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Abstract 

 

Ecological forecasting is difficult but essential, because reactive management results in corrective 

actions that are often too late to avert significant environmental damage. Here, we appraise different 

forecasting methods, concluding that simple extrapolation of current trends in state is often inadequate 

because environmental drivers change in intensity over time and new drivers emerge. However, 

statistical models incorporating relationships with drivers simply offset the prediction problem, 

requiring us to forecast how the drivers will themselves change over time. Some authors approach this 

problem by focusing in detail on a single driver, whilst others use ‘storyline’ scenarios, which 

consider projected changes in a wide range of different drivers. We explain why both approaches are 

problematic and identify a compromise to model key drivers and interactions along with possible 

response options to help inform environmental management. We also highlight the crucial role of 

validation of forecasts using independent data. Although these issues are relevant for all types of 

ecological forecasting, we provide examples based on forecasts for populations of UK butterflies. We 

show how a high goodness-of-fit for models used to calibrate data is not sufficient for good 

forecasting. Long-term biological recording schemes rather than experiment will often provide data 

for ecological forecasting and validation because these schemes allow capture of landscape-scale land 

use effects and their interactions with other drivers. 
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Why attempt to forecast? 

 

“Two very different masters teach [man] his lesson: experience and foresight. Experience teaches 

efficiently but brutally.....I should prefer, in so far as possible, to replace this rude teacher with a 

more gentle one: foresight” Frédéric Bastiat, 1848 

 

Predicting the future is notoriously difficult. Many great thinkers have tried, and spectacularly failed. 

For example, in 1895, Lord Kelvin, a Scottish mathematician and physicist is famous to have 

forthrightly stated to have “not the smallest molecule of faith” in aerial flight beyond ballooning, just 

eight years before the Wright brothers put together the first successful fixed wing aeroplane. 

Similarly, in a 1961 interview T.A.M. Craven the US Federal Communications commissioner of the 

time famously predicted: “There is practically no chance communications space satellites will be used 

to provide better telephone, telegraph, television or radio service inside the United States”. Only a 

few years later, satellites were in space performing all the above services. So perhaps it is best to keep 

our heads below the parapet and not make predictions which, in retrospect, appear foolhardy? 

       In many fields of research, however forecasting- prediction of future states based on past events, 

is essential. Forecasts allow us to alter our behaviours in response to likely realisations of future 

events in order to reduce costs or maximise benefits. In the environmental sciences, for example, 

weather forecasts, which have improved greatly in recent decades, provide huge overall benefit to 

society. In the longer term, climatological forecasts provide critical guidance to help steer our 

socioeconomic systems away from unsustainable and self-destructive pathways. There are still many 

dangers of ‘getting it wrong’ (as UK weather forecaster Michael Fish famously did in 1987 when he 

told people not to worry about a hurricane just hours before winds reaching 122 mph hit the Southern 

England). However, hiding away from making forecasts is often not an option, because it leads to 

greater overall costs than making predictions that are occasionally wrong. 

      In ecological science, forecasting is also essential. It forms part of a set of tools, including horizon 

scanning (Roy et al., 2014; Sutherland et al., 2008) and risk assessments (Mace et al., 2008; Thomas 
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et al., 2011), that enable us to anticipate future changes and respond appropriately.  Reactive 

responses to new environmental impacts caused through changes in socioeconomic systems (e.g. 

adoption of new technologies), may often be too late to avert significant environmental damage. 

 For example, the pesticide DDT caused substantial losses to bird populations before it was finally 

banned (Pimentel, 2005; US Environmental Protection Agency, 1975). In Europe, agricultural 

subsidies, paid to farmers to increase food production and security, have led increased to loss of 

natural or semi-natural habitats, which have been a primary cause of European biodiversity decline 

(Inger et al., 2014; UK NEA, 2011; Van Swaay et al., 2010). The responses to mitigate these 

environmental impacts and others have mostly been reactive, in that they occurred only when damage 

had begun. In contrast, risk assessments based on experimental evidence of pesticide toxicity along 

with ecological modelling to predict potential impacts on species populations at larger spatial scales 

could have enabled proactive preventative measures to be taken.  

