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Abstract 14 

We investigated the impact of managed retreat on mercury (Hg) biogeochemistry at a site subject 15 

to diffuse contamination with Hg. We collected sediment cores from an area of land behind a 16 

dyke one year before and one year after it was intentionally breached. These sediments were 17 

compared to those of an adjacent mudflat and a salt marsh. The concentration of total mercury 18 

(THg) in the sediment doubled after the dyke was breached due to the deposition of fresh 19 

sediment that had a smaller particle size, and higher pH. The concentration of methylmercury 20 

(MeHg) was 27% lower in the sediments after the dyke was breached.  We conclude that coastal 21 

flooding during managed retreat of coastal flood defences at this site has not increased the risk of 22 

Hg methylation or bioavailability during the first year. As the sediment becomes vegetated, 23 

increased activity of Hg-methylating bacteria may accelerate Hg-methylation rate. 24 

Keywords: Mercury, Methylmercury, Biogeochemistry, Sediment deposition, Coastal 25 

Capsule: Mercury concentration doubled in sediments after coastal flooding but methylmercury 26 

concentration deceased   27 
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Introduction 28 

Coastal wetlands have been subject to dramatic global declines in the past due to dyking and 29 

draining for agriculture. However, this practice is now being reversed in many countries because 30 

salt marshes are valued as habitats for wildlife and as natural defence against rising sea-levels 31 

(Singh et al., 2007). Managed retreat of coastal defences has led to an increase in the number of 32 

sites where dykes are breached, agricultural fields are inundated with seawater, sediment is 33 

deposited over soils, and new salt marshes are created. Inundation of previously dyked farmland 34 

leads to considerable biogeochemical changes, characterised by increased salinity, lower redox 35 

potential (Portnoy and Giblin, 1997) and a decaying mat of buried vegetation (Emmerson et al., 36 

2000). There is concern that biogeochemical changes during managed retreat may alter the fate 37 

of redox-sensitive contaminants such as mercury (Hg) (Morris et al., 2014). 38 

 39 

The Bay of Fundy in Southeastern Canada is renowned for having the largest tidal amplitude in 40 

the world, which gives rise to expansive intertidal mudflats and vast areas of salt marsh (Crowell 41 

et al., 2011; Desplanque and Mossman, 2004). For centuries the Bay's coastline has been 42 

extensively dyked to use the land for agriculture (Wynn, 1979). The land surrounding the Bay of 43 

Fundy is designated a ‘biological mercury hotspot’ due to elevated concentrations of Hg in biota 44 

(Evers et al., 2007). The Bay of Fundy itself has been identified as an area of special concern for 45 

Hg contamination because the Bay’s ecosystem may be critical to concentrations of Hg found in 46 

fish, birds and wildlife (Hung and Chmura, 2006).  47 

 48 
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Mercury enters the Bay of Fundy through seawater inflow and atmospheric deposition 49 

(Sunderland et al., 2012).  The Hg present in sediments of the Bay of Fundy is strongly 50 

associated with organic matter and fine textured sediments (O’Driscoll et al., 2011; Sizmur et al., 51 

2013b). Inorganic Hg in sediments can be converted to methylmercury (MeHg) under anoxic 52 

conditions by sulphate-reducing bacteria (Compeau and Bartha, 1985). Methylmercury can 53 

biomagnify through food webs (Lavoie et al., 2010) and is a potent neurotoxin affecting higher 54 

trophic level animals and humans (Rasmussen et al., 2005).  55 

 56 

Increases in MeHg concentrations in sediments and biota have been observed during the decades 57 

that follow terrestrial freshwater flooding for dam construction or wetland creation (Kelly et al., 58 

1997; Sinclair et al., 2012). However, little research has been done to assess changes in Hg 59 

biogeochemistry after coastal wetland flooding. Terrestrial flooding events, like reservoir or 60 

wetland creation, entail a permanent change in sediment redox from oxic to anoxic conditions 61 

because the sediments are constantly flooded. However, coastal flooding events subject the land 62 

to fluctuating oxic/anoxic conditions due to the tidal cycle. These fluctuations generate an oxic-63 

anoxic interface in the sediment. The temporal fluctuations in redox conditions increases the 64 

volume of sediment where sulphate reduction and mercury methylation may occur (Heim et al., 65 

2007; Sizmur et al., 2013a). However, there is also frequent tidal flushing of inundated areas 66 

which acts as a significant means of removing MeHg from the surface of coastal sediments 67 

(Guédron et al., 2012). Therefore, it is not clear if managed retreat will increase or decrease Hg 68 

and MeHg concentrations in sediments. 69 

 70 
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We investigated the effects of managed retreat on mercury biogeochemistry at Beaubassin 71 

Research Station where a dyke has recently been breached, allowing the seawater to inundate 72 

land previously drained for agriculture.  73 

 74 

Materials and Methods 75 

Site Description 76 

Beaubassin Research Station (Latitude: 45.852195 Longitude: -64.279631) is located on the 77 

Chignecto Isthmus between Nova Scotia and New Brunswick, Canada (Figure 1a). It lies along 78 

the Cumberland Basin, a branch of Chignecto Bay, in the Bay of Fundy which is sourced from 79 

the Gulf of Maine. The average tidal amplitude at Beaubassin is 11 m (Gordon Jr and Baretta, 80 

1982). Recently, an eroding 150-year-old dyke was replaced with a new dyke built 81 

approximately 90 m back from the pre-existing coastline in order to protect transport 82 

infrastructure and the historic site of Fort Beausejour from tidal surges. The 40 ha of low lying 83 

land between the old dyke and the new dyke (Latitude: 45.851595 Longitude: -64.294379) was 84 

flooded in October 2010. Flooding occurred when the old dyke was deliberately breached so that 85 

sediment could accumulate to protect the new dyke before the old dyke completely failed 86 

(Ollerhead et al., 2011). Tidal re-entry has resulted in the rapid deposition of fresh sediment over 87 

the top of the agricultural soil, burying a mat of terrestrial vegetation. At the time of sampling, 88 

new salt marsh vegetation was yet to establish. 89 
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 90 

Figure 1. (a) Site location at Beaubassin, New Brunswick, Canada; (b) Location of all 91 

cores sampled from the dyke cell (pre-breach and post-breach) along with adjacent 92 

sites (mudflat, salt marsh and field). The location of two gaps in the wall of the dyke cell 93 

represent where they were deliberately breached in 2010; (c) Electrical conductivity of 94 

sediment cores sampled (averaged 0-15 cm) shown here to demonstrate the influence 95 

of seawater on the dyke cell pre-breach and post-breach. 96 

 97 
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Sample Collection and Preparation 98 

Two 16 cm deep cores were taken in the dyke cell (Figure 1b) between the new and the old 99 

dykes (hereafter referred to as the pre-breach cores) in summer 2009 (before the old dyke was 100 

breached in 2010). We returned to the site in summer 2011 to collect cores one year after the old 101 

dyke was breached. Three 15 cm deep cores were sampled at four locations: (i) The area 102 

previously sampled in the dyke cell between the new and old dykes (hereafter referred to as the 103 

post-breach cores), (ii) the mudflat seaward of the dyke cell, (iii) a pre-existing salt marsh 104 

adjacent to the dyke cell, and (iv) the field landward of the dyke cell (Figure 1b). All cores were 105 

sampled at low tide using polyvinyl chloride (PVC) cores (10 cm internal diameter) that were 106 

dug out with a stainless steel spade.  107 

 108 

Pre-breach cores were sliced in 2 cm intervals to a depth of 16 cm, producing a total of eight 109 

slices per core. Each of the post-breach, mudflat, salt marsh, and field cores were sliced at 1 cm 110 

intervals for the upper 5 cm of sediment and then at 2 cm intervals for the remaining 10 cm, 111 

producing a total of 10 core slices per core. Core slices were individually sealed in Ziploc bags at 112 

the research station and placed in a dark cooler with ice packs for transport back to the 113 

laboratory.  114 

 115 

At the laboratory each sediment slice was thoroughly homogenised by hand in the Ziploc bag 116 

and frozen as a wet homogenate at -20 ˚C. Sediment samples were later thawed and a subsample 117 

dried at 60 
o
C for 24 hours. Dried sediment samples were ground with a pestle and mortar and 118 

sieved to < 2 mm. A subsample of wet sediment was analysed for electrical conductivity (EC) 119 
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using a VWR Symphony SP90M5 meter and Orion electrical conductivity probe. The field was 120 

only sampled to demonstrate that the pre-breach sediments had not been inundated by seawater 121 

prior to the breach. Since the EC of the pre-breach and field cores (Figure 1c) revealed no 122 

significant difference (p > 0.05), further analysis of the field cores was deemed unnecessary. 123 

Each slice of the remaining cores was analysed for total mercury (THg), MeHg, percentage 124 

organic matter (%OM), particle size distribution, water-extractable organic carbon (WEOC) and 125 

pH. 126 

 127 

Analytical Procedures 128 

Total mercury in sediment was determined using thermal degradation – gold amalgamation 129 

atomic absorbance spectroscopy as outlined in EPA Method 7473 (1998) using a Nippon MA-130 

2000 non-dispersive double-beam cold-vapor atomic absorption Hg analyzer. Methylmercury 131 

was determined in sediments by alkaline digestion, ethylation purge and trap Gas 132 

Chromatography - Cold Vapour Atomic Fluorescence Spectrometry (GC-CVAFS) following 133 

Sizmur et al (2013b). A 100 mg sample of sediment was digested in 2.5 ml of basic methanol (25 134 

% KOH/MeOH) by shaking on a reciprocal shaker for 1 hour and then heating for 1 hour at 90 135 

o
C. Within 24 hours of digestion, a 60 µl aliquot was transferred to a glass reaction bubbler, 136 

ethylated with NaB(C2H5)4, purged with argon, collected on a Tenax trap and analysed for MeHg 137 

using GC-AFS (Brooks Rand Model III). 138 

 139 

Organic matter in sediment was determined by loss on ignition at 500 
o
C (Byers et al., 1978) and 140 

particle size distribution by the micro-pipette method (Miller and Miller, 1987). Sand was 141 
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calculated as particles 2000-63 µm, silt as 63-2 µm, and clay as < 2 μm in diameter. Water-142 

extractable organic carbon was determined following Sizmur et al (2011) by shaking 1 g of 143 

sediment with 40 ml of Milli Q water for 2 hours on a reciprocal shaker at 120 shakes min
-1

, 144 

followed by centrifuging at 4000 rpm (2647 G) for 20 min and filtering to < 0.45 µm with 145 

polypropylene membrane filters, before TOC/TIC analysis with a Shimadzu TOC-V CPH Total 146 

Organic Carbon Analyzer. Sediment pH was analysed in WEOC vials prior to centrifuging. 147 

 148 

Quality control 149 

Sediments were analysed in triplicate alongside certified reference materials MESS-3 (National 150 

Research Council Canada) and SQC-1238 (Sigma Aldrich RTC) for THg and MeHg 151 

respectively. Mean recovery of THg from MESS-3 was 102.2 % (SD = 1.4 %). Mean recovery of 152 

MeHg from SQC-1238 was 94.4 % (SD = 12.0 %). Detection limits for MeHg and THg were 153 

0.65 and 1.21 pmol g
-1

, respectively. Both samples and reference materials during Hg analysis 154 

were corrected for background by subtracting averaged method blanks from the analysed 155 

samples. 156 

Statistical Analysis 157 

Statistical analysis was carried out using Genstat version 16. Normality and homoscedasticity 158 

was assessed by inspecting residual plots. Two-way analysis of variance was carried out on all 159 

data (MeHg, THg, pH, clay, %OM, WEOC and EC) using ‘site’ and ‘depth’ as the factors and 160 

allowing for interactions. Fisher’s least significant difference was used to identify differences 161 

between individual treatments. Multiple linear regression was carried out by forward selection; 162 

first the variable that resulted in the highest R
2
 values was included in the model, then variables 163 
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that resulted in the greatest increase were added. Data presented in text as average values at each 164 

site are calculated from the concentrations in cores averaged across all depths. All the raw data is 165 

provided in the supporting information. 166 

 167 

Results  168 

Mercury and Methylmercury 169 

The average concentration of THg in the post-breach cores was 85.1 pmol g
-1

 (SD = 15.6) which 170 

was approximately double the concentration in the pre-breach cores (41.1 pmol g
-1

, SD = 9.52). 171 

THg decreased significantly (p < 0.001) with depth (Table 1) in the post-breach and mudflat 172 

cores but this decrease was not observed in the pre-breach or the salt marsh cores (Figure 2). The 173 

THg concentration in the salt marsh cores was significantly (p < 0.05) greater than the mudflat or 174 

the dyke cell pre- or post-breach. The post-breach cores had significantly (p < 0.05) greater Hg 175 

concentrations than the pre-breach cores. 176 

Table 1 Analysis of variance from physiochemical sediment variables; Water Extractable 177 

Organic Carbon (WEOC), pH, Electrical Conductivity (EC), Clay content and Organic Matter 178 

(OM).  179 

Variable Site F value Depth F value 
Site-depth 
interaction F value 

THg 62.19*** 2.34* 0.41 

MeHg 12.83*** 2.06* 0.55 

% MeHg 31.41*** 0.95* 0.62 

% OM 15.03*** 0.29 0.93 

pH 16.87*** 0.97* 0.79 

% Clay 24.93*** 1.74 0.38 

WEOC 32.14*** 1.68 1.36 

EC 69.15*** 0.82 1.23 

* = p < 0.05, *** = p < 0.001 180 
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 181 

Figure 2. Total mercury (THg) and methylmercury (MeHg) concentrations of sediment 182 

slices of cores sampled from the dyke cell (pre-breach and post-breach) along with 183 

adjacent sites (mudflat and salt marsh). The error bars represent the standard deviation 184 

of three replicate cores (n = 2 for the pre-breach cores).   185 
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MeHg significantly (p < 0.05) decreased with depth (Table 1) in the post-breach and salt marsh 186 

cores (Figure 2). Although THg was greater after inundation, MeHg concentration was 187 

significantly (p < 0.05) lower in post-breach sediments (Figure 2). Methylmercury 188 

concentrations were 27% lower in the post-breach cores (1.48 pmol g
-1

, SD = 0.54) compared to 189 

the pre-breach cores (1.97 pmol g
-1

, SD = 0.31). However, we did measure 36% higher MeHg 190 

concentrations in the upper 2 cm of the post-breach sediment than in the top 2 cm of the pre-191 

breach cores (Figure 2). The post-breach MeHg concentration was not significantly (p > 0.05) 192 

different than that measured in the salt marsh (1.69 pmol g
-1

, SD = 0.60) but was significantly (p 193 

> 0.05) greater than MeHg in the mudflat (1.02 pmol g
-1

, SD = 0.51). The percentage of MeHg 194 

as a proportion of the THg (%MeHg) was significantly (p < 0.05) greater in the pre-breach cores 195 

(5.97%, SD = 2.99) than the post-breach cores (2.02%, SD = 0.58). %MeHg in the post-breach 196 

sediment was not significantly (p > 0.05) different from the mudflat (2.34%) or salt marsh 197 

(1.84%) sediments. 198 

 199 

Physiochemical variables  200 

The EC of the pre-breach cores was not significantly different to the samples taken from the field 201 

behind the new dyke. EC was significantly increased (p < 0.05) by periodic tidal inundation of 202 

the dyke cell, increasing over 2000% from pre- to post-breach (Figure 1c). Post-breach sediment 203 

EC was also significantly (p < 0.05) greater than the salt marsh and mudflat but the magnitude of 204 

the difference was much smaller. 205 

 206 

Sediment pH was significantly (p < 0.001) greater after inundation of the dyke cell, rising from 207 

5. 08 (SD = 1.2) in the pre-breach cores to 7.43 (SD = 0.6) in the post-breach cores (Figure 3). 208 
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There was no significant (p > 0.05) pH difference between the post-breach cores and the salt 209 

marsh or mudflat cores. 210 

 211 

The texture of the sediment in the top 15 cm of the dyke cell significantly (p < 0.001) changed 212 

during salt marsh restoration as fresh sediment with a smaller particle size distribution was 213 

deposited over the top of the drained agricultural field (Figure 3). Percentage clay was 214 

significantly (p < 0.05) greater and sand significantly (p < 0.05) lower in the sediment after the 215 

inundation. Percentage clay in the post-breach cores (29.8%, SD = 1.52) was nearly double that 216 

in the pre-breach cores (16.6%, SD = 13.8). The proportions of sand, silt and clay in the post-217 

breach cores were not significantly (p > 0.05) different to the sediments sampled from the 218 

mudflat (Figure 3) but clay content was significantly (p < 0.05) greater than sediments sampled 219 

from the salt marsh. 220 

 221 

The post-breach sediments had significantly (p < 0.05) higher organic matter (%OM) and WEOC 222 

than the pre-breach cores (Table 1 and Figure 3). There was no significant (p > 0.05) difference 223 

between the post-breach cores and the salt marsh and mudflat cores, for either %OM or WEOC. 224 

The concentration of both WEOC (44.9 mmol kg
-1

, SD = 4.64) and %OM (6.3%, SD = 0.8) in 225 

the post-breach cores was greater than the mudflat cores (32.1 mmol kg
-1

, SD = 8.87 and 5.8%, 226 

SD = 1.2) but lower than the salt marsh cores (47.9mmol kg
-1

, SD = 7.17 and 6.7%, SD = 0.7). 227 
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 228 

Figure 3. Physiochemical variables measured in cores (averaged 0-15 cm) sampled 229 

from the dyke cell (pre-breach and post-breach) along with adjacent sites (mudflat and 230 

salt marsh). The error bars represent standard deviation of three replicate cores (n = 2 231 

for the pre-breach cores). 232 

  233 
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Multiple linear regressions 234 

The correlation between the best multiple linear regression model and the THg concentrations 235 

measured in the sediments (Figure 4) yielded an R
2
 value of 0.524 and a p value < 0.001 (Table 236 

2). The explanatory variables in order of decreasing importance were WEOC, pH, EC and 237 

%Clay. Adding the next most important variable (%OM) decreased the R
2
 value to 0.519. 238 

WEOC alone explained 36.7% of the variation in the observed data. 239 

Table 2 Significance and correlation results of forward multiple linear regression models for the 240 

prediction of THg and MeHg from physiochemical sediment variables; Water Extractable 241 

Organic Carbon (WEOC), pH, Electrical Conductivity (EC), Clay content and Organic Matter 242 

(OM).  243 

Response variable Fitted terms F value R2 

THg WEOC 61.8*** 0.367 

 WEOC+pH 48.6*** 0.476 

 WEOC+pH+EC 35.5*** 0.496 

 WEOC+pH+EC+Clay 29.9*** 0.524 

MeHg EC 7.02** 0.54 

 EC+THg 8.36*** 0.123 

 EC+THg+pH 7.07*** 0.148 

 EC+THg+pH+Clay 6.05*** 0.161 

 EC+THg+pH+Clay+WEOC 5.50*** 0.176 

 EC+THg+pH+Clay+WEOC+OM 6.56*** 0.241 

** = p < 0.01, *** = p < 0.001 244 

The variability in MeHg concentrations was more difficult to explain than the THg 245 

concentrations using the physiochemical variables measured. The multiple linear regression 246 

model for MeHg (Figure 4) had a lower R
2
 value than the model for THg. The fit which included 247 

EC, THg, pH, %Clay, WEOC and %OM (in order of decreasing importance) had an R
2
 value of 248 

0.241 and a p value of < 0.001. Although EC accounted for the greatest extent of the variability 249 

in the MeHg dataset, when considered on its own EC accounted for only 5.4% of the variation. 250 

This indicates that variables that we measured could not adequately explain the concentration of 251 

MeHg in the sediments.  252 
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 253 

Figure 4. Total mercury (THg) and methylmercury (MeHg) concentrations observed in 254 

cores sampled from the dyke cell (pre-breach and post-breach) along with adjacent 255 

sites (mudflat and salt marsh) plotted against fitted THg and MeHg concentrations that 256 

were predicted using multiple linear regression models (Table 2) created with the same 257 

data. The THg model included WEOC, pH, EC, and %Clay as explanatory variables, 258 

explaining 51.9% of the variability. The MeHg model included EC, THg, pH, %Clay, 259 

WEOC and %OM as explanatory variables, explaining 24.1% of the variability.  260 
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Discussion 261 

