row, show 
sequential calculations of the probabilities of occupying 
each of the first 30 possible positions (usually the 
maximum positions studied should not go beyond N = 
Nm + 3Nσ, since further positional probabilities equal 
nearly 1 from that number upwards). 

In every case, the mathematical expression used in 
each block is shown in the respective top gray row, on the 
left of the ‘j’ column. 

Briefly, the first block calculates the probabilities of 
surpassing each possible position (by rows) according to 
the number of the bidders considered in each column. 
The second block introduces the actual previous bidder’s 
position performance (j*) by means of its Y-axis beta 
distribution values (found, for example, by finding their 
respective values from the upper block in Table 3 in 
Fig. 1’s X-axis). 

Finally, there are another two blocks at the bottom 
of Table 3 that include the ‘Weight N’ row from the 
upper block (every value from the respective upper block 
is multiplied by the mentioned row in the last but one 
block); and, in the last block (at the bottom) of Table 3 
where cumulative values from the block immediately 
above are shown. 

If values from this lowest block are represented by 
rows (every curve represents a possible position: 1st, 2nd, 
3rd,… , 25th without representing the last five positions), 
then Figure 2 is obtained. 

 
Fig. 2. Single bidder’s position performance calculation 
accuracy 

Figure 2 represents the stability (or accuracy) of 
position calculations in Figure 3. Whenever curves 
represented in Figure 2 reach horizontal gradients (in our 
case, this happens, of course, in N = 30 bidders; and, 
generally, in Nm + 3Nσ bidders) the calculations can be 
considered as good enough. 

Figure 3 is easily obtained by representing in a 
different graph the values from the Figure 2 X-axis when 
N = 30 bidders, that is, values from j = 1 to 25 when N = 
30 (lowest right-hand corner of Table 3). 

Figure 3 shows the probability of occupying a 
particular (or higher) position, despite the fact that the 
number of bidders is not yet known. This is the kind of 
graph that greatly complements the information provided 
in the Smartbid position probability graphs, whose data 
was completely impersonal until now. 

 

 
Fig. 3. Position performance for a single bidder 

5. Assessing the Scoring and Position performance of 
a group of bidders 

A numerical case has been developed, firstly to assess 
Scoring and Position performance for similar previous 
tenders; and, secondly, to adapt those results to provide a 
useful complement to the Smartbid BTFM. 

Calculations have been applied to a single bidder 
(Bidder 1). In this section, calculations for a group of 
bidders are explained. Indeed, this is usually a necessary 
piece of information for bidding, since a company that is 
trying to forecast an auction often knows who are its 
strongest competitors and may wish to focus on those 
participants. 

5.1. Scoring group performance 

To analyze the performance of a group of known bidders, 
it is always necessary to have studied each independently 
beforehand (i.e., calculations shown in subsection 4.2. are 
a pre-requisite for each bidder). However, there is an 
advantage, with respect to the gathering of previous 
tendering registers: once the tender dataset is relatively 
complete, there is no need to continue gathering a 
different tender dataset for each bidder, that is, tendering 
data is shared among bidders, and so it will only be 
necessary to calculate the Scorings (Si*) and Positions 
(j*) for each bidder. 

Once Si* and j* values are known, a beta 
distribution is fitted for the two parameters as shown in 
Table 1 in the lower right-hand corner. As a result, for 
every bidder that is analyzed as a part of the group, two 
beta distributions (represented by shape parameters α and 
β) are obtained. 

Now that every scoring performance of every bidder 
to be jointly studied is known, there is one point that must 
be borne in mind: when a single bidder’s performance 
was previously studied, it was not taken into account that 
the bidder might not be interested in participating in the 
forecasted tender. This concept is quantified by means of 
the ‘Participation rate’ coefficient, that is, the percentage 
of similar tenders on average that every bidder enters. 

When studying a single bidder’s behavior it is not 
always advisable to take into account the coefficient of 
participation since a company usually has enough 



information to know whether a particular competitor is 
interested in winning a contract. However, when studying 
bidders as a group it is advisable to include the 
‘participation rate’ coefficient since some of the group 
may not finally enter a tender and the forecasted 
probabilities may then become too conservative. 

