
Representing the Arctic in Global

Surface Temperature Time Series of

Recent Climate Change

PhD in Atmosphere, Oceans and Climate
Department of Meteorology

Emma Dodd
May 2015



Declaration

I confirm that this is my own work and the use of all material from other sources has

been properly and fully acknowledged.

- Emma Dodd

Page i



Acknowledgements

First and foremost I would like to thank my supervisor Prof. Chrisopher Merchant. I have

greatly benefited from all the expertise and guidance he has provided throughout my time

as a PhD student. Thanks are also due to my other supervisors, both past and present;

Nick Rayner, Prof. Simon Tett and Dr Simone Morak. Furthermore I should thank my

monitoring committee at the University of Reading and those on my confirmation panel

at the University of Edinburgh for pointing out gaps in my knowledge.

I would like to express my gratitude to the many people whom I had the pleasure to

meet during the course of my PhD, especially those at the University of Edinburgh, Met

Office Hadley Centre, University of Reading, and the EarthTemp Network Workshops.

Thank you for your advice, constructive comments, discussions and support. I would

like to offer my special thanks to Dr. Colin Morice who provided guidance, insightful

discussion, and data in the course of producing my first paper. I am also indebted to Dr.

Josefino Comiso and Larry Stock who kindly shared their renormalised monthly AVHRR

data.

Lastly some personal thanks. Thank you to my parents, who gave me the freedom to

follow my own path, and my friends, for your company. Special thanks are due to my fellow

PhD student Emma Knowland for her friendship, support and sympathy. I hope I was

able to reciprocate in at least some small way. I would also like to thank all those who keep

up the tradition of 11am coffee in ESSC, especially Drs Claire Bulgin, Claire MacIntosh,

Kevin Pearson, Jonathan Mittaz and Owen Embury for their interesting conversation on

many topics. And finally to my partner John, my deepest heartfelt appreciation for your

unwavering support, encouragement and never failing belief in me.

Page ii



Abstract

The Arctic is an important region in the study of climate change, but monitoring surface

temperatures in this region is challenging, particularly in areas covered by sea ice. Here

in situ, satellite and reanalysis data were utilised to investigate whether global warming

over recent decades could be better estimated by changing the way the Arctic is treated

in calculating global mean temperature. The degree of difference arising from using five

different techniques, based on existing temperature anomaly dataset techniques, to esti-

mate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data

as a testbed. Techniques which interpolated anomalies were found to result in smaller

errors than non-interpolating techniques. Kriging techniques provided the smallest errors

in anomaly estimates. Similar accuracies were found for anomalies estimated from in situ

meteorological station SAT records using a kriging technique. Whether additional data

sources, which are not currently utilised in temperature anomaly datasets, would improve

estimates of Arctic surface air temperature anomalies was investigated within the reanaly-

sis testbed and using in situ data. For the reanalysis study, the additional input anomalies

were reanalysis data sampled at certain supplementary data source locations over Arctic

land and sea ice areas. For the in situ data study, the additional input anomalies over sea

ice were surface temperature anomalies derived from the Advanced Very High Resolution

Radiometer satellite instruments. The use of additional data sources, particularly those

located in the Arctic Ocean over sea ice or on islands in sparsely observed regions, can lead

to substantial improvements in the accuracy of estimated anomalies. Decreases in Root

Mean Square Error can be up to 0.2K for Arctic-average anomalies and more than 1K

for spatially resolved anomalies. Further improvements in accuracy may be accomplished

through the use of other data sources.
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Chapter 1

Introduction

1.1 Recent Global Climate Change

Warming of the Earth’s land surface was first noted by Callendar 1938, who used temper-

ature observations from 200 meteorological stations to demonstrate that air temperatures

over land had increased in the 50 years prior to that study (Hawkins and Jones, 2013).

Subsequently, climate change over all surfaces of the Earth has become a major topic

in contemporary scientific research. Many researchers and organisations are working to

quantify post-industrialisation climate change both globally and regionally, assess how

fast it is happening and what the consequences will be.

Currently it is estimated that global mean surface temperatures have risen by around

0.8K between 1850 and 2014 (Berkeley Earth, 2014; Hansen et al., 2010; Hartmann et al.,

2013; Ishii et al., 2005; Jones et al., 2012; Kaplan et al., 1998; Kennedy et al., 2011b; Kent

et al., 2013; Lawrimore et al., 2011; Morice et al., 2012; Muller et al., 2013; Rayner et al.,

2003; Rohde et al., 2013b; Smith et al., 2008; Vose et al., 2012). This warming in global

mean surface temperatures is illustrated in Figure 1.1, which shows the annual anoma-

lies of global land-surface temperatures between 1880 to 2012 from three temperature

anomaly datasets. The datasets differ slightly in their annual variations due to structural

uncertainty (the uncertainty arising from the choice of methodology) but show a common

trend of rising global average surface temperatures. This trend is also noted in regional

surface temperature datasets (e.g. Menne et al., 2009; Vincent et al., 2012).

Consistent with the observed increases in surface temperatures other changes have

been observed including: warming of the oceans and atmosphere, decreasing snow cover,

decreases in Arctic sea ice thickness and extent, almost global reductions in glacier and ice

sheet mass and extent, and sea level rise (Intergovernmental Panel on Climate Change,

2013). The Intergovernmental Panel on Climate Change (IPCC) has concluded in its

Fifth Assessment Report (AR5) that “Warming of the climate system is unequivocal,

and since the 1950s, many of the observed changes are unprecedented over decades to

millennia” (IPCC, 2013). This report also concluded that “It is extremely likely that

human influence has been the dominant cause of the observed warming since the mid-
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Figure 1.1: Annual global mean surface temperature anomaly (K) relative to 1961-1990 from
three combined land-surface air and sea surface temperature datasets; the National Oceanic
and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) Merged
Land-Ocean Surface Temperature Analysis (MLOST, Vose et al. 2012), the HadCRUT4 global
temperature anomaly dataset (Morice et al., 2012) produced by the Met Office Hadley Centre
and Climatic Research Unit (CRU) of the University of East Anglia, and the National Aero-
nautics and Space Administration (NASA) Goddard Institute for Space Studies (GISS) Surface
Temperature Analysis (GISTEMP, Hansen et al. 2010).

20th century” (IPCC, 2013) as a result of the increase in atmospheric concentrations of

greenhouse gases since 1750.

1.2 Monitoring Recent Climate Change

Post-industrialisation changes in climate are often monitored using timeseries of global

and regional mean surface temperatures, which are temperatures measured at, or near,

the surface of the Earth. Timeseries of global and regional mean Surface Air Temperature

(SAT) anomalies are one of the main metrics used to estimate recent climate change. SATs

measured at meteorological stations are largely used to generate these timeseries over land

and sea ice. For most of the ocean Sea Surface Temperatures (SSTs), collected in situ

or derived from satellite instruments, are used. This section provides an overview of the

types of surface temperatures most relevant to this thesis and how these temperatures

are observed; some of the biases, quality control and data coverage issues associated

with surface temperature records; and how surface temperatures are currently utilised to

produce datasets and timeseries of global mean surface temperature change.

1.2.1 Surface Temperatures

There are various types of surface temperature that can be employed to monitor surface

temperature change and therefore changes in climate. Surface temperatures are often
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differentiated by the type of surface they are associated with (e.g. ocean, land, ice)

and/or the height, or depth, at which they are measured as illustrated in Figure 1.2.

These temperatures are measured from sensors on various different platforms. They may

be measured in situ or derived from satellite sensor measurements. Surface temperatures,

such as those in Figure 1.2, which could be used to monitor changes in climate in the

Arctic (those most relevant for this thesis) are discussed here along with the platforms

used to measure them.

Figure 1.2: Different surface temperatures. Sea Surface Temperature (SST): at depth, mea-
sured in situ, or of the skin layer, measured by radiometers on ships or in space; Marine Air
Temperature (MAT); Land Surface Temperature (LST); Surface Air Temperature (SAT); Lake
Surface Water Temperature (LSWT); Ice Surface Temperature (IST). Fig. 1 from Merchant
et al. 2013.

1.2.1.1 Surface Air Temperature

Of the temperatures illustrated in Figure 1.2, one of the most commonly used to measure

global and regional mean surface temperature change is the SAT. SATs measured in situ

are generally used to monitor global temperature change over land and sea ice areas. They

provide the longest running instrumental records of temperature in the world; the Met

Office Hadley Centre Central England Temperature (HadCET) dataset provides monthly

temperatures back to 1659 (Manley, 1953). SAT is generally measured by shielded ther-

mometers or temperature sensors at a height of between 1.25 and 2.0m above the surface

of the Earth. These sensors may be placed in a Stevenson screen or mounted on other

measuring platforms such as a meteorological tower. In situ SATs over areas of sea ice are

measured from drifting buoys and drifting ice stations (e.g. Polashenski et al., 2011; Rigor

et al., 2000; Uttal et al., 2002). As SATs are measured at around 1.5m height they are

influenced by sensible and latent heat exchanges with the atmosphere and surface of the

Earth, radiation emitted from the Earth’s surface, solar radiation, and lateral advection.
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Radiometric surface temperatures from satellite instruments can be related to SATs, but

are not generally utilised at present for monitoring surface temperature change.

1.2.1.2 Sea Surface Temperature and Marine Air Temperature

Sea Surface Temperature (SST) and Marine Air Temperature (MAT) are the types of

temperatures used to monitor global temperature change over the oceans. SST is a

measurement of the water temperature close to the surface of the ocean, up to several

metres below the surface (Kennedy et al., 2011c). MAT is a measurement of the air

temperature above the surface of the ocean. Both SST and MAT are measured from

in situ temperature sensors on platforms such as ships, oceanographic stations, moored

buoys, drifting buoys and research vessels (Kent and Taylor, 2006; Kent et al., 2013;

Kennedy et al., 2011b; Woodruff et al., 2011). In common with SATs, SSTs and MATs

provide a long temperature record; for example, the Met Office Hadley Centre’s sea surface

temperature dataset version 3 (HadSST3) extends from 1850 to present (Kennedy et al.,

2011b,c).

SST anomalies are more frequently employed to monitor global temperature change

than MAT anomalies as SST measurements are thought to be more homogeneous (Rayner

et al., 2003). Records of MAT change are almost exclusively produced using Night-time

only Marine Air Temperature (NMAT) (Kent et al., 2013; Rayner et al., 2003). Daytime

MATs are often affected by direct or indirect solar heating, although corrected daytime

MAT records are available (Berry and Kent, 2009). MATs are also affected by biases

resulting from increasing observing platform height as the average height of ship’s decks

have increased over time (Kent et al., 2013; Rayner et al., 2003). Additionally, SST

observations are more plentiful (Rayner et al., 2003). As a result SSTs are generally

used to monitor global temperature change over the oceans as a proxy for MAT. Air

temperatures are significantly influenced by exchanges of heat and radiation from the

surface of the Earth so SST anomalies can be expected to agree well with MAT anomalies,

at least on seasonal and longer time-scales, as a result of the thermal lag of the oceans. SST

anomalies have been compared to NMAT anomalies and this has been confirmed (Rayner

et al., 2003; Kent et al., 2013). Nonetheless, MAT datasets are still produced and used

to monitor post-industrialisation climate change (Berry and Kent, 2009; Hartmann et al.,

2013; Kent et al., 2013).

SSTs can additionally be derived from infrared or microwave radiometers flown on

satellites such as the AVHRR (Advanced Very High Resolution Radiometer, e.g. Casey

et al. 2010), ATSR (Along Track Scanning Radiometer, e.g. Merchant et al. 2012) and

AMSR-E (Advanced Microwave Scanning Radiometer for the Earth observing system,

e.g. Wentz and Meissner 2000). Satellite instruments provide relatively detailed obser-

vations, with a greater spatial coverage, of the radiometric temperature of water (and

ice, see Section 1.2.1.3) surfaces (Merchant et al., 2013). Satellite radiometers observe

brightness temperatures in one or more wavelengths for the surface skin of the ocean
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(within 1 mm of the ocean surface). The SST is derived from brightness temperatures

using retrieval schemes employing either coefficients (e.g. Embury and Merchant, 2012;

Wentz and Meissner, 2000, 2007) or optimal estimation (e.g. Merchant et al., 2008). SSTs

derived from infrared instruments are more commonly used than those from microwave

instruments as their spatial resolution is higher. However, infrared instruments cannot

collect temperature information in the presence of cloud cover and their SST retrieval

schemes also have to account for factors such as viewing angle and aerosols (Embury and

Merchant, 2012; Merchant et al., 2008). Microwave derived brightness temperatures are

negligibly affected by clouds, but the microwave SST retrieval schemes do have to account

for factors including sea surface roughness, salinity and precipitation (Wentz et al., 2000;

Wentz and Meissner, 2000, 2007). It should be noted that, when comparing satellite

derived SST and in situ SSTs, a skin to bulk SST conversion will also need to be applied.