Post-breach sediments are chemically more similar to the salt marsh and mudflat than pre-262 

breach sediments 263 

The breaching of the dyke and inundation of the dyke cell deposited a large quantity of fresh 264 

sediment over the top of the pre-existing soil. This event changed the biogeochemistry of the 265 

system by increasing the EC, pH, %OM and WEOC. The impact of this change is best 266 

demonstrated by the considerable increase in the EC observed (Figure 1c) as the dyke cell 267 

changed from a terrestrial environment to a coastal environment due to inundation with saline 268 

water. While the topography of the mudflat and the salt marsh gently slopes down towards the 269 

sea, the soil in the dyke cell was relatively flat prior to breaching and inundation. The deposition 270 

of fresh sediment in the dyke cell was unevenly distributed leaving puddles of seawater which 271 

we observed in depressed areas at low tide. Evaporation of water and precipitation of salts in 272 

these depressed areas (Mouneimne and Price, 2007)  has resulted in the EC of the post-breach 273 

sediments being elevated above levels measured in the mudflat or the salt marsh (Figure 1c). 274 

 275 

The objective of the managed retreat is for salt marsh vegetation to colonise the freshly deposited 276 

sediment once the depth of the sediment raises the wetland to an elevation high enough for 277 

vegetation to survive (Williams and Orr, 2002). During the post-breach sampling in 2011 the 278 

dyke cell was still unvegetated and looked more similar to a mudflat than a salt marsh.  This 279 

observation is supported by the textural analysis of the sediment deposited in the dyke cell (post-280 

breach) which was similar to the sediment sampled from the mudflat (Figure 3).  The chemistry 281 

of the post-breach sediments (WEOC, pH and %OM) was more similar to the salt marsh and 282 
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mudflat sediments than the samples collected pre-breach. However, this data must be interpreted 283 

with caution since only two cores were collected prior to the dyke being breached. 284 

 285 

 286 

Post-breach sediments have greater total Hg but lower MeHg concentrations 287 

The total Hg concentrations in the reclaimed region were similar to those found in other studies 288 

of non-vegetated intertidal mudflats (O’Driscoll et al., 2011; Sizmur et al., 2013b) and salt 289 

marshes (Hung and Chmura, 2006; Sunderland et al., 2004) in the Bay of Fundy. Over a period 290 

of two years (and only one year after the dyke was breached) the concentration of total Hg in the 291 

dyke cell was considerably greater (Figure 2). We acknowledge, however, that this dataset has 292 

limitations since there were only two replicate cores collected prior to the dyke being breached. 293 

Despite this apparent increase, the concentration of Hg in the post-breach sediments had not yet 294 

reached that of the salt marsh, which is the target ecosystem. There was a clear decrease in Hg 295 

concentration with sediment depth in both the mudflat and the post-breach sediments but not in 296 

the salt marsh sediments which is a further indication that the sediment characteristics more 297 

closely match the mudflat at this stage of restoration.  298 

 299 

While the total Hg concentrations were greater in the dyke cell after inundation, and the MeHg 300 

concentrations were greater at the surface of the sediment, MeHg was observed to be lower 301 

overall in the post-breach cores (Figure 2). This lower MeHg concentration was reflected by 302 

%MeHg in the sediments of the dyke cell decreasing from 6% pre-breach to 2% post-breach 303 

when averaged over all the depths. This observation indicates that methylation has not rapidly 304 
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occurred in the newly deposited Hg(II) species in the sediment. If the lower MeHg in the post-305 

breach sediments was due to greater export of MeHg from the sediments by tidal flushing then 306 

we would have expected to see MeHg depleted in the top few cm of sediment. However, MeHg 307 

concentrations were greatest in the top few cm (Figure 2). Therefore, tidal flushing is probably 308 

not the reason for the lower MeHg in the post-breach sediments.  309 

 310 

Because total Hg concentrations are greater post-breach and MeHg concentrations are lower, Hg 311 

methylation cannot be limited by the supply of total Hg. Hg methylation is rather limited by the 312 

bioavailability of Hg to Hg methylating bacteria or the activity of these bacteria (Sunderland et 313 

al., 2006). Canário et al. (2007) showed that %MeHg in unvegetated coastal wetland sediments 314 

were only 0.6%, while vegetated sediments had up to 18% MeHg. The authors explained that 315 

this discrepancy is likely to occur because the presence of vegetation increases microbial activity 316 

and favours Hg methylation. Colonisation of the dyke cell by benthic invertebrates (e.g. 317 

polychaete worms) may also increase the sediment-water interface and the concentration of 318 

MeHg in their burrows (Sizmur et al., 2013a). Therefore, the MeHg concentrations in the dyke 319 

cell may increase as the restoration progresses and the dyke cell becomes colonised by 320 

vegetation and fauna. This prediction must be contrasted with the observation by Morris et al. 321 

(2014) that restored salt marshes have lower MeHg concentrations several decades after 322 

inundation when compared to adjacent natural salt marshes. It is therefore unclear whether the 323 

MeHg concentration in the dyke cell sediments will increase beyond the concentrations in the 324 

adjacent natural salt marsh in the long term.  325 

 326 
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THg concentrations are influenced by soluble carbon, particle size, pH, and salinity but MeHg 327 

concentrations are poorly predicted 328 

Water-extractable organic carbon, pH, EC, and clay content of sediments all contributed to the 329 

multiple linear regression models that explained 52.4% of the variability associated with the 330 

concentration of THg, but only 24% of the variability associated with MeHg concentrations in 331 

the sediments (Table 2 and Figure 4). Clay content was positively correlated with THg sediment 332 

concentration. A reduction in sediment particle size (here observed by an increase in clay 333 

content) increases the surface-area-to-volume ratio of particulates in a system. The high surface 334 

area and cation exchange capacity of clays results in the adsorption of Hg to fine particles 335 

(Bengtsson and Picado, 2008). Suspension of fine sediments in the tidal water increases the 336 

likelihood of sediments to scavenge Hg from the water column by settling and retaining Hg in 337 

the accumulating sediment (Covelli et al., 2009; Hung and Chmura, 2006; Sunderland et al., 338 

2006). Sediments comprised of fine particles also increase the proportion of particle-bound Hg 339 

(Bengtsson and Picado, 2008) and may thus reduce the bioavailability of Hg to methylating 340 

bacteria.   341 

 342 

Dissolved organic matter (DOM) is a major binding phase for Hg in aquatic environments 343 

(Haitzer et al., 2002; Haverstock et al., 2012; Le Faucheur et al., 2014; O'Driscoll and Evans, 344 

2000; Ravichandran, 2004). Here we use WEOC as a proxy for DOM in the sediments following 345 

Sizmur et al (2013b). Although we found a positive correlation between THg and both %OM and 346 

WEOC, the WEOC explains the THg concentration in the sediments better (Table 2). This 347 

observation indicates that the changes in Hg in the sediments are due to a greater fraction that is 348 

bound to soluble carbon complexes. The concentration of WEOC in the post-breach sediments 349 



21 
 

(Figure 3) was higher than the mudflat and (unlike the salt marsh) was not associated with 350 

vegetation growing in situ. It is therefore likely that the cause of higher concentrations of WEOC 351 

(and THg) in the post-breach sediments, compared to the mudflat, is the decaying mat of 352 

terrestrial vegetation underneath the freshly deposited sediment. Hg complexation with DOM 353 

reduces the bioavailability of Hg to methylating bacteria because the complexes are generally too 354 

large to penetrate their biological membranes (Le Faucheur et al., 2014; Ravichandran, 2004). 355 

However, soluble organic matter also provides an energy source for methylating bacteria and 356 

may increase their activity resulting in greater methylation rates (Ullrich et al., 2001). Further 357 

increases in DOM (and microbial activity) are likely to occur as the dyke cell becomes vegetated 358 

(Canário et al., 2007) which may increase methylation rates in the future. The deposition of 359 

plankton is likely to increase the %MeHg in the fresh sediment as they contain approximately 360 

6% to 15% MeHg in the Northwest Atlantic Ocean (Hammerschmidt et al., 2013). 361 

 362 

The solubility and speciation of Hg and the binding of dissolved Hg species to DOM or sediment 363 

particles is pH dependent (Gabriel and Williamson, 2004). At low pH, H
+
 competes with Hg for 364 

binding sites on DOM or the surface of sediment particles, which releases Hg into solution but 365 

they also both compete for uptake by negatively charged bacterial cells. In this study pH 366 

correlated positively with Hg but negatively with MeHg. This contrast indicates that the greater 367 

pH of the mudflat, salt marsh, and post-breach sediments, compared to pre-breach sediments 368 

(Figure 3) resulted in greater Hg retention (Hung and Chmura, 2006) but may have reduced Hg 369 

bioavailability to methylating bacteria (Barkay et al., 1997; Gilmour and Henry, 1991; Le 370 