With all this information, Table 4 is obtained by 
analyzing the group Scoring performance of three bidders 
(n = 3) (the first bidder coincides with the bidder that was 
previously calculated, and the other two bidders are given 
as new examples). Each column represents a single 
bidder with its past Scoring performance – but without 
having multiplied the beta distribution values by the 
respective ‘Participation rate’ coefficients. 

As an additional piece of information, the averages 
of every bidder analyzed are calculated at the bottom of 
Table 4, and these averages coincide with their respective 
Scoring performances. The final step is to calculate the 
last column of Table 4, that is, the probability that one or 
more of the bidders will surpass the X-axis possible score 
levels. Statistically, this is equivalent to the probability of 
occurrence of several independent random events, and so 
the last column of Table 4 is computed according to 
Equation (6). 

   ∑       
            ∏ (                                   

(    ) )   
   . (6) 

Representing values of Table 4 by columns in 
Figure 4 leads to an easier understanding of the 
calculations made up to this point. 

Table 4. Analysis of the Scoring (Si*) performances of a group 
of bidders 

 

 
Fig. 4. Scoring performance for several bidders 

Figure 4 shows four curves, three of the curves 
represent the three bidders and the curve at the top 
represents the aggregation of the three bidders. Normally, 
the curve representing the sum of all the bidders analyzed 
is above the rest of the curves, but this depends on the 
values of the ‘Participation rate’ coefficients (if these 
rates are very low, then the compilation curve might be 
below the others). 

A study of the compilation curve is an advisable and 
interesting exercise for a company intending to enter a 
tender and wishing to analyze which level of probability 
its closest competitors have of surpassing each score 
level. In this way, its own economic and technical 
proposal will be better balanced and enjoy a better chance 
of winning. 

5.2. Position group performance 

In this case, the calculations are similar to those shown in 
previous subsections, but take into account that 
calculations performed in subsection 4.3 are required for 
each bidder under analysis. After obtaining the 
probability of surpassing every bidder’s possible position 
(as was shown in Fig. 3) the figures in Table 5 can be 
obtained. Again, three bidders are analyzed (n = 3) the 
first being the bidder who was previously calculated. 

Finally, the last column performs the calculations 
using Equation (7) (similar to Eqn (6)), which includes 
‘participation rate’ coefficients. 

   ∑                    ∏ (                                   
(    ) )   

   . (7) 

Similarly, the values in Table 5 can be represented 
graphically in a separate figure, which constitutes Figure 
5 and can be read as Figure 4, except that this time the X-
axis represents possible positions to be occupied instead 
of score levels. 

 
 
 

example example

Bidder 1 2 3 1+2+3

α: 0.3999 0.2024 0.3135

β: 0.2881 0.1829 0.5823

Particip. rate: 0.8889 0.7778 1.0000

X-axis Si*1 Si*2 Si*3 Si*1+2+3

0.00 1.0000 1.0000 1.0000 1.0000

0.05 0.8550 0.7266 0.6928 0.9679

0.10 0.8066 0.6831 0.6163 0.9491

0.15 0.7699 0.6533 0.5619 0.9320

0.20 0.7388 0.6295 0.5178 0.9155

0.25 0.7109 0.6091 0.4797 0.8992

0.30 0.6849 0.5907 0.4457 0.8828

0.35 0.6602 0.5736 0.4144 0.8660

0.40 0.6362 0.5575 0.3851 0.8487

0.45 0.6126 0.5418 0.3573 0.8306

0.50 0.5891 0.5263 0.3306 0.8117

0.55 0.5653 0.5108 0.3045 0.7915

0.60 0.5409 0.4950 0.2789 0.7698

0.65 0.5155 0.4787 0.2534 0.7461

0.70 0.4887 0.4614 0.2277 0.7200

0.75 0.4598 0.4427 0.2015 0.6904

0.80 0.4276 0.4217 0.1742 0.6560

0.85 0.3906 0.3972 0.1452 0.6144

0.90 0.3449 0.3663 0.1131 0.5602

0.95 0.2805 0.3205 0.0745 0.4785

1.00 0.0000 0.0000 0.0000 0.0000

Average : 0.5751 0.5231 0.3607 0.7586



Table 5. Analysis of Position (j*) performances of a group of 
bidders for an upcoming tender 

