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Abstract

Species distribution models (SDM) are increasingly used to understand the fac-

tors that regulate variation in biodiversity patterns and to help plan conserva-

tion strategies. However, these models are rarely validated with independently

collected data and it is unclear whether SDM performance is maintained across

distinct habitats and for species with different functional traits. Highly mobile

species, such as bees, can be particularly challenging to model. Here, we use

independent sets of occurrence data collected systematically in several agricul-

tural habitats to test how the predictive performance of SDMs for wild bee spe-

cies depends on species traits, habitat type, and sampling technique. We used a

species distribution modeling approach parametrized for the Netherlands, with

presence records from 1990 to 2010 for 193 Dutch wild bees. For each species,

we built a Maxent model based on 13 climate and landscape variables. We

tested the predictive performance of the SDMs with independent datasets col-

lected from orchards and arable fields across the Netherlands from 2010 to

2013, using transect surveys or pan traps. Model predictive performance

depended on species traits and habitat type. Occurrence of bee species special-

ized in habitat and diet was better predicted than generalist bees. Predictions of

habitat suitability were also more precise for habitats that are temporally more

stable (orchards) than for habitats that suffer regular alterations (arable), partic-

ularly for small, solitary bees. As a conservation tool, SDMs are best suited to

modeling rarer, specialist species than more generalist and will work best in

long-term stable habitats. The variability of complex, short-term habitats is dif-

ficult to capture in such models and historical land use generally has low the-

matic resolution. To improve SDMs’ usefulness, models require explanatory

variables and collection data that include detailed landscape characteristics, for

example, variability of crops and flower availability. Additionally, testing SDMs

with field surveys should involve multiple collection techniques.

4426 ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

http://www.alarm-project.ufz.de
http://www.alarm-project.ufz.de
http://www.STEP-project.net
http://www.STEP-project.net


Introduction

Pollinators are responsible for the pollination of over

80% of flowering plants (Ollerton et al. 2011), and the

vast majority of global food crops benefit from animal

pollination, with approximately half of these crops being

highly dependent (Klein et al. 2007). While the honeybee

(Apis mellifera L.) is considered the most economically

valuable pollinator species for agriculture, wild pollinators

can be more efficient per individual in enhancing the

yield and quality of many crops (Klein et al. 2007; Gari-

baldi et al. 2013). Yet, their diversity has declined in Eur-

ope (Biesmeijer et al. 2006; Dupont et al. 2011;

Bommarco et al. 2011; Carvalheiro et al. 2013) and else-

where (Bartomeus et al. 2013; Martins et al. 2013). These

declines have been attributed to a multitude of factors,

such as land-use intensification, climate change, alien spe-

cies, and pests and pathogens (Potts et al. 2010; Vanber-

gen and The Insect Pollinators Initiative 2013). Several

pollinator-friendly practices have been, and continue to

be, applied to provide seminatural and natural resources

within agricultural landscapes (Kleijn et al. 2011; Gari-

baldi et al. 2014). However, as wild pollinators often

require specific environmental conditions (Cane et al.

2006), the efficiency of such practices can depend on the

characteristics of the surrounding landscape and other

environmental variables (Scheper et al. 2013). Under-

standing which environmental factors determine where

wild bees occur in the landscape is essential for the suc-

cess of such targeted interventions.

Species distribution models (SDMs) can help in under-

standing how the distribution of and decline in wild bee

species is regulated by land-use and climate variables

(Elith and Leathwick 2009). Due to the increase in com-

puter power and data availability, species distribution

modeling is becoming a widely used ecological tool in

studies of biodiversity, predicting occurrence of species in

unknown areas, and predicting future occurrences (Frank-

lin 2013). These predictions can help prioritize areas in

need of conservation interventions and estimate the

impact of environmental change, such as human land-use

changes (Guisan and Thuiller 2005; Polce et al. 2013).

However, while SDMs are generally based on haphazardly

collected data of varying spatial and temporal scale (e.g.,

museum collection data) and aggregated over a number

of years, they are often used to test hypotheses at finer

scales and at particular moments in time (Guisan and

Thuiller 2005). The efficacy of SDMs for these purposes is

therefore a reason of concern.