1.2.1.3 Ice Surface Temperature

Ice Surface Temperatures (IST) are a measurement of the temperature of the surface layer

of ice or snow. ISTs are not often used to monitor surface temperature change, but could

provide a useful temperature record in the sparsely observed polar regions. ISTs could be

used as a proxy for SATs over ice and snow, similar to the way SST is used as a proxy for

MATs. ISTs can be derived from in situ sensors on platforms as radiometers (Scambos

et al., 2006) and Ice Mass Balance Buoys (IMBs, Polashenski et al. e.g. 2011; Richter-

Menge et al. e.g. 2006). However, currently the majority of IST observations come from

satellites - derived either from microwave or infrared radiometers.

As with SSTs, ISTs are derived from brightness temperatures retrieved from satellite

radiometers (e.g. Comiso et al., 2003; Hall et al., 2004). Microwave radiometers are not

affected by cloud cover or polar darkness and therefore are useful for monitoring snow

and ice temperature change. However, microwaves penetrate into ice and snow beyond

the surface, so temperature information derived from these sensors is not easily relatable

to IST, and their relatively coarse spatial resolution limits their utility for studies of sea

ice temperatures (Hall et al., 2004). Therefore, IST is generally estimated using infrared

instruments such as AVHRR (Key and Haefliger, 1992; Lindsay and Rothrock, 1994) and

the MODerate-resolution Imaging Spectroradiometer (MODIS, Hall et al. 2004).

1.2.1.4 Lower Tropospheric Temperature

Lower Tropospheric Temperature (TLT) is the temperature of the lower part of the tro-

posphere; from the surface to around 3km altitude (Hartmann et al., 2013). In common

with IST, upper air temperatures are not as commonly utilised as observations of SAT

and SST for monitoring global temperature changes but could provide a useful temper-

ature record in sparsely observed areas (Chapters 5). TLT datasets derived from in situ

and satellite sources have been used to monitor upper air temperature change (e.g. Mears

and Wentz, 2009), have been included in datasets of surface temperature change (Cowtan
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and Way, 2014), and are included in the IPCC AR5 report (Hartmann et al., 2013).

TLT can be measured by in situ platforms (radiosondes or rawinsondes, Thorne et al.

2005) and estimated from satellite instruments such as the Microwave Sounding Unit

(MSU, Christy et al. 2003; Mears and Wentz 2009). Satellite estimates of TLT are es-

timated from brightness temperatures up to 12.5km height, which are heavily weighted

to be more representative of the temperature of the troposphere below 3km (Hartmann

et al., 2013; Mears and Wentz, 2009). As TLT observations include the temperature of the

atmospheric boundary layer, where temperatures are influenced by exchanges of heat and

radiation from the surface of the Earth, the temperature trends and short term variations

in upper air temperatures are highly correlated with those at the surface but are of a

greater amplitude (Hartmann et al., 2013).

1.2.2 Biases, Quality Control and Incomplete Data Coverage

There are many types of surface temperature records which can be used to monitor recent

climate change. However, measurements of surface temperatures are not consistent in

space and time. They are subject to biases, quality issues, and may be spatially and

temporally sparse.

SAT and SST data have been collected using various methods, instruments and plat-

forms since records began in the 1800s (e.g. Folland and Parker, 1995; Kennedy et al.,

2011b,c; Kent and Taylor, 2006; Kent and Kaplan, 2006; Trewin, 2010). Other changes

have also occurred such as: urbanisation (Parker, 2010; Hansen et al., 2010; Menne et al.,

2009; Trewin, 2010); increasing average ship speed (impacting engine room intake and

hull contact sensor SST measurements, Kennedy et al. 2011c); land use and land cover

change (Trewin, 2010); and the movement, addition or discontinuation of meteorological

stations (Menne et al., 2009; Trewin, 2010). These changes result in time-varying biases

which are not consistent temporally or spatially (Kent and Taylor, 2006; Trewin, 2010).

Such changes may also not have been recorded adequately, leading to uncertainty in the

measurements.

Additionally, temperature data coverage is not consistent across the globe. Figure 1.3

shows the location and length of record of all land-based meteorological stations in the In-

ternational Surface Temperature Initiative (ISTI) Stage 3 Merged Recommended Monthly

databank product (Thorne et al., 2011). The databank is a merged collation of all station

records provided for the ISTI global land surface databank project. As illustrated in Fig-

ure 1.3, meteorological stations are not evenly distributed across land areas. Some areas,

such as North America, are relatively densely populated with stations whilst in others,

such as the Arctic, station coverage is sparse. Meteorological station coverage can also be

temporally sparse. For example, Figure 1.3 shows that North America has many stations

which report for 100 years or more whereas in Antarctica many stations report for 25

years or fewer. Figure 1.4 shows the total number of in situ observations of SST in 1850,

1960, 1980 and 2011 from HadSST3 (Kennedy et al., 2011b,c). Some ocean areas, such
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as the North Atlantic are relatively well observed in most time periods whereas others,

such as the Southern Ocean are poorly observed (Figure 1.4). The areas observed and

numbers of observations also change temporally, and there are fewer observations earlier

in the temperature record (Kennedy et al., 2011c; Rayner et al., 2006). SST observa-

tions derived from satellite measurements are more spatially complete than in situ SST

observations. However, satellite derived SST observations are not temporally or spatially

complete. Thermal infrared observations cannot be used when clouds are present and

satellite SST records do not extend as far back in time as in situ measurements. Incom-

plete temporal and/or spatial coverage in both SAT and SST observations can lead to

biases and uncertainties in temperature timeseries (Cowtan and Way, 2014; Rohde, 2013).

Figure 1.3: Map of the locations and length of temperature record of all stations in the ISTI
Stage 3 Merged Recommended Monthly databank product (Thorne et al., 2011). Acquired from
ftp : //ftp.ncdc.noaa.gov/pub/data/globaldatabank/monthly/stage3/recommended/plots
/merged locations.gif .

Lastly, temperature records are also affected by quality control issues and systematic

uncertainties including, but not limited to: problems with instrumentation (Rigor et al.,

2000); quality of station siting (Fall et al., 2011; Trewin, 2010); solar heating effects (Kent

and Kaplan, 2006; Kent et al., 2013; Trewin, 2010); data imprecision (temperatures may

be recorded at a lower precision than WMO standards recommend, Trewin 2010); and

precision changes (Trewin, 2010). There also may be uncertainties resulting from random

effects (Kent and Challenor, 2006).
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Figure 1.4: A map of grid cells where SST is recorded and the total number of observations in
HadSST3 (Kennedy et al., 2011b,c) for 1850, 1960, 1980 and 2011.

1.2.3 Surface Temperature Timeseries of Recent Climate

Change

Surface temperature measurements may be sparse, both temporally and spatially, as well

as subject to various inhomogeneities, errors and uncertainties. To exclude these non-

climatic variations in temperatures from estimates of actual climate change there are

many different techniques, methods and adjustments that can be employed. As a result

many different groups generate datasets of SAT anomalies using various techniques from

a subset of the available surface temperature records (e.g. Berkeley Earth, 2014; Hansen

et al., 2010; Morice et al., 2012; Vose et al., 2012).

Different SAT anomaly datasets have different quality control and bias adjustment

methods. Some datasets largely utilise data which have been quality controlled and

adjusted by other organisations. The National Aeronautics and Space Administration

(NASA) Goddard Institute for Space Studies (GISS) Surface Temperature Analysis, also

known as GISTEMP, uses adjusted Global Historical Climatology Network - Monthly tem-

perature dataset version 3 (GHCN-Mv3) over land, along with some additional data, and

the Extended Reconstructed Sea Surface Temperature dataset version 3b (ERSSTv3b,

Smith et al. 2008) over the ocean (GISS, 2014; Hansen et al., 2010). GISTEMP addi-

tionally employ their own urbanisation adjustment based on satellite data (Hansen et al.,

2010). The CRUTEM4 land surface temperature anomaly dataset (produced by the Cli-

matic Research Unit of the University of East Anglia and the Met Office Hadley Centre)
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mainly utilises homogenised temperature records provided by national meteorological ser-

vices (Jones et al., 2012). For remaining records, comparisons are made with neighbouring

stations and adjustments are made accordingly (Jones et al., 2012). Some datasets use

metadata to identify and adjust temperature records. For example, HadSST3 uses meta-

data to adjust record according to the measuring platform and methods used (Kennedy

et al., 2011c). Finally, some datasets adjust temperature records without the use of

metadata. The Berkeley Earth Surface Temperature dataset uses a method they call the

‘scalpel’ to identify large discontinuities in single station records (Rohde et al., 2013a,

2012). The records are then split at these points to create two separate record sections.

Any adjustments to the records occur automatically as part of the statistical techniques

they employ to produce their dataset (Berkeley Earth, 2014; Rohde et al., 2013a, 2012).

Different techniques are also employed to quantify surface temperature changes from

records that are not globally or temporally complete. In situ temperature measurements

can be used exclusively without spatial infilling of data. This technique is employed to

create the HadCRUT4 global temperature anomaly dataset (Morice et al., 2012) which is

produced by the Met Office Hadley Centre from a combination of CRUTEM4 over land

and HadSST3 over ocean areas. Any grid boxes which do not have available in situ data

are empty in these datasets for the time periods in which SSTs or SATs are unavailable

(Morice et al., 2012). Some datasets interpolate and extrapolate surface temperatures.

GISTEMP is a combination of linearly interpolated and extrapolated SAT data over

land and sea ice, and SST data infilled using statistical methods over the ocean. SAT

anomalies are interpolated between stations and extrapolated up to 1200km into land

and sea ice regions with no measurements (Hansen et al., 2010; Lawrimore et al., 2011).

ERSSTv3 is produced by combining the outputs of low- and high- frequency analyses,

which derive decadal and seasonal to interannual SST variations respectively (Smith and

Reynolds, 2003, 2004, 2005; Smith et al., 2008). The Berkeley Earth Surface Temperature

dataset method uses temperature records from many pre-existing datasets and statistical

techniques to produce a globally complete estimate of temperature anomalies over land

and ocean areas (Berkeley Earth, 2014; Rohde et al., 2013a,b, 2012). It utilises all available

data records over land; the other datasets discussed here require records for which a

reference ‘normal’ can be produced to calculate temperature anomalies. A recent update

to the dataset adds HadSST ocean data to the Berkeley land-area dataset and extrapolates

SAT data from the land-area dataset over sea ice (Berkeley Earth, 2014). Finally, some

datasets such as MLOST employ both interpolation and extrapolation with exclusion of

data (Vose et al., 2012). MLOST utilises homogenised GHCN-Mv3 meteorological station

data for SAT anomalies and ERSSTv3b for SST anomalies (Smith and Reynolds, 2005;

Smith et al., 2008; Vose et al., 2012). The SAT data from GHCN-Mv3 are analysed

using the same low- and high- frequency analysis employed for ERSSTv3b (Smith and

Reynolds, 2005). Areas where data are determined to be insufficient are excluded from

the low- and high- frequency analyses (Vose et al., 2012).
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Finally it should be noted that there may also be differences in how each dataset

produces temperature anomalies from temperature records. Many datasets use the Cli-

mate Anomaly Method (CAM) which uses a typically 30 year reference period to calculate

temperature anomalies. Datasets may choose different climatology periods, however; Had-

CRUT4 uses 1961-90, Berkeley Earth and GISTEMP use 1951-1980 (Hansen et al., 2010;

Morice et al., 2012; Rohde et al., 2013a). Other datasets and dataset versions have used

anomaly methods such as the Reference Station Method (RSM) (Hansen and Lebedeff,

1987) and the First Difference Method (FDM) (Peterson et al., 1998).

Despite the structural uncertainty arising from the diversity of techniques used at each

stage in producing estimates of recent surface temperature changes, the timeseries pro-

duced from temperature anomaly datasets largely result in similar post-industrialisation

climate change trends as noted in Section 1.1 and illustrated in Figure 1.1. There is a

relatively low impact of differences in methods on trends in global surface temperature

timeseries. But, what are the impacts of choices of data and methodology on Arctic

surface temperature anomalies? How should these datasets incorporate the appropriate

contribution to global and regional-average temperature anomalies of the sea-ice regions

of the Arctic Ocean?

1.3 The Importance of the Arctic

The Arctic is an important region in the study of climate change because of expected

and observed changes in this region. Temperature changes are predicted, and observed,

to be more rapid in the Arctic because of Arctic amplification. However, monitoring

Arctic temperature change is difficult, particularly in areas covered by sea ice for all or

part of the year. This is because in situ measurements of Arctic surface temperatures

are sparse and the records are often short. In addition, utilising SAT records collected

in this region can be challenging (Chapter 4). Here Arctic amplification is discussed,

the various changes associated with climate change in the Arctic are described, and how

Arctic surface temperature changes are currently monitored is outlined.

