
A Genetic Algorithm for the selection of 
structural MRI features for classification of  
Mild Cognitive Impairment and 
Alzheimer's Disease 
Conference or Workshop Item 

Accepted Version 

Spedding, A. L., Di Fatta, G. and Cannataro, M. (2015) A 
Genetic Algorithm for the selection of structural MRI features 
for classification of Mild Cognitive Impairment and Alzheimer's 
Disease. In: The IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM), 9­12 Nov 2015, 
Washington D.C., pp. 1566­1571. doi: 
https://doi.org/10.1109/BIBM.2015.7359909 Available at 
http://centaur.reading.ac.uk/51025/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 
Published version at: http://dx.doi.org/10.1109/BIBM.2015.7359909 

To link to this article DOI: http://dx.doi.org/10.1109/BIBM.2015.7359909 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/42153645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Workshop on Machine Learning in Decision Making for
Biomedical Applications, Nov. 9-12, 2015, Washington D.C. (in press)

A Genetic Algorithm for the Selection of
Structural MRI Features for Classification of Mild

Cognitive Impairment and Alzheimer’s Disease

Alexander Luke Spedding∗, Giuseppe Di Fatta∗, Mario Cannataro† and the Alzheimer’s Disease Neuroimaging Initiative
∗School of Systems Engineering

University of Reading, UK
Email: a.l.spedding@pgr.reading.ac.uk, g.difatta@reading.ac.uk

†Bioinformatics Laboratory
Department of Medical and Surgical Sciences
Magna Graecia University of Catanzaro, Italy

Email: cannataro@unicz.it

Abstract—This work investigates the problem of feature selec-
tion in neuroimaging features from structural MRI brain images
for the classification of subjects as healthy controls, suffering
from Mild Cognitive Impairment or Alzheimer’s Disease. A Ge-
netic Algorithm wrapper method for feature selection is adopted
in conjunction with a Support Vector Machine classifier. In very
large feature sets, feature selection is found to be redundant as
the accuracy is often worsened when compared to an Support
Vector Machine with no feature selection. However, when just
the hippocampal subfields are used, feature selection shows a
significant improvement of the classification accuracy. Three-
class Support Vector Machines and two-class Support Vector
Machines combined with weighted voting are also compared with
the former and found more useful. The highest accuracy achieved
at classifying the test data was 65.5% using a genetic algorithm
for feature selection with a three-class Support Vector Machine
classifier.

I. INTRODUCTION

The number of people diagnosed with Alzheimer’s Disease
(AD) is expected to rise over the next few decades, and
by 2050 over 1% of the world’s population are predicted
to be suffering from AD [1]. AD is a neurodegenerative
disease causing memory loss, disorientation and behavioural
issues; all symptoms of AD get progressively worse as the
disease advances. Mild Cognitive Impairment (MCI) is a brain
function syndrome with similar symptoms to AD although
to a lesser extent, and being diagnosed with MCI has been
recognised as a risk factor for developing AD in the future
[2].

A structural magnetic resonance imaging (MRI) scan - often
the structural part is assumed when referring to MRIs - is a
non-invasive imaging technique which generates a 3D image
of the physical structure of a subject’s brain. The 3D image
is made up of voxels, each voxel has a position in the 3D
space and an intensity value which determines whether the
voxel is classed as white matter (WM), grey matter (GM) or
cerebrospinal fluid (CSF).

The development of an algorithm to classify a subject based
on their MRI scan as a healthy control (HC), or suffering from
MCI or AD would be a great advantage as it would allow for
diagnosis of AD and MCI in hospitals with limited resources
as they would only need the MRI scanner and a computer
to run the classification algorithm. However, the downside to
this is that it is near impossible to have 100% accuracy and
thus it will not be trusted as much as a clinical diagnosis
based on neuropsychological tests. Thus it would be best to
create a classifier to aid rather than replace human expertise
and clinical tests.

SVMs are a state-of-the-art technique to classify high di-
mensional data as they are generally one of the best classifiers
at obtaining a high accuracy. Research in [3] has found
that feature selection does not improve the accuracy of the
SVM due to the SVM’s robustness of handling the features.
However, while reducing the features of the input data may not
increase the accuracy of the classifier the advantage it would
have is producing a better model of the brain with AD. A
smaller feature set being used to distinguish HC, MCI and AD
subjects would mean that there is a model of the brain with
a smaller number of features showing the main areas affected
by MCI or AD. The advantage of this model would be to aid
a medical centre in the diagnosis of patients who potentially
suffer from MCI or AD. An MRI scan of the patient’s brain
can be taken as input to this automated classifier, this would
then produce a diagnosis of the subject with a given confidence
of what they suffer from (or if they are healthy), this can then
be used to refer them onto further specialist treatment. The use
for the model with a small number of features would be to
produce a report about which areas of their brain are affected
by the potential diagnosis of MCI or AD. This method would
save time as it is an initial referral to screen patients saving
the time of doctors with the specialist knowledge to analyse
the MRI scans as they would only need to analyse the patients
which have been referred by the automated diagnosis, which



would be a smaller amount than the initial amount of patients
whose data are input to the classifier.

The program Freesurfer is used to analyse the MRI scans,
it is a free and open source software suite which performs
many tasks for processing and analysing MRI scans such as:
image registration, subcortical segmentation, cortical thickness
estimation and many others. In this paper, Freesurfer is used
to extract measurements regarding different regions of interest
(ROIs) throughout the brain and these measurements are then
used to diagnose the subject as being healthy or suffering
from MCI or AD. The curse of dimensionality is a term
referring to a set of problems which occur when handling high-
dimensional data: as the number of dimensions increase, the
data becomes more sparse and therefore patterns are harder to
find; it can also lead to overfitting of the training data making
the classifier useless when applied to new data. A large number
of measurements (356) are produced by Freesurfer’s analysis
and these must be reduced to achieve a model which can
be easily interpreted by a human doctor; so this paper uses
feature selection by a Genetic Algorithm (GA) to reduce the
dimensionality of the problem this has the added benefit of
reducing the sparsity of the data so that patterns will be easier
to find.

A. Related Work

[4] used a GA for feature selection of a variety of neuropsy-
chological tests, which were then input to a logistic regressor
to predict conversion from HC to MCI or AD, and conversion
from MCI to AD. They also showed the GA performed better
than Stepwise Variable Selection, a commonly used feature
selection method. In [5] a GA was used on multiple datasets
for feature selection for a Support Vector Machine (SVM),
they investigated a number of ways to evaluate the fitness of
the algorithm and used the GA to search for optimal values
for the SVM’s hyperparameters. They found using a GA for
feature selection for an SVM showed promising success.

Previous work has been done in [6] at solving the automated
classification of AD, this paper intends to expand on this work
in three ways. The first is that any data used will be raw
MRI scans so the methods used to process the data (such
as the Freesurfer version) can be controlled, as in [6] the
training and test data was processed with a different version of
Freesurfer which lead to some large differences in the values
of the hippocampal subfields. This meant that the hippocampal
subfields could not be used as features to diagnose the subjects.
There will also be a larger amount of both training and test
data used. Finally, a GA will be used for feature selection and
while this has the downside of a longer computation time, it
has the benefit of being able to search a larger search space
of feature sets.

[7] also used extracted Freesurfer features from MRI
where features were selected based on a priori knowledge,
and features were also combined with each other to reduce
the dimensionality. A high classification accuracy of 73% was
achieved. [8] tested various methods to classify HC, MCI
and AD based on MRI data; some of these methods included

training classifiers on data extracted by Freesurfer. In particular
they used a Parzen Window on the hippocampal volumes,
achieving a sensitivity of 73% and a specificity of 74%. They
concluded that feature selection increased the sensitivity and
were more accurate at classification of problems where there
are only a few ROIs in the brain.

By using a GA for feature selection the aim will be to
develop an understanding of which features in the brain are
the most useful for predicting MCI and AD without being
biased by any previous knowledge of the brain’s functionality
nor by any restrictions in other feature selection methods as
the majority are based on finding a locally optimal solution
which could potentially mean that other important but less
obvious patterns are not discovered.

II. METHOD

A. Data Acquisition

435 MRI scans were downloaded from the ADNI database
and processed with Freesurfer version 5.3 with the standard
cortical reconstruction process and the optional command to
segment the hippocampal subfields. The hippocampal subfields
were included since AD has been found to be prevalent in the
hippocampal region [9] [10]. The scans used were the baseline
scans for each subject - this is the initial scan taken and initial
diagnosis given to the subject. Other criteria used to refine the
MRI data was that the slice thickness of scan was 1.5mm and
weighted in T1.

Freesurfer has been used in conjunction with GNU Parallel
[11] to process the structural MRI data. All of the MRI
data was processed using the same version of Freesurfer and
the same version of the operating system (according to [12],
differences in these two factors can affect the output).

The data mining software KNIME [13] using an improved
version of the plug-in K-Surfer [14] was used to extract the
required features from the processed MRI data. There are
356 features extracted in total - various thickness, volume
and surface area measurements of regions of interest across
the brain; these features were then merged with data ADNI
provides about the subject which cannot be inferred from the
brain data - the age and gender of the subject. ADNI also
provides the diagnosis of the subject, whether they are a HC
subject or suffering from MCI or AD. Thus there are a total
of 358 features which can be used to predict the one output
class.

Intra cranial volume (ICV) normalisation [15] is a process
which alters the data for each subject to account for variations
in head size (as this affects the size of ROIs within the brain)
and is often used in classification of dementia from MRI
data [16] [17]. Feature selection will both be tested with and
without ICV normalisation as in [6] it was found in some
situations the classification had a higher accuracy without ICV
normalisation. Z-score normalisation is performed since SVM
algorithms typically assume that the data is within a standard
range; if the normalisation is not performed then the SVM can
be adversely affected and misclassify the data.



TABLE I: Information about the subjects used

Dataset Diagnosis #Subjects %Male Age

T1
HC 117 49.1 74.4 ± 6.10
MCI 117 50.0 73.9 ± 6.54
AD 117 52.3 75.4 ± 7.93

T2
HC 28 50.0 72.6 ± 6.67
MCI 28 46.7 73.7 ± 6.74
AD 28 57.7 74.1 ± 7.53

The MRI data will be split into training data (T1) and test
data (T2) - the classifier will be trained on the training data
thus is will know the diagnosis of these subjects, it will be
evaluated on the test data and will have to predict the classes
of this data. Stratified sampling will be used so that the both
sets have a similar proportion of the three classes. 351 subjects
will be used as the training data and the remaining 84 will be
used as test data, each data set is class balanced meaning that
there are an equal number of subjects with one class as the
other two classes, further information can be found in Table
I.

B. Feature Selection Algorithm

GAs were pioneered by John Holland [18] and can be
applied to numerous types of problems. They are based on
principles of evolution such that solutions (chromosomes) are
generated for a problem and a fitness value is calculated for
how the given solution solves the problem. Then the solutions
are bred with each other (an operation which takes elements
from two solutions to generate a one or more solutions) to
form a new solution which is then mutated (mutation involves
randomly changing part of the solution). This repeats until the
desired number of child solutions is met and a new generation
is created. Then the solutions are evaluated and bred again,
which continues until a termination criteria is met such as a
certain number of generations has elapsed or a certain fitness
value has been reached.

In this application, each potential solution is represented
by a bit string and length is equal to the number of features
available. The bit’s value depends on whether the feature has
been included or excluded for this solution. For example if the
ith bit is 1, then the ith feature will be passed to the classifier
and it will train using that feature; and if the jth bit is 0, then
the jth feature will be ignored by it. Initially the chromosomes
will be initialised randomly with a probability, pI that the
bit will be a 1. The crossover method used will be one-point
crossover where two parents produce two children: a random
index is chosen in the bit strings and the data beyond that
index is swapped between each string producing two children.
Mutation will be implemented via bit flipping, each bit in each
string will be flipped with a probability, pM .