The importance of testing the accuracy of SDMs is

widely recognized (Elith and Leathwick 2009). However,

such accuracy tests often use subsets of the same collec-

tion data used to build the model. These tests violate the

independence expected between training and testing data

(Bahn and McGill 2013). Additionally, these tests require

a large number of collection points for the data partition-

ing to be valid (Allouche et al. 2006; Fawcett 2006). Test-

ing the models by collecting independent presence data is

the ideal approach, but is rarely applied due to logistic

constraints, particularly when dealing with highly mobile

organisms (Evangelista et al. 2008; Peltzer et al. 2008).

Therefore, for many animal species, it is uncertain

whether SDMs can accurately predict species presence in

specific locations, and hence, how useful and reliable the

results can be in guiding policy for the protection of bio-

diversity, or estimating the presence of economically valu-

able species.

In this study, we test the performance of SDMs in cor-

rectly predicting wild bee occurrences from recent field

surveys and how this varies between species and land-

scape. As the effects of disturbance and fragmentation

depend on sociality, body size, and nesting behavior of

bees (Bommarco et al. 2010; Williams et al. 2010; Brittain

and Potts 2011), we expect the performance of the SDMs

to depend on these traits. Previous studies show that spe-

cialized, plant and amphibian species, with specific habitat

requirements, are more accurately modeled (Evangelista

et al. 2008; Peltzer et al. 2008; Newbold et al. 2010), and

we hypothesize that the bees specialized in habitat and

feeding will have higher habitat suitability predictions for

their occurrences than generalist, widespread species.

Additionally, we expect that rarer species will have higher

predicted habitat suitability due to the reduced geographi-

cal range they usually occupy (Franklin et al. 2009; Rebelo

and Jones 2010). Finally, as the SDMs will be based on

species records with variable spatial and temporal preci-

sion, we hypothesize model predictions in agricultural

habitats which have a greater temporal stability (e.g.,

orchards) will have higher suitability values than for agri-

cultural areas subjected to accentuated temporal changes

(such as crop rotation) or subjected to ephemeral estab-

lishment of areas rich in flower resources (e.g., wildflower

strips).

Methods

Species distribution model development

This study focuses on the Netherlands, a region for which

we have access to relatively extensive and detailed data on

species distributions, land use, and climate. The bee col-

lection data were provided by European Invertebrate Sur-

vey (Peeters et al. 2012). We used records collected since

1990, and due to the number of available explanatory
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variables, we included species for which we had more

than 30 recorded observations. This led to a total of 193

species across 25 genera (from a total availability of 304

species in 30 genera). A total of 43 989 observations were

used to model the species’ distributions. The number of

collection points per species modeled ranged from 31

(Bombus cryptarum Fabricius, Lasioglossum pallens Brull�e,

and L. rufitarse Zetterstedt) to 1862 (B. pascuorum

Scopoli).

We modeled the distribution of these 193 species across

the Netherlands using R (R Core Team, 2012) with pack-

age biomod2 (Thuiller et al. 2009) and the species distri-

bution modeling algorithm Maxent (Phillips and Dud�ık

2008). We chose Maxent because it has previously per-

formed well on similar data for a variety of evaluation

measures and is robust against overfitting (Phillips et al.

2006; Aguirre-Guti�errez et al. 2013). The models were

constructed with the BIOCLIM climate variables obtained

from WORLDCLIM database (Hijmans et al. 2005), and

land-use variables obtained from the Dutch rural land-use

file version six (Hazeu et al. 2012) and the TOP10NL

(Kadaster, 2012). The original resolution of the land-use

variables was 25 9 25 m; to match the coarser resolution

of the bee collections and climate data, we rescaled the

land-use data to 1 km² by calculating the percentage

cover (i.e., percentage of 25 9 25 m cells) of each land-

use class within each 1 km2.