1.3.1 Arctic Amplification

Arctic amplification occurs as a result of various processes, feedback effects and charac-

teristics of the Arctic region. The most notable of these processes is the albedo effect

(Serreze and Barry, 2011). As temperatures increase and snow, ice and sea ice melt,

darker surfaces (land, vegetation and ocean) are exposed which have a lower albedo and

absorb more solar energy (illustrated in Figure 1.5). This lowering of surface albedo

and corresponding increase in solar radiation absorption causes increased warming, which

melts more snow and ice to expose darker surfaces, and so on in a positive feedback loop

called the albedo effect. Albedo changes may also result from soot deposits on snow and

other feedback effects may arise from causes such as changes in cloud cover and water
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vapour content (Serreze and Barry, 2011).

Figure 1.5: Image from the National Snow and Ice Date Center (NSIDC) showing the
albedo (α) of open ocean, bare sea ice and sea ice with snow. Acquired from http :
//nsidc.org/cryosphere/seaice/processes/albedo.html (NSIDC, 2013).

The following characteristics of the Arctic region can also lead to Arctic Amplification.

In the Arctic a larger fraction of energy received at the surface goes into warming compared

to areas such as the tropics where more energy goes into evaporation. Therefore a larger

fraction of the extra energy received as a result of increasing concentrations of greenhouse

gases will go into warming the region compared to other areas of the globe (ACIA, 2005).

Also, the atmospheric layer that has to warm in the Arctic in order to warm the surface is

much shallower than in the tropics (ACIA, 2005). In addition, because heat is transported

to the Arctic by the atmosphere and oceans, alterations in their circulation patterns

may increase (or decrease) warming in the Arctic region (ACIA, 2005; Anisimov et al.,

2007). Furthermore, it is important to note that the processes and consequences of Arctic

amplification will not be confined to the Arctic; there will be global implications. Loss of

surface reflectivity in the Arctic will accelerate warming at the global scale, and changes

in circulation patterns may increase (or decrease) warming globally (ACIA, 2005).

1.3.2 Arctic Surface Temperature Change

Currently it is estimated that Arctic mean surface temperatures over land have risen

by around 3.0K between 1880 and 2012 (see Figure 3.2 of this thesis). This is more

than double the warming seen for global mean surface temperatures (Figure 1.1) and is

significant enough to affect global mean surface temperature estimates when large areas

of the Arctic are excluded from temperature anomaly datasets (Cowtan and Way, 2014;

Kennedy et al., 2011a). The area above the Arctic circle covers about 6% of the global

area, so if we assume a warming of 3.0K for the Arctic region as a whole this would lead

to a warming of global temperatures by 0.18K. This is 20% of the increase in global mean

surface temperatures between 1850 and 2014.
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1.3.3 Other Changes in the Arctic Associated with Climate

Change

In addition to increasing Arctic surface temperatures over land, many other changes

associated with climate change are already being recorded in this region. These changes

include rising sea, soil, ice and permafrost temperatures (Comiso, 2001, 2006; Hinzman

et al., 2005); warmer and shorter winters (Serreze et al., 2000); increasing length of

melt season and area of melt (Comiso, 2006); increasing precipitation and changes in

precipitation type (Serreze et al., 2000); decreasing snow cover (Callaghan et al., 2011;

Serreze et al., 2000); thawing permafrost (Hinzman et al., 2005; Serreze et al., 2000);

changing wind patterns (ACIA, 2005; Anisimov et al., 2007); changes in cloud cover

and atmospheric pressure (Comiso, 2001; Przybylak et al., 2013; Serreze et al., 2000);

increasing discharge from Arctic draining rivers (Hinzman et al., 2005); decreasing and

thinning lake and river ice (Hinzman et al., 2005); more frequent wildfires (ACIA, 2005;

Anisimov et al., 2007) and shifting vegetation (Hinzman et al., 2005; Serreze et al., 2000).

Sea ice cover has also seen major changes in recent years. The September sea ice

extent (the annual minimum extent) has been decreasing by around 13% each decade

since satellite records began in 1979 (Perovich et al., 2014). Figure 1.6 shows the Arctic

sea ice extent as of September 17th 2014, summertime daily ice extent data for 2010-2014,

and the 1981-2010 average and standard deviations (NSIDC, 2014). The 2012 melt season

broke the previous record for minimum sea ice extent, set in 2007, before the end of the

melt season and as of September 5th 2012 it was already below 4 million square kilometres

in extent (NSIDC, 2012b; Parkinson and Comiso, 2013). The sea ice extent minimum for

2012 was reached on September 13th at 3.40 million square kilometres (NSIDC, 2012a;

Parkinson and Comiso, 2013). The 2013 and 2014 melt seasons have been nearer the 1981-

2010 average as shown in Figure 1.6. Less ice is surviving the summer melt so multi-year

ice is decreasing (Comiso, 2012; Kwok, 2007; Maslanik et al., 2007; Nghiem et al., 2007;

Parkinson and Comiso, 2013; Polyakov et al., 2012). There is also evidence that sea ice in

the Arctic is thinning and decreasing in volume (e.g. Kwok et al., 2009; Maslanik et al.,

2007; Parkinson and Comiso, 2013). Some studies have indicated that the Arctic will have

a sea ice free summer within 30 years (Overland and Wang, 2013; Wang and Overland,

2009). As the Arctic warms and sea ice decreases there is greater access for ships. Already

ship traffic is increasing due to tourism and the development of natural resources such

as gas, oil, and boreal forest resources (Brigham, 2011; Cressey, 2011; Kullerud, 2011).

This leads to increased risk of pollution and oil spills as well as concerns about safety for

people, the Arctic environment and the ships that are in these waters (Brigham, 2011).

There are also political issues as countries try to lay claim to Arctic resources exposed by

the retreating ice (Cressey, 2011). As sea ice extent decreases and the sea ice thins the

difficulty of deploying and maintaining manned and unmanned measuring platforms will

increase. These changes also shorten the length of time these sensors can operate on ice.

This increases the already difficult task of monitoring temperature changes using in situ
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data in sea ice regions.

Figure 1.6: Arctic sea ice extent from NSIDC as of September 17th 2014. Summertime daily
sea ice extents are also shown for 2010-2014, along with the 1981-2010 average and standard
deviations. Acquired from http : //nsidc.org/arcticseaicenews/2014/09/arctic−minimum−
reached/ (NSIDC, 2014).

Furthermore, changes in the Arctic do not just have an impact locally or regionally

but also globally. In addition to the impacts of accelerated warming of the Arctic atmo-

sphere both regionally and globally, greenhouse gas emissions may increase from the Arctic

due to permafrost warming and the release of methane hydrates (ACIA, 2005; Anisimov

et al., 2007). These emissions add to the greenhouse gas concentration in the Earth’s

atmosphere. Increases in glacial melt, ice sheet melt, ice cap melt and river runoff will

contribute to sea level rise which will flood low-lying land. For example, the Greenland

Ice Sheet is estimated to have contributed around 0.5mm per year to global sea level rise

between 2002 and 2011 (Church et al., 2013; Hanna et al., 2013). This increase in melt

will alter the freshwater budget of the Arctic which may affect ocean circulation (ACIA,

2005; Anisimov et al., 2007). There will also be other global impacts resulting from Arctic

warming such as changes in animal diversity, ranges and distribution (ACIA, 2005). It

is therefore important to monitor and quantify the changes that are happening in the

Arctic. But, as the Arctic warms and sea ice extent and thickness decrease how should

we monitor the temperature changes occurring in these dynamic and rapidly changing

areas?
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1.3.4 Monitoring Arctic Arctic Surface Temperature Change

As we have seen, monitoring climate change in the Arctic region is important because of

expected and observed changes in this region. But, in situ measurements of Arctic surface

temperatures, particularly in areas covered by sea ice for all or part of the year, are sparse

and the records are often short. The sparseness of temperature data for the Arctic is

noted as an issue by many researchers as it introduces uncertainty to the calculation of

average temperature changes in this region (e.g. Cowtan and Way, 2014; Jones et al., 2012;

Parker et al., 2009; Pielke et al., 2007). It is often difficult to assess how temperatures

are changing in this region as well as where current climate trends fit in a long term

perspective (Bromwich et al., 2007). Also, low density measurements make it hard to

separate local changes from regional or continental ones (Bromwich et al., 2007). As

described in Section 1.2.3 there are many different techniques and methods that are

employed to quantify surface temperature changes from records that are not spatially

or temporally complete. There are therefore many different techniques and methods used

to quantify SAT changes over the Arctic from sparse in situ measurements.

The majority of currently available temperature anomaly datasets estimate Arctic

temperature change using SAT and SST measurements. These surface temperature mea-

surements are used exclusively and/or interpolated and extrapolated using various tech-

niques. Datasets which use available in situ temperature measurements exclusively, for

example many of the Met Office Hadley Centre temperature anomaly datasets such as

HadCRUT4 (Morice et al., 2012) and HadSST3 (Kennedy et al., 2011b,c), do not spatially

infill data. This means that large areas of the Arctic are unrepresented in these datasets

even with recent updates to the datasets (Kennedy et al., 2011b; Morice et al., 2012).

Temperature anomaly datasets which interpolate and extrapolate temperatures, such as

the GISTEMP (Hansen et al., 2010; Lawrimore et al., 2011) and Berkeley Earth (Berke-

ley Earth, 2014; Muller et al., 2013; Rohde et al., 2013a, 2012) analyses, are spatially

complete for the Arctic. Sea ice areas in both of these datasets are treated as if they

were land areas with a geographical area which changes over time with sea ice extent.

MLOST employs both spatial infilling and the exclusion of data. Temperature data are

interpolated where possible and excluded where data are determined to be insufficient

to interpolate temperature anomalies (less than 20% sampling), the target is polar land

(above 75◦N) with no data in the month of interest, and/or more than half the grid box

is classified as sea ice (Vose et al., 2012). Therefore large areas of the Arctic are excluded

(Vose et al., 2012). Temperatures over areas of Arctic sea ice are therefore either excluded

or estimated by interpolating and extrapolating SATs over sea ice areas from land-based

SAT sources. These datasets deal with the paucity of Arctic temperature data from tradi-

tional observations in various different ways. However, this sparseness of data also makes

it difficult to investigate the impact of choices of data and methodology on Arctic surface

temperature anomalies. How should Arctic sea ice areas be treated in global and regional

averages of surface temperatures?
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What are the uncertainties associated with using the various techniques and methods

currently utilised? Can we quantify the uncertainties in extrapolation and interpolation,

or not, of information over the Arctic? There are many other data sources and types of

surface temperature which could be used to help quantify Arctic temperature changes.

Would the inclusion of additional data sources over Arctic sea ice improve estimates of

Arctic climate change? Also, which data sources would be most appropriate to monitor

Arctic sea ice surface temperature change; in situ surface temperature records, satellite-

based radiometric ice surface temperatures, other satellite observations, or other data

sources? Could global warming over recent decades be better estimated by changing the

way the Arctic is treated in calculating global mean temperature?

1.4 Aims of the Thesis

The purpose of this thesis is to investigate how the Arctic should be represented in global

surface temperature time series of recent climate change. This work primarily focuses on

how the sea ice regions of the Arctic should be treated in global and regional averages of

surface temperatures, but also investigates estimates of surface temperature change over

Arctic land and ice sheet areas. Specifically, the aims of this thesis are to:

1. Quantify the uncertainties in extrapolation and interpolation of information over

the Arctic.

2. Explore whether additional data sources would improve estimates of surface tem-

perature change over the Arctic.

3. Identify appropriate data sources which could be used to monitor Arctic surface

temperature change over Arctic sea ice.

4. Provide some recommendations on how to monitor temperature changes in the Arc-

tic, especially over sea ice areas.

In order to fulfil the aims this thesis is structured as follows. Chapter 2 considers

available global and Arctic reanalyses and examines their representation of Arctic tem-

peratures. This is in order to determine whether any of these reanalyses are suitable to

use as a testbed for Chapter 3, “An Investigation into the Impact of using Various Tech-

niques to Estimate Arctic Surface Air Temperature Anomalies”, and Chapter 5, “Can the

Inclusion of Additional Data Sources be used to Improve Estimates of Arctic Surface Air

Temperature Anomalies?”. Chapters 3 and 4 investigate the various techniques currently

employed for estimating Arctic SATs and aim to quantify the uncertainties in extrapo-

lation and interpolation, or not, of information over the Arctic. Chapter 4 additionally

highlights some of the issues associated with utilising in situ data sources over Arctic sea

ice areas. Chapter 5 explores whether additional data sources would improve estimates

of surface temperature change over the Arctic. Potential additional data sources over
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Arctic sea ice which could be employed for monitoring temperature changes in this region

are also identified in Chapter 5. Finally, Chapter 6 investigates whether the inclusion of

surface temperatures derived from infrared satellite sensors would improve estimates of

SAT anomalies over Arctic sea ice. This chapter also explores the utility of interpolated

Arctic SAT datasets as climatologies over Arctic sea ice areas. The results of this thesis

are summarised in Chapter 7, conclusions are drawn from the results, and I provide some

recommendations for monitoring Arctic temperature changes.
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Chapter 2

Are ERA-Interim Data a Suitable

Testbed for Studying How to

Monitor Surface Air Temperatures

in the Arctic?