Faucheur et al., 2014).  371 

 372 
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The increase in EC that resulted from the inundation of the dyke cell with sea water (Figure 1c) 373 

is due to the high salinity of the seawater (Mouneimne and Price, 2007). The high salinity of the 374 

sediment deposited after the dyke cell was inundated with seawater created an environment with 375 

a higher ionic strength. As ionic strength increases, the concentration of Hg desorbed into 376 

solution decreases (Duarte et al., 1991) resulting in greater Hg retention in sediments and a 377 

decrease in the bioavailability of Hg to methylating bacteria (Barkay et al., 1997). Seawater 378 

contains high concentrations of chloride ions which can form strong (log10 K1° = 7.31) 379 

complexes with mercury species (Powell et al., 2005). The greater the concentration of chloride, 380 

the more negatively charged mercuric chloride ions (HgCl3
-
 and HgCl4

2-
) will be present in 381 

solution and these negative ions also have a lower bioavailability (Barkay et al., 1997) to 382 

methylating bacteria with negatively charged cell walls. Therefore, the increase in ionic strength 383 

and formation of trivalent or tetravalent mercuric chloride species in the high EC sediments of 384 

the post-breach sediments may have reduced their bioavailability to mercury methylating 385 

bacteria. These Hg-chloride complexes may also be less susceptible to photoreduction and loss to 386 

the atmosphere (Qureshi et al., 2009). 387 

 388 

In summary, the chemical changes that occur in the sediment after inundation may have 389 

impacted on the bioavailability of Hg to methylating bacteria. The decrease in particle size 390 

distribution and subsequent increase in sediment surface area may have increased sorption of Hg 391 

out of the water column but lowered its bioavailability. Higher organic matter levels may provide 392 

a food source for methylating bacteria and increase their activity. Greater soluble organic carbon 393 

may mobilise Hg from the surface of sediments but also complex it in a form that is unavailable 394 

to methylating bacteria. An increase in sediment pH increases the concentration that can be 395 
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adsorbed from the solution phase and reduces the bioavailability. Finally, the higher ionic 396 

strength leads to a greater proportion of inorganic complexes and a lower bioavailability of Hg. 397 

This final conclusion assumes that the uptake of Hg by methylating bacteria occurs by passive 398 

diffusion of neural or ionic lipophilic Hg species but there is now a considerable body of 399 

evidence to suggest that uptake may occur by facilitated diffusion or active transportation by 400 

protein pumps (Hsu-Kim et al., 2013).  401 

 402 

Conclusions and Implications for Coastal Managed Retreat 403 

Despite a doubling of Hg concentration within the dyke cell after the dyke was breached, Hg 404 

concentrations are still below the Canadian Sediment Quality Guidelines (CCME, 2002). The 405 

reason for the Hg increase in this study was the fresh deposition of sediments with a smaller 406 

particle size distribution that are able to scavenge and retain Hg due to their higher surface area, 407 

negative charge, and higher pH. This site can therefore be considered a net sink for mercury 408 

during the first year after the dyke was breached. The more sediment that is deposited, the larger 409 

the sink will become. In contrast to considerable increases in mercury methylation observed 410 

during freshwater wetland creation (Kelly et al., 1997; Sinclair et al., 2012), we observed a 27% 411 

decrease in MeHg concentrations in the dyke cell after the dyke was breached. This decrease 412 

may have been due to greater Hg retention and lower Hg bioavailability to methylating bacteria 413 

but ultimately cannot be fully explained with the available data and is limited by the low number 414 

of replicate cores collected. Further work will be required to explain the precise mechanisms for 415 

this decrease. 416 

 417 
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Our data provides no evidence for a flush of Hg methylation during the first year of managed 418 

retreat. As the restoration progresses and vegetation colonises, the soluble carbon concentration 419 

and microbial activity may increase and the rate of Hg methylation may also increase. However, 420 

contradictory data from other studies indicate that it is unclear whether MeHg will be elevated 421 

beyond the concentration found in natural wetlands (Canário et al., 2007; Kelly et al., 1997; 422 

Morris et al., 2014; Sinclair et al., 2012). We conclude that coastal flooding of sediments subject 423 

to diffuse Hg contamination during managed retreat of coastal flood defences does not pose a 424 

significant risk of increasing Hg methylation or bioavailability during the first year. 425 
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