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ABSTRACT

This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-

stationary convective bands over the United Kingdom. For each case, a 2.2-km-grid-length, 12-member en-

semble and a 1.5-km-grid-length deterministic forecast are analyzed, each with two different initialization

times. Object-based verification is applied to determine whether the simulations capture the structure, lo-

cation, timing, intensity, and duration of the observed precipitation. These verification diagnostics reveal that

the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations

captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of

them satisfactorily. In general, themodels predicted banded precipitation accumulations at approximately the

correct time and location, but the precipitating structures were more cellular and less persistent than the

coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initiali-

zation times were not significantly different, which suggests a potential benefit of time-lagging subsequent

ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the

simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more

accurate forecasts from the parent ensemble should improve the performance of the convection-permitting

ensemble nested within it.

1. Introduction

Quasi-stationary convective bands regularly de-

velop over and/or downwind of complex topography,

where stationary updrafts are generated by prominent

orographic features and/or land surface variations. Ob-

servational evidence suggests that these bands may

produce heavy localized precipitation and, in some

cases, flash flooding. Two recent examples of catastrophic

flooding from such bands in the United Kingdom in-

clude the Boscastle flood of August 2004 (Golding 2005)

and theOttery St.Mary hailstorm inOctober 2008 (Clark

2011). Other heavy precipitation events associated with

terrain-locked bands have been reported over Japan

(Yoshizaki et al. 2000), southern France (Miniscloux et al.

2001; Cosma et al. 2002), and the U.S. Pacific Northwest

(Kirshbaum and Durran 2005). The physical mechanisms

anchoring the bands include, among others, gravity waves
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and/or lee-side convergence past local terrain ridges (e.g.,

Mass 1981; Cosma et al. 2002; Kirshbaum et al. 2007a;

Barrett et al. 2015) and quasi-stationary sea-breeze fronts

(e.g., Warren et al. 2014). In such events, the complexity

of the underlying terrain may exacerbate the flash-

flooding risks by channeling precipitation through

steep-sided valleys into narrow water catchments.

Because of their potential for heavy precipitation,

quasi-stationary convective bands represent an impor-

tant forecasting problem. Until recently, however, the

narrowness of these bands [;2–10km, according to

Kirshbaum et al. (2007b)] rendered them unresolvable

in regional forecastmodels with grid spacings ofO(10)km.

Only in the past 10 years have O(1)-km convection-

permitting grids emerged that offer the hope of explic-

itly capturing the bands (e.g., Lean et al. 2008; Stensrud

et al. 2009). However, given the narrowness of the bands,

they remain poorly resolved even on O(1)-km grids.

Since their origin, convection-permitting models have

been mainly used ‘‘deterministically’’ to provide single

forecast realizations. Although such forecasts provide

valuable finescale detail and eliminate the need for a

deep-convection parameterization scheme, they do not

account for initial-condition uncertainties and model

errors that cause forecasts to diverge from reality. Thus,

attention is increasingly being focused on convection-

permitting ensembles, which incur a much larger cost

but attractively provide explicit and probabilistic storm

prediction simultaneously. Various experiments with

such ensembles have highlighted their advantages over

deterministic or coarser-resolution ensemble forecasts

for predicting convective precipitation (e.g., Kong et al.

2006, 2007; Clark et al. 2009, 2010, 2012). For example, in

case studies of two convection events over central Eu-

rope, Hanley et al. (2011, 2013) found that some ensem-

ble members provided far more accurate predictions of

the event than did the ‘‘control’’ members, which would

have served as the sole realizations of deterministic

forecasts. Similarly, simulations of nonorographically

forced snowbands have highlighted that changing the

initial conditions, and hence the large-scale environment,

can alter the organization of the simulated precipitation

(Suarez et al. 2012).

Although convection-permitting ensemble forecasts

represent an exciting new forecasting technology, com-

putational constraints still limit their potential usefulness.

One of the greatest benefits of these ensembles is their

capability to provide guidance on potentially high-impact

precipitation events that may not be captured in de-

terministic forecasts. However, the large ensemble sizes

that are required to capture low-predictability events,

particularly those characterized by small spatial scales

(Richardson 2001; Clark et al. 2011), are often unfeasible

operationally. As an alternative, one may artificially in-

crease the ensemble size by including the members of

an ensemble initialized a few hours earlier. However, if

the statistics of the two ensembles are significantly dif-

ferent, their merger cannot be expected to accurately

represent the distribution of possible outcomes.

Another constraint on the skill of a convection-

permitting forecast is the skill of the parent forecast

in which it is embedded. Although the skill of the parent

forecasts is known to influence that of their nested en-

sembles (e.g., Roebber et al. 2008; Hanley et al. 2011;

Novak and Colle 2012; Hanley et al. 2013), this re-

lationship is not always straightforward. In a case study

of a terrain-locked convective band downwind of the

U.K. LakeDistrict, Barrett et al. (2015) found convection-

permitting forecasts of the band to bemore skillful when

the impinging flow upstream of the Lake District was

represented more accurately. However, the skill was not

well correlated with the winds over larger regions such

as the whole United Kingdom or the whole model do-

main. In a study of Mediterranean high-precipitation

events, Vié et al. (2011) found that model initial condi-

tions had a strong impact in the first 12 h of their simu-

lations, but the magnitude of the impact was strongly

dependent on the synoptic situation.

Although convection-permitting ensembles have been

verified in case studies and over broad samplings of

convection events (e.g., Elmore et al. 2003; Vié et al.

2011), they have not been rigorously verified with respect

to specific weather phenomena. This motivates the cur-

rent study, which assesses the skill of these ensembles

at representing one mode of potentially high-impact

weather: terrain-locked convective bands. In particular,

we study four recent such events in the United Kingdom

to determine whether convection-permitting ensemble

simulations succeed in accurately representing the bands.

Specifically, we address the following questions:

1) Do convection-permitting ensembles capture the

structure, location, timing, intensity, and duration of

quasi-stationary convective bands?

2) What evaluation methods provide useful insights

into forecast skill for these events?

3) Is there a strong correlation between the skill of the

parent ensemble members and the convection-

permitting ensemble members nested within them?

4) Can the ensemble size for these events be increased

by using time-lagged ensembles?

To address these questions, 12-member convection-

permitting (2.2-km grid spacing) ensemble simula-

tions are analyzed for each event, using two different

initialization times. For the sake of comparison, higher-

resolution deterministic simulations (1.5-km grid spacing)
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from the same two initialization times are also analyzed.

The convection events, numerical model, and data sour-

ces are summarized in section 2. Section 3 outlines the

object-based verification diagnostics used to evaluate

the model simulations. Section 4 interprets the diag-

nostics in the context of one of the four cases; the re-

maining three cases are summarized in section 5.