2.1 Introduction

Meteorological reanalyses are datasets widely used in atmospheric science. They are pro-

duced using atmospheric forecast models run in hindcast mode to assimilate past climate

and weather observations into a coherent dataset. They are data driven, dynamically con-

strained datasets that provide information on a wide variety of atmospheric and climatic

variables. Reanalysis datasets have some advantages over more traditional, observation-

only datasets for climate monitoring and research. They provide complete spatial and

temporal coverage even in data sparse areas, can provide more frequent data estimates

than from in situ observations, can generate information on unobserved climate variables,

improve estimates of observed variables from data on related variables, and may be more

consistent than traditional datasets depending on the variable (Bromwich et al., 2007;

Dee et al., 2011a; Thorne and Vose, 2010).

Reanalysis data are very valuable for investigating temperatures in the Arctic, a data

sparse area, due to the complete spatial and temporal coverage of reanalysis datasets.

Jakobson et al. 2012 state that “reanalyses are arguably the best available source of

integrated information on the four-dimensional structure of the atmosphere” for many

variables. As a result, atmospheric reanalyses are often used in Arctic research to in-

vestigate climate variability, climate trends, large-scale circulations and teleconnections;

to validate climate models; and to provide boundary conditions for ocean, sea ice, land-

surface, and limited-area atmospheric models (Jakobson et al., 2012). However, it must

be noted that reanalysis datasets contain only estimates of climatic variables. Reanalysis

data do not exhibit the uncertainties and noise associated with actual measurements but
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can contain biases and errors. Reanalysis is performed using the latest and most sophis-

ticated atmospheric models, but even the best models have errors (Dee et al., 2011a).

Reanalyses biases may be time varying, making these datasets unsuitable for long-term

trend monitoring (depending on the time, region and variable of interest) (Thorne and

Vose, 2010). Uncertainties in reanalysis data will also be higher in certain areas and for

certain variables due to sparse observational data (Inoue et al., 2009). Meteorological

reanalyses must therefore be used with care and with consideration of the limitations of

these datasets.

The first two aims of this thesis are to quantify uncertainties in extrapolation and

interpolation of information over the Arctic, and explore whether additional data sources

would improve estimates of surface temperature change over Arctic sea ice. Due to the

spatially and temporally sparse nature of in situ temperature measurements over large

areas of the Arctic, and especially over sea ice regions, it would be difficult to investigate

these topics using only in situ observations. As a result it was decided to examine these

issues in the first instance using a reanalysis dataset as a testbed. The European Centre

for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) was

identified as a potentially suitable testbed. But, how does this reanalysis perform in

representing surface temperatures in the Arctic?

The objective of this chapter is, therefore, to examine how well ERA-Interim data

represent surface temperatures in the Arctic. This is in order to determine whether ERA-

Interim data are physically plausible, and therefore a suitable testbed for Chapters 3 and

5 of this thesis. The outline of this chapter is as follows. Firstly I give an overview of how

surface temperatures are assimilated into, and estimated by, reanalyses in Section 2.1.1.

This is to provide some insight into how surface temperatures are used in reanalyses and

give some context to the comparisons detailed in the studies referenced here. Then I

provide a review of the literature on reanalyses and their representation of Arctic tem-

peratures is provided in Section 2.2. Section 2.3 describes an investigation I conducted

into the representation of Arctic Surface Air Temperature (SAT) correlation length scales

in ERA-Interim. Then in Section 2.4 I draw on the conclusions of Sections 2.2 and 2.3

to determine whether ERA-Interim data are a suitable testbed for studying SATs in the

Arctic.

2.1.1 An Overview of Surface Temperature Assimilation and

Estimation in Meteorological Reanalysis Datasets

Reanalysis of meteorological data was first found to be of use for atmospheric research af-

ter the First Global Atmospheric Research Program Global Experiment (FGGE) in 1979

(Dee et al., 2011b). Data from this experiment was reanalysed as part of work investigat-

ing how to make better use of observations to initialise numerical weather forecasts (Dee

et al., 2011b). It was subsequently realised that the reanalysis datasets were themselves

useful for atmospheric research (Dee et al., 2011b; Uppala et al., 2005). Since then many
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atmospheric reanalysis datasets have been produced by many organisations on both global

and regional scales. Global scale reanalysis datasets, which provide reanalysis data for the

Arctic, include the ECMWF reanalyses ERA-15 (Gibson et al., 1999), ERA-40 (Uppala

et al., 2005) and ERA-Interim (Dee et al., 2011b); the National Center for Environmen-

tal Prediction (NCEP) reanalyses R1 (Kalnay et al., 1996), R2 (Kanamitsu et al., 2002)

and CFSR (Saha et al., 2006, 2010); the Japan Meteorological Agency (JMA) reanalyses

JRA-25/JCDAS (Onogi et al., 2007; Ebita et al., 2011) and JRA-55 (Ebita et al., 2011);

the NASA Modern Era-Retrospective Analysis for Research and Applications (MERRA)

dataset (Rienecker et al., 2011); and the National Oceanic and Atmospheric Adminis-

tration - Cooperative Institute for Research in Environmental Sciences (NOAA-CIRES)

20th Century Reanalysis (20CR, Compo et al. 2011). A regional reanalysis dataset has

also been produced which covers the Arctic region: the Arctic System Reanalysis (ASR,

Bromwich et al. 2010).

For reanalysis, forecast models are initially run with a set of boundary conditions.

These boundary conditions typically include Sea Surface Temperatures (SSTs) sourced

from globally complete products utilising in situ data, satellite data and interpolation

techniques. Currently available reanalyses largely use the same types of surface temper-

ature sourced from similar data products as boundary conditions for the forecast model.

For example, ERA-Interim has used several different SST products produced from in situ

and satellite records such as the Operational Sea Surface Temperature and Sea-Ice Anal-

ysis (OSTIA, Donlon et al. 2012) (Dee et al., 2011b), MERRA uses the Reynolds et al.

2002 SST product, and 20CR (Compo et al., 2011) uses the Met Office Hadley Centre’s

interpolated SST and sea ice concentration product (HadISST, Rayner et al. 2003). These

initial runs produce forecast fields of atmospheric variables.

Available observations are then assimilated in order to correct the forecast fields pro-

duced by the forecast model (Jakobson et al., 2012; Kalnay et al., 1996). Data assimilation

is the process by which “irregularly distributed atmospheric observations are combined

with a general circulation model (GCM) to provide a comprehensive four-dimensional

representation of the global atmosphere” (Bloom et al., 1996). Many currently available

reanalyses use a variational analysis, either three-dimensional (3D-Var, e.g. MERRA,

NCEP reanalyses) or four-dimensional (4D-Var e.g. ERA-Interim upper-air atmospheric

state, JRA-55) to combined observations with the forecast model fields (Dee et al., 2011b;

Ebita et al., 2011; Kalnay et al., 1996; Kanamitsu et al., 2002; Rienecker et al., 2011;

Saha et al., 2006, 2010). In 4D-Var, forecast fields, produced using the forecast model,

are combined with observations during a given timestep (often a 6 hour time period) at

the time of each observation using a best linear unbiased estimate method (Lorenc and

Rawlins, 2005; Bloom et al., 1996). In 3D-Var all observations are assumed to observe in

the middle of each timestep (Lorenc and Rawlins, 2005; Bloom et al., 1996). The surface

temperature observations used for data assimilation in reanalyses are generally in situ

SST records (for example, from ships, fixed buoys, drifting buoys, ice-pack buoys, drifting
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stations) and SAT records from land-based meteorological stations. These SST and SAT

observations are very similar between reanalysis datasets and are often sourced from the

same or similar existing databanks. For example, MERRA (Rienecker et al., 2011) and

NCEP reanalyses both use SATs from surface land observations collected for NCEP, and

SSTs collated in the Comprehensive Ocean-Atmosphere Data Set (COADS)or the newer

International COADS (ICOADS).

Many reanalyses assimilate in situ surface temperature observations into forecast fields

at surface or near-surface model levels. SAT is then estimated by interpolating between

the analysed skin temperature and the lowest atmospheric model level temperature to 2m

height (Lindsay et al., 2014). This occurs in the NCEP reanalyses (Kalnay et al., 1996;

Kanamitsu et al., 2002; Saha et al., 2006, 2010), MERRA (Rienecker et al., 2011), JMA

reanalyses (Onogi et al., 2007; Ebita et al., 2011), and ASR (Bromwich et al., 2014). Once

data has been assimilated into the forecast fields, atmospheric and climatic variables are

produced at various model levels. Several iterations of the forecast model may be used

in the assimilation (Bromwich et al., 2014). The analyses produced are then used as the

initial conditions for the next model run.

However, there are some exceptions. The ERA-Interim reanalysis assimilates sur-

face temperature observations separately from the main atmospheric analysis. The SAT

fields included in the ERA-Interim products are explicitly analysed using separate uni-

variate optimal interpolation, rather than derived from temperatures at other model levels

(Simmons et al., 2004). In situ SAT and SST observations from platforms such as land

stations, buoys and ships are combined with background fields of SAT (forecast fields

from the previous analysis time step of the forecast model interpolated between model

levels) to create each surface analysis (Douville, 1998; ECMWF, 2007; Simmons et al.,

2004). The difference between the observation and background value is calculated for

each observation location. Analysis increments, which are added to the background field

to create the surface analysis at the current timestep, for each model grid point are cal-

culated from weighted background increments . Optimum weights for the background

increments are calculated by solving matrix equations for each model grid point using

estimated error covariances. The estimated error covariances between background values

and the model grid point, and between background values at different locations, are then

calculated using the distance between these locations to produce a surface analysis field.

This method has similarities with the kriging methods employed in various chapters of

this thesis and outlined in Chapter 3 and Appendix B.

Finally, 20CR does not assimilate surface observations of temperatures and therefore

only produces forecast fields rather than assimilated fields of data (Jakobson et al., 2012).

The 20CR dataset only assimilates surface pressure reports from the International Surface

Pressure Databank (ISPD), with SST and sea ice distribution as boundary conditions,

unlike other reanalyses which assimilate many in situ and satellite reports and many at-

mospheric variables (Compo et al., 2006, 2011). The SAT estimate from 20CR is therefore
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not influenced by surface temperature observations.

2.2 Meteorological Reanalysis Datasets and their

Representation of the Arctic

In this section I provide a review of the literature on each of the reanalyses mentioned

above and their representation of Arctic temperatures and temperature trends. The

literature review and the performance of the reanalyses in the Arctic is summarised in

Table 2.2.7. Information about whether the comparison data used in each study are

independent, or whether they are assimilated into each reanalysis, is also summarised in

Table 2.2.7.

2.2.1 National Centers for Environmental Prediction Reanaly-

ses

The first reanalysis produced by NCEP, in collaboration with the National Center for

Atmospheric Research (NCAR), was the NCEP-NCAR reanalysis, or NCEP R1. This

reanalysis covers the time period 1948 to present (Kalnay et al., 1996). Errors and biases

were noted in NCEP R1 and a corrected version of R1, often referred to as the NCEP

or NCEP/DOE R2 dataset (hereafter referred to as NCEP R2), was produced for the

satellite era; 1979 to present (Kanamitsu et al., 2002; Saha et al., 2010). However, even

with the correction of identified errors and updates to the system, only minor differences

were found between NCEP R1 and R2 (Kanamitsu et al., 2002). These two reanalyses

continue to be updated by NCEP. A newer, coupled global NCEP reanalysis, known as

the NCEP Climate Forecast System Reanalysis (NCEP CFSR), is also available, which

covers the same time period as R2 but with a higher temporal and spatial resolution

(Saha et al., 2006, 2010).