     In many cases, due to slow decision making and policy implementation, significant damage is done 

before ameliorative actions are in place. The slow progress to develop co-operative global actions to 

halt climate change may turn out to be another such example, with potentially very large 

consequences for the environment and society (IPCC, 2014). In other cases, policy responses may be 

rapidly formulated based on hastily gathered evidence. In both situations there are strong benefits of 

early evidence gathering, ecological modelling and risk assessment to inform timely and evidence-

based policy decisions. It should be recognised, however, that it will never be possible to foresee all 

ecological problems and some environmental management will have to be reactive. 

       In understanding the chain of events leading to environmental impacts, the ‘DPSIR’ (driver, 

pressure, state, impact, response) framework can be useful and is widely used (Figure 1; European 

Environment Agency, 2007; United States Environmental Protection Agency, 2014). This framework 

illustrates the causal links between the ultimate drivers of environmental degradation (e.g. population 

growth), the proximate pressures (e.g. food production) on the state of the environment (e.g. 

biodiversity) and their final impacts on humans (e.g. loss of well-being through degradation of 

ecosystem services which are underpinned by biodiversity). Societal responses may then be put in 
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place to ameliorate these impacts. These may tackle the ultimate drivers (e.g. campaigns to educate on 

the environmental impacts of population growth) or proximate pressures (e.g. sustainable food 

production) or try to address the state of the environment directly without addressing drivers and 

pressures (e.g. improving the quality of semi-natural habitats that are known to support a high 

diversity of specialised species). However, the key problem with the DPSIR framework is that 

following it sequentially, as described above, amounts to reactive management practices which are 

often too late to avert significant environmental damage. It would be far better, as the quotation at the 

start of this article suggests, to be able to look forwards and predict possible impacts so that they can 

be averted. Thus, there is great need to forecast the impact of environmental drivers and pressures on 

the state of the environment. 

 

Extrapolation of trends- the simplest way to forecast 

By far the most straightforward way of predicting future states of the environment is to identify past 

trends in state over time and extrapolate these forwards using some kind of statistical model. For 

example the Global Biodiversity Outlook 4 report (GBO-4; Secretariat of the Convention on 

Biological Diversity, 2014) includes indicator-based extrapolations of recent and current trends to 

2020. The report states “The assessment of progress towards the Aichi Biodiversity Targets in GBO-4 

is informed by recent trends in 55 biodiversity-related indicators and their statistical extrapolation to 

2020”. Extrapolation can sometimes work well. For example, as shown in Figure 2 (panels a and b) 

for the butterfly species Aphantopus hyperantus, a linear trend fitted to a national population index 

from 1980-2000 does a reasonable job at predicting abundances for the subsequent 13 years (mean 

absolute error = 0.076). In other cases, extrapolation does a poor job at predicting the future state of 

an environmental variable. This might be due to several reasons: 1) there is substantial error in our 

measurement of the system state, 2) our statistical model is inadequate (e.g. fitting a linear trend when 

there is significant curvature), 3) there is a high degree of short-term variability in the system state 

about some trend (sometimes called ‘stochasticity’), or 4) the ‘rules’ that govern the system state 

change over time (i.e. the drivers and pressures change). Examples of unsuccessful extrapolations are 
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shown for the butterfly species Euphydryas aurinia (Figure 2c and d; mean absolute error = 0.217) 

and Hesperia comma (Figure 2e and f; mean absolute error = 0.421). In these cases, neither linear 

models, nor second or third order polynomials, fitted to 1980-2000 data are able to adequately predict 

population indices in the subsequent 13 years. 

     Why are extrapolations so poor for these species? The population indices are collated from a 

reasonably large number of sites (mean number of sites per year for each species ± standard error: A. 

hyperantus = 324.7 ± 32.3; E. Aurinia = 62.5  ± 5.24; Hesperia comma = 25.8 ± 1.9) 

and so any measurement errors should cancel each other out and have negligible effect. With regards 

to the statistical model, for each species three different models were compared (linear and second and 

third order polynomials) and in both cases the linear model was the best fit to the 1980-2000 data. In 

the case of E. aurinia (Figure 2c & d), the interannual population variability is very large, and 

although the linear model is a better fit compared to the models with curvature, the predicted values of 

the population index are often poor estimates. This may be problematic if accurate annual predictions 

are necessary; for example, if we were aiming to predict the abundance of a pest species in order to 

inform prophylactic pesticide application. It may be possible to predict some of the interannual 

variability in population abundances with models incorporating the factors that drive population 

dynamics (see next section), but there will often remain variation left over that we are unable to 

explain (e.g. resulting from demographic stochasticity). Despite this, it is notable that errors in our 

predictions do not necessarily get markedly worse the further on in time a prediction is made (e.g. 