Section 6 addresses the utility of time-lagged ensembles

and the relationship between skill in the convection-

permitting ensemble and the larger-scale driving ensem-

ble. Section 7 concludes the paper.

2. Overview of cases and data sources

a. Case descriptions

The four cases under investigation all occurred during

the second half of 2012 and represent the most prom-

inent quasi-stationary, terrain-locked convection events

for which archived model data were available (July

2011–December 2012). The bands in all cases are as-

sumed to be convective (either isolated or embedded)

because of their strong similarities (in both structure and

evolution) to previously observed terrain-locked con-

vective bands (e.g., Miniscloux et al. 2001; Kirshbaum

and Durran 2005). Although the horizontal scales of the

bands were similar in all cases (5–10km in width;

40–80km in length), their location, intensity, duration,

and stationarity varied from case to case. Although none

of these events was particularly severe, they still repre-

sent useful cases for testing the model representation

of terrain-locked convective bands.

Case 1, on 26 August 2012, featured a band anchored

at its upstream end near the west coast of central

England (Fig. 1b). This so-called ‘‘Cheshire Gap’’

event (Browning et al. 1985) consists of flow chan-

neled over the Cheshire plain between two areas

of elevated terrain—the Welsh mountains to the

southwest and the Pennines to the northeast. In

northwesterly flow, as is the case here (Fig. 1a), a

convective band may initiate near the coastline and

extend inland. The band persisted for 7 h, over

which time the maximum radar-derived precipita-

tion accumulation was 52mm.

Case 2 occurred just two days after case 1, but over

the Welsh mountains in southwesterly flow after a

cold-frontal passage (Fig. 1c). Several flow-parallel

bands of modest intensity formed over the wind-

ward slopes of theWelshmountains (Fig. 1d), which

strongly resemble those observed over the Oregon

Coast Range in Kirshbaum and Durran (2005).

Although the individual bands persisted for only

1–2 h, banded convection prevailed in the area for

4 h. The rain rates from these bands were typically

only 2–6mmh21, but their stationarity led to total

accumulations of 12mm.

Case 3, on 9 September 2012, involved a single flow-

parallel band to the south of the Lake District in

southwesterly flow ahead of an approaching Atlan-

tic low-pressure system (Figs. 1e,f). This band was

present for 3 h and was accompanied by lighter,

nonstationary rain in the surrounding areas. The

maximum precipitation accumulation associated

with this band was 14mm.

Case 4, on 29 December 2012, consisted of a quasi-

stationary flow-parallel band over the Great Glen,

a narrow valley that spans the width of Scotland

(Fig. 1h). Other less intense bands were also aligned

with, but located to the southeast of, the main band.

The main band was present for 6 h, with a peak

accumulation of 20mm. The bands developed

after a cold-frontal passage (Fig. 1g) and were ul-

timately disrupted by the approach of the occluded

front from the northwest.

For each event, we define a band-centered verification

box to focus our evaluation of the simulated pre-

cipitation. The verification box size (60km wide and

220 km long) is the same for each case, centered on and

aligned with the main band(s) (Fig. 2). The box size was

chosen to be large enough to capture the observed

banded precipitation for all of the events and to tolerate

some misplacement of the precipitation by the model,

but small enough to focus primarily on the bands of in-

terest. Naturally, there is a trade-off between these

two factors and the quantitative verification will be

sensitive to the size of verification box chosen. None-

theless, the chosen size yields quantitative results that

are consistent with our qualitative characterization of

the model performance. The period of model evalua-

tion, which differs from case to case, spans from 2h

before the observed band(s) formed until 2 h after it

dissipated.

b. Rainfall observations and forecast verification

The total precipitation accumulation was derived

from the Met Office radar network rain-rate product,

which is updated every 5min on a fixed 1-km grid cov-

ering the United Kingdom. Rain rate is derived using

radar reflectivity measured from the nearest radar

using a calibration based on nearby rain gauges

(Harrison et al. 2009, 2012). Processing removes ground

clutter and other spurious returns and also corrects for

seeder–feeder orographic enhancement beneath the

radar beam (Harrison et al. 2009, 2012). This product

offers the best estimate of precipitation distribution
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FIG. 1. Met Office synoptic analysis charts (Crown copyright, Met Office) from (a),(c),(e),(g) the nearest time to

band formation and (b),(d),(f),(h) instantaneous radar-derived rain rate (mmh21) showing band structure. Each

row is for a different case. The red boxes in the left panels mark the approximate area of the zoomed area in the

right panels.
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across the United Kingdom and matches gauge accu-

mulations well when averaged over several years

(Fairman et al. 2015). For model evaluation, the radar

data are mapped onto the model grid (1.5- or 2.2-km

grid spacing) using a nearest-neighbor interpolation.

c. Model description and setup

All model simulations herein are operational simula-

tions of the Met Office Unified Model (MetUM), which

the Met Office runs on domains ranging from the entire

globe to limited-area domains just encompassing the

United Kingdom (Brown et al. 2012). The MetUM

solves the nonhydrostatic, fully compressible deep-

atmosphere equations of motion using semi-implicit,

semi-Lagrangian time integration (Davies et al. 2005).

Physical parameterizations include two-stream radia-

tion (Edwards and Slingo 1996), subgrid cloud (Smith

1990), and mixed-phase microphysics (Wilson and

Ballard 1999; including prognostic rain at convection-

permitting resolutions). The Lock et al. (2000) boundary

layer scheme is used for vertical mixing with a two-

dimensional Smagorinsky (1963) mixing scheme in the

horizontal. The Gregory and Rowntree (1990) con-

vection scheme is used in the global and regional en-

semble simulations, but not for convection-permitting

simulations.

We use operational MetUM output from the Met Of-

fice Global and Regional Ensemble Prediction System

(MOGREPS; Bowler et al. 2008), which, at the time of

our cases, produced 12 ensemble members (a control

and 11 perturbed members). A convection-permitting

(2.2-km grid length) ensemble (MOGREPS-UK) is nes-

ted within the regional ensemble (MOGREPS-R; 18-km

grid length); the domains of these simulations are shown

in Fig. 3. The regional ensemble members are themselves

nested within the global ensemble (MOGREPS-G; 60-km

grid length). Each MOGREPS-UK simulation has 70

stretched vertical levels. The model lid is at 80 km for

the MOGREPS-G and MOGREPS-R simulations but

at 40 km for the MOGREPS-UK simulations.