2.2.1.1 NCEP R1

NCEP R1 SATs over sea ice were compared data from Arctic and Antarctic Research In-

stitute (AARI) North Pole Drifting stations (NPDS) between 1954 and 2006 by Makshtas

et al. 2007. Makshtas et al. 2007 found that SATs from NCEP R1 and North Pole Drift-

ing stations largely showed good agreement; correlation was more than 0.8 in all seasons,

except summer when the correlation value dropped to 0.55. The Mean Errors (MEs) were

noticeably seasonal. Biases were as low as 0.2K (winter) and as large as -2.6K (autumn)

(Makshtas et al., 2007). SATs from NCEP R1 have also been compared to independent in

situ rawinsonde observations over the Arctic Ocean from the Coordinated Eastern Arctic

Research Experiment (CEAREX, September 1988 to May 1989) by Bromwich and Wang

2005. Mean monthly SATs were underestimated for the first few months of CEAREX

(September to November) by 2-3K, then for the remaining months of the study CEAREX
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temperatures were overestimated by 1-2K with lower biases in warmer months (Bromwich

and Wang, 2005). NCEP R1 was outperformed by two ERA reanalysis in terms of the

Root Mean Square Error (RMSE); the NCEP RMSE was 2.8K while RMSEs were 2.4K

and 1.7K for ERA-15 and ERA-40 respectively. The findings of the study by Bromwich

and Wang 2005 correspond with those of Makshtas et al. 2007; autumn temperatures were

underestimated by around 2-3K and winter/spring temperatures were overestimated by

up to 2.5K on average.

Wang et al. 2011 compared SAT data from all NCEP reanalyses and ERA-40 to SATs

from land-based meteorological stations in the Global Historical Climatology Network

version 2 and the Climate Anomaly Monitoring System dataset (GHCNCAMS, Fan and

Van den Dool 2008). R1 SATs were spatially correlated with those from GHCNCAMS

over land and, excluding the Greenland ice sheet, the correlation was more than 0.7

for the majority of Arctic land areas and above 0.9 for north-west Russia (Wang et al.,

2011). Spatial patterns of Arctic SAT were therefore fairly well estimated by NCEP R1,

but it was the least representative of the reanalyses investigated (Wang et al., 2011). A

similar study by Lindsay et al. 2014 compared SATs over Arctic land areas from various

reanalyses, including NCEP R1, to monthly average land station data from the Climate

Research Unit at the University of East Anglia and Met Office Hadley Centre land surface

temperature anomaly version 3 dataset (CRUTEM3, Brohan et al. 2006). SATs from R1

had a monthly ME of between -2 and 1K when compared to Arctic land stations (Lindsay

et al., 2014). Monthly SAT anomaly correlations were 0.75-0.91 (Lindsay et al., 2014).

The biases in the study by Lindsay et al. 2014 had a similar seasonality, and were also

similar in size, to those noted over Arctic sea ice areas by Makshtas et al. 2007. Biases were

lowest in winter, increased in spring, decreased slightly in summer and increased again in

autumn. SAT correlations in both studies were above 0.8 for most seasons except summer

when correlations were lower (Lindsay et al., 2014; Makshtas et al., 2007).

Lower Tropospheric Temperature (TLT) trends in the Arctic derived from four reanal-

yses (ERA-40, ERA-Interim, JCDAS and NCEP R1) were compared to Remote Sensing

Systems (RSS) Microwave Sounding Unit (MSU) TLT by Screen and Simmonds 2011.

TLT trends are known to be highly correlated with surface temperatures, which are the

focus of this review (Hartmann et al., 2013). In order to compare the reanalysis data,

which is produced for many pressure levels in the atmosphere, with MSU data the re-

analysis temperature fields were vertically weighted using MSU weighting functions, i.e.,

heavily weighted to be representative of the tropospheric temperature below 3km. R1

produced realistic trends in Arctic temperatures between 1979 to 2009 in the lower tro-

posphere when compared to MSU data (Screen and Simmonds, 2011). Biases were up to

±0.3K and the annual temperature trend in R1 was within the 95% confidence interval of

the MSU data (Screen and Simmonds, 2011). SAT trends in the Arctic from NCEP R1

were also compared to the International Arctic Buoy Programme/Polar Exchange at the

Sea Surface (IABP/POLES) dataset (Rigor et al., 2000) by Alexeev et al. 2012 between
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1979 and 2008. It should be noted that monthly mean SAT data from NCEP R1 were

included in the IABP/POLES dataset to supplement in situ observations in areas where

observations were sparse, such as in the North Atlantic. Spatially the SAT trends across

the Arctic were consistent in most seasons (Alexeev et al., 2012). There were some quite

large differences between R1 and IABP/POLES data, e.g. for the Beaufort Sea in Winter

where R1 overestimated the rate of warming and errors could be up to 10K in some years

before about 1995 (Alexeev et al., 2012). However, SATs from IABP buoy data prior to

1992 may not be reliable due to the design of the buoy in the early years of this pro-

gram (Rigor et al., 2000). In addition, there are other known biases in the IABP/POLES

dataset, such as due to snow cover on buoys, and work is still ongoing to identify all

biases in these data (EOL, 2014; Rigor, 2014). Therefore I believe the differences between

NCEP R1 and IABP/POLES noted by Alexeev et al. 2012 may not be a true reflection

of the performance of R1 for Arctic SAT trends.

2.2.1.2 NCEP R2

SATs from NCEP R2 (and ERA-40) were investigated by Liu et al. 2008 and compared

to IABP/POLES dataset over the Arctic Ocean between 1979 and 1999. R2 showed

good agreement with the IABP/POLES dataset. There was a slight warm bias of 0.7K

for annual mean SATs over the Arctic Ocean (half of the warm bias in ERA-40) and

SATs were within 2K of IABP/POLES annual SATs spatially (Liu et al., 2008). Seasonal

variations were also reproduced well and the seasonal biases were smaller than those for

ERA-40. R2 had a warm bias in seasonal mean SAT for most seasons of between 0.54

and 1.83K and a slight cold bias of -0.24K in summer (Liu et al., 2008). However, as

mentioned before, NCEP R1, which is quite similar to NCEP R2, is included in the

IABP/POLES dataset where data is sparse and therefore the comparison data are not

completely independent. NCEP R2 and several other reanalyses were compared to vertical

air temperature profiles collected by tethersondes at ice station Tara between 2006 and

2007 by Jakobson et al. 2012, and their relative performance was compared over the central

Arctic ocean. The surface warm bias noted by Liu et al. 2008 for the central Arctic Ocean

in NCEP R2 was also noted in the study by Jakobson et al. 2012. NCEP had a warm

bias of 0.2K on average and a RMSE of 1.8K for near surface temperatures at 10m height

(Jakobson et al., 2012). NCEP R2 produced the second smallest RMSEs compared to the

other reanalysis datasets investigated in that study for temperatures close to the surface

(Jakobson et al., 2012). However, significant errors in SAT were also observed for some

NCEP R2 profiles; for example spring SAT errors could be around 15K.

NCEP R2 data were compared to land area SATs from GHCNCAMS (Wang et al.,

2011). R2 showed the same spatial correlation patterns with GHCNCAMS as NCEP R1

(>0.7 generally, above 0.9 for north-west Russia), and therefore also produced realistic

reconstructions of Arctic SAT patterns (Wang et al., 2011). The study of Lindsay et al.

2014 compared R2 data to SATs over Arctic land areas from CRUTEM3 stations. R2
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had very similar biases in SAT for spring and summer compared to R1 (Lindsay et al.,

2014). In autumn the cold bias reduced from -2 to -1K in September and October, and

November had a warm bias of 0.5K in R2. This means that R2 was more representative

of autumn SATs on average than R1. However, in winter the warm bias increased from

0.5K to 2K which made R2 less representative on average in this season. Monthly SAT

anomaly correlations were higher, or the same as R1, in all months. Therefore R2 was

slightly more representative than R1 but it was not the most representative reanalysis for

Arctic land areas in that study (Lindsay et al., 2014).

In addition to investigations of temperature patterns and observations, the Arctic

warming trend contained in NCEP R2 has been investigated (Chung et al., 2013). SAT

anomalies from several reanalyses, including NCEP R2, were compared to NASA Goddard

Institute for Space Studies (GISS) Surface Temperature Analysis (GISTEMP) dataset

(with a 250km smoothing) between 1979 and 2011 (Chung et al., 2013). All reanalysis

warming trends were largely within 0.5K of each other and GISTEMP (Chung et al.,

2013). The results were very close for all investigated reanalyses in that study and no

one reanalysis was notably better than the others. The spread in the warming trends

in the reanalyses was larger in the winter than in the summer (Chung et al., 2013).

Liu et al. 2008 compared R2 SAT trends to those in the IABP/POLES dataset over

Arctic ocean areas. NCEP R2 overestimated SAT trends compared to IABP/POLES;

the annual mean was overestimated by 0.15K and seasonal trends, whether positive or

negative, were overestimated by 0.01 (winter and spring) to 0.29 (autumn) (Liu et al.,

2008). IABP/POLES data for the Arctic in general were also compared to NCEP R2 data

by Alexeev et al. 2012. As with R1, many of the warming patterns were similar across

the Arctic compared to IABP/POLES but R2 had more areas of negative temperature

changes and there were also some areas of disagreement (Alexeev et al., 2012). R2 showed

winter SAT changes over the Beaufort Sea which were much closer to IABP/POLES than

R1 SAT trends (within 5K) (Alexeev et al., 2012).

2.2.1.3 NCEP CFSR

NCEP CFSR was compared to atmospheric profiles collected at drifting ice station Tara

by Jakobson et al. 2012. The results for CFSR were very similar to those for NCEP R2;

CFSR had a slight warm bias of around 0.3K on average for near surface temperatures,

which was a slightly larger bias than for R1, but a RMSE of 1.6K, which showed slightly

better agreement between CFSR and the in situ data (Jakobson et al., 2012). NCEP CFSR

performed better for air temperatures below 200m and the profiles did not contain the

significant errors in SAT noted for some profiles from R2 (Jakobson et al., 2012). SATs

in the Arctic from NCEP CFSR were also compared to SATs from the GHCNCAMS

dataset (Wang et al., 2011). CFSR was the most representative of the NCEP analyses

for spatial patterns of global SAT in general, as well as performing better over the Arctic

(Wang et al., 2011). Much of the Arctic had a SAT correlation with GHCNCAMS of
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0.9 or more in CFSR (Wang et al., 2011). The study by Lindsay et al. 2014 also noted

that CFSR outperformed R1 and R2 compared to land-based meteorological stations in

terms of correlation (0.85-0.95 compared to 0.75-0.92 for R1/R2). Furthermore, CFSR

had smaller biases compared to R1 and R2 in between April and October (up to -1K),

and was one of the most representative reanalyses in the study of (Lindsay et al., 2014).

Temperature trends in CFSR were investigated by Chung et al. 2013 and all reanalyses

were within about 0.5K of each other and GISTEMP, as mentioned previously (Chung

et al., 2013). CFSR therefore produced realistic Arctic SAT warming trends (Chung et al.,

2013).

2.2.2 Japan Meteorological Agency Reanalyses

The JMA’s numerical assimilation and forecast system has been used to create several

global atmospheric reanalyses. JRA-25 was the first JMA reanalysis and is available for

the time period 1979-2004 (Onogi et al., 2007). Since 2004 JRA-25 has been continued

under a new name, JCDAS (JMA Climate Data Assimilation System reanalysis), and

continues to be updated (Ebita et al., 2011). Production of a new 55 year reanalysis

spanning 1958 to present, JRA-55, started in 2010 (Ebita et al., 2011). Data for JRA-55

were made available in January 2014 (JRA Project, 2014) and a comprehensive report on

this new reanalysis has been produced (Kobayashi et al., 2015).

2.2.2.1 JRA-25/JCDAS

The JCDAS reanalysis was validated by Jakobson et al. 2012 for the central Arctic Ocean.

JCDAS had the largest bias for average near surface temperatures (-3K), the largest

RMSE for near surface temperatures (4.5K), and the largest RMSE values in that study

for the whole temperature profile (Jakobson et al., 2012). Significant errors in SAT were

also observed for some JCDAS profiles (Jakobson et al., 2012). However, when compared

to monthly average land station SAT data by Lindsay et al. 2014, JCDAS was found to

perform quite well and was one of the four most representative reanalyses in that study

(Lindsay et al., 2014). JCDAS had smaller SAT biases than NCEP R1, R2, CFSR (in

some months), and the 20CR reanalysis (Lindsay et al., 2014). It also had very good

SAT correlation with CRUTEM3 station observations in most months; correlations were

between 0.88 and 0.93 and were more consistent seasonally than for the NCEP reanalyses

and 20CR (Lindsay et al., 2014). Therefore, JCDAS seems to perform well over land areas

in the Arctic for SATs but has relatively large errors for temperatures over sea ice areas.

Temperature trends in the Arctic as reconstructed by JCDAS were compared to MSU

TLTs by Screen and Simmonds 2011. All reanalyses produced realistic trends in Arctic

temperatures in the lower troposphere when compared to MSU data, apart from ERA-

40 (Screen and Simmonds, 2011). JCDAS produced biases in annual TLTs which were

similar to NCEP R1 and ERA-Interim (up to ±0.3K) and the annual temperature trend

was again within the 95% confidence interval of the MSU data (Screen and Simmonds,
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2011). However, ERA-Interim outperformed all other reanalyses, including JCDAS, in

terms of realistic trends in that study.