Figure 2d; regression of absolute error by year: F1,11: 0.42 p = 0.53). Therefore, if accurate annual 

predictions are not so important, but we are rather more interested in broad forecasts of future 

population trends, e.g. to allocate conservation funding appropriately, then large interannual 

population variability may not be such an issue (Roy et al., 2001). The exception here would be for 

special cases where stochasticity itself changes over time (e.g. changing environmentally-induced 

stochasticity as populations move towards- or away- from the edge of their fundamental niche space 

as the climate changes; Oliver et al., 2012a; Oliver et al., 2014) 
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     Our third example (Hesperia comma; Figure 2e and f), is also a poor forecast from extrapolation, 

but in this case the interannual population variability is relatively low (Bennie et al., 2013). Instead, 

the linear trend, which is a good fit to the population indices between 1980 and 2000, is a poor fit to 

the data from 2001 onwards, with the predictions getting noticeably worse the further ahead we try to 

predict (Figure 2f; regression of absolute error by year: F1,11: 18.2 p = 0.001). The population 

trajectory has changed direction, presumably because density dependent processes are beginning to 

operate or the primary drivers which affect populations (e.g. climate, habitat quality, habitat extent) 

have changed over the duration of the monitoring period. This is a critical problem for extrapolation 

methods, because by using data only on the system state we cannot account for changes in drivers. 

Instead, they are assumed to be constant; an assumption that is very often contravened. For example, 

Mason et al. (this volume) consider rates of distribution change (northern range margin shift) in four 

different animal groups over two time intervals (from 1970-2010) and find that rates of change in the 

first time interval are poor predictors of rates of change in the subsequent time interval. What are 

these changes in drivers that underlie species’ responses? 

      The UK National Ecosystem Assessment (UK NEA, 2011) was the first comprehensive review of 

drivers of change in biodiversity and other ecosystem services. It assessed the historic impact of 

drivers, but also their expected future impact. It is notable that the magnitude of drivers often changes 

over time. For example, habitat loss and pollution have been the primary causes of biodiversity loss in 

the UK over the last century, but the impacts of these drivers are expected to lessen, with climate 

change and invasive species becoming the major new drivers of change (UK NEA, 2011). Similar 

patterns are likely to be occurring across other heavily modified temperate landscapes. For example, 

Carvalheiro et al. (2013) suggest that pollinator declines in a number of northwest European countries 

may have slowed, probably due to a peak in the conversion of land use to intensive agriculture. In 

addition to changes in the magnitude of existing drivers, new drivers may emerge with the advent of 

new technologies (August, this volume). For example, a recent horizon scanning exercise by 

Sutherland et al. (2008) identified nanotechnology and geoengineering as fields with a large potential 

to impact biodiversity. Finally, drivers of change also interact in their environmental impacts, leading 
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to non-linearity in responses (Brook, Sodhi & Bradshaw, 2008).  For example, climate and land use 

change can interact on biodiversity through a wide range of mechanisms affecting processes from 

demography to metapopulation structure and community interactions (Oliver & Morecroft, 2014). All 

these changes in drivers mean that simple extrapolations of system state are often a poor method of 

forecasting, especially over longer timescales. Instead, statistical models are needed which can 

incorporate the impact of drivers and how these may change in the future. 