MOGREPS-G simulations are initialized every 6 h,

with the MOGREPS-R simulations initialized 6 h later

and the MOGREPS-UK simulations initialized 3 h after

that (Mylne 2013). Initial conditions for the control

members of MOGREPS-G and MOGREPS-R are

provided by four-dimensional variational data assimi-

lation (4D-VAR). Perturbed members in MOGREPS-

G are created by an ensemble transform Kalman filter

[see Bowler et al. (2009) and Bowler and Mylne (2009)

for details]. In MOGREPS-R, perturbations to the

analysis are calculated as the difference between the

perturbed and control members in MOGREPS-G at

T 1 7. These perturbations are applied to MOGREPS-R

over a 2-h period equivalent to T 1 6 to T 1 8; hence,

differences are calculated atT1 7.The initial conditions for

MOGREPS-UK are downscaled (interpolated to a higher-

resolution grid) from the corresponding MOGREPS-R

ensemble member; no additional data assimilation is in-

cluded. The MOGREPS-UK ensemble members take

around 4–6h to spin up features on the grid scale. By

contrast, the deterministic UK variable resolution (UKV)

model with 1.5-km grid length over the United Kingdom

is initialized using 3D-VAR data assimilation (Tang et al.

2013), which includes nudging using radar rain rates. In

these simulations, the sea surface temperatures are pre-

scribed fromadaily climatology and the soilmoisture is an

analyzed field.

For each case, we analyze convection-permitting fore-

casts (both deterministic and ensemble) that were initial-

ized at two different times: approximately 12h (t2 12) and

18h (t2 18) before the band formed. The grid spacing of

the convection-permitting forecasts (1.5 and 2.2 km) is

likely insufficient to adequately represent bands that are

often 5–10km across. Nevertheless, our aim is to deter-

mine whether the current suite of convection-allowing

operational models can predict these types of systems.

3. Verification diagnostics

Traditional measures of skill for model quantita-

tive precipitation forecasts are not satisfactory for

FIG. 2. Location of the analysis regions for the four cases. The

terrain height (m) from the 2.2-km-grid-length model is shown by

the shading, with the coastline marked in black.
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convection-permitting models. Measures such as the

root-mean-square (RMS) difference between predicted

and observed fields become problematic at high reso-

lution because the model is heavily penalized for mis-

placing the precipitation (Baldwin et al. 2001; Mass et al.

2002; Roebber et al. 2004). In fact, a small offset in the

location of a convective cell could result in penalties

being applied both where rain was observed but none

was predicted and where rain was predicted but not

observed (the so-called ‘‘double penalty’’ problem).

These failings of traditional verification measures

have led to the creation of other verification methods

for high-resolution forecasts (Ebert 2008). These can be

broadly classified into four categories: neighborhood,

scale separation, object based, and field deformation

(Gilleland et al. 2009). The neighborhood-based ap-

proach compares data from a neighborhood of points

rather than single grid points. It can involve an average

of the precipitation totals over the neighborhood or

the fraction of points within the neighborhood that ex-

ceed some threshold (Roberts and Lean 2008). Scale-

separation approaches determine the properties of the

precipitation based on their horizontal scale. The fore-

cast is evaluated by applying a filter to the data [e.g.,

wavelets (Briggs and Levine 1997) or Fourier transforms

(Harris et al. 2001)], which is used to quantify the scale-

dependence of errors and the scale at which skill is lost.

The field-deformation technique determines some op-

timal deformation to be applied to the forecast field to

make it as similar as possible to the observed field. The

field-deformation vectors representing the optimal de-

formation serve to quantify the differences between the

fields (Hoffman et al. 1995; Alexander et al. 1999; Keil

and Craig 2009). The object-based approach typically

uses some threshold to identify individual objects in the

instantaneous or accumulated precipitation fields and

compares the statistics of the predicted and observed

objects. One example of this approach is the structure–

amplitude–location (SAL) technique (Wernli et al.

2008), where the structure, amplitude, and location of

the objects in the forecast field are compared to those in

the observed field.

Given that banded convection is associated with a

particular elongated shape, the most obviously applica-

ble verification method is object based. Previously, we

used the SAL technique to evaluate the forecast skill for

one convection-permitting ensemble (Barrett et al.

2015). However, this technique does not provide direct

information on the timing or persistence of the con-

vection, which are important characteristics of quasi-

stationary bands. No existing verification method is able

to simultaneously evaluate the object’s structure, in-

tensity, location, timing, and duration, though existing

methods have been adapted to incorporate the timing

aspect (Clark et al. 2014). Barrett et al. (2015) evaluated

the stationarity of the bands subjectively by inspecting

animations of the precipitation field, but such a manual

approach is impractical for multiple ensembles. Hence,

we have developed an extension of SAL that in-

corporates both timing and duration components, which

is described below.

a. SAL verification

SAL quantifies differences in the structure (size and

intensity), amplitude (total precipitation amount),

and location of precipitation objects between forecast

FIG. 3. Model domains for MOGREPS-R simulations (whole figure) and the UKV and

MOGREPS-UK domain (inner rectangle). The shading shows the model terrain height for the

respective models and the contours show the model coastlines.
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and observed precipitation fields. These three compo-

nents are described in detail below.

1) STRUCTURE COMPONENT

The structure component quantifies differences in

the size and intensity of precipitation objects. Objects

are identified in the precipitation field using a threshold.

Wernli et al. (2008) suggest a threshold of 1/15 of the

maximum precipitation rate in the verification box,

but we use a threshold of 0.25mmh21 for all cases for

consistency. A scaled volume V is then calculated as

V5
�
N

n51

R2
n/R

max
n

�
N

n51

R
n

, (1)

whereRn is the area-integrated precipitation of the object

n and Rmax
n is the peak precipitation value of any pixel

within object n. The S component is then calculated as

S5
V

model
2V

obs

0:5(V
model

1V
obs

)
, (2)

which falls between 22 and 2. Positive scores indicate

that the model-simulated precipitation objects are either

too large or have too low peak intensity.

2) AMPLITUDE COMPONENT

The amplitude component, which evaluates the

verification-region-averaged precipitation, is calcu-

lated using

A5
P
model

2P
obs

0:5(P
model

1P
obs

)
, (3)

where P is the verification-region-integrated pre-

cipitation. Positive scores indicate that the simulated

precipitation is greater than observed. The range ofA is

also 22 to 2.