2.2.2.2 JRA-55

Currently, one study has investigated the performance of the JRA-55 reanalysis for SATs

in the Arctic. Simmons and Poli 2014 explored the representation of near-surface and

TLT change over the Arctic in several datasets for the past 35 years. For SAT and

lower tropospheric anomaly timeseries above 70◦N, JRA-55 was within 0.5K of ERA-

Interim, MERRA, CRUTEM4 and the Cowtan and Way temperature anomaly dataset

(Cowtan and Way, 2014). JRA-55 was also similar to ERA-Interim (but with a smaller

warm bias) and the Cowtan and Way dataset for spatial anomalies (Simmons and Poli,

2014). Therefore, JRA-55 shows promise for investigating Arctic surface temperatures in

the future. However, JRA-55 was released after work had started on Chapter 3 and was

therefore not utilised in this thesis. In addition, I think further studies would be beneficial

in terms of affirming how well this new reanalysis represents Arctic temperatures and

temperature change.

2.2.3 The NASA Modern Era-Retrospective Analysis

MERRA is NASA’s reanalysis project for the satellite era (1979 to present) (Rienecker

et al., 2011). MERRA is created using version 5.2.0 of the Goddard Earth Observing

System (GEOS) atmospheric model and data assimilation system (Rienecker et al., 2011).

A new reanalysis from 1980 to present, MERRA2, is in production (Reanalyses.org, 2014).

MERRA2 will use a new version of GEOS-5 and will assimilate additional observations

in order to extend NASA reanalyses into the future (Reanalyses.org, 2014).

MERRA air temperature data were compared to observations at ice station Tara

by Jakobson et al. 2012. The RMSE for MERRA air temperatures was found to be

as good as the NCEP reanalyses overall for the temperature profile (Jakobson et al.,

2012). However, the RMSE near the surface was above 3K (only the RMSE for JDCAS

was larger) and MERRA was found to have a significant warm bias of about 2K for air

temperature below 200m (Jakobson et al., 2012). When compared to SATs from Arctic

land-based meteorological stations, MERRA provided good estimates of SATs and SAT

anomalies and was one of the most representative reanalyses according to Lindsay et al.

2014. The monthly ME in MERRA compared to CRUTEM3 stations was ±0.5K; lower

errors than all other reanalyses investigated in that study, except ERA-Interim which

was comparable (Lindsay et al., 2014). Monthly correlations were also consistently good

with values of 0.89 to 0.93 (Lindsay et al., 2014). Only ERA-Interim and NCEP CFSR

(in some months) had higher correlation values (Lindsay et al., 2014). MERRA was also

found to perform well for SAT and lower tropospheric anomalies by Simmons and Poli

2014 and this reanalysis was close (within 0.5K) to the timeseries and anomalies from

ERA-Interim, JRA-55, CRUTEM4 and the Cowtan and Way dataset. However, MERRA
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showed weaker surface warming in recent years compared to other datasets investigated in

that study (Simmons and Poli, 2014). MERRA Arctic warming trends were investigated

were found to be realistic (Chung et al., 2013).

2.2.4 The NOAA-CIRES 20th Century Reanalysis

The 20th Century Reanalysis project, or 20CR, is a comprehensive global atmospheric

circulation dataset covering the time period 1871 to present (Compo et al., 2011). The

20CR dataset uses SSTs and sea ice concentration as boundary conditions and only as-

similates surface pressure reports, unlike other reanalyses which assimilate many in situ

and satellite derived observations of atmospheric variables (Compo et al., 2006, 2011).

20CR was another of the reanalyses investigated for Arctic SATs over land by Lindsay

et al. 2014. 20CR was the least representative reanalysis in this study. A large winter bias

of up to 6K was present in 20CR while summer biases were up to 1K (Lindsay et al., 2014).

The correlation with SAT anomalies was up to 0.87 in some months, but could be as low

as 0.63 (May) whereas all other reanalyses had correlation values above 0.7 in all months

(Lindsay et al., 2014). Lindsay et al. 2014 attributed this to a bad sea ice specification.

This indicates that 20CR may also have problems for SATs over Arctic Ocean and sea

ice areas, but this has not yet been confirmed in the literature. But, 20CR has been

shown to provide realistic estimates of global SAT trends. 20CR provided an independent

confirmation, without the use of in situ temperature observations, of the global warming

observed over land (Compo et al., 2013). Comparison with annual SAT trends over land

from 8 different datasets showed temporal correlations of 0.84 to 0.92, and correlations of

0.74-0.81 when a 7 year running mean was used (Compo et al., 2013). Therefore, 20CR

represents global SAT trends well but was found to be less representative of Arctic SATs

over land than many currently available reanalyses.

2.2.5 The Arctic System Reanalysis

ASR is a high resolution regional reanalysis for the Arctic (Bromwich et al., 2010). This

Arctic specific analysis is created using a Polar optimised Weather Research and Fore-

casting (Polar WRF) model developed and tested for Arctic ice sheets, ocean/sea ice and

land areas (Bromwich et al., 2009, 2010; Hines and Bromwich, 2008; Hines et al., 2011;

Wilson et al., 2011).

SATs have been investigated for model simulations of the Polar WRF model version

2.2. SATs were found to show fairly good agreement with in situ observations from

the Surface Heat Budget of the Arctic (SHEBA) drifting ice station for January, June

and August 1998 (Bromwich et al., 2009). Polar WRF SATs were compared to SHEBA

2.5m temperatures (temperatures interpolated to 2.5m from tower observations). The

correlation values were 0.81, 0.48 and 0.61 for January, June and August respectively

(Bromwich et al., 2009). Biases were between -1.8 and 0.2K and RMSE values were 0.9-
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4K (Bromwich et al., 2009). SATs from the Polar WRF model version 3.1 simulations

were compared with in situ observations from the National Climatic Data Center and

ERA-Interim data (Wilson et al., 2011), and in situ observations from the north slope

of Alaska as well as other Arctic land areas (Hines et al., 2011). Polar WRF v3.1 was

in general agreement for annual SATs in terms of spatial patterns over land areas, with

correlations of 0.76-0.81 for annual SATs, but underestimated annual SATs by up to 1.6K

with a RMSE of 4.4 (Wilson et al., 2011). For monthly SATs, both studies noticed a

warm bias in summer but disagreed about the presence of a warm bias in winter, which

was noted by Hines et al. 2011 but Wilson et al. 2011 observed a cold bias in most seasons

including winter and for most of the area studied (attributed to the model version used

for this reanalysis). Both studies do agree, however, about the size of monthly correlation

values (0.6 to 0.9) and RMSE values (in the range 2-6.7K) (Hines et al., 2011; Wilson

et al., 2011). ME values showed much larger warm biases, especially for certain stations

in the study by Hines et al. 2011. Therefore, the investigations completed so far suggest

that ASR may provide realistic estimates of Arctic temperatures, given the performance

of its model simulations. However, more research is needed to confirm this and some large

errors were noted in the study by Hines et al. 2011.

2.2.6 European Centre for Medium-Range Weather Forecasts

Reanalyses

ECMWF first produced a reanalysis as part of the FGGE in 1979 (Dee et al., 2011b).

After the value of reanalysis was recognised, ECMWF continued to produce reanalysis

datasets. ERA-15, a 15 year reanalysis for 1979 to 1993, was the first ECMWF reanalysis

(Gibson et al., 1999). The ERA-40 reanalysis project, 1957 to 2002, followed ERA-15

and benefited from an enhanced observing system as well as updates and changes which

were informed by the ERA-15 project (Uppala et al., 2005). ERA-Interim is the current

ECMWF reanalysis dataset. It was designed as an interim reanalysis of the period 1989-

present in preparation for an extended reanalysis due to replace ERA-40 (Dee et al.,

2011b). ERA-Interim has since been extended to 1979. Two new ECMWF reanalyses,

ERA-20C and a high resolution, near real-time satellite era reanalysis, are currently in

production as part of the ERA-CLIM2 project (ERA-CLIM, 2014; Reanalyses.org, 2014).

2.2.6.1 ERA-15

ERA-15 was one of three reanalyses compared to in situ rawinsonde datasets over the

Arctic Ocean by Bromwich and Wang 2005. ERA-15 was found to overestimate mean

monthly surface temperatures for the first few months of CEAREX (September to Novem-

ber 1988) by the same amount as NCEP R1, about 2-3K (Bromwich and Wang, 2005).

After this temperatures were overestimated by both ERA-15 and NCEP R1 by 1-2K

(Bromwich and Wang, 2005). ERA-15 outperformed NCEP R1 overall as RMSEs were
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lower (2.4K for compared to 2.8K), but was in turn outperformed by ERA-40 which had

a RMSE of 1.7K (Bromwich and Wang, 2005).

2.2.6.2 ERA-40

SATs from ERA-40 were investigated in the Arctic by comparing them to IABP/POLES

observations from 1979-1999 by Liu et al. 2008. The reanalysis generally showed good

agreement with the in situ observations of SATs and seasonal variations were reproduced

well, as was also found for NCEP R2 in that study (Liu et al., 2008). However, ERA-

40 had a consistent warm bias in all seasons (0.48 to 2.05K), as well as a warm bias in

the annual mean (1.48K) which was twice the size of the the annual mean warm bias in

NCEP R2 (Liu et al., 2008). The warm biases were seen for almost every area of the Arctic

and interannual variability was underestimated (Liu et al., 2008). But, as IABP/POLES

includes NCEP R1 data in some areas, which is very similar to NCEP R2, this may impact

conclusions about the relative performance of ERA-40. As mentioned previously, ERA-40

was also compared to rawinsonde data by Bromwich and Wang 2005. It was found that all

three reanalyses had very similar ME values, but ERA-40 outperformed both the ERA-15

and NCEP R1 for RMSE values. Again a warm bias in ERA-40 was noticed for many

months and the biases were of similar sizes in those two studies (Bromwich and Wang,

2005; Liu et al., 2008).

ERA-40 was compared to SATs from GHCNCAMS globally and was found to have the

highest correlation values for SATs over land (Wang et al., 2011). ERA-40 had correlations

of more than 0.9 for the majority of Arctic land areas, excluding the Greenland ice sheet,

with only small areas of 0.7-0.9 correlation values (Wang et al., 2011). ERA-40 data have

also been compared to radiosonde profiles located above 70◦N by Dee and Uppala 2009.

Near surface temperature from ERA-40 had a very small warm bias of 0.2K (Dee and

Uppala, 2009). However, it was outperformed slightly in this regard by ERA-Interim (Dee

and Uppala, 2009).

ERA-40 has been investigated for surface temperature trends. Compared to SAT sea-

sonal and annual timeseries in the IABP/POLES dataset, ERA-40 overestimated annual

warming by 0.07K, underestimated spring warming by the same amount, and overesti-

mated summer/autumn warming and winter cooling trends by up to 0.15K (Liu et al.,

2008). It therefore outperformed NCEP R2 in terms of annual and seasonal temperature

trends compared to IABP/POLES. However, issues were noted for Arctic temperature

trends in ERA-40 by Screen and Simmonds 2011. The performance of ERA-40 in the

Arctic was assessed using various reference datasets from satellites, radiosondes and other

reanalyses (Screen and Simmonds, 2011). A discontinuity occurring in 1997 in ERA-40

was shown to lead to exaggerated warming of the Arctic troposphere (Screen and Sim-

monds, 2011). ERA-40 had a warm bias of up to 0.6K relative to MSU TLT after 1997

and as a result was outside the 95% confidence interval for decadal trends (Screen and

Simmonds, 2011). ERA-40 can also be more than 1K warmer for decadal trends than
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other reanalyses after 1997 (Screen and Simmonds, 2011). The discontinuity was also

noted when atmospheric temperatures at various levels above the surface were compared

with radiosonde data (Screen and Simmonds, 2011). These issues were not observed in

ERA-Interim (Screen and Simmonds, 2011). This means that ERA-40 is not a good

choice of reanalysis for examining Arctic temperature trends in recent decades (Screen

and Simmonds, 2011).