 
 

 
Fig. 5. Position performance of several bidders 

6. Results 

The present work builds a methodology for studying one 
competitor’s or a subgroup of competitors’ scoring and 
position performance by means of analyzing past similar 
tender datasets. The paper shows all the calculations for a 

given numerical example, but the methodology was 
validated with a dataset of 120 contracting authorities. 

Aspects of every calculation, or figures obtained to 
help a bidding manager, have also been added along with 
explanations in the numerical example of a real bidder. 
As a result, two new types of graph have been generated: 
one for representing the Scoring performance of a single 
bidder or a group of bidders (Figs 1 and 4); and another 
representing the Position performance of a single bidder 
or group of bidders (Figs 1, 3 and 5). 

The methodology proposed here can be helpful for 
bidding managers who plan to enter future tenders and 
need to thoroughly study the competition or the market 
he/she disputes (Lesca et al. 2012; Jiménez-Castillo, 
Sánchez-Pérez 2013), especially a subgroup of 
competitors that may be difficult bidding rivals. Finally, 
this methodology, along with the graphs generated, can 
also be a useful complement to the Smartbid bid tender 
forecasting model. 

Discussion, conclusions, and future work 
Previous bid tender forecasting models were difficult to 
apply to real-life bidding problems. From the 1950s 
onwards, many published BTFMs were based on 
probabilistic descriptions of large groups of single 
bidders where each potential bidder was studied 
individually (it was even necessary to know the names of 
the bidders and have an enormous amount of previous 
data about their bids). 

However, a 2012 bid tender forecasting model 
changed previous models’ paradigm by describing group 
bidding patterns as a whole (using a significantly smaller 
dataset). Nevertheless, that recent model did not enable 
analysis of how a specific bidder (a particular company 
for instance) or a subgroup of bidders would bid. The 
methodology proposed in this paper fixes that flaw while 
serves as a stand-alone bidding tool. 

In this paper, a methodology for assessing the 
Scoring and Position performance for bidding has been 
developed. In cases in which the performance of a group 
of bidders is required, the methodology proposed also 
includes the expressions for obtaining the appropriate 
score and position performances. 

The conditions of the current methodology are the 
following: tender datasets must generally be 
homogeneous, that is, they must share a similar type of 
work, the same ESF, a nearby location, and a relatively 
similar budget. However, it is not necessary to have 
shared a tender process with a particular competing 
bidder to measure its performance or its future behavior. 
As a final safeguard it should be checked that any 
trending change is not affecting bidders’ pricing 
practices; otherwise it is advisable to work with few but 
more recent tender data. 

Concerning the measurement of scoring levels and 
positions occupied of any bidder, the calculations shown 
in this paper are valid for both capped and non-capped 
tendering, but, when complementing the Smartbid BTFM 
(Ballesteros-Pérez et al. 2012a, b, 2013a) the present 
methodology has the same limitation as the BTFM itself, 