3) LOCATION COMPONENT

The location component L quantifies the physical

distance between the centers of mass of the observed

and model precipitation fields. Location L is composed

of two components (L5L1 1L2): L1 quantifies the

distance between the verification-region centers of mass

and L2 quantifies the spread of objects around the

verification-region center of mass. Component L1 is

calculated as

L
1
5

jx
model

2 x
obs

j
d

, (4)

where x is the center of mass of the precipitation field

and d is the greatest distance between any two points in

the verification box. For L2, the distribution of pre-

cipitation objects around the center of mass is calcu-

lated as a weighted average distance between the

centers of mass of the individual objects and the veri-

fication box center of mass, given by

r5
�
N

n51

R
n
jx

domain
2 x

n
j

�
N

n51

R
n

, (5)

where xdomain and xn are the centers of mass over the

verification box and over object n, respectively. Com-

ponent L2 is then calculated as

L
2
5 2

�jr
model

2 r
obs

j
d

�
. (6)

Each component has a possible range of 0–1, giving anL

range of 0–2. However, a score of 2 can never be

achieved in practice because L1 and L2 are not in-

dependent and cannot both be large simultaneously. In

general, larger L scores indicate that the simulated and

observed precipitation centers of mass are farther apart

or that the spread of the precipitation field around

the verification-region center of mass is increasingly

erroneous.

b. Extended SAL verification

Although SAL is typically applied to cumulative or

instantaneous precipitation fields, it can be extended to

evaluate the time evolution of the simulated pre-

cipitation in a similar framework. We do so herein by

creating a Hovmöller plot (Hovmöller 1949) of pre-

cipitation within the verification box surrounding the

observed band. The precipitation rate within the box

is averaged in the cross-band direction and evaluated

as a function of along-band distance and time. The grid

interval of the Hovmöller plot is 1 km in along-band

distance and 5min in time. We apply a similar method

to that followed in the calculation of the SAL L com-

ponent to the Hovmöller to provide insight on both the

position and timing of the precipitation. A third com-

ponent is added to assess the precipitation duration.

1) STRUCTURE COMPONENT

The structure component ismathematically identical to

that in the standard SAL, but applied to the Hovmöller
plot. As before, a threshold of 0.25mmh21 is used for

object detection.
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2) AMPLITUDE COMPONENT

The amplitude component gives identical scores as in

SAL if the same space and time verification boxes are

considered and so is redundant if the standard SAL di-

agnostics are also calculated.

3) POSITION AND TIMING COMPONENTS

The position P and timing T components together

describe the placement of the precipitation on the

Hovmöller plot. The position component differs from

SAL L component in three ways: 1) it is only applied to

the along-wind-distance dimension of the Hovmöller
plot, 2) it can have either a positive or negative value

depending on whether the model center of mass is up-

wind or downwind of the observed center ofmass, and 3)

only the center of mass in the model and observed

precipitation fields are compared. The timing compo-

nent is identical to the position component except that

it is applied to the time dimension of theHovmöller plot.
These components are given by

P5 2
�x

model
2 x

obs

d

�
, and (7)

T5 2
�y

model
2 y

obs

t

�
, (8)

where (x, y) is the position of the center of mass along

the (distance, time) axes, d is the length of the distance

axis, and t is the timespan of the time axis. Values for

P and T cannot be calculated if the model fails to pro-

duce any precipitation above the threshold rate.

The P and T components are equivalent to the L1

component of SAL but with the modulus function re-

moved, so as to provide information about whether the

precipitation center of mass was upstream or down-

stream of the observed position and early or late. Posi-

tive P scores indicate that the forecast precipitation is

farther downstream than observed and negative scores

indicate that it is farther upstream. Similarly, the timing

component evaluates whether the precipitation formed

earlier (T, 0) or later (T. 0) than observed. No

equivalent to L2 has been included, so the normalized

differences are scaled by a factor of 2 in the calculation

of the P and T scores to achieve a range (from 22 to 2)

that is consistent with other components.

4) DURATION COMPONENT

The duration component quantifies the persistence of

precipitation in the Hovmöller plot. Although it has

no equivalent SAL component, it is calculated similarly

to A. Precipitation persistence is quantified at each

point along the distance dimension of the Hovmöller
plot as the number of pixels that exceed the threshold

precipitation rate. The maximum number of pixels over

all the locations M is taken to represent the persistence

over the verification box. The values are calculated

separately for model and observations and then com-

pared to give the duration component D:

D5
M

model
2M

obs

0:5(M
model

1M
obs

)
. (9)

c. Interpretation of SAPTD scores

Scores of each of the structure, amplitude, position,

timing, and duration (SAPTD) components fall into

the 22 to 2 range, which is identical to that of the

structure and amplitude components of SAL but not

the location component (0–2). In all cases, zero

constitutes a perfect forecast of that component. For

ease of reference, the physical significance of each of

the components of SAL and SAPTD is summarized in

Table 1.

4. Illustrative example: Case 1, 26 August 2012

Todemonstrate the utility of themetrics defined above,

we present them for case 1, which had the longest-lasting

precipitation band and the largest localized precipitation

accumulation of the four cases (Fig. 4a). The de-

terministic forecast initialized at 0900 UTC the previous

day (t2 18 forecast, Fig. 4b) predicts a precipitation band

that matches radar observations reasonably well in its

location and alignment. However, the simulated band

produced too little precipitation in its central region

(from 228 to 238E) and too much precipitation both

upwind and downwind of that region.

Some of the t2 18 MOGREPS-UK ensemble mem-

bers also show banded precipitation accumulations that

are reasonably consistent with the observations in some

aspects (Fig. 5). These include the unperturbed ‘‘con-

trol’’ member (member 0) and members 5 and 9. How-

ever, either the location or orientation is not predicted

correctly in these members. Other ensemble members

display a variety of behaviors but generally fail to ac-

curately reproduce the observed pattern.

The radar Hovmöller plot (Fig. 4d) shows that light
precipitation fell almost continually between 75 and

125 km along the verification box, sometimes extending

out to 160km. Although the band was quasi-stationary

and coherent, the Hovmöller plot reveals that the band

contains embedded cells that travel downstream along

its axis [consistent with the bands over southern France

observed byMiniscloux et al. (2001)], as reflected by the

embedded diagonal stripes. However, a clear anchoring

point exists at;75km where precipitation is repeatedly

initiated throughout the event.
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In comparison, the Hovmöllers of both the determin-

istic simulation (Fig. 4e) and the individual ensemble

members (Fig. 6) reveal that the banded accumulations

are not the result of a quasi-stationary band (as was ob-

served) but rather isolated cells traversing the axis of the

band. In the deterministic simulation, the large accumu-

lation over the upwind sea results from persistent pre-

cipitation between 2200 and 0200 UTC, which reflects an

upstream shift in the anchoring point. Although too in-

tense, the precipitation over the downwind side of the

verification box exhibits a similar timing as the observa-

tions (2200–0000 UTC).

The banded accumulation in the unperturbed member

(member 0) also largely results from a mobile cell rather

than a quasi-stationary band. However, quasi-stationary

precipitation was apparent toward the end of the period

(0700–0900 UTC) at a distance of;75km. The ensemble

members predict precipitationmuch earlier in the period,

on average, than was observed. The members generally

fail to produce across-band-averaged rain rates above

0.25mmh21 during the period when the observed band

was the most persistent (0000–0700 UTC).