 

Forecasting changes in drivers and pressures 

In order to incorporate the impact of pressures on the state of environmental systems we need to 

understand their functional relationships (e.g. what is the relationship between weather variables and a 

species’ population size), and also anticipate how pressures are likely to change in the future (e.g. 

what will future weather be like under climate change). Effects may be direct (e.g. weather impacts on 

demographic rates) or indirect (e.g. mediated through impacts on other species which interact with the 

focal species).The former task of understanding causal relationships can be achieved through 

experimentation (e.g.Tilman et al., 1994) or through observation of ‘natural experiments’ (i.e. using 

long term monitoring of system state and relating this to naturally occurring changes in drivers and 

pressures; Baker et al., 2012; Eglington & Pearce-Higgins, 2012; Roy et al., 2001). Both these 

methods are costly and time consuming, but the experimental designs (e.g. split-plot field 

experiments, long term monitoring networks) and statistical analysis techniques needed (e.g. 

multivariate regressions, hierarchical mixed modelling and structural equation modelling) are well 

versed in the ecological sciences. In contrast, the latter task of anticipating future changes in drivers 

and pressures is more difficult and less practiced. One technique would be to use extrapolative 

techniques to predict how drivers and pressures may change based on past temporal trends. For 

example the GBO-4 report (Secretariat of the Convention on Biological Diversity, 2014) uses 

extrapolations of trends in human population size, gross domestic product, intensity of resource use, 

agricultural subsidies and surplus nitrogen in the environment. However, the problems with 

extrapolation of the state of the environment outlined above also hold true for extrapolation of 



10 

 

pressures affecting system state – the pressures themselves are affected by multiple other factors 

(drivers) which may have non-linear trends over time. These more proximate drivers are themselves 

affected by other drivers, and so on. For example, nitrogen deposition is affected by both the cost of 

petrochemical fertilisers and price of crops in the world market, these factors themselves are affected 

by other more ultimate drivers such as population growth and development of alternative resource 

extraction and food production technologies. Suddenly we are faced with an enormous task: to 

forecast how a given pressure might change we need to understand the whole chain of causality 

affecting that pressure (the ‘infinite regress of drivers’ dilemma). Much ecological science, and indeed 

science in general, has tended to be reductionist in its approach, focussing on specific causal 

relationships, but more systematic ways of thinking are evident in ancient eastern world views (e.g. 

the Buddhist concept of ‘Pratītyasamutpāda’) which strongly emphasises the interdependency of 

entities and multiple causal linkages between them, and also feature in ‘systems ecology’ approaches 

(Odum, 1983; Schellnhuber, 1999; Evans et al., 2013). Yet, there are clear practical limitations to 

understanding changes to specific pressures by tracing causal links across the entire socio-ecological-

economic system; effectively, this relies on a statistical model of the entire world! 

      At this point, one might be tempted to throw in the towel and give up trying to forecast future 

environmental states. However, returning to our original reason for attempting forecasting – that 

without it we rely on reactive management which is often too late to avert significant environmental 

damage – we are reminded that forecasting, although difficult, is very necessary. What is needed is a 

practical way forward that still remains as rigorous as possible. Pragmatic approaches to the problem 

so far have tended to either focus on one specific chain of causality affecting the environmental state 

(e.g. how climate change will affect local temperatures and how these will affect species populations; 

Thomas et al., 2004), or to adopt a ‘storyline’ scenario approach where various possible socio-

economic scenarios are described and then a deliberative approach used to translate how changes in 

more ultimate drivers (such as population size, climate, new technologies) will impact on proximate 

pressures that affect environmental states. This latter approach is adopted by the 

MilleniumMillennium Ecosystem Assessment (2005) and also in UK National Ecosystem Assessment 
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(2011) in order to explore how different socioeconomic scenarios might affect the state of the 

environment and the ecosystem services it provides. Both approaches have advantages but also some 

key problems. 

      The first approach which focuses on a single ‘chain’ of causality can afford more detailed 

quantitative analysis, but because this approach is more reductionist it ignores the importance of other 

interacting drivers and pressures on the system state. This may be warranted where there is good 

evidence for an overwhelmingly strong influence of one driver, which explains a large proportion of 

variance in the system state. For example, figure 3 illustrates predictive correlative models for the 

abundance of three butterfly species, whose population dynamics are driven by annual weather and 

density dependence to varying extents. The first species, Melanargia galathea (panels a and b), shows 

a reasonably good fit between predicted and observed abundance in the model calibration period (R2 = 

0.68 with density dependence effects incorporated in models, R2 = 0.53 without), and also in the 

model validation (mean absolute error [MAE] = 0.14-0.15) and the ‘forecasting’ periods (MAE = 

0.10-0.11). In contrast, for the species Celastrina argiolus (panels c and d) even though goodness-of-

fit for the model incorporating density dependence in greater than the one without (R2 = 0.72 

compared with 0.54) and there is little apparent difference in model fit in the validation period (MAE 