N Average (Nm): 13.889 Desvest (Nσ): 5.278

example example

Bidder 1 2 3 1+2+3

α: 1.2690 0.6289 1.4401

β: 0.7861 0.6865 2.6395

Particip. rate: 0.8889 0.7778 1.0000

X-axis (N) Nj*1 Nj*2 Nj*3 Nj*1+2+3

1 0.1761 0.1315 0.0101 0.2504

2 0.2960 0.2144 0.0368 0.4086

3 0.3972 0.2869 0.0801 0.5377

4 0.4856 0.3540 0.1380 0.6450

5 0.5639 0.4177 0.2077 0.7332

6 0.6334 0.4789 0.2859 0.8042

7 0.6949 0.5378 0.3688 0.8596

8 0.7491 0.5944 0.4532 0.9018

9 0.7963 0.6485 0.5359 0.9328

10 0.8370 0.6996 0.6141 0.9550

11 0.8716 0.7473 0.6860 0.9704

12 0.9005 0.7910 0.7500 0.9808

13 0.9243 0.8303 0.8055 0.9877

14 0.9435 0.8650 0.8521 0.9922

15 0.9587 0.8948 0.8902 0.9951

16 0.9705 0.9199 0.9205 0.9969

17 0.9794 0.9405 0.9439 0.9980

18 0.9859 0.9569 0.9614 0.9988

19 0.9907 0.9695 0.9742 0.9992

20 0.9940 0.9791 0.9832 0.9995

21 0.9962 0.9861 0.9895 0.9997

22 0.9977 0.9910 0.9936 0.9998

23 0.9987 0.9944 0.9962 0.9999

24 0.9992 0.9966 0.9979 0.9999

25 0.9996 0.9981 0.9989 1.0000



since the Smartbid model has only been applied to capped 
tendering. 

Therefore, further adaptations of the Smartbid 
model are still necessary. Some of these changes will 
involve studying new mathematical relationships between 
Scoring Parameters and current model uses – and 
transforming them as a function of monetary values 
instead of drop values (which is indispensable in non-
capped tendering). However, the methodology proposed 
here will remain being exactly the same. 

Acknowledgments 

This research study has been funded in Chile by 
CONICYT under the Program Initiation into research 
2013 (project number 11130666). The language revision 
of this paper was funded by the Universitat Politècnica de 
València. 

References 
Ballesteros-Pérez, P. 2010. Propuesta de un nuevo modelo para 

la predicción de bajas en licitaciones de Construcción: 
Doctoral Thesis [online], [21 January 2010 cited]. 
Universitat Politècnica de València. Departamento de 
Proyectos de Ingeniería – Departament de Projectes 
d’Enginyeria, Spain. Available from Internet: 
http://hdl.handle.net/10251/7025 

Ballesteros-Pérez, P.; González-Cruz, M. C.; Pastor-
Ferrando, J. P.; Fernández-Diego, M. 2012a. The iso-Score 
Curve Graph. A new tool for competitive bidding, 
Automation in Construction 22(1): 481–490. 
http://dx.doi.org/10.1016/j.autcon.2011.11.007  

Ballesteros-Pérez, P.; González-Cruz, M. C.; Cañavate-
Grimal, A. 2012b. Mathematical relationships between 
scoring parameters in capped tendering, International 
Journal of Project Management 30(7): 850–862. 
http://dx.doi.org/10.1016/j.ijproman.2012.01.008  

Ballesteros-Pérez, P.; González-Cruz, M. C.; Cañavate-
Grimal, A. 2013a. On competitive bidding: scoring and 
position probability graphs, International Journal of Project 
Management 31(3): 434–448. 
http://dx.doi.org/10.1016/j.ijproman.2012.09.012  

Ballesteros-Pérez, P.; González-Cruz, M. C.; Cañavate-
Grimal, A.; Pellicer, E. 2013b. Detecting abnormal and 
collusive bids in capped tendering, Automation in 
Construction 31(3): 215–229. 
http://dx.doi.org/10.1016/j.autcon.2012.11.036  

Banki, M. T.; Esmaeeli, B.; Ravanshadnia, M. 2008. The 
assessment of bidding strategy of Iranian construction firms, 
International Journal of Management Science and 
Engineering Management 4(2): 153–160. 

Carr, P. G. 2005. Investigation of Bid price competition 
measured through pre-bid project estimates, actual bid 
prices and Number of bidders, Journal of Construction 
Engineering and Management 131(11): 1165–1172. 
http://dx.doi.org/10.1016/j.autcon.2012.11.036  

Carr, R. I. 1982. General bidding model, Journal of the 
Construction Division 108(CO4): 639–650. 

Chao, L.; Liou, C. 2007. Risk-minimizing approach to bid-
cutting limit determination, Construction Management and 
Economics 25(8): 835–843. 
http://dx.doi.org/10.1080/01446190701393018  

Deltas, G.; Engelbrecht-Wiggans, R. 2005. Naive bidding, 
Management Science 51(3): 328–338. 
http://dx.doi.org/10.1287/mnsc.1040.0330  

Dikmen, I.; Talat, M.; Kemal, A. 2007. A case-based decision 
support tool for bid mark-up estimation of international 
construction projects, Automation in Construction 17(1): 
30–44. http://dx.doi.org/10.1016/j.autcon.2007.02.009  

Drew, D.; Skitmore, R. M. 1997. The effect of contract type and 
size on competitiveness in bidding, Construction 
Management and Economics 15: 469–489. 
http://dx.doi.org/10.1080/014461997372836  

Engelbrecht-Wiggans, R. 1980. State of the art – auctions and 
bidding models: a survey, Management Science 26(2): 119–
142. http://dx.doi.org/10.1287/mnsc.26.2.119  

Engelbrecht-Wiggans, R. 1989.The effect of regret on optimal 
bidding in auctions. Management Science 35(6): 685–692. 
http://dx.doi.org/10.1287/mnsc.35.6.685  

Fayek, A. 1998. Competitive bidding strategy model and 
software system for bid preparation, Journal of 
Construction Engineering and Management 124(1): 1–10. 
http://dx.doi.org/10.1061/(ASCE)0733-9364(1998)124:1(1)  

Friedman, L. 1956. A competitive bidding strategy, Operations 
Research 1(4): 104–12. 
http://dx.doi.org/10.1287/opre.4.1.104  

Gates, M. 1967. Bidding strategies and probabilities, Journal of 
the Construction Division 93(CO1): 75–107. 

Harstad, R. M.; SašaPekec, A. 2008. Relevance to practice and 
auction theory: a memorial essay for Michael Rothkopf, 
Interfaces 38(5): 367–380. 
http://dx.doi.org/10.1287/inte.1080.0396  

Jiménez-Castillo, D.; Sánchez-Pérez, M. 2013. Nurturing 
employee market knowledge absorptive capacity through 
unified internal communication and integrated information 
technology, Information & Management 50(2–3): 76–86. 

Kayhan, V. O.; McCart, J. A.; Bhattacherjee, A. 2002. Cross-
bidding in simultaneous online auctions: antecedents and 
consequences, Information & Management 47(7–8): 325–
332. 

Lesca, N.; Caron-Fasan, M. L.; Falcy, S. 2012. How managers 
interpret scanning information, Information & Management 
49(2): 126–134. http://dx.doi.org/10.1016/j.im.2012.01.004  

Lo, W.; Lin, C. L.; Yan, M. R. 2007. Contractor’s opportunistic 
bidding behavior and equilibrium price level in the 
construction market, Journal of Construction Engineering 
and Management 133(6): 409–416. 
http://dx.doi.org/10.1061/(ASCE)0733-
9364(2007)133:6(409)  

McCaffer, R.; Pettitt, A. N. 1976. Distribution of bids for 
buildings and road contracts, Operational Research 
Quarterly 27(4): 835–843. 
http://dx.doi.org/10.2307/3009167  

Mitchell, M. S. 1977. The probability of being the lowest 
bidder, Journal of the Royal Statistical Society: Series C 
(Applied Statistics) 26(2): 191–194. 

Naoum, S. G. 1994. Critical analysis of time and cost of 
management and traditional contracts, Journal of 
Construction Engineering and Management 120(4): 687–
705. http://dx.doi.org/10.1061/(ASCE)0733-
9364(1994)120:4(687)  

Näykki, P. 1976. On optimal bidding strategies, Management 
Science 23(2): 198–203. 
http://dx.doi.org/10.1287/mnsc.23.2.198  

Ngai, S. C.; Derek, S.; Drew, H. P.; Skitmore, R. M. 2002. A 
theoretical framework for determining the minimum 

http://hdl.handle.net/10251/7025
http://dx.doi.org/10.1016/j.autcon.2011.11.007
http://dx.doi.org/10.1016/j.ijproman.2012.01.008
http://dx.doi.org/10.1016/j.ijproman.2012.09.012
http://dx.doi.org/10.1016/j.autcon.2012.11.036
http://dx.doi.org/10.1016/j.autcon.2012.11.036
http://dx.doi.org/10.1080/01446190701393018
http://dx.doi.org/10.1287/mnsc.1040.0330
http://dx.doi.org/10.1016/j.autcon.2007.02.009
http://dx.doi.org/10.1080/014461997372836
http://dx.doi.org/10.1287/mnsc.26.2.119
http://dx.doi.org/10.1287/mnsc.35.6.685
http://dx.doi.org/10.1061/(ASCE)0733-9364(1998)124:1(1)
http://dx.doi.org/10.1287/opre.4.1.104
http://dx.doi.org/10.1287/inte.1080.0396
http://dx.doi.org/10.1016/j.im.2012.01.004
http://dx.doi.org/10.1061/(ASCE)0733-9364(2007)133:6(409)
http://dx.doi.org/10.1061/(ASCE)0733-9364(2007)133:6(409)
http://dx.doi.org/10.2307/3009167
http://dx.doi.org/10.1061/(ASCE)0733-9364(1994)120:4(687)
http://dx.doi.org/10.1061/(ASCE)0733-9364(1994)120:4(687)
http://dx.doi.org/10.1287/mnsc.23.2.198


number of bidders in construction bidding competitions, 
Construction Management and Economics 20(6): 473–482. 
http://dx.doi.org/10.1080/01446190210151041  

OECD (Organisation for Economic Co-operation and 
Development) 2007. Bribery in procurement, methods, 
actors and counter-measures, Paris. 

OECD (Organisation for Economic Co-operation and 
Development) 2009. Guidelines for fighting bid rigging in 
public procurement, Paris. 

Oo, B. L.; Drew, D. S.; Runeson, G. 2010. Competitor analysis 
in construction bidding, Construction Management and 
Economics 28(12): 1321–1329. 
http://dx.doi.org/10.1080/01446193.2010.520721  

Oo, B. L.; Drew, D. S.; Lo, H. P. 2008a. A comparison of 
contractors’ decision to bid behaviour according to different 
market environments, International Journal of Project 
Management 26(4): 439–447. 
http://dx.doi.org/10.1016/j.ijproman.2007.06.001  

Oo, B. L.; Drew, D. S.; Lo, H. P. 2008b. Heterogeneous 
approach to modeling contractors’ decision-to-bid 
strategies, Journal of Construction Engineering and 
Management 134(10): 766–776. 
http://dx.doi.org/10.1061/(ASCE)0733-
9364(2008)134:10(766)  

Pim, J. C. 1974. Competitive tendering and bidding strategy, 
National Builder 55(11): 541–545. 

Ravanshadnia, M.; Rajaie, H.; Abbasian, H. R. 2010. Hybrid 
fuzzy MADM project-selection model for diversified 
construction companies, Canadian Journal of Civil 
Engineering 37(8): 1082–1093. 
http://dx.doi.org/10.1139/L10-048  

Rothkopf, M. H.; Harstad, R. M. 1994. Modeling competitive 
bidding: a critical essay, Management Science 40(3): 364–
384. http://dx.doi.org/10.1287/mnsc.40.3.364  

Rothkopf, M. H. 1969. A model of rational competitive bidding, 
Management Science 15(7): 362–373. 
http://dx.doi.org/10.1287/mnsc.15.7.362  

Runeson, K. G.; Skitmore, R. M. 1999. Tendering theory 
revisited, Construction Management and Economics 17(3): 
285–296. http://dx.doi.org/10.1080/014461999371493  

Skitmore, R. M.; Runeson, G. 2006. Bidding models: testing the 
stationary assumption, Construction Management and 

Economics 24(8): 791–803. 
http://dx.doi.org/10.1080/01446190600680432  

Skitmore, R. M. 1991. The contract bidder homogeneity 
assumption: an empirical analysis, Construction 
Management and Economics 9(5): 403–429. 
http://dx.doi.org/10.1080/01446199100000032  

Skitmore, R. M. 2002. The probability of tendering the lowest 
bid in sealed auctions: an empirical analysis of construction 
data, Journal of the Operational Research Society 53(1): 
47–56. http://dx.doi.org/10.1057/palgrave/jors/2601236  

Skitmore, R. M. 2004. Predicting the probability of winning 
sealed bid auctions: the effects of outliers on bidding 
models, Construction Management and Economics 22(1): 
101–109. http://dx.doi.org/10.1080/0144619042000186103  

Skitmore, R. M. 2008. First and second price independent 
values sealed bid procurement auctions: some scalar 
equilibrium results, Construction Management and 
Economics 26(8): 787–803. 
http://dx.doi.org/10.1080/01446190802175678  

Skitmore, R. M.; Drew, D. S.; Ngai, S. 2001. Bid-spread, 
Journal of Construction Engineering and Management 
127(2): 149–153. http://dx.doi.org/10.1061/(ASCE)0733-
9364(2001)127:2(149)  

Skitmore, R. M.; Pettitt, A. N.; McVinish, R. 2007. Gates’ 
bidding model, Journal of Construction Engineering and 
Management 133(11): 855–863. 
http://dx.doi.org/10.1061/(ASCE)0733-
9364(2007)133:11(855)  

Stark, R. M.; Rothkopf, M. H. 1979. Competitive bidding: a 
comprehensive bibliography, Journal of the Operational 
Research 27(2): 364–390. 

Vergara, A. J. 1977. Probabilistic estimating and applications 
of portfolio theory in construction: PhD Thesis. Department 
of Civil Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL. 

Watt, D. J.; Kayis, B.; Willey, K. 2009. Identifying key factors 
in the evaluation of tenders for projects and services, 
International Journal of Project Management 27(3): 250–
260. http://dx.doi.org/10.1016/j.ijproman.2008.03.002  

Ye, K.; Jiang, W.; Shen, L. 2008. Project competition intensity 
(PCI) in the construction market: a case study in China, 
Construction Management and Economics 26(5): 463–470. 
http://dx.doi.org/10.1080/01446190802036136  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Pablo BALLESTEROS-PÉREZ holds a PhD in Engineering Projects and Innovation and a Msc in Project 
Management, both at Universitat Politècnica de València, Spain. After graduating in Civil Engineering and Geological 
Engineering he has been working as Construction Tendering Manager for ten years in an international private company 
devoted to DBO of Waste Water Treatment Plants. He is an IPMA certified Project Manager (level C) and currently is 
Assistant Professor at the Construction Engineering Project Management at Universidad de Talca, Chile. His areas of 
interest are project management in general and quantitative bidding in particular. 
 
M. Carmen GONZÁLEZ-CRUZ holds a PhD in Industrial Engineering from the Universitat Politècnica de València, 
Spain. After working in several engineering companies, she works as an Associate Professor/Senior Lecturer in Project 
Engineering (undergraduate), and Project Management (graduate). She is currently the Head of the Department of 
Project Engineering and she is also in charge of the MSc in Project Management at Universitat Politècnica de València, 
Spain. She has conducted research on the use of design methodology in industry, creativity and innovation 
management, and currently, she works in analysis and development of forecasting and bid models on procurement. 
 
Marta FERNÁNDEZ-DIEGO holds a European PhD in Electronic and Telecommunications Engineering from Lille 
University of Science and Technology, France. After some research and development contracts in universities and 
multinational companies from France, Great Britain and Spain, she is currently a lecturer in the Department of Business 
Administration at Universitat Politècnica de València, Spain, where she teaches project risk management, among other 
subjects. 
 
Eugenio PELLICER received his MSc degree from Stanford University, USA, and his PhD degree from the 
Universitat Politècnica de València, Spain, where he works as an Associate Professor/Senior Lecturer in Project 
Management, being also in charge of the MSc in Planning and Management in Civil Engineering. He is currently a 
Visiting Professor at the University of Colorado at Boulder. He is involved in several international projects with other 
European and Latin-American universities. His research interests include innovation in the construction process and 
project delivery strategies in construction.  
 
 
 