2.2.6.3 ERA-Interim

ERA-Interim was found to outperform other reanalyses (ERA-40, JCDAS, NCEP CFSR,

NCEP R2 and MERRA) in biases and RMSE for SATs (Lindsay et al., 2014). Biases

in ERA-Interim were comparable to MERRA (±0.5K) but correlation values were higher

(0.92-0.97) than noted for MERRA and all other reanalyses investigated in that study

in all months (Lindsay et al., 2014). Lindsay et al. 2014 suggested that this is because

ERA-Interim uses the observed SAT and background temperatures from the previous

analysis time step in an optimal interpolation scheme rather than estimating the SAT

by interpolating between the skin and lowest modelled temperatures. ERA-Interim has

also been found to perform well in depicting tropospheric (<3K bias) and near surface

(1000hPa) temperatures (0.1K warm bias) over the Arctic (Dee and Uppala, 2009), fairly

well for temperatures from the surface (2K warm bias) up to 2km (<3K warm bias, Lüpkes

et al. 2010 and fairly well (2K warm bias, 2.4K RMSE) for near surface temperatures at

10m height (Jakobson et al., 2012). However, ERA-Interim does suffer from a consistent

warm bias in the lower 400m layer of the atmosphere of up to 2K (Jakobson et al., 2012).

This bias was also noted by Lüpkes et al. 2010 and Simmons and Poli 2014, and is a

long standing problem for the ECMWF reanalyses (Beesley et al., 2000; Curry et al.,

2002; Jakobson et al., 2012; Lüpkes et al., 2010; Screen and Simmonds, 2011; Tastula and

Vihma, 2011; Vihma et al., 2002).

ERA-Interim Arctic climate change trends were investigated along with other reanal-

ysis datasets and compared to both the Cowtan and Way and GISTEMP datasets. All

investigated reanalyses, including ERA-Interim, showed similar warming trends in the

Arctic when compared to each other and to SAT and TLT datasets (Chung et al., 2013;

Simmons and Poli, 2014). All reanalyses were largely within 0.5K of each other and other

investigated datasets (Chung et al., 2013; Simmons and Poli, 2014). ERA-Interim was

also found to reconstruct temperature trends in the Arctic well compared to other reanal-

yses and satellite datasets for ME values (Screen and Simmonds, 2011). ERA-Interim was

found to produce the most realistic trends in Arctic temperatures in the mid- and lower

troposphere compared to MSU data (Screen and Simmonds, 2011).

2.2.7 Discussion

For surface temperatures in the Arctic, ERA-Interim performed very well compared to

in situ observations and other reanalyses. Despite a consistent warm bias, ERA-Interim
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produced generally realistic estimates of surface temperatures and surface temperature

temperature trends over Arctic land and sea ice areas. In Table 2.2.7 it can be seen

that ERA-Interim was ranked first in all studies investigating Arctic SATs at around 2m

height. Biases and RMSE values were relatively low and correlation values were higher

compared to other reanalyses. ERA-Interim outperformed, or was comparable to, other

reanalyses in terms of SAT patterns, anomalies, and SAT trends in the studies identified.

ERA-Interim also performs quite well for SATs at other heights and TLT and is often

ranked first.

However, in the study by Jakobson et al. 2012, NCEP CFSR was ranked first when

reanalyses were compared to SATs at 10m height from tethersondes. ERA-Interim was

also outperformed by NCEP R2. This suggests that ERA-Interim may not be the most

realistic reanalysis for air temperatures above 2m. It must also be noted that, although

ERA-Interim provides realistic estimates of Arctic temperatures and temperature trends

for areas of the Arctic studied thus far it is not necessarily a good representation of Arctic

SATs in other uninvestigated areas. Temperatures at other model levels are used as back-

ground fields for the separate surface analysis in ERA-Interim. If these background fields

are not realistic then ERA-Interim temperature fields may not provide a good estimate

of SATs far from observations. This may be a problem for the Arctic where temperature

observations are spatially and temporally sparse; the assumed horizontal correlation co-

efficients of background error covariances in ERA-Interim are around 0.5 at 350km and

reach 0 at 1000km (Appendix B, Simmons et al. 2004). However, ERA-Interim and its

precursor reanalysis ERA-40, do provide realistic estimates of Arctic surface temperatures

when compared to independent data sources and ERA-Interim surface temperatures above

2m did not contain errors much larger than those for SATs at 2m height. This suggests

that ERA-Interim will provide realistic Arctic SATs even in unobserved areas.

There is the potential for newer reanalyses, such JRA-55, to provide better estimates

of Arctic SATs compared to ERA-Interim. JRA-55 was found to be comparable to ERA-

Interim in the studies identified (Table 2.2.7). However, as these reanalyses have only

become available in the last few years, sufficient research is not yet available to draw firm

conclusions about the relative performance of these new reanalyses compared to ERA-

Interim. In addition, JRA-55 was released after work started on Chapter 3 of this thesis,

so although it appears to perform well in the Arctic it was not included. Therefore, the

literature discussed here suggests that ERA-Interim was the most suitable reanalysis to

use as a testbed for investigating Arctic SATs of the reanalyses available at the time of

the study detailed in Chapter 3.
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2.3 An Investigation of the Representation of Arc-

tic Surface Temperature Anomaly Correlation

Length Scales in the ERA-Interim Reanalysis

2.3.1 Introduction

Chapter 3 of this thesis investigates the impact of using several different estimation tech-

niques, which are related to current temperature anomaly datasets, to estimate Arctic

SAT anomalies over land and sea ice areas. Both ‘interpolating techniques’, which pro-

duce complete fields of Arctic SAT anomalies, and ‘non-interpolating’ techniques, which

do not produce complete SAT anomaly fields, are investigated. Estimating temperature

anomalies from sparse in situ data using interpolating techniques allows us to produce

spatially complete estimates of climate change in the Arctic, which are not available solely

from in situ data. This means that the whole of the Arctic can be represented in global av-

erages of temperature change, rather than being represented by sparse in situ data which

only cover a small subset of the region. However, in order to interpolate and extrapolate

Arctic SAT anomalies using these techniques, some assumptions about the correlation of

SAT variations with distance are needed.

An observation of a geophysical variable at a certain location will be more highly

correlated with nearby observations of the same variable than observations further away;

the correlation decreases with distance. Correlation functions describe this correlation

with distance. Correlation length scales are defined as the distance at which mean cor-

relations fall below 1/e (Rigor et al., 2000; Belousov et al., 1971). Some interpolation

techniques assume that SAT anomalies can be interpolated up to a certain distance from

a station and use a correlation length scale or correlation function, generally determined

from available in situ data, to determine this distance. For example, the linear interpo-

lation technique (also known as kernel smoothing using a conical filter) employed by the

GISTEMP dataset assumes that monthly SAT anomalies can be interpolated and extrap-

olated up to 1200km distance from a station as this was the distance at which, on average,

the correlation coefficient fell below 0.5 in middle and high latitudes (Hansen et al., 2010;

Hansen and Lebedeff, 1987). Other datasets use the correlation function to determine the

weighting for an interpolation method. The Berkeley Earth Surface Temperature dataset

utilises a Simple Kriging method in which a model correlation function is used to weight

observations of SAT anomalies by distance (Berkeley Earth, 2014; Rohde et al., 2013a,

2012). The correlation function is assumed to be a good approximation for the covariance

function as long as the variance changes slowly with time (Rohde et al., 2012, 2013a).

So, when investigating the impact of using various techniques to estimate Arctic SAT

anomalies using reanalysis data as a testbed, we need to check that the correlation length

scales of the reanalysis data are close to the reality. If the correlation length scale in the

testbed data is not close to the reality then this will result in conclusions which do not
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reflect the actual performance of the investigated estimation techniques in practice. For

instance, if the reanalysis data had a correlation length scale which was similar to the

correlation length scale assumed for meteorological station data in a given interpolating

technique, when in reality the correlation length scale was quite different, then the in-

terpolating technique would appear to provide a very good reconstruction of anomalies

when used in the testbed whereas for interpolating real data it would perform poorly.

Consequently, it is important to investigate correlation with distance in ERA-Interim for

the Arctic and establish how close it is to the reality.

Here I compare monthly and annual correlation functions for Arctic SATs as repre-

sented in ERA-Interim to reference correlation functions in order to determine how close

the correlation length scales in ERA-Interim are to Arctic correlation length scales in

reality. Section 2.3.2 describes the data and techniques used in this study. Sections 2.3.3

and 2.3.4 evaluate the representation of Arctic annual and monthly correlation functions

respectively in ERA-Interim. Finally, Section 2.3.5 discusses the results and provides a

summary and conclusions for this correlation length scale study.

2.3.2 Data and Techniques

SAT anomaly fields were created from ERA-Interim data so that each grid cell had a

timeseries of monthly and annual SAT anomalies between 1979 and 2011. These SAT

anomaly fields were sub-sampled to produce ‘station location’ timeseries: ERA-Interim

grid cell SAT anomaly timeseries sampled at Arctic meteorological station locations. The

Arctic was defined in this study as the area above 65◦N, which approximately matches

the area northward of the Arctic circle while matching cleanly the grid cell edges of ERA-

Interim. The station location timeseries were cross correlated for each grid cell to produce

monthly and annual cross correlation fields. Monthly and annual correlation functions

were calculated from the cross correlation fields for each station location. These station

location correlation functions were compared to reference correlation functions, along with

their implicit correlation length scales, and their representativeness analysed.

2.3.2.1 Reference Correlation Length Scales

2.3.2.1.1 Annual The correlation of meteorological station temperature records with

distance was investigated as part of the development of the GISTEMP (Hansen and

Lebedeff, 1987) and Berkeley Earth (Rohde et al., 2012) temperature anomaly datasets.

Both studies (Hansen and Lebedeff, 1987; Rohde et al., 2012) investigated the annual

correlation function at various latitude bands across the earth. The correlation function

for Arctic latitudes in both studies (>64◦N for Hansen and Lebedeff 1987 and the latitude

band centred at 68◦N for Rohde et al. 2012) had a correlation value of around 0.98 at

0km station separation, decreasing to 0.5 at 1200km, and reaching a correlation of 0 at

about 3000km. I fitted a curve to these parameters (Figure 2.1) and this constituted

the reference annual correlation function to which annual station location correlation
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functions were compared. From this curve I determined the reference annual correlation

length scale (the distance at which mean correlations fall below 1/e): 1570km.

Figure 2.1: The annual correlation function in high latitudes produced using the parameters
identified by Hansen and Lebedeff 1987 and Rohde et al. 2012. This was the reference correlation
function for annual Arctic SAT anomalies. The reference annual correlation length scale was
1570km.

2.3.2.1.2 Seasonal The IABP/POLES SAT dataset is an optimally interpolated

dataset of SATs in the Arctic (Rigor et al., 2000). The correlation with distance was

investigated between 12 hourly meteorological station, IABP buoy and NPDS observa-

tions over different Arctic surfaces (coastal land, interior land and ocean) by Rigor et al.

2000 prior to production of the dataset. Monthly correlation length scales were calculated

for correlations between different types of observations; for example ocean platforms with

ocean platforms, ocean platforms with coastal platforms, interior platforms with coastal

platforms, and so on. The correlation length scales for all observation types were found

to be almost constant for boreal spring, autumn and winter but was shorter in boreal

summer (Rigor et al., 2000). This seasonal pattern in the correlation length scales for

monthly Arctic SATs has also been noted elsewhere (e.g. Przybylak, 1997, 2003a).

As the correlation length scales were fairly constant on seasonal scales in that study,

I compared the monthly station location correlation length scales to reference seasonal

correlation length scales in this study. In addition, in this study station location timeseries

over land (coastal and interior stations) were correlated with grid cell timeseries over

ocean, coast and interior Arctic areas only. I therefore calculated the average of the

monthly correlation length scales in each season from Rigor et al. 2000 for all observation

types relevant to this study (all but ocean with ocean). The average correlation length

scale values were 1020km (spring, autumn, winter) and 710km (summer) to the nearest

10km. The study of Rigor et al. 2000 does not describe the expected average correlation
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value at 0km, unlike the studies of Hansen and Lebedeff 1987 and Rohde et al. 2012.

Therefore, in order to produce a reference seasonal correlation function, I assumed a

correlation value of 0.98 at 0km here. This is based on the results of the studies by

Hansen and Lebedeff 1987 and Rohde et al. 2012; studies which, in common with the

study of Rigor et al. 2000, employed in situ data. Curves were fitted to the parameters

noted above and these are shown in Figure 2.2. These curves constituted the reference

seasonal correlation functions to which monthly station location correlation functions were

compared.

Figure 2.2: The seasonal correlation function in high latitudes based on the correlation functions
identified by Rigor et al. 2000. These were the reference correlation functions for monthly Arctic
SAT anomalies. The reference monthly correlation length scales were 1020km (spring, autumn,
winter) and 710km (summer).

2.3.2.2 Station Location Correlation Length Scales

Station location correlation functions were produced from ERA-Interim grid cell monthly

and annual SAT anomaly timeseries, sampled at Arctic meteorological station locations.

Monthly SAT anomalies were produced for each ERA-Interim grid cell from 6 hourly

resolution ERA-Interim 2m air temperature data between 1979 and 2011 relative to a

10 year climatological period (1990-1999). A 10 year climatological period was used

instead of the conventional 30 year period in order to simulate the use of a conventional

climatological period in a longer dataset using ERA-Interim data which only covers 33

years. Annual anomalies for each grid cell were created from monthly anomalies for

each calendar year. The anomalies were subsequently detrended so that the correlation

value did not include the correlation arising from longer term trends in the temperature

anomalies. This produced detrended ERA-Interim SAT anomaly fields.

The locations in latitude and longitude of all meteorological stations in the GHCN-M

version 3.1.0 (GHCN-Mv3.1.0) were obtained from NOAA NCDC in February 2012. I
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chose station locations from GHCN-Mv3.1.0 for this study as many temperature anomaly

datasets use the GHCN-M temperature records as the basis for their temperature anoma-

lies. The meteorological station locations used in this investigation were not the same as

those used for Chapter 3. Chapter 3 utilised the locations of all meteorological stations

in the CRUTEM.4.1.1.0 land surface temperature anomaly dataset (produced by the Cli-

matic Research Unit of the University of East Anglia and the Met Office Hadley Centre,

Jones et al. 2012) databank, which was released after work on this investigation had be-

gun. The CRUTEM.4.1.1.0 databank contains a higher number of Arctic meteorological

stations than GHCN-Mv3.1.0 (Jones et al., 2012), so I decided that the former would be

a more suitable input for the study in Chapter 3. These datasets have the majority of

stations in common above 65◦N (illustrated by comparing Figure 2.3 and Figure 3.3 of this

thesis) so I do not expect the difference between the station locations in this study and

those used in Chapter 3 to have a large impact on the results of this investigation, nor on

the final conclusion of this chapter. All stations in GHCN-Mv3.1.0 located in the Arctic

(above 65◦N) were identified, regardless of whether they reported temperatures between

1979 and 2011. Some of the land stations were located within the same ERA-Interim grid

cell, and therefore produced identical correlation fields. These stations were identified and

duplicates were ignored. The locations of all identified, non-duplicate stations are shown

in Figure 2.3.

Figure 2.3: The locations of all Arctic (above 65◦N) meteorological stations in the GHCN-
Mv3.1.0 dataset.

In the studies by Hansen and Lebedeff 1987; Rigor et al. 2000; Rohde et al. 2012,
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correlation with distance was determined from available in situ data by correlating the

temperature records of many land-based meteorological stations. The station location

correlation functions in ERA-Interim were determined using a slightly different method.

Here I cross correlated ‘station location’ timeseries, ERA-Interim grid cell anomaly time-

series sampled at the identified Arctic meteorological station locations, with the anomaly

timeseries at all other ERA-Interim grid cells to produce monthly and annual cross corre-

lation fields. This was done in order to explore spatially complete Arctic station location

correlation fields. However, this means that there may be differences between the ref-

erence and station location correlation functions and implicit correlation length scales

which result from the different sample of timeseries correlated rather than differences in

the correlation length scale.

The monthly and annual correlation values for each ERA-Interim grid cell were plotted

against distance for each station location. A model function was fitted to these monthly

and annual correlation values with distance to calculate monthly and annual correlation

functions for each station location. The form of the correlation values with distance were

examined visually and the majority were very similar to a “spherical” model function

(described by Eq. (2.1); d is the distance in km and C(d) is the model correlation at

distance d). This corresponds with the study by Rohde et al. 2012. The parameters a,

dmax and µ were determined by fitting the function to the station location correlation

values. The MPFIT IDL least-squares curve fitting routines by (Markwardt, 2009) were

used to determine the most appropriate values of a, dmax and µ for each model correlation

function. The function was constrained to 1 at 0km. Without a constraint the MPFIT

IDL routines would determine parameters for a model function with a correlation above 1

at 0km. I chose a value of 1, rather than 0.98 as in the reference, because station location

timeseries were correlated with themselves at 0km in this study as a result of using grid-

ded data instead of meteorological station data (used to produce the reference correlation

length scales). Therefore, it should be noted here that the station location timeseries are

expected to have slightly higher correlation values at each distance compared to the ref-

erence correlation function. If the correlation with distance decreases at the same rate in

both the station location and reference correlation functions, we can expect slightly higher

correlation values at each distance for ERA-Interim derived correlation functions. Fur-

thermore, ERA-Interim data do not contain the inhomogeneities, uncertainties, noise and

local effects associated with meteorological station records and can therefore be expected

to have longer correlation length scales. The spherical model function was found to be a

good model fit for the majority of station locations. A visual examination of the model

functions and the correlation values with distance for each station location (monthly and

annual) found that they were generally very similar. Additionally, a chi-squared goodness

of fit test gave a result of no significant difference (at the 95% confidence level) between

the model function and the distribution of correlation values with distance for more than

80% of station locations.
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C(d) =

a(1 − d
dmax

)2(1 + d
2dmax

) + µ for all d < dmax

0 otherwise
(2.1)

The station location correlation functions and maps of station location correlation

fields produced using the methods detailed above were examined and compared to the

reference correlation functions.

2.3.3 The Correlation Length Scale of Arctic Surface Air Tem-

perature Anomalies at Annual Timescales

At annual timescales, some station location timeseries’ correlation fields and correlation

functions corresponded with the reference annual correlation functions. Figure 2.4 shows

the cross correlation fields for three example station locations. Figure 2.5 shows the scatter

plots of correlation values with distance and the station location correlation functions for

the same three stations. These stations had correlation values of 1/e or more for all,

or almost all, of the area within 1570km of the station location, while the correlation

functions for the three stations had correlation values of around 0.6 at 1570km. This

was slightly higher than the correlation value of the reference correlation function at

this distance, as expected for ERA-Interim derived correlation functions in this study

(Section 2.3.2.2). But, there were also some station location timeseries with annual spatial

correlations and correlation functions which did not fit as well as with the reference,

nor with the anticipated behaviour of ERA-Interim derived correlation functions relative

to the reference. Figures 2.6 and 2.7 shows the cross correlation fields and correlation

functions for a different set of three station locations. These stations had correlation

values of 1/e or more for relatively small areas within 1570km of the station locations, or

had very directional correlation fields. The correlation length scales for the three stations

were also shorter than the reference; correlation values were 0 to 0.1 at 1570km. Were

the station locations with correlation functions similar to, or slightly higher than, the

reference in the minority or do they make up a significant proportion of Arctic station

location annual correlation functions?

Binned averages of all station location timeseries’ correlation values with distance were

calculated on monthly and annual timescales and a spherical model function was fitted to

these averages (as in Section 2.3.2.2). On average, the station location correlation length

scales were very similar to the reference, but with slightly higher correlation values at

each distance as anticipated (Figure 2.8). Both curves had correlations of around 1/e

at 1570km distance and the average station location correlation length scale was slightly

longer than the reference (1700km compared to 1570km). The cross correlation at 1570km

for each station location was graphed and compared to the reference correlation value at

this distance (Figure 2.9). 45.3% of the analysed station location timeseries had annual

correlation values of 1/e or more at 1570km distance. Of the remaining stations, most had
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Figure 2.4: The cross correlation of grid-cell annual average anomalies from the grid cell nearest
three station locations (Rowley Island, Hall Beach and Corkudah) with the annual average
anomalies for all other ERA-Interim grid cells. Black dots show station locations and black
circles show the area which is 1570km distance from each station location.

Figure 2.5: Scatter plot of the correlation between grid cell annual average anomalies from
the grid cell nearest three Arctic station locations (Rowley Island, Hall Beach and Corkudah)
with the annual average anomalies for all other ERA-Interim grid cells. The black line gives the
polynomial fit to the data and the dashed lines show the reference correlation length scale.
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Figure 2.6: The cross correlation of grid-cell annual average anomalies from the grid cell nearest
three station locations (Alert, Nord Ads and Danmarkshavn) with the annual average anomalies
for all other ERA-Interim grid cells. Black dots show station locations and black circles show
the area which is 1570km distance from each station location.

Figure 2.7: Scatter plot of the correlation between grid cell annual average anomalies from
the grid cell nearest three Arctic station locations (Alert, Nord Ads and Danmarkshavn) with
the annual average anomalies for all other ERA-Interim grid cells. The black line gives the
polynomial fit to the data and the dashed lines show the reference correlation length scale.
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correlation values which were fairly close to the reference; 72.2% of all stations investigated

had correlation values of ≥0.27 or more at 1570km and 87.4% had values of 0.22 or more.

The majority of investigated station location CLS had correlation values at 1570km that

were more than or equal to the reference value at this distance, or were within 0.15 of

this correlation value.

Figure 2.8: Annual reference and ERA-Interim correlation functions. The dashed lines show
the reference correlation length scale.

So, on average the correlation function for annual Arctic SAT anomalies as repre-

sented in ERA-Interim was very similar to the expected. Just under half of the station

locations fitted the reference correlation length scales, or had the higher correlation values

at each distance predicted for ERA-Interim derived correlation length scales. Most of the

remaining stations had correlation values close to the reference value at this distance.

2.3.4 The Correlation Length Scale of Arctic Surface Air Tem-

perature Anomalies at Monthly Timescales

As noted for the reference seasonal correlation functions, in many of the station location

timeseries the boreal summer months (June, July and August) had a shorter correlation

length scale than in other seasons. For example, Figure 2.10 shows the monthly cross

correlation fields for one example station location (Tuktoyaktuk, N.W.T) with black dots

to indicate the station locations and black circles to show the area which is 1020km

(spring, autumn, winter) or 710km (summer) distance from each station location. For

most months, this station had correlation fields with values of at least 1/e for much of the
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Figure 2.9: Graph of the correlation value of grid-cell annual average anomalies at 1570km
(the reference correlation length scale) for all station locations above 65◦N with a reference line
representing the reference correlation value associated with the correlation length scale.

area within 1020km of the station (Figure 2.10). However, in boreal summer (June, July,

August) the area for which correlation values were ≥1/e was smaller. This pattern of

smaller correlation length scales in the summer months was also observed in Figure 2.11

for monthly scatter plots and correlation functions for the same example station location.

Binned averages of all station location timeseries correlation values with distance were

calculated for monthly SAT anomalies in the Arctic and a polynomial was fitted for each

month. On average the station location correlation values were around 0.6 at 1020km and

0.5-0.6 at 710km (summer), whereas the reference correlation values were 1/e at these dis-

tances. This was a larger difference between the curves than was noted for the similar

annual correlation function in Figure 2.9; 0.2-0.3 difference in monthly average correla-

tion values at the distances of interest rather than 0.1 for annual timescales. I repeated

the comparison using monthly, rather than seasonal, reference correlation functions (Fig-

ure 2.13). For many months the monthly average station location correlation functions

were slightly closer to monthly rather than seasonal reference correlation functions. How-

ever, the differences between the reference and station location correlation functions were

still larger than those noted for the annual correlation functions. The monthly correlation

value for each station location at 1020km and 710km (summer), and the average monthly

correlation value across all station location correlation functions at these distances, were

produced and are plotted in Figure 2.14. The average monthly correlation value in each

month was above the reference value of 1/e. The correlation values at the appropriate

distances were 0.5-0.6 in all months, which fits with the results shown in Figure 2.12.

For winter and spring months, all station location correlation functions were at or above
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Figure 2.10: Panel plot of the cross correlation of grid-cell monthly average anomalies from the
grid cell nearest the Tuktoyaktuk, N.W.T station location with the monthly average anomalies
for all other ERA-Interim grid cells. Black dots show the station location and the black circles
show the area which is 1020km (spring, autumn, winter) or 710km (summer) distance from the
station location.
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Figure 2.11: Scatter plot of the correlation between grid cell monthly average anomalies from the
grid cell nearest the Tuktoyaktuk, N.W.T station locations with the monthly average anomalies
for all other ERA-Interim grid cells. The black line gives the polynomial fit to the data and the
dashed lines show the reference correlation length scale.
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the reference value. Many had a correlation value of 0.6. For the remaining months the

majority (at least 84%) of station location correlation values were ≥1/e.

Figure 2.12: Seasonal reference and monthly ERA-Interim correlation functions. The dashed
lines show the reference correlation length scale.

So, the correlation length scales of monthly Arctic SAT anomalies as represented in

ERA-Interim was longer than the reference values but longer than anticipated given the

results for annual correlation length scales. It could be that ERA-Interim data were

less representative of monthly correlation length scales than annual correlation length

scales. However, the annual correlation functions were quite similar to the reference

and, as the monthly ERA-Interim correlation functions were consistently the same or

higher on average and for the majority of stations, it seems unlikely that the more similar

annual correlation function was due to cancellation of errors. This suggests that the

reference seasonal correlation functions might not be representative of the areas over

which the station location timeseries were being correlated. In this study it was assumed

that an even mix of correlation length scales of all observation types from the study of

Rigor et al. 2000, excluding ocean with ocean stations, would provide an appropriate

reference correlation length scales for this study on seasonal (and monthly) timescales.

However, