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Abstract A theoretically expected consequence of the intensification of the hydrological cycle under
global warming is that on average, wet regions get wetter and dry regions get drier (WWDD). Recent
studies, however, have found significant discrepancies between the expected pattern of change and
observed changes over land. We assess the WWDD theory in four climate models. We find that the reported
discrepancy can be traced to two main issues: (1) unforced internal climate variability strongly affects local
wetness and dryness trends and can obscure underlying agreement with WWDD, and (2) dry land regions are
not constrained to become drier by enhanced moisture divergence since evaporation cannot exceed
precipitation over multiannual time scales. Over land, where the available water does not limit evaporation, a
“wet gets wetter” signal predominates. On seasonal time scales, where evaporation can exceed precipitation,
trends in wet season becoming wetter and dry season becoming drier are also found.

1. Introduction

Movement of water vapor in the atmosphere is the fundamental quantity that results in the spatially variable
hydroclimatic (precipitation minus evaporation, P� E) patterns, including wet conditions in convergence
zones (e.g., deep tropics, monsoonal regions, and some middle- and high-latitude regions) and dry
conditions in divergence zones (e.g., subtropical regions) [Allan, 2014; Seager et al., 2010]. The atmospheric
water vapor concentration increases with global warming following the Clausius-Clapeyron relationship
[Stull and Ahrens, 2000]. Satellite data and ground-based observations show evidence of increased
atmospheric water vapor concentration [Allan, 2014; Chung et al., 2014; Santer et al., 2007]. When more
water-laden air parcels move through the atmosphere, they enhance P� E in convergence zones and E� P
in divergence zones; a simplified description of the theory is known as wet gets wetter and dry gets drier
(WWDD) [Greve et al., 2014] as outlined by Held and Soden [2006].

The sensitivity of global precipitation change is much smaller (2%/K) than the sensitivity of water vapor
concentration change (7%/K), and this is primarily because the atmosphere and surface cannot lose
sufficient radiative energy to accommodate the additional latent heating within the radiative-convective
balance [Chadwick et al., 2013; Held and Soden, 2006; O’gorman et al., 2012]. Reduced convective mass flux
as part of diminishing atmospheric circulation strength is one way in which the atmosphere adjusts in
reconciling the water vapor and precipitation changes [Bony et al., 2013; Vecchi and Soden, 2007]. This
reduces but does not negate the enhancement of P� E patterns with global warming [Allan, 2012;
Chadwick et al., 2013].

The moisture-driven changes are modulated regionally by variations in atmospheric circulations. A weak-
ening of the tropical circulation leads to opposite effects, i.e., wet gets drier and dry gets wetter (WDDW)
[Chadwick et al., 2013; Chou et al., 2009; Seager et al., 2010, 2014]. More locally, spatial movement of high
rainfall regimes toward usually drier regions and vice versa will also lead to WDDW [Allan, 2014; Chou
et al., 2009] and these responses are also strongly influenced by internal climate variability [Deser et al.,
2010, 2012; Gu and Adler, 2013; O’gorman et al., 2012]. Large-scale circulation changes, e.g., expansion of
the Hadley cell, extend subtropical dry zones poleward [Lu et al., 2007; Scheff and Frierson, 2012], and a
poleward shift in storm tracks contributes to subtropical drying and poleward moistening [Scheff and
Frierson, 2012; Seager et al., 2010]. Byrne and O’Gorman [2015] found a drying tendency over land relating
to spatial gradients in temperature changes, e.g., polar amplification and greater warming over land than
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oceans. Hence, while the circulation changes produce dynamical changes in both convergence and
divergence zones, the moisture-driven changes are an emerging signal of global warming [Chou et al.,
2013; Liu and Allan, 2013].

Recent studies have found significant discrepancies between the WWDD theory and observed changes
over land. Greve et al. [2014] found that the WWDD theory holds over 10.8% of land areas and does
not hold for 13.8% land areas, based on observations from 1948 to 2005, with the remainder of the land
area not showing statistically significant changes. Hence, Greve et al. concluded that the WWDD theory
can be potentially misleading over the land. However, contrasting results between theoretical understand-
ing and observation-based findings can be reconciled by considering a number of factors: the nature
and sensitivity of metrics [Allan, 2014], the definition of wet and dry regions and time averaging over
wet and dry seasons [Chou et al., 2013; Liu and Allan, 2013], and effects of internal variability and
water limitations to evaporation over land (discussed here). Here we provide an important clarification
that is necessary for increasing confidence in the underpinning physical principles of changes in the
hydrological cycle.

2. Data and Method

We employed climate simulations for preindustrial, historical, and future climates from four Coupled Model
Intercomparison Project Phase 5 (CMIP5) climate models (CanESM2, CCSM4, CNRM-CM5, and MPI-ESM-MR)
that have long (~1000 years) preindustrial climate simulations available in the CMIP5 archive [K. E. Taylor
et al., 2012]. All available ensemble members are employed (supporting information Table S1). To avoid
biases due to having more ensemble members from one climate model than another, we used a multimodel
ensemble weighted average approach [Jones et al., 2013]. Model data are regridded to a common 2.5° × 2.5°
resolution using an area average preserving method.

The dryness index (DI, equation (1)) metric is used to assess wetness and dryness trends

DI ¼ Rn
λ�P (1)

where Rn is net radiation at the surface, λ is latent heat of vaporization, and P is precipitation, all of which
are computed from 20 year climatological means [see also Greve and Seneviratne, 2015; Roderick et al., 2015;
Roderick et al., 2014]. DI less than 1.0 represents energy-limited (wet) regions, and greater than 1.0 repre-
sents water-limited (dry) regions. We used a slightly adjusted threshold DI, based on preindustrial climate
simulations (range: 1.25 to 1.5; supporting information Figure S1), so that all land area between 60°S and
90°N is equally divided between wet and dry regions. The adjusted threshold reduces model uncertainties
and provides spatially consistent distributions of wet and dry regions across four climate models, e.g., the
wet and dry contrast between the eastern and western United States (supporting information Figure S2).
Results presented here are not sensitive to the adjusted threshold DI (supporting information Figures S3
and S7).

We also employ the precipitation minus evaporation (P� E) metrics on seasonal time scales, since the DI
metric is relevant only over annual mean or longer time scales [Zhang et al., 2008]. Trends in P� E are
computed for local (grid cell) wet and dry 3month seasons corresponding to maximum and minimum
P� E in the seasonal cycle [Kumar et al., 2014a]. To account for changes in seasonality under global
warming, we determined wet and dry seasons for each nonoverlapping 20 year period from 1850 to
2100 (supporting information Figure S4).

We employed a “perfect model analysis” by comparing model-simulated changes against model-simulated
internal variability [Dirmeyer et al., 2013; Holland et al., 2013; Kumar et al., 2014b; Tietsche et al., 2014]. We
estimated the local (grid cell) variability of 20 year mean DI climatologies that is due to internal variations
by calculating the variance of DI from nonoverlapping 20 year periods in preindustrial climate simulations.
Changes in DI relative to the preindustrial mean in the historical or future climates (Representative
Concentration Pathways (RCP)4.5 and RCP8.5) are deemed significant (<5% significance) if they are greater
than 2 standard deviations in magnitude [Arnell and Gosling, 2013; Kumar et al., 2014a]. We performed a
similar analysis for the 20 year mean wet and dry seasons’ P� E and compared it with the preindustrial
P� E in the corresponding season.
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3. Results
3.1. Role of Internal Variability

Decadal to multidecadal climate variability strongly affects local/regional trends, e.g., the warming hole in
the eastern United States, and precipitation recovery in western Sahel after a prolonged drought in the
1970s and 1980s [Deser et al., 2012; Dong and Sutton, 2015; Kumar et al., 2013b; Meehl et al., 2015;
Villamayor and Mohino, 2015]. To assess that, we sampled nonrepeating 60 year data segments from
preindustrial climate simulations and studied trends in wetness and dryness as the differences between
the last and first 20 years. The 60 year data length allows comparison to changes assessed from observa-
tional records of similar length [Greve et al., 2014]. For example, 1000 year preindustrial climate simulation
results in 50 nonoverlapping 20 year samples for the calculation of DI (DIi, i = 1, 2,… 50) and 48 overlapping
60 year samples (DIi+2�DIi, i = 1, 2,… 48). Similarly calculated changes for historical periods are evaluated
locally against control run trend variability for significance. Areas of significant changes are grouped under
two categories: (1) WWDD and (2) WDDW.

Figure 1 shows two circles/ellipses representing 95% and 99% confidence regions for trends in wetness and
dryness due internal climate variability in preindustrial climate simulations (see supporting information for
details). Clearly, a large spread in wetness and dryness trends can be expected only due to internal climate
variability over any 60 year period; the multimodel mean WWDD trends are found in 8.4 ± 4.9% of the land
area and the same for WDDW trends (the uncertainty ranges are 95% confidence intervals). Trends in histor-
ical simulations of the period 1948 to 2005 are mostly within the uncertainty envelope of preindustrial simu-
lations (Figure 1). The Greve et al. [2014] results, which are based on observations and show that more land
area with significant DI trends falls within the WDDW realm than the WWDD realm, lie on the edges of the
uncertainty envelopes; the null hypothesis of consistency with climate model-simulated internal variability
would be rejected at the 5% significance level in three cases (CanESM2, CCSM4, and MPI-ESM-MR) and at
the 1% significance level in the case of the fourth model (CNRM-CM5). Please also note that circles/ellipses
provide a conservative estimate of internal variability because of (1) overlapping 60 year periods (supporting
information Figure S5) and (2) uncertainty in climate models particularly related to decadal to multidecadal
climate variability [Chadwick et al., 2015; Knutson et al., 2013; Kumar et al., 2013b]. Analysis of large ensemble
climate simulations [Kay et al., 2015] also shows significant uncertainty due to internal climate variability in
future projections (supporting information Figure S6).

3.2. Effects of Climate Change on Wetness and Dryness Trends in a Perfect Model Analysis

To study DI changes in historical and future climate simulations (RCP4.5 and RCP8.5), we identify significant
DI changes relative to preindustrial mean DI for each nonoverlapping 20 year period between 1901 and 2100
(i.e., 1901–1920, 1921–1940,…, 2006–2025,…, 2081–2100). The resulting time series of DI changes under
WWDD and WDDW categories, separately for land and oceans, is shown in Figure 2. The amount of area that
exhibits significant change in DI increases with global warming, as expected, with the higher emission
scenario (RCP8.5) exhibiting greater total percentage area with significant change than the medium emission
scenario (RCP4.5). Over land, the changes fall into the WWDD and WDDW categories roughly equally
throughout the historical and future periods [see also Greve and Seneviratne, 2015]. This is in stark contrast
to the oceans where the WWDD theory operates strongly.

Figure 3 shows the spatial distribution of significant changes (<5% significance level) at the end of the 20th
and the 21st centuries, both relative to preindustrial climate. The effect of climate change is evident with the
lowest DI change areas seen by end of the 20th century and the highest fractional areas showing change in
RCP8.5 projections. In global warming scenarios, drying of subtropical dry zones, particularly over the oceans,
is evident (DD, Figures 3c and 3d). Drying of ocean refers to increase in DI or enhancement of E� P. Some dry
land areas that become drier include ocean-continental boundary regions in the subtropical dry zones, e.g.,
Mediterranean, Mexico, and western Sahel. Wet gets wetter (WW) areas are found in the deep tropics
convergence zone including central east Africa (Congo Basin), Pacific coast of northwestern South
America, parts of Southeast Asia, and middle- to high-latitude regions in both hemispheres (around 60°S
and 60°N, respectively). Dry areas becoming wetter (DW) include central Asia, central eastern Africa, eastern
Sahel, and southern South America. Some wet areas of the tropical and subtropical oceans become drier
(WD), and vice versa (DW), and these areas tend to lie between the boundary of atmospheric convergence
(wet) and divergence (dry) zones. WD and DW trends in the boundary regions can be related to
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circulation-driven dynamical changes, e.g., dry advection from neighboring descending zones or a shift in
convergence zones [Chou et al., 2009; Joetzjer et al., 2013]. Wet gets drier (WD) areas, as measured by DI,
are found in the Arctic regions, possibly because of sea ice and snow cover loss, and the snow-albedo
feedback leading to increased absorption of incident solar radiation, less energy needed for snow and sea
ice melt, and more energy available for evaporation and thereby an increased DI [Bony et al., 2006; DelSole
et al., 2014; Zhang et al., 2015].

3.3. Explaining Uncertainties in Wetness and Dryness Trends Over Land

The fundamental premise of the WWDD theory is that more evaporated water from divergence zones will
contribute to greater precipitation in convergence zones. But evaporation greater than precipitation is not
possible over sustained time periods in dry land regions because of limited water availability, unlike the
oceans which have unlimited water availability in both convergence and divergence zones. Hence, the main
mechanism by which dry regions become drier (DD) is not relevant over land; therefore, it is hypothesized
that the WWDD theory is applicable mainly in “wet” areas where evaporation is not limited by the available
water but by the available energy, i.e., land regions where DI< 1.0.

Figure 1. Role of internal variability in wetness and dryness trends. The two circles/ellipses represent 95% and 99%
confidence regions for wetness and dryness trends in the preindustrial climate simulations. Historical simulation corre-
sponding to observation period (1948 to 2005) is shown in blue dots that represent each ensemble member. The result
from Greve et al. is shown using an asterisk. Somewhat different sizes and shapes of uncertainty circles/ellipses are
indicative of the climate model’s uncertainties.
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Figure 4 shows assessment of the WWDD theory in wet and dry land regions separately (see also supporting
information Table S2). In wet regions, WW areas are more frequently encountered than WD areas, whereas in
dry regions, more dry land areas get wetter (DW) than drier (DD). This makes sense because most dry areas
receive precipitation of advective origin (large scale) [Dirmeyer and Brubaker, 2007], and, with higher average
atmospheric water vapor content in a warmer climate, one would expect the resulting increases in moisture

Figure 2. Themultimodel meanwetness and dryness trends in historical, RCP4.5, and RCP8.5 climate simulations relative to
preindustrial climate over (a and c) land and (b and d) oceans. Unit: percent areas in each category showing significant
trends. Figures 2a and 2b show RCP8.5 and Figures 2c and 2d RCP4.5. Shaded bands represent 95% confidence interval
estimates of the mean.

Figure 3. Spatial distribution of (a) wet and dry regions, (b) wetness and dryness trends at the end of the 20th century
(1986 to 2005), (c) at the end of the 21st century (2081 to 2100) in RCP4.5 projections, and (d) the same for RCP8.5
projections. Wet and dry regions are defined based on majority rule (≥3 out of 4 models). Uncertain areas represent equal
division between four models, i.e., two models dry and two models wet. Only statistically significant trends at or less
than 5% significance level are shown. Trends are shown if 65% or more of ensemble members show a significant trend,
in which case the majority direction of trend is shown in the figure: wet gets wetter (WW), wet gets drier (WD), dry gets
wetter (DW), and dry gets drier (DD).

Geophysical Research Letters 10.1002/2015GL066858
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advection leading tomore precipitation in these areas. Nevertheless, a shift in precipitation patterns and local
feedback processes can bring significant changes of both signs in dry regions [Chadwick et al., 2015; Guillod
et al., 2015; C. M. Taylor et al., 2012].

Figure 5 shows trends in P� E in local wet and dry seasons (see also supporting information Table S2). In wet
regions and wet seasons, higher WW trends occur 8 to 11 times more often than WD trends. Similarly, in dry
regions and dry seasons, higher DD trends occur 4 to 5 times more often than DW trends. Please note that
evaporation can exceed precipitation on seasonal time scales [e.g., Sheffield et al., 2013]. In dry regions and
wet seasons, significantly higher (4 to 5 times) DW trends than DD trends are also found. In wet regions
and dry seasons, a generally higher (1.2 to 1.5 times) WD than WW trends are found, but these two trends
are not significantly different. Overall, seasonal analysis supports the notion that wet season becomes wetter
and dry season becomes drier [Chou et al., 2013; Kumar et al., 2014a].

4. Discussion and Conclusions

Comparing simulated historical changes (Figure 3b) with observed changes reported in Greve et al. [2014]
reveals several differences such as wetting trends in the eastern U.S. and the western Sahel that are not
seen in the majority of model simulations. Both of these regions are known to be substantially influenced
by multidecadal climate variability that is either internally generated or radiatively forced or some combi-
nation of these two [Dong and Sutton, 2015; Kumar et al., 2013b; Meehl et al., 2015; Villamayor and
Mohino, 2015]. Uncertainty in the observations, e.g., poor data coverage in Africa, South America, and
Asia, may also be a factor [Koster et al., 2011; Kumar et al., 2013a]. Uncertainties in climate models, e.g.,
land-atmosphere coupling and feedback processes, can also be an issue [Guillod et al., 2015; Kumar et al.,
2013c; Pitman et al., 2009; C. M. Taylor et al., 2012]. Nonetheless, we have minimized the effects of model
uncertainties by using perfect model analysis [Dirmeyer et al., 2013; Holland et al., 2013; Kumar et al.,
2014b; Tietsche et al., 2014].

The other source of uncertainty is using potential evaporation (PET) instead of net radiation in equation (1)
that shifts the validity of the WWDD theory toward the drier branch (DD) rather than the wetter branch
(WW), although it does not affect overall uncertainties over land (supporting information Figures S8 and
S9) [see also Greve and Seneviratne, 2015]. Over land, the potential evaporation computed using Food and
Agricultural Organization’s Penman-Monteith method increases at a much faster rate (5–6%/°C of warming)
than precipitation changes (2%/°C) [Fu and Feng, 2014; Roderick et al., 2015; Scheff and Frierson, 2014].
Hence, the PET-based calculation favors drying. Since changes in net radiation are comparable to

Figure 4. Themultimodel meanwetness and dryness trends in historical, RCP4.5, and RCP8.5 climate simulations relative to
preindustrial climate for (a and b) wet land regions defined as DI ≤ 1.0 (nominally) and for (c and d) dry land regions defined
as DI> 1.0 (nominally). Unit: percent areas in each category showing significant trends. Shaded bands represent 95%
confidence interval estimates of the mean.
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precipitation and evaporation changes [Roderick et al., 2015], the net radiation-based DI changes and P� E
changes are consistent (Figures 4 and 5). It is also worth noting uncertainties in PET estimate due to different
methodologies, e.g., temperature-based Thornthwaite and physically based Penman-Monteith methods
[Sheffield et al., 2012].

Overall, we have provided several important clarifications. First, internal variability alone can obscure under-
lying agreement with the WWDD theory (Figure 1). Second, most of the uncertainties come from dry land
regions (Figure 4), which are not constrained to become drier by enhanced moisture divergence since
evaporation cannot exceed precipitation over multiannual time scales. Third, we provided evidence that
supports the WWDD theory in wet land regions at annual time scales. On seasonal time scales, where
evaporation can exceed precipitation, trends in wet season becoming wetter and dry season becoming drier
are also found (Figure 5). Based on these four points, we conclude that the WWDD theory remains a useful
framework for the interpretation of hydroclimatic change where seasonality is considered and provided that
internal variability and water limitations to evaporation in dry land areas are taken into account.

Figure 5. The multimodel mean wetness and dryness trends in (a–d) local wet seasons and (e–h) local dry seasons. Time
series obtained using historical and RCP8.5 climate simulations are shown in Figures 5a, 5c, 5e, and 5g and using histori-
cal and RCP 4.5 climate simulations are shown in Figures 5b, 5d, 5f, and 5h. Unit: percent areas in each category showing
significant trends. Shaded bands represent 95% confidence interval estimates of the mean.
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Taking both wet and dry land together onmultiannual time scales, we also acknowledge the alternative view-
point that does not support the WWDD theory over land as documented in previous studies [Greve and
Seneviratne, 2015; Greve et al., 2014; Roderick et al., 2014].
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