= 0.21 compared with 0.17), it turns out that the simpler model without density dependence performs 

slightly better in the forecasting period (MAE = 0.29 compared with 0.4). Interestingly, this is a 

species in which the population dynamics are anecdotally thought to be driven by parasitoids causing 

to be what look like 6-8 year cycles (Revels, 2006). In fact, panel d shows that a model with just three 

weather variables (spring rainfall in the current year, and autumn temperatures in the two previous 

years) can predict the population dynamics reasonably well. In other cases, it may be much less easy 

to predict abundances using weather variables. This can be despite an apparent good fit of models in 

the calibration period. For example, the species Lasiommata megara (panels e and f) has a model with 

a high goodness-of-fit between predicted and observed abundance in the model calibration period (R2 

= 0.83 for the model also incorporating density dependence effects; panel e), yet forecasts are very 

poor (actually predicting local extinction by 2004). In this case, it would be clear from validation that 



12 

 

the model without density dependence is actually a better predictor (MAE = 0.39 compared to 3.96) 

despite the markedly lower goodness-of-fit in the calibration period (R2 = 0.13). This might be 

because density dependent processes are changing over time (e.g. due to changes in the parasites or 

pathogens that drive density dependence). Importantly, in ‘free running’ predictions (where 

abundance is sequentially estimated as a function of abundance the previous year) any errors in 

modelled density dependence relationships quickly accumulate, leading to very large prediction errors 

in just a few years.  

      These examples highlight the inherent difficulties of ecological forecasting. A good fit of models 

in calibration periods is not a sufficient indicator of good predictive ability, and only after successful 

validation should models be used for prediction. In practice, prediction errors would be larger than 

shown here because true forecasts would be based on estimates of weather from downscaled climate 

models, rather than the observed weather variables used here. Even with observed weather data and 

even though ectothermic butterflies tend to be highly responsive to weather, these correlative 

statistical models based on large datasets still only had limited predictive ability. Relationships with 

density and weather could change over time (e.g. due to changes in the factors causing density 

dependence, such as the aggregation of natural enemies, and due to evolutionary adaptation of 

populations to changes in climate). In addition, other drivers beyond climate are likely to be important 

in driving population changes (e.g. habitat quality). 

      The second ‘storyline’ scenario approach to predicting the impacts of environmental change has 

the advantage of considering many different interacting drivers and pressures. The scenarios 

generated are not necessarily taken as predictions of the future but, rather, delineate a wide range of 

possible outcomes in the parameter space of multiple drivers and pressures. The major disadvantage 

of this approach, however, is that the large number of causal relationships between multiple drivers 

and environmental state, including interaction effects, means that predictive models are nearly 

impossible to parameterise empirically; instead, these rely on expert opinion, or a combination of both 

such as Bayesian belief networks (Haines-Young et al., 2011). The other key problem is that the 

models are so complex that any resulting differences in environmental state between scenarios are 
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difficult to attribute back to specific drivers. For example, the UK National Ecosystem Assessment 

includes various storyline scenarios such as ‘Nature at Work’ and the ‘National Security’ that differ 

greatly in predicted ecosystem services (Haines-Young et al., 2011; Bateman et al., 2011). However, 

it is impossible to say whether this is due to differences in protected area coverage, the extent of 

several different cover types, or due to varying impacts of climate change, which all differ between 

the scenarios. 

      For successful ecological forecasting, it is necessary to find a practical compromise between the 

two extremes of quantitative reductionism (which ignores multiple interacting drivers) and a fully 

systemic approach (which is too complex to parameterise and to attribute final changes in 

environment state). Below we suggest a practical middle ground which may potentially reconcile 

these extreme approaches. 

 

Key driver and response-test scenarios 

One possible middle ground solution for ecological forecasting lies in identifying the minimum 

number of key drivers or pressures that are demonstrated (through empirical analysis or expert 

opinion) to strongly influence an environmental state variable over the time frame of interest. This 

avoids the excessive complexity of considering all drivers in models, but also extends beyond the 

simplistic view of considering change in one driver in isolation. The suite of drivers considered may 

already be operating or they may be potential new drivers. In addition, interactions between drivers 

should also be considered where relevant. In order to make our ecological forecast models of applied 

use, we should also consider alterative possible ‘response’ options (i.e. management solutions). For 

example, in considering the possible impact of climate change on populations of a species we might 

consider a range of land use scenarios which, through the existence of land-use climate interactions, 

potentially allow the amelioration of climate change impacts (i.e. ‘adaptation’ measures).  