Although one might expect the ensemble mean to

provide useful information in quasi-stationary precipita-

tion events (due to the fixed location of the precipitation),

here it offers limited predictive value. The ensemble-

mean precipitation accumulation (Fig. 4c) substantially

differs from that observed (Fig. 4a) and that in the de-

terministic forecast (Fig. 4b). The ensemblemean shows a

broad area of light precipitation due to the averaging of

small features with disparate locations and timings. For

the same reasons, the ensemble mean Hovmöller plot

(Fig. 4f) differs from the radar and deterministic Hovmöllers

(Figs. 4d,e) in its relative rarity of mean precipitation

rates over 0.25mmh21.

Interpretation of SAL and SAPTD scores

The standard SAL diagnostic scores (Fig. 7a) reveal

that the individual t2 18 ensemble members sub-

stantially underpredict the total precipitation accumu-

lation over the verification box. The median amplitude

score is 20:93 and no individual ensemble member

predicts as much precipitation as was observed (A, 0

for all members). The S score is generally positive, in-

dicating that the precipitation is spread over too large

an area or lacks the peak local accumulations. In the

three ensemble members for which S, 0, the total

precipitation amount is grossly underpredicted. The L

scores range from 0 to 0.5, suggesting that the location

of the precipitation is reasonably well predicted across

the ensemble. The smallest L scores correspond to

ensemble members with larger A and larger S scores,

reflecting broader precipitation objects that are ap-

proximately centered in the verification box.

The SAPTD diagnostics complement the SAL di-

agnostics by evaluating the time evolution of the simulated

precipitation.Threeof the four uniqueSAPTDcomponents

(S, T, and D) are shown in Fig. 7b, with the remaining

component presented in the verification overview of Fig. 8a.

The SAPTD D is strongly negative for the ensemble but

slightly less negative for the deterministic simulation, which

reflects the lack of persistent simulated precipitation in the

Hovmöller plots (Fig. 4). Similarly, the SAPTD S scores are

generally negative, consistent with D in that the objects

in the Hovmöller plot are generally small and transient

with larger precipitation rates than those observed. This

TABLE 1. Interpretation of the different components of SAL and SAPTD.

Parameter Negative scores Positive scores

SAL:

Structure

Precipitation covers too narrow an area, or

peak accumulation value too high

Precipitation covers too broad an area, or peak

accumulation value too low

SAL:

Amplitude

Too little precipitation over verification box Too much precipitation over verification

SAL:

Location

Impossible Larger implies greater separation of model and

radar centers of mass or increasingly

wrong spread about the radar centers of mass

SAPTD:

Structure

Precipitation covers too little space in

distance–time plot, or largest precipitation

rate too high (small, intense cells)

Precipitation covers too much space in distance–

time plot, or largest precipitation rate too

low (broad, weaker precipitation)

SAPTD:

Amplitude

Same value as SAL: Amplitude Same value as SAL: Amplitude

SAPTD:

Position

Precipitation center of mass too far

upstream

Precipitation center of mass too far downstream

SAPTD:

Timing

Precipitation center of mass too early Precipitation center of mass too late

SAPTD:

Duration

Precipitation duration too short Precipitation duration too long
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bias suggests that the precipitation accumulation results

from a few intense, translating cells rather than stationary

bands. The ensemble P scores are clustered around zero

but slightly positive on average (Fig. 8a), revealing a trend

for the precipitation to be shifted downstream.

The diagnostic scores for the ensemble and determin-

istic simulations initialized 6h later (t2 12) are shown in

Figs. 7c and 7d. These simulations predict substantially

more precipitation in general, with the median A in-

creasing to20:35 and four ensemblemembers predicting

more precipitation than was observed over the verifi-

cation box. The SAL S scores are again positive with a

median of 0.94, indicating that the precipitation was

spread over too large an area or lacked the peak local

accumulations that were observed. The deterministic

simulation is no longer an outlier from the set of en-

semble members, but rather lies toward the middle of the

S andA distributions. TheL scores also decrease slightly,

indicating better location accuracy in the later ensemble.

The SAPTD scores highlight that the precipitation is

present for longer in the t2 12 ensemble than in the t2 18

ensemble (less negativeD scores) and that the objects are

broader and less intense (on the Hovmöller plot) than

before (increased S scores), with 11 of the 12 members

exhibiting S close to or above zero. The t2 12 de-

terministic simulation scores quite similarly to the t2 18

deterministic simulation for structure and duration, but

the precipitation has moved slightly upstream (more

negativeP score) and occurs later (more positiveT score).

Overall, the t2 12 ensemble predicts more pre-

cipitation (larger SAL A) over a broader area (larger

SAL S) than the t2 18 ensemble. This increased pre-

cipitation results from more persistent events (larger

SAPTDD) that are larger in scale in distance–time space

(larger SAPTD S) than the isolated cells moving through

the verification box in the t2 18 ensemble. An example

of these larger cells in the t2 18 ensemble is shown in

Figs. 9c and 9f. Comparing these cells and those of the

t2 12 ensemble (Figs. 9b,e) to the observed precipitation

band (Figs. 9a,d), the precipitation morphology differs

between the simulations and the observations.

5. Ensemble verification for all cases

The three remaining cases are now analyzed and

results from all four cases summarized. Precipitation

FIG. 4. (a)–(c) Accumulation (mm) and (d)–(f) Hovmöller plots (mmh21) for the 26 Aug 2012 case from radar measurements, UKV

deterministic forecast initialized at 0900 UTC the previous day, and the MOGREPS-UK ensemble mean forecast initialized at

0900 UTC the previous day. Time period for all plots is 2200 UTC 25 Aug–0900 UTC 26 Aug 2012.

1102 MONTHLY WEATHER REV IEW VOLUME 144



accumulation and Hovmöller plots are shown for each

case for both the radar and the best ensemble member

from the t2 18 ensemble (subjectively chosen based on

the precipitation structure in both accumulation and

Hovmöller plots). Diagnostic scores from SAL and

SAPTD are summarized for both t2 18 and t2 12

simulations of each case in Fig. 8.

a. 28 August 2012

The most accurate member in the t2 18 ensemble

(Fig. 10b) exhibits much heavier and more widespread

precipitation than that observed (Fig. 10a). These errors

may arise from insufficient grid resolution (causing the

individual cells to be too large) and insufficient con-

vective inhibition in the impinging flow. In contrast to

the observations where the convection initiated over

land (Fig. 10c), the simulated precipitation initiates over

the sea (perhaps because of insufficient convective in-

hibition there) before traversing the Welsh mountains

(Fig. 10d). As in case 1, the simulations generally favor

translating cells over the quasi-stationary bands that

were observed. For the two ensembles as a whole, the

SAL S and A scores are both spread around zero and in-

clude some extreme values, with extrema smaller in the

t2 12 ensemble than in the t2 18 ensemble (Figs. 8c,d).

The SAPTD D score is negative for every ensemble

member, again reflecting that the model produces isolated

and mobile convective cells rather than quasi-stationary

bands. The precipitation centroids appear to be well rep-

resented in both ensembles, with SAPTD P values clus-

tered around zero.

b. 9 September 2012

The radar-derived precipitation accumulation shows a

broad area of precipitation with a flow-parallel streak of

maximum accumulation through the middle of the ver-

ification box resulting from a persistent embedded

convective band (Fig. 11a). The precipitation is located

mostly over the higher terrain, concentrated mainly

between 60 and 120 km distance on the Hovmöller plot

FIG. 5. Model precipitation accumulations for the 26 Aug 2012 case for the 12 ensemble members initialized at 0900 UTC the previous

day. Precipitation from the 11-h period 2200 UTC 25 Aug–0900 UTC 26 Aug 2012 is shown, consistent with Figs. 4 and 6. The ensemble

member number is marked in the upper-right corner of each panel.
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(Fig. 11c). The Hovmöller plot from the selected t2 18

ensemble simulation resembles the observations in the

persistence of precipitation but overestimates its cov-

erage and intensity (Figs. 11b,d). The diagnostic scores

are tightly clustered for most of the SAL and SAPTD

components in the t2 18 ensemble and even tighter in

the t2 12 ensemble (Figs. 8e,f), suggesting a relatively

small ensemble spread.

Although the ensemblemembers agree well with each

other, they disagree with the observations in that their

precipitation was too heavy (SAL A. 0) and covered

too large an area (SAL S. 0). All of the ensemble

members fail to reproduce the banded precipitation

accumulations in the center of the verification box. This

error is, by design, not captured by the SAPTD method

because of its cross-flow averaging procedure. Although

a persistent vertical stripe exists on the model Hovmöller
plots, such a feature can correspond to either a broad

area of stratiform precipitation or a quasi-stationary

precipitation band. Because the model rainfall ac-

cumulations lack a banded structure, exhibit little

intermittency, and correlate strongly with underly-

ing terrain height (see Fig. 2), they are most likely

owing to stratiform (rather than convective) orographic

clouds. The absence of moist convection in the simu-

lations suggests a systematic stable bias in the imping-

ing flow.

Interestingly, the t2 12 deterministic simulation is an

outlier from the rest of the ensemble members in all of

its verification scores (Fig. 8f). Although such consis-

tently extreme behavior occurs only for this particular

case and lead time, the deterministic simulation does

have the most extreme score in 8 of the 49 other com-

parisons in Fig. 8.

c. 29 December 2012

This event gave rise to several bands of precipitation

accumulation due to the combination of quasi-stationary

bands over the Great Glen and embedded cells that

translated through the verification box (Figs. 12a,c). Al-

though the t2 18 ensemble members exhibit general

similarities with the observations, the band location

FIG. 6. Hovmöller plots of across-band averaged precipitation rate for the 26 Aug 2012 case for the 12 ensemble members initialized at

0900 UTC the previous day. The ensemble member number is marked in the upper-right corner of each panel.
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and stationarity varies greatly among them. The best

ensemble member develops cells that initiate farther

upstream, and translate downwind over a greater dis-

tance, than those in the observations (Figs. 12b,d). The

;30-km upstream shift in the band initiation, along with

the coarse model representation of the convective cells,

gives rise to an overly widespread precipitation accu-

mulation that lacks the sharp cross-flow variability seen

in the observations. As a result, the SAL scores for this

member exhibit positive S and A (Figs. 8g,h). Other

members of the t2 18 ensemble exhibited similar

structural and amplitude biases, as did most members of

the t2 12 ensemble (Fig. 8h).

Although the SAPTD S score is also large for all en-

semble members, theD score is nearly zero for many of

them. This combination suggests that the precipitation

objects are more elongated in the model simulations

than in observations, as found in the corresponding

Hovmöller plots (Figs. 12c,d). These longer precip-

itation streaks correspond to discrete cells that initiated

over the upstream sea and translated across the

verification box.

d. Summary

The above four cases provide rich variability in the

characteristic ensemble performance, along with some

recurring themes. Although most members of the

case-1 ensemble verify poorly against observations, the

ensemble exhibits a large spread in SAL/SAPTD

metrics. Apart from a notable underprediction in the

duration of the simulated precipitation objects (as

evidenced by a negative SAPTD D component), the

spread of the ensemble straddles the SAPTD zero line

in most metrics (Fig. 8), suggesting that the range of

realizations broadly encompasses the observations.

Similarly, the Case-2 simulations exhibit both large

FIG. 7. (a),(c) SAL and (b),(d) SAPTD verification for the 26 Aug 2012 case using the ensemble initialized at

(top) 0900 and (bottom) 1500 UTC the previous day. Each panel shows the individual ensemble members (circles),

the deterministic simulation (squares), and the verification of the ensemble mean (diamonds). The ensemble-

member median scores are marked by a dashed line, and the gray box denotes the interquartile range of

these scores.
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FIG. 8. Summary figure of SAL and SAPTD scores for each of the cases and both forecast lead times showing

(left) the longest (t2 18) lead time and (right) the shortest (t2 12) lead time. Each row shows a different case. The

first three rows of each plot show the components of SAL (structure, amplitude, and location), and the last four rows

show components from SAPTD (structure, position, timing, and duration). Each row shows the individual en-

semble members (gray crisscrosses), the unperturbed member (black crisscrosses), the mean precipitation from all

ensemble members (not the mean verification score of the ensemble; black circles), and the higher-resolution

forecast (black squares).
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error and large spread, with the spread again sufficient

to cross the SAPTD zero line in all diagnostics except

the D component. Case 3 exhibits a much smaller en-

semble spread in the SAL/SAPTD metrics, but the en-

semble is biased in the precipitation structure (too broad;

S. 0) and amplitude (too strong; A. 0) and fails to re-

produce the main convective band. Although the case-4

simulations reproduce the banded nature of the observed

precipitation accumulations, the precipitation is again too

broad and too strong.

With a small sample size of four cases, one cannot

draw general conclusions about the MetUM ensemble

skill. Nevertheless, we emphasize two fundamental

features that the ensembles consistently struggle to

represent: the persistence and the structure of the pre-

cipitation. The former is underestimated (SAPTD

D, 0) in three of the four cases (cases 1, 2, and 4). Al-

though the model produces realistic bandlike pre-

cipitation accumulations, these accumulations result from

discrete convective cells rather than the coherent, quasi-

stationary bands that were observed (e.g., Figs. 4d, 9).

Such errors may be owing to biases in the model repre-

sentation of convective cells, in particular an inability to

produce coherent convective bands when the environ-

mental conditions favor them. A similar finding was

obtained in 1.5-kmMetUM simulations of a sea-breeze-

forced convective band (Warren et al. 2014), which was

corrected by reducing the grid spacing to 500m to better

resolve boundary layer circulations anchoring the con-

vection. The one case that does not suffer from in-

sufficient persistence (case 3) produces largely stable

and stratiform precipitation, which diminishes the

impact of errors owing to the representation of

convection.