Some precipitation and temperature variables for differ-

ent parts of the year (i.e., warmest, coldest, and wettest

quarters of the year) were strongly correlated (Pearson’s

pair-wise correlation coefficient >0.7). In these situations,

we selected the variable thought to have a greater impact on

the distribution of bees, such as the variables related to the

periods when bees are most active, for example, the warm-

est quarter. To minimize the overall number of explanatory

variables in the model and avoid problems of overfitting,

we ran initial MAXENT models for each species with all

environmental variables available (27 variables) and then

looked at the variable importance value of each variable

across all species. We then selected the variables that were

consistently among the three most important variables for

each species and removed those that were not. The final

SDM incorporated thirteen variables: seven land-use vari-

ables, five climate variables, and elevation (see Table S1).

Maxent requires a background sample to be selected

from the covariates included in the model (Elith et al.,

2011; Phillips et al. 2009). We used target-group sampling

to select our background points (Phillips et al. 2009;

Mateo et al. 2010). We specified that this background

sample could only be selected from areas where wild bee

species have been found since 1990. This approach is

more objective and realistic than taking the background

sample from sites that have not been sampled, accounting

for potential sampling bias (Phillips et al. 2009; Elith

et al. 2011), and provides more accurate results (Mateo

et al. 2010). We ran the model 11 times for each species:

10 times with random subsets of 80% of the data and

once with 100% of the data. Using a common procedure

of validation of SDMs, we then used the remaining 20%

of the data to produce area under the curve (AUC) val-

ues, which is a measure of the proportion of instances

correctly predicted against the proportion of absences

incorrectly predicted as presences (Jim�enez-Valverde

2012). All species models had an AUC of at least 0.6.

We validated the full models (run with 100% of the data)

with independent datasets collected during field surveys

(see methods below). Model output consisted of a habitat

suitability score between 0 and 1 for each species per

1 km2, with 0 indicating not suitable and 1 most suitable.

Field surveys

The data used to test the predictive performance of the

SDMs were collected from four independent studies, details

of which are described below (for site locations see

Figure S1). Bee species collected and identified to species

level were used to test the models. The different studies

were independent of each other, data being gathered in dif-

ferent time periods, by different collectors, and using a sys-

tematic survey across several sites and over short time

periods. They were experimentally set-up to test particular

research questions associated with specific farm types and

habitats: arable oilseed rape fields and associated field mar-

gins; arable fields with wildflower strips, and apple and pear

orchards. While these agricultural landscapes do not repre-

sent Dutch farmland as a whole, they cover important types

of agricultural landscape with different levels of temporal

stability. Orchards are perennial crops maintained for sev-

eral years; arable fields have annual crops, with crop species

rotating every 1 or 2 years. Measures to enhance biodiver-

sity in arable fields (permanent field margins vs. annual

wildflower strips) will also interfere with the temporal sta-

bility of the landscape. The studies also differed with

respect to the sampling methods used.

Furthermore, the SDMs presented here are indepen-

dently validated based on data from agricultural sites

only. In order to fully understand the efficacy of SDMs

for modeling wild bee species distributions, natural habi-

tats can also be included, in which bee diversity is much

larger than in agricultural habitats (Ricketts et al. 2008).

Arable oilseed rape fields and field margins
(sampling method: Transect)

Data were collected in 2011 and 2012 in 16 arable oil

seed rape fields and surrounding boundaries located in
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the eastern part of the Netherlands. Bee surveys were

conducted along 150 m2 transects (15 min pure collect-

ing time per transect). When sampling within fields, two

transects of 1 m 9 150 m were used, one located at the

edge of the field and one located in the center of the

field. Field boundary transects varied in size depending

on the length and width of the field boundaries (but

were in most cases 2 m 9 75 m). Oil seed rape fields

were surveyed twice a year during oil seed rape flower-

ing, and the field boundaries were surveyed four times a

year: twice during and twice after the flowering period

of the oil seed rape. Bees were collected using net and

hand trapping and identified to species level in the labo-

ratory.

Arable fields with wildflower strips (sampling
method: Pan Trap)

In 2011 (first season of wildflower strips) and 2012 (sec-

ond season), data were collected on 68 arable fields

throughout the Netherlands using pan traps. Wildflower

strips had been established along the edge of each arable

field. Each wildflower strip was 3–9 m in length. The ara-

ble fields consisted of potato, sugar beet, or cereal crops.

Pan trapping was conducted once at each site. All pan

traps were yellow and four were placed at each site, in a

square formation two traps in the wildflower strip and

two traps in the field each 20 m apart. Each set of pan

traps was left for a 24-h period. All species of insects col-

lected in the pan traps were identified, the majority to

species level.

Apple and pear orchards (sampling method:
Transect)

Six apple and six pear orchard locations were sampled in

2010 and 2011, and 15 apple orchards were sampled in

2013. All sites were located more than 3 km apart within

the province of Gelderland in the Netherlands. Flower vis-

iting bees were surveyed using transect walks. Each orch-

ard was surveyed twice per year during blooming, once in

the morning and once in the afternoon with at least three

and at most 7 days separating surveys. In each orchard,

bees were surveyed using a single transect between two

rows of trees along the length of each orchard with the

transect subdivided into 25-m-long plots (mean number

of plots per orchard � SE: 8.5 � 1.0 for apple in 2011

and 2012; 9.7 � 0.5 for pear in 2011 and 2012; exactly 12

for apple in 2013). Each transect plot was surveyed during

a 10-minute period. All flower visitors were collected by

net and hand trapping. Easily recognizable species were

generally identified in the field; all other species were col-

lected and identified in the laboratory.

Apple Orchards (sampling method: Pan Trap)

In 2013, field surveys were performed at nine apple orch-

ards throughout the Netherlands. Field surveys of bee

diversity were conducted using pan traps (Westphal et al.

2008). Each farm was located within a 1 km² square land-

scape sector that corresponded to the scale and position-

ing of our SDM. Pan trapping was conducted on three

separate occasions: before, during, and after apple flower-

ing. For each 1 km² site, eight pan traps were positioned,

four within the Elstar cultivar (one at each corner) and

four located outside the orchard but within the 1 km²
zone. Each pan trap set consisted of three pan traps (yel-

low, blue, and white) and was left for a period of 24-h.
Bees present in the pan traps were separated from other

insect groups and identified to species level.

Testing the model with independent
datasets

In this project, the performance of the SDM is assessed as

the habitat suitability (0–1) provided by the SDM for the

areas where individual wild bees were collected during

independent surveys. Suitability values can be considered

as a percentage of chance that a species will be present in

the area (see the interpretation of Elith et al. (2011) of

the MAXENT logistic output). Therefore, we consider the

SDMs with higher habitat suitability values for collected

occurrences to have superior predictive performance. Fur-

thermore, the habitat suitability value contains more

information than the usual binary (presence or absence)

classifications based on specificity and sensitivity calcu-

lated statistics (Bahn and McGill 2013). We analyzed the

predictive performance of the SDMs only for species that

were collected during the independent field surveys. We

did not analyze predictive performance for species not

found during the field surveys as we cannot assume that

that absence during the survey is indicative of true

absence from the site.

To test whether the predictive performance of SDMs

depended on species traits, we divided the 56 nonclepto-

parasite species collected in our field studies into trait

groups (52 species were included in the final analysis; we

removed four species, which were found only in forest

edges near oil seed rape fields and not in either orchards

or arable fields [See Table S2]). We considered six ecolog-

ical traits from the “European bee traits database” (estab-

lished by ALARM, www.alarm-project.ufz.de, and

developed by STEP, www.STEP-project.net): habitat spe-

cialization, (continuous scale from 1 to 8 related to the

number of habitat types a species occurs in, specialist to

generalist), feeding specialization (oligolectic, feeding on

one plant species or polylectic, feeding on multiple plant
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species), body size (intertegular distance of females, where

the wings join the thorax), sociality (solitary or social;

social species included eusocial as well as primitively

eusocial species, all others were classified as solitary),

nesting habit (above or belowground, belowground spe-

cies included any renters or excavators which used nests

in the ground all others were considered aboveground),

and length of flight period (period active during the year;

from 8 to 36 weeks). We identified trait groups using the

Redundant Hill & Smith dimensional scaling technique.

This method was chosen as it allows for concurrent analy-

sis of both categorical and continuous ecological trait data

by defining the categorical variables by the means of the

continuous variables (Hill and Smith 1976; Barnagaud

et al. 2014). The analysis was conducted using R package

ade-4, which first uses principal component analysis to

process the continuous variables and correspondence

analysis for the categorical variables and then the Hill and

Smith analysis to compare the relationship between the

two (Dray and Dufour 2007). Four distinct species groups

were selected (groups A–D; see Table 1; Fig. 1). The three

most important variables involved in the analysis were

nesting habit, feeding specialization, and sociality. Each

group contained at least 5 species (See Table S2). We can

typify group A as polylectic, habitat specialists; group B

as small, polylectic, habitat generalists; group C as oligo-

lectic, habitat specialists; and group D as large, polylectic,

habitat generalists (consisting of Bombus species only).

Two species were not clearly allocated to one of the above

four groups Megachile ligniseca (Kirby) and M. versicolor

(Smith, F.). However, they were classified as part of group

C, with whom they share the most traits (Fig. 1).

We tested whether the habitat suitability predicted by

our SDMs for these 52 species varied between trait group

(A–D) and habitat (orchard or arable field), using linear

mixed effect models (LMM), with R package lme4 (Bates

et al. 2013). The sampling method (transect vs. pan traps)

used in the field surveys was also included as an explana-

tory variable in the LMM, to account for any possible

methodological bias. Due to the nested structure of the

data, multiple collection sites within separate studies, we

included site within study as a random effect variable.

Additionally, as the species collected were only a subset of

all the species modeled for the Netherlands, we included

species as a random effect variable.

Detailed collections of multiple individuals in the same

area are required to predict the distribution of species

abundance alongside habitat suitability predictions (Van

Couwenberghe et al. 2013). Because of its scope and

Table 1. Trait summary of the four bee species groups selected using the Hill and Smith method of multiple correspondence analysis (MCA),

based on six biological traits across 2 axis.

Group

Habitat

specialization

Diet

specialization

Body

size Sociality

Nesting

habit Flight period

Dominant

genera

A (26) – Small intermediate specialists Specialists Polylectic Small Solitary Below Short Andrena

B (12) – Small generalists Generalists Polylectic Small Mixed Below Long Lasioglossum

C (11) – Highly specialized bees Specialists Oligolectic Intermediate Solitary Mixed Short N/A

D (7) – Large generalists Generalists Polylectic Large Social Mixed Long Bombus

Numbers in brackets refer to the number of species selected in each group. Habitat specialization, continuous variable, representing the number

of habitat types, from 1 (specialist) to 8 generalist. Diet specialization, factor oligolectic or polylectic (oligolectic, feeding on one plant species or

polylectic, feeding on multiple plant species). Body size, continuous, intertegular distance of females (mm), sociality, factor, solitary or social. Nest-

ing habit, factor, below, or aboveground. Flight period continuous, 4–36 weeks. Dominant genera, the genera that makes ≥70% of the species

diversity in that group.
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Figure 1. Results of Hill & Smith multivariate approach based on six

biological traits across 2 axes, (RS1 and RS2). Four groups selected.

Groups A-D (See Table 1). RS1 is positively directed by oligolectic,

solitary, below ground bees. RS1 is negatively directed by social,

habitat generalist aboveground bees with long flight periods. RS2 is

positively directed by large, oligolectic, social bees which nest

aboveground. RS2 is negatively directed by polylectic below ground

nesting bees (see Table S4). Each number refers to a bee species

listed in alphabetical order (see Table S2).
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resolution, this was not feasible for our SDM. Neverthe-

less, we included the number of records used to build

SDMs in the analysis as a proxy for species rarity and

probability of detection.

We compared all possible combinations of the variables

described above, and their two-way interactions, and

selected the most parsimonious model based on the low-

est Akaike information criterion, corrected for finite sam-

ple size (AICc). We also compared the mixed effect

models with the Bayesian information criterion (BIC),

which punishes extra terms more harshly than the AIC

and AICc (Burnham and Anderson 2002).

Results

Testing the model with independent
datasets

A total of 446 individuals of 52 species (excluding clepto-

parasites) were collected at 133 sampling locations and

were used to analyze the predictive performance of our

SDMs. The abundance and richness of wild bees varied

between habitat types, species trait groups, and sampling

technique (see Figures S2 and S3).

The habitat suitability values obtained from the SDMs,

for each of the occurrences collected, varied between the

different types of habitat where the collection took place,

and also among the different species trait groups

(Table 2, Fig. 2). Although the number of records dif-

fered significantly between groups (see Figure S4), the

habitat suitability of the model was not significantly

affected by this variable (ANOVA, chi-square test,

P = 0.13). The sampling method used to collect the inde-

pendent wild bee occurrences significantly affected the

measure of SDM habitat suitability overall. Moreover, sig-

nificant interactions were found between sampling and

group and sampling and habitat type; the effect of habitat

type decreased for transect collections and the effect of

species trait groups was also lower for transect collections

than pan trap collections (see Table 2).

Data were available for all groups in each of the habitat

types and collection techniques except group C. Species

of this group were not collected in pan traps within orch-

ards (Fig. 2B). Overall, the occurrences of highly special-

ized bees (group C) had higher average suitability values

than the other three groups (Fig. 2); significantly more

than group A and group B species (P < 0.036 and 0.037,

Fig. 2, See Table S3). Furthermore, the modeled habitat

suitability values for species occurrences from group D

were significantly lower when comparing transects with

pan traps (P < 0.001, See Table S3).

Overall the bee species collected in orchard habitats

had higher predicted habitat suitability than those col-

lected in arable field habitats (Table S3). This result was

particularly accentuated for bees collected with pan traps

(Fig. 2A and B). Furthermore, within orchard sites, the

pan trap collected bees were more accurately predicted

than the transect-collected bees (Fig. 2B and D).

Discussion

Field surveys are rarely used to test species distribution

models (SDM), particular those investigating spatial pat-

terns of highly mobile animals such as bees (Fielding and

Table 2. Effect of species trait group (G), sampling technique (S), and landscape type (L) on species distribution model predictive performance

(habitat suitability of species occurrences). Number of observations was 436 of 52 unique species. P-values were obtained from likelihood ratio

tests where deviance between models with the term and without the term where compared. n.s = P > 0.05. The symbol “–” represents a variable

not included in the model. All interactions where tested and those which contributed significantly to any of the models remained. Random terms

(all models): “1 | Study/Site,” “1 | Species”.

Response Variable G S L G:S G:L S:L DF AICc ΔAICc

Accuracy

Model 1 (Best Model) 0.042 <0.001 0.1 <0.001 – 0.025 422 5636.1 0.0

Model 2 0.042 <0.001 0.1 <0.001 0.3 0.035 419 5638.9 2.79

Model 3 0.044 <0.001 0.1 <0.001 – – 423 5639.0 2.9

Model 4 0.05 0.001 – <0.001 – – 424 5639.5 3.39

Null Model – – – – – – 431 5685.8 49.64

BIC ΔBIC

Model 1 (Best Model) 0.05 0.001 – <0.001 – – 424 5687.7 0.0

Model 2 0.044 <0.001 0.1 <0.001 – – 423 5691.2 3.47

Model 3 0.042 <0.001 0.1 <0.001 – 0.025 422 5692.2 4.51

Model 4 – 0.001 – – – – 430 5701.4 13.71

Null Model – – – – – – 431 5706.0 18.31
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Bell 1997; Jim�enez-Valverde et al. 2008). We analyzed the

SDM habitat suitability scores of independent wild bee

occurrences, and we show that the performance of SDMs

to predict wild bee occurrences in field surveys depends

on species traits and on the characteristics of the target

habitat and sampling technique. Below we discuss the

implications of these findings and the limitations of our

study.

Variation of model predictive performance
among different species trait groups

Wild bee species with different traits can have contrasting

responses to environmental conditions. Specialist bees

have been shown to be more strongly affected by agricul-

tural intensification, habitat loss, and fragmentation than

generalists (Bommarco et al. 2010; Williams et al. 2010).

Habitat and feeding specialists are generally more

restricted in their range of suitable habitats, while large,

generalist bees such as bumblebees have greater mobility

and can meet their resource requirements in a wider

range of habitats (Hanley et al. 2011). This probably

explains the better model performance for highly special-

ized species, indicating that SDMs are better able to dis-

criminate their more restricted habitats. Similar patterns

have been demonstrated for other taxa (Evangelista et al.

2008; Peltzer et al. 2008; Newbold et al. 2010; Trumbo

et al. 2011). This finding suggests that while the 1 km²
resolution used in this study is appropriate for predicting

the distribution of specialized bee species, a more detailed

sampling data or different set of predictor variables would

likely be needed to obtain better predictions for more

generalist species. Furthermore, the differences between

model predictive performance for specialized and general-

ist bees suggest that the SDM may be more useful for

conservation purposes focused on more specialized spe-

cies which are more likely to suffer declines (Biesmeijer

et al. 2006), than for predicting crop pollinators which

are commonly more generalist species (but see Polce et al.

2013).

Model performance varied between studies using differ-

ent sampling techniques which suggests that pan trap and

transect collections sample different parts of a bee com-

munity and that the SDMs do not predict these subsets

equally. Indeed, Cane et al. (2000) found that transect

walks sampled the bee community better than pan trap-

ping, where many abundant and specialized bee species

were absent. In contrast, Westphal et al. (2008) showed

that pan trapping and transects sampled similar species

composition, but that pan traps generally sampled more
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Figure 2. Mean and standard error of habitat

suitability for collection points of the four

species groups, in both landscape types

(Orchard and Arable) and for both sampling

techniques (Pan Trap and Transect). Group

A = small, intermediate specialists, group

B = small generalists, group C = highly

specialized bees, group D = large generalist

bees. See Table S3 for pairwise comparisons

between effects.

4432 ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Testing Projected Wild Bee Distributions L. Marshall et al.



of the wild bee community than transect surveys. How-

ever, these results are strongly limited by the intensity of

each method, the experience of the transect surveyors,

whether the pan traps are painted UV bright and whether

they were placed at vegetation height. Bumblebees (trait

group D: large generalists) showed distinct trends related

to sampling technique. The occurrences of bumblebees

collected during transects had lower predicted habitat

suitability in the models than those from pan traps. This

difference was particularly marked in arable fields which

were generally predicted in our SDM to be unsuitable

habitats, but where bumblebees were frequently detected.

Bumblebees can travel long distances and respond very

rapidly to the presence of unexpected mass-flowering

events of attractive crops, such as when annual crops like

oil seed rape start blooming (Hanley et al. 2011). How-

ever, bumblebees and other highly social species have

been shown to have higher flower and site constancy than

smaller, solitary bees (Osborne and Williams 2001; Gegear

and Laverty 2004) and therefore may be less likely to be

caught in pan traps. The use of multiple collection tech-

niques for independently testing the performance SDMs

is therefore essential (see also Westphal et al. 2008).

Variation of model predictive performance
among different landscapes

Overall, the wild bees collected in orchards were predicted

with significantly higher suitability values than the species

collected in arable fields, particularly when using pan

traps and for small, mainly solitary bees (groups A and

B). In this study, the category “arable fields” includes a

variety of crops, some having periods of intense flowering

very attractive to bees (e.g., oil seed rape, Delaplane and

Mayer 2000), while others are less attractive to bees (e.g.,

sugar beet and wheat, Delaplane and Mayer 2000). Addi-

tionally, in annual crop fields, the type of crop is fre-

quently rotated, and so continuously changes between

years (Stoate et al. 2001), and several were subjected to

recent changes as a result of agri-environment schemes

(AES) that involved the establishment of field margins or

annual wildflower strips (Kleijn et al. 2006). These char-

acteristics make arable fields far more temporally unstable

than orchards. The species data used to build the SDMs

spans 20 years and during that time it is likely that the

arable fields have comprised a variety of crops and for

the majority of this time AES had not been implemented.

AES that increase flowering species within farmland (e.g.,

implementation of wildflower strips, establishing field

margins) also increase the time window in which flower

resources are available (e.g., Haaland et al. 2011) and pro-

vide temporary connectivity between less desirable habitat

types, for a number of insects including bees (Carvalheiro

et al. 2012; Holzschuh et al. 2013). The results suggest

that the variables used to construct the SDMs do not rep-

resent the AES or the seasonal changes in crop flowering,

which is reflected by the wild bee occurrences in other-

wise predicted unsuitable habitats.

The high heterogeneity of this landscape type combined

with a lack of spatial and temporal cover in the data used

to build the SDMs is hence a likely explanation for the

poorer performance of SDMs in arable fields in compari-

son with orchards. Again this reinforces the idea that

SDMs of this type are less suitable for predicting pollina-

tion service delivery to arable crops than for predicting

the occurrence of threatened species and their habitats.

Implications for future studies using species
distribution models

The analysis implies that the models with higher predic-

tive performance have correctly represented the ecological

niche of a species. SDMs are often used to make decisions

regarding areas of conservation importance or also in the

case of pollinators, where crops and pollinators overlap

(Franklin 2013; Polce et al. 2013). Therefore, models with

habitat suitability scores strongly correlated to temporally

independent presences will have a higher efficacy in deci-

sion making. The results of our study suggest that studies

using SDMs to predict bee species occurrences would

benefit from more specific information about landscape

type, crop type, including fine-scale vegetation and AES

data and information on flower availability within the

landscape during different seasons of the year (sampling

season) (Pearce et al. 2001). Unfortunately, such detailed

information is rarely available, and the efficacy of long-

term collection data are limited by the historically avail-

able land-use and climate information with which to

model it. However, increased thematic resolution in the

future, specifically for agricultural land use should assist

in increasing the performance for certain species trait

groups whose distributions are not accurately predicted

by the lower thematic resolution of the current models.

Temporally unstable habitats represent another difficulty

for the development of valuable SDMs. Our results imply

that a particular habitat is only suitable under certain

conditions, such as when wildflower strips are blooming

or when certain crops are flowering. As climatic and

land-use characteristics are subject to annual variation,

and as pollinators can be susceptible to small scale habitat

changes (e.g., presence of flower strips within farmland,

Scheper et al. 2013), the model data are likely to be too

coarse temporally to accurately predict the suitable habitat

of a species at a specific moment in time. Species collec-

tion data, particularly those aggregated in museum collec-

tions generally cover long time periods, whereas crop
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rotation and AES occur in the short-term. This suggests

that temporal variation between habitat and species will

remain difficult to separate in distribution models, and

habitat suitability conclusions for fine-scale landscape fea-

tures will be difficult to produce. To overcome these

caveats, SDMs need to be built with data specific to the

year and season that a species was sampled. For example,

in the Netherlands, AES are organized as regional collec-

tives. Therefore, SDMs built and tested with detailed

information from before and after the introduction of

AES landscape features can be used to model the effec-

tiveness and the changes resulting from AES and ensure

ongoing monitoring and help determine future policy

decisions.

Information on biotic interactions (e.g., bumblebee cle-

ptoparasites and bumblebee hosts) can also increase the

predictive performance of the wild bee SDMs (Giannini

et al. 2013). This suggests that where clear ecological rela-

tionships are present including biotic information should

improve the SDMs, particularly for the more generalist

species which were not adequately modeled by climate

and land use alone.

Conclusions

Species distribution models are an important tool in eco-

logical studies that can provide guidance for conservation

management action and potentially also for management

of ecosystem services. By comparing the predictions of

SDMs developed for multiple bee species with indepen-

dently collected field data, we show the performance of

such models is highly dependent on species traits and on

the spatial and temporal heterogeneity of the targeted

habitat. While our analysis has only considered wild bees

the results are not restricted to wild bees and suggest that

other mobile and functionally varied species groups

related to agricultural crops (e.g., hoverflies) may show

similar trends to what we have observed here.
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