The fitness function (the function which is used to evaluate
how well each chromosome performs at solving the problem)
will be set to the classification accuracy achieved since the
aim of the feature selection is to increase the successful
classification rate of the problem; a second GA will be run
with a modified fitness function whereby the chromosomes

are penalised for having more than 20 features, for every
feature over 20, the fitness is decreased by a value of 5
(this value of 5 is equivalent to a 5% drop in accuracy).
This penalty is used to keep the number of features low as
this is the aim of this research - to create a model with a
small number of features. Parent selection is the mechanism
which chooses which parents breed together to produce the
offspring for the next generation, and the method used is
stochastic universal sampling which removes the bias fitness
proportionate methods have towards only selecting solutions
with the highest fitness [19]. For the development and testing
of the GA described in this paper, the programming language
R [20] was used along with external packages for the GA [21]
and the SVM [22].

C. Classifying the Data

The classification problem is a three-class problem, [23]
found that classifiers had performed better when multi-class
problems were split into binary-class problems, the classifica-
tion result of each binary-class problem are then combined
using an aggregation method to obtain a classification for
the multi-class problem. Following on from this research,
the ternary-class problem will be split into three binary-
class problems and a GA will be trained for each of these
binary-class problems. The Weighted Voting Strategy (WV)
aggregation method in [23] for the SVM will be tested to see
how well it performs at combining the three two-class SVMs
against the single three-class SVM.

The fitness of each chromosome of the GA will be cal-
culated from the accuracy of an SVM with a Radial Basis
Function (RBF) kernel, k(x, x′) = exp(−σ||x− x′||2), using
the given feature set, the SVM will be trained on the training
data using 10-fold cross validation. Once the termination
criteria is reached, the feature set which gave the highest
accuracy will be trained on the entirety of the training data
and then tested on the test data, and the accuracy of this will
be a measurement of how well the final feature set chosen
performs.

III. RESULTS

A GA-based feature selection method was used in each of
the 24 classification problems (e.g. one of these 24 problems
is: HC vs. MCI with ICV normalisation using the cortical
fields). The 24 cases include binary tests with and without
ICV normalisation, multi-label classification with and without
ICV normalisation, over three different initial sets of features.
The All Fields subset contains both the cortical subfields
and hippocampal subfields, gender and age of the subject
aren’t included in this subset as the aim is to select the best
features of the MRI data not MRI data augmented with other
features. The Cortical Fields subset contains all the fields
generated by Freesurfer’s recon-all command with the -all flag.
The Hippocampal Subfields subset contains only the fields
generated by the -hippo-subfields flag.

The parameters of the GA used are: a crossover rate of 0.6,
a mutation rate of 0.02 (the probability that each bit of the
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bit string representation will flip), a population size of 50,
single-point crossover and roulette wheel parent selection. At
the start of the GA, each chromosome is initialised with a
probability of 0.5 that a bit is a 1 instead of 0. The results
of the GA feature selection for the two-class problems are in
Table II, and the results of the GA feature selection for three-
class problems and also the results of the two-class SVMs
combined with WV are in Table III. Within these tables, T1
refers to the accuracy found of the best performing genotype
when calculating its accuracy using 10-fold cross validation
on the training dataset (351 subjects); and T2 is the accuracy
found when the best features found from the GA are used
to train an SVM on the entire training dataset and then used
to evaluate the test dataset - a holdout method. The second
GA - using the fitness function with the penalty for over 20
features, behaves similarly to the former GA; other than the
fitness function the only other difference is the initialisation
of the chromosomes. Every chromosome has a random ten
features selected, all of which are set to be included (every
other feature is excluded).

IV. DISCUSSION

A. Binary Classification Problems

Feature selection increased the accuracy of the classifier
performance for feature selection of the hippocampal subfields.
For the binary classification problems, the highest accuracies
achieved were 71.4% for HC vs. MCI using the hippocampal
subfields with ICV normalisation and the standard GA for
feature selection. The highest accuracy for HC vs. AD was
89.3% which used ICV normalisation and the GA with a
penalty for feature selection. MCI vs. AD again used ICV
normalised fields for its highest accuracy, 73.2% accuracy
was achieved using the standard GA. ICV normalisation was
an important factor in achieving the highest accuracies for
classification based on the hippocampal subfields as usage of
ICV normalisation created classifiers with a higher accuracy
than whenever ICV normalisation was not used - thus the
ICV is likely an important factor when dealing with the
hippocampal regions of the brain.

In both the feature selection of the cortical fields and feature
selection of all fields, the accuracy was not improved by
feature selection which was discovered in [3] where feature
selection was tested with an SVM and very high dimensional
data and found that when feature selection was performed, a
lower accuracy was achieved. The joint best or best accuracy
was achieved by using no feature selection whatsoever (except
when ICV was applied to all fields and cortical fields of the
HC vs. MCI classification problem - the GA using the penalty
reached the highest accuracy here). Using feature selection
on all of the fields the highest accuracies obtained were
69.6% for HC vs. MCI using no feature selection without ICV
normalisation; 82.1% was the best for HC vs. AD achieved
via no feature selection and also feature selection with the
GA showing that 196 features can be used to obtain the
same accuracy as all 356 features; and for MCI vs. AD,
78.6% was reached using no feature selection with ICV

normalisation. Using feature selection of the cortical fields,
the best accuracies achieved were: 67.9% for HC vs. MCI
with both no feature selection without ICV normalisation and
also 67.9% using the GA for feature selection also without
ICV normalisation. The highest accuracy for both HC vs. AD
and MCI vs. AD was 82.1% by using no feature selection with
ICV normalisation.

B. Ternary Classification Problems

Of the entire 3-class classification problem, the best accu-
racy was achieved by a 3-class SVM with feature selection
performed by a GA using the cortical fields with ICV normal-
isation, this achieved an accuracy of 65.5%. The 3-class SVM
generally performed better than the combined 2-class SVMs,
except in the cortical fields without ICV normalisation where
the SVM always predicted one class for every subject. Feature
selection again performed better for the hippocampal subfields
with the best accuracy being achieved by the GA being used
for feature selection on the ICV normalised data.

V. CONCLUSION

This work has applied GA-based feature selection in con-
junction with an SVM to classify HC, MCI and AD patients
from structural MRI brain data. The results have shown that
a high accuracy can be achieved using just the hippocampal
fields as a feature set. An SVM performs better with feature
selection when feature selection is applied to cortical fields and
also when it is applied to hippocampal fields; however, when
applied to all of the fields, an SVM without feature selection
performs better. Regarding the SVM performing better with
feature selection of the cortical fields and hippocampal fields
this could mean that there are some irrelevant features in
both the cortical fields and hippocampal subfields that the
SVM cannot handle and thus by using feature selection, these
irrelevant features are removed and allow the SVM to perform
better.

The hippocampal subfields are great predictors for distin-
guishing between HC, MCI and AD; only a small number
of features are needed to achieve a fairly high accuracy,
showing that the effects of AD and MCI are prevalent in the
hippocampus (agreeing with other literature on this topic [9]
[10]). From this finding, there is potential for the hippocampus
subfields to be used to create a simple model to provide an
understanding of why a patient was classified as HC, MCI or
AD.

The accuracy obtained by the combined two-class SVMs
was slightly lower than the single three-class SVMs, this could
be down to the randomness of the GA in which feature subsets
it evaluates - as in previous literature [23] the combined
two-class classifiers performed better; another reason is that
for this problem, a three-class SVM performs better than
combined two-class classifiers. In general, the usage of ICV
normalisation results in a classifier that performs better as from
the results regarding the hippocampal subfields without ICV
in Table II show that the accuracy on T2 is significantly lower
than the accuracy on T1 suggesting that an SVM which overfits



the training data has been created. In summary, a predictive
model to distinguish between the classes HC, MCI and AD,
can be trained with a small number of features that provides
near the same accuracy as the entire set of 356 features. This is
useful for creating a report to show which areas of the patient’s
brain are most affected by MCI and AD. Future work would
involve exploiting the power of the accuracy obtained using
solely the hippocampal subfields to create a simple classifier
which has rules that can be understood by both doctor and
patient (provided the disease hasn’t progressed too far).
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