The structural bias common to all cases (SAPTD

S. 0) may be owing to a combination of limited model

grid resolution and errors in the upstream flow con-

ditions. The 1.5- and 2.2-km model grid spacings can

only reasonably resolve processes with characteristic

scales of about 10 km or larger. The convective bands

of interest have typical widths of ;5 km or less (see

Fig. 1) and are likely forced by terrain irregularities of

FIG. 9. Instantaneous rain rate fields at two times: (a)–(c) 0320 and (d)–(f) 0520UTCon 26Aug 2012, from the (a),(d) radar; (b),(e) a t2 18

ensemble member; and (c),(f) a t2 12 ensemble member.
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the same scale, which renders them very poorly re-

solved.Although the quantitative impacts of this issue are

minimized by SAPTD’s cross-band averaging, it still

compromises the representation of convective cells, the

dominant precipitating features in cases 1, 2, and 4. In

addition, errors in the upstream stability, moisture, and/

or winds likely caused precipitation to initiate too far

upstream and traverse a longer distance through the

verification box, yielding larger and broader precipitation

accumulations than those observed.

6. Enhanced-ensemble analysis

Because of the large computational cost associated

with convection-permitting ensembles, it is important to

maximize their value and to identify (and correct) the

origins of their errors. The present section addresses

these issues by considering, in turn, the third and fourth

questions posed in section 1.

a. Is time lagging subsequent ensembles beneficial?

Based on the four cases under investigation and the

seven verification diagnostics from SAL and SAPTD,

we have evaluated the statistical properties of the en-

sembles. Of the 28 sets of verification scores (seven di-

agnostics over four cases), the mean verification score of

the t2 12 ensemble is reduced in magnitude compared

to the t2 18 ensemble in exactly half of the sets (14 of

28). The average scores are closer to zero in the t2 12

ensemble by 0.5%, which is not statistically significant at

the 95% confidence level.

Similarly, the ensemble spread was reduced in the

t2 12 ensemble in just over half (15 of 28) of the com-

parisons. Themean spread was 8% smaller for the t2 12

FIG. 10. The 8-h (a),(b) precipitation accumulation (mm) and (c),(d) Hovmöller plot (mmh21) from (left) radar and

(right) best ensemble member for the 28 Aug 2012 case using the ensemble initialized at 0900 UTC the previous day.
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ensemble, but again this is not statistically significant.

Comparing the ensemble verification scores of sub-

sequent ensemble runs, the mean scores are not statis-

tically different for 24 of the 28 comparisons. The four

cases where they do differ are for the SAL L and

SAPTD D components for case 3 and the SAL S and A

components for case 1.

A different perspective on the ensemble skill is pro-

vided by comparing relative operating characteristic

(ROC) areas of the combined ensemble with the in-

dividual ensembles. The ROC verification is based

on a 2 3 2 contingency table built from all forecast–

observation pairs (here, the precipitation accumula-

tion at every grid point within the verification box;

e.g., Vié et al. 2011). With the false alarm rate (FAR)

on the abscissa and probability of detection (POD) on

the ordinate, the area under the ROC curve quantifies

the skill of the ensemble in discriminating between

events and nonevents. Table 2 presents comparisons

of the area under the ROC curve for the four events, at

different precipitation thresholds. In all cases and for

almost all thresholds, the combined ensemble per-

forms better than the worse ensemble (among t2 12

and t2 18) and often better than either ensemble

alone.

Given that the SAPTD skill scores from successive

ensembles are not significantly different herein, and

that the ROC areas do not decrease by merging the two

ensembles into one, it would be viable to combine the

two ensembles to create an effective 24-member en-

semble for these cases. Although we cannot generalize

this result from our small sampling, these findings are

FIG. 11. The 6.5-h (a),(b) precipitation accumulation (mm) and (c),(d)Hovmöller plot (mmh21) from (left) radar

and (right) best ensemble member for the 9 Sep 2012 case using the ensemble initialized at 0900 UTC the

previous day.
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consistent with Bouallègue et al. (2013), who time-lagged

the German-focused Consortium for Small-Scale Mod-

eling ensemble prediction system (COSMO-DE-EPS)

ensemble simulations to improve the probability of pre-

cipitation forecasts by using a larger ensemble. They

found that merging the most recent simulations with

those from 3 and 6 h earlier, and equally weighting all

ensemble members from all initialization times, provided

a near-optimal solution. They also noted that time lagging

could improve probabilistic precipitation forecasts with-

out negatively impacting the temperature and wind fore-

casts through neighborhood averaging.

Combining subsequent ensemble sets into one larger

ensemble may, for example, help to diminish spurious

correlations in a convective-scale ensemble Kalman fil-

ter data assimilation system by increasing the statistical

sampling. Similarly, one could merge the time-lagged

ensembles for an ensemble sensitivity analysis to better

isolate the initial and/or larger-scale factors that control

the simulated band properties. If the skill of the en-

sembles are similar, then combining them does not

necessarily produce a better forecast, but provides a

larger sample from which to draw more robust statis-

tics, as in the Bouallègue et al. (2013) study.

b. What is the relationship between forecast accuracy
at convective and larger scales?

To examine the relationship between errors at dif-

ferent scales, we relate the errors’ larger-scale flow to

those in our nested ensembles by evaluating the mean

errors in the simulated large-scale environment up-

stream of the observed bands. The larger-scale errors

FIG. 12. The 10-h (a),(b) precipitation accumulation (mm) and (c),(d) Hovmöller plot (mmh21) from (left) radar

and (right) best ensemble member for the 29 Dec 2012 case using the ensemble initialized at 0900 UTC the

previous day.
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are found by comparing the MOGREPS-R simulations

with operational MetUM model analyses of pressure,

temperature, and humidity at the surface (model level 1)

and 5km above the surface (near 500-hPa level; model

level 27), along with eastward and northward wind

components at 730m above the surface (model level 10).

These properties were evaluated over an area of

234km 3 198 km, located just upstream of the bands in

all four cases. We then compute correlations between

these errors and each of the components of SAL and

SAPTD. The correlations were calculated separately

for each case, giving 448 correlation coefficients in total.

Although intuition suggests that errors in the up-

stream flow are likely to physically correlate with errors

in the orographic precipitation, some correlations may oc-

cur because of random chance. As we cannot easily de-

termine which correlations are physically meaningful and

which are statistically spurious, we assess whether the dis-

tribution of correlation coefficients differs from that pro-

duced if there was no physical relationship between the

variables. To this end, we calculate correlation coefficients

for 448 large-scale and convection-permitting pairs of

12-member ensembles containing randomly distributed

values, and we repeat this process 1000 times.

The 1000 random samples of correlation coefficients

clearly produce fewer strong correlations than those

calculated from the model data (Fig. 13). For all corre-

lation coefficients up to 0.85, the number of correlations

from the model data exceeds that from the random

surrogate data. For instance, there are 85 samples with

correlation coefficients exceeding 0.5 compared to

426 6 (one standard deviation) for the surrogate data.

Therefore, the model data exceed the random threshold

by seven standard deviations. For correlations exceed-

ing 0.66, the difference is 10 standard deviations. These

statistics reveal a significant correlation between the

accuracy of the larger-scale forecast and the accuracy of

simulated precipitation on the convection-permitting

grids. Although the large-scale parameters that most

strongly correlate with the simulated precipitation vary

from case to case, the most influential large-scale pa-

rameters tend to be surface pressure and humidity and

the near-surface wind speed (not shown).

7. Conclusions

This study has evaluated convection-permitting

forecasts of terrain-locked and quasi-stationary con-

vective bands forced by mesoscale topographic fea-

tures over the United Kingdom. Four cases were

selected based on analysis of data from the Met Office

1-km resolution radar network. In each case, a narrow

precipitation band remained quasi-stationary for 1–7 h

while producing moderate-to-high precipitation rates.

Forecasts of these events from the Met Office Unified

Model 2.2-km-grid-length ensemble and 1.5-km-grid-

length deterministic model were verified against ob-

servations to quantify their skill in reproducing the

observed precipitation.

The surface precipitation simulated by each of the

models was verified using the Met Office radar-derived

surface rain-rate product. To thoroughly evaluate the

model performance, the structure, amount, timing, du-

ration, and location of the precipitation were all com-

pared to the observations. To facilitate such a comparison,

we extended the SAL object-based verification method

(Wernli et al. 2008) to apply it to distance–time (Hovmöller)
plots (SAPTD). The main findings, which are separated

into those pertaining to the model performance and

those pertaining to the ensemble design, are summa-

rized below.

a. Model performance

d The predictive skill of localized high-impact weather

was highly variable among the four cases. The model

was able to represent some aspects of location, intensity,

structure, or duration of the precipitation in each case,

but never all of them satisfactorily in a single case.

TABLE 2. ROC areas calculated for all four cases using the t2 18 and t2 12 ensembles and the combined 24-member time-lagged

ensemble. Values are calculated separately for each precipitation accumulation threshold. The boldface values highlight where the

combined ensemble provides a better probabilistic forecast than either individual ensemble.

Case 1 Case 2 Case 3 Case 4

Threshold (mm) t2 18 t2 12 Combined t2 18 t2 12 Combined t2 18 t2 12 Combined t2 18 t2 12 Combined

0.25 0.6205 0.7328 0.6811 0.7319 0.6916 0.7738 0.8888 0.9344 0.9344 0.6569 0.5494 0.6038

0.5 0.6119 0.7280 0.6720 0.6838 0.6820 0.7380 0.9088 0.9367 0.9370 0.7673 0.6311 0.6958

1 0.6219 0.7364 0.6983 0.6643 0.6600 0.6978 0.9114 0.9336 0.9332 0.8420 0.6536 0.755

2 0.6031 0.6835 0.6921 0.6808 0.6742 0.7188 0.9025 0.9353 0.9316 0.8238 0.6300 0.7345

4 0.5552 0.6640 0.6879 0.6655 0.5214 0.6496 0.9334 0.9381 0.9484 0.6780 0.5915 0.6419

8 0.5004 0.6174 0.6226 0.4350 0.4241 0.3772 0.7603 0.9494 0.9634 0.6814 0.5022 0.6295

16 0.4982 0.5744 0.5726 — — — — — — 0.5155 0.3894 0.4244

32 0.5000 0.4960 0.4960 — — — — — — — — —

MARCH 2016 BARRETT ET AL . 1111



d The stationarity of convection was inaccurately

represented by the convection-permitting simula-

tions, as reflected by underestimated precipitation-

duration scores (the SAPTD D component) within

the region of interest in three of the four cases. Al-

though the model often produced bandlike precipi-

tation accumulations that qualitatively resembled

the observations, these resulted from a few mobile

and intense convective cells rather than a quasi-

stationary band.
d The accuracy of the model representation of the large-

scale environment upstream of the band formation

region was strongly correlated with the accuracy of the

precipitation forecasts in the convection-permitting

runs. The properties of the upstream environment that

correlate the most strongly with the orographic pre-

cipitation varied from case to case but generally

involved surface parameters.

b. Ensemble design

d In the four cases considered, the essential behavior of

convection-permitting ensembles did not change sig-

nificantly between subsequent ensemble cycles. Thus,

artificially increasing the ensemble size by time-

lagging subsequent ensemble cycles would have pro-

vided some benefits, including more confidence in the

more predictable cases and larger ensemble spread in

the less predictable cases.
d Consistent with previous studies of convection-

permitting ensembles (e.g., Surcel et al. 2014), the

ensemble-mean precipitation accumulation is more

diffuse and lighter than that in the individual ensemble

members. The structural characteristics of precipitat-

ing features in the individual members are lost when

they are averaged over disparate locations and tim-

ings. Thus, metrics that retain the structure and in-

tensity of the precipitation are required in order to

provide warning of precipitation extremes when the

location is less predictable.

Although the MetUM succeeds in producing banded

precipitation accumulations, it generally struggles to

develop or maintain elongated convective bands for the

duration of the event. From such a small sampling

we cannot determine whether the model systematically

struggles to produce stationary bands or if it just fails

to do so on these occasions. Moreover, we have not

examined the false alarm rate for the model (i.e., how

often it forecasts terrain-locked convective bands that

are not observed). If these bands are subtly dependent

on both the synoptic and local scale, as concluded by

Barrett et al. (2015) and reinforced herein, the likeli-

hood of any ensemble member correctly simulating the

sequence of events producing the band would be small.

Thus, a larger ensemble size may be needed to increase

the likelihood of providing useful guidance on the pos-

sibility of such an event. Furthermore, the current op-

erational model grid spacing is marginal for resolving

these convective bands. Warren et al. (2014) found im-

provements in the simulation of a quasi-stationary

convective band by reducing the grid spacing to 500m.

Thus, higher-resolution ensembles may be required to

overcome the problems with band morphology.

Further work is required to determine whether

convection-permitting ensembles such as MOGREPS-

UK can accurately predict the detailed structure and

propagation of convection more generally. Such re-

search should verify the ensemble representation of

both specific mesoscale phenomena (as was done here

in the case of quasi-stationary bands) and varied phe-

nomena over diverse events. For these purposes,

methods like SAPTD will help to thoroughly quantify

the model representation of both structural and tem-

poral aspects of the convective precipitation.
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