     

Which statistical method to use? 
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Thus far, we have broadly considered ecological forecasting methods in terms of the merits of trend 

extrapolation techniques versus multivariate models which incorporate changes in drivers and 

pressures. The latter method is recommended with a pragmatic approach to selecting key drivers and 

incorporating response options. However, we have so far discussed specific statistical methods only 

fleetingly. A wide range of statistical methods are relevant to this problem, ranging from simple 

correlative models to highly complex individual based ‘process’ models. Table 1 gives examples of a 

range of methods which span a continuum of complexity and input data requirements (also see 

Sutherland, 2006). Ecological modellers often specialise on some part of this model continuum. For 

example, fitting correlative models across many species (macroecology) versus developing detailed 

individual based models for specific species (process-based modelling). Neither approach is right or 

wrong and each has its advantages and disadvantages. Detailed process-based models are often highly 

complex, aiming to incorporate many biological processes (e.g. demographic parameters which vary 

in different environments, interspecific interactions and evolutionary processes). As such, they are 

more biologically realistic representations with the potential for more accurate predictions. However, 

the cost of this complexity is that many more parameters need to be estimated, requiring significantly 

more data to calibrate models. When one considers the total numbers of species that one could 

potentially be interested in for conservation ecology (e.g. c. 70,000 in the UK, which is a relatively 

species-poor country; UK Species Inventory, 2014; Gurney et al., in press), then it becomes clear that 

such data-hungry models are impractical, unless they can be shown to produce general responses that 

are representative of many other species. At the other end of the spectrum, extrapolative techniques or 

simple correlative models, which consider species’ responses to a single driver, may be too simplistic 

and ignore key interactions between drivers. This lack of mechanistic understanding behind species 

responses can mean that predictions are inaccurate if drivers change in non-linear ways over time. To 

identify a practical way forward, again, the theory of the ‘middle way’ may help up to reconcile these 

extremes. Methods are needed which balance the complexity needed to make robust predictions with 

the feasibility of model parameterisation given data availability. The methods in the middle rows of 

Table 1 are most likely to achieve this balance and produce reliable forecasts of environmental change 
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for many species in order to inform conservation responses. These include phenomenological models 

and mechanistic models. In practice, successful models may contain a combination of both the above 

approaches, with well known biological processes specified by mechanistic relationships but with 

flexibility for unknown relationships to be estimated from the observed data (Dormann et al., 2012). 

 

Rigour in predictive modelling 

In addition to selecting the most appropriate statistical modelling framework, the modelling approach 

must be as rigorous as possible, in order to ensure accurate predictions. This is especially important if 

our forecasts are used as evidence to implement prophylactic management to avert environmental 

damage. Such management options may have substantial costs and therefore need to be well 

evidenced. For example, setting aside semi-natural habitats to maintain pollinating insects under 

climate change has costs in terms of reduced land for cropping and so strong evidence is needed to 

convince stakeholders of the best land management solution.  

     To select the most appropriate statistical model, the goodness-of-fit to historic data of alternative 

models is usually assessed. But this criterion alone can lead to over-parameterised models that are 

poor at predicting future environmental states. Instead, model validation is necessary using data 

independent of that used for model fitting. For example, Figure 3 shows how 20 years of historic 

monitoring data can be split into 15 years for model fitting (of abundance changes in relation to 

weather variables) and five for model testing. This can prevent overfitting and allow better predictions 

of subsequent abundance (demonstrated here by hindcasting to the most recent 13 years of data). In 

the absence of time series data, space-for-time substitutions are the next best option to validate 

models; for example, using the model fitted to data in one area to predict environmental state in a 

different area. There can be problems with this approach, however, as a number of different correlated 

variables may change across spatial gradients (Isaac et al., 2010; White & Kerr, 2006). 

       Despite the importance of validation, yet because of its difficulty, a number of current modelling 

frameworks are being used to predict future environmental states with limited validation of the 

models. This is especially evident in the recently emerging field of ecosystem service modelling (e.g. 
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Bateman et al., 2013; Nelson et al., 2009; Nelson et al., 2010; UK NEA, 2011). There is clearly a 

danger in implementing management options with limited evidence. Under such circumstances an 

adaptive management approach is highly appropriate, where the management actions predicted as 

most suitable are taken but with regular monitoring to assess their effectiveness. Past environmental 

policies have often tended to be inflexible, however, leading to ‘lock-in’ to a set of options with little 

consideration of adaptive management. For example, agri-environment schemes put in place in the 

UK to prevent biodiversity declines in agricultural landscapes were based on synthesis of the evidence 

base for the effectiveness of different management options. Over £400M per year is spent on these 

schemes in England (Natural England, 2009), yet the budget to monitor the effectiveness of these 

schemes (and validate the predictions of their effectiveness) is a very small percentage of this (less 

than 1%). With this and many other environmental policies, when seen in the context of ecological 

forecasting and its validation, there is a strong argument for rebalancing spending on action versus 

monitoring and analysis. 

 

Data for predictive models and the importance of biological recording 

As discussed above, a wide range of environmental drivers can impact species. Models of these causal 

relationships (and the potential interactions between drivers) will necessarily have several estimated 

parameters, even when reduced to the subset of drivers with the largest impacts. Therefore, substantial 

datasets on species populations and measured values of drivers are needed for model calibration and 

validation. These data may come from mesocosm or field experiments, or ‘natural experiments’ 

comprising the monitoring of natural populations over broad environmental gradients. Mesocosm 

experiments consider responses to a limited range of manipulated variables under controlled 

conditions. They are useful for testing theory and stimulating further research (Benton et al., 2007), 

although the ability of these systems to produce species responses similar to those in the real world is 

questionable (Carpenter, 1996).  Field experiments comprise a selected range of treatments to 

consider the effects of different drivers but at a larger scale and in more realistic settings subject to 

‘noise’ from other unmeasured environmental drivers (Carpenter, 1998). Experimental manipulation 
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is the ideal way to test ecological theories (including those pertaining to relationships between drivers 

and population responses), but field experiments are very time consuming and expensive. In addition, 

even in large-scale experiments, the limited spatial and temporal scale means that patterns operating at 

large scales may be missed (e.g. Wiens, Rotenberry & Van Horne, 1986). The alternative to designed 

experiments is to exploit natural environmental gradients and large-scale perturbations (Carpenter, 

1990). This requires monitoring of species responses, ideally with high levels of spatial and temporal 

replication which are necessary to maintain statistical power in the face of combined variability across 

wide range of environmental variables. Examples of such large-scale monitoring include the 

collection of biological records (georeferenced records of species presences), such as those held by 

the Biological Records Centre (Pocock et al., this volume), the broad utility of which are 

demonstrated by the articles within this issue (Chapman et al., this volume; Gillingham et al., this 

volume; Mason et al., this volume; Powney et al. this volume; Roy, this volume; Roy et al., this 

volume; Purse and Golding, this volume; Sutherland et al., this volume). Abundance data such as 

those represented in species monitoring schemes (e.g. the UK Butterfly Monitoring Scheme data used 

in this paper), are even more useful in allowing forecasts of abundance rather than just species 

presence, although there is evidence that distribution data can predict abundance to a limited degree 

(Elmendorf & Moore, 2008; Oliver et al., 2012b; VanDerWal et al., 2009).  Monitoring data provide a 

crucial resource for ecological forecasting because of the large spatial and temporal extent that they 

can cover. This is facilitated by the use of trained volunteers that help to reduce the total costs of 

monitoring schemes. Experimental approaches, although much better for well-controlled tests of 

theory and testing management techniques, are often too limited in their spatial coverage to 

adequately inform ecological forecasts, at least beyond the location of the experiment. For example, 

species responses to weather conditions (a major driver of population variation across most species) 

can be assessed using data from national monitoring schemes (Eglington & Pearce-Higgins, 2012; 

Roy et al., 2001; WallisDeVries, Baxter & Van Vliet, 2011). In addition, because weather effects are 

modified by topography and habitat type not just at the local scale but also by the structural 

composition of surrounding landscapes (Oliver et al., 2010; Oliver, Brereton & Roy, 2012), then it is 
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necessary to empirically model these effects in order to make general forecasts beyond the responses 

of a single site. Fortunately, a number of countries have well established species monitoring schemes 

(e.g. the long history of natural history recording in Britain), and protocols for a number of currently 

unstudied species groups and new monitoring schemes in other countries are currently under 

development. International initiatives are also at work to synthesise monitoring data (e.g. the global 

Biodiversity Observation Network, GEOBON). 

 

Conclusion 

Overall, this review has highlighted the necessity of ecological forecasting in order to avert 

environmental damages which would occur under a solely reactive management approach. 

Extrapolating from historic environmental states will often be unsuccessful because drivers and 

pressures themselves change in non-linear ways and interact in their impact. New pressures on 

systems, such as those from emerging technologies, may also arise. The complexity of causal 

pathways between drivers, pressures and environmental state is effectively endless, so a pragmatic 

approach is needed to focus on a subset of pathways that have the greatest impact on system state. 

Additionally, incorporating possible reponse options in our models will allow us to assess the 

effectiveness of potential solutions to environmental damage. In terms of modelling techniques, a 

compromise between complexity (and potential biological realism) and feasibility given data 

availability will be necessary, but there is also a key importance in validating models to ensure that 

forecasts can be made with reasonable confidence. Although ecological forecasting is very difficult, it 

is also highly necessary. Much ecological science has tended to focus on understanding current and 

historic patterns and trends. However, there is a clear need to step out of our comfort zones and 

develop ecological forecasts in order to inform enviromental management effectively. 
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Figure legends 

 

 

Figure 1, The ‘DPSIR’ framework with an example of drivers, pressures, state and impacts in 

capitalised font. 

 

Figure 2, Extrapolations of population abundance for three butterfly species: The Ringlet Aphantopus 

hyperantus (panels a & b), Marsh Fritillary Euphydryas aurinia (panels c & d) and Silver Spotted 

Skipper Hesperia comma (panels e & f). Left hand panels show the UK national log collated index of 

abundance with a linear trend fitted to the data from 1980-2000 and used to predict abundance from 

2001 onwards (open circles). The right hand panel shows the absolute difference between predicted 

and observed values. 

 

Figure 3, Observed (filled circles) and predicted annual abundance for three butterfly species: 

Melanargia galathea (panels a and b), Celastrina argiolus (panels c and d), and Lasiommata megara 

(panels e and f). Left hand panels show multiple regression models fitted to log abundance indices in 

a model calibration period from 1980-1995. The models include the three most important weather 

variables for each species (Palmer et al., submitted), and the previous years’ density as explanatory 

variables. Each model is then used for hindcasting abundances in the calibration period using the 

observed density the previous year along with the observed weather variables (open circles). The 

goodness-of-fit (R2) of the model is shown in the top left corner of each panel. Also shown are 

free running abundance predictions for a validation period from 1995-2000 (open triangles) and a 

‘forecasting’ period from 2000-2012 (crosses). The mean absolute error of predictions is given in the 

top right hand corner of each panel. The right hand panels b,d, and f are similar but the models are 

fitted to only the three most important weather variables for the species without a density dependence 

term.
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Table 1, Different statistical methods for ecological forecasting 

 

Forecasting method Description Example 

Extrapolation Descriptive statistical model of trend in system state 

variable 

Predicting species geographic range margins from past rates 

of change 

Simple correlative models Statistical relationship between driver or pressure 

variable(s) and sytem state variable 

Predicting species distribution from relationships between 

occurrence and climate variables 

Phenomenological 

models* 

Statistical relationship between driver or pressure and 

intermediate demographic processes which combine to 

determine state 

Predicting species abundance from climate impacts on 

population growth, mortality and dispersal  

Mechanistic model * Relationship between driver or pressure and intermediate 

demographic processes based on prior biological 

understanding 

Predicting species abundance under climate changes based on 

physiological relationships between development rates and 

lethal temperatures 

Individual-based models Behavioural rules used to model individual decisions, 

often in combination with phenomological components 

relating to demography 

Predicting impacts of climate change on individual 

movements and how this scales up to species range margin 

shifts 

*Note that this dichotomy is not strict and some models combine both phenomenological and mechanistic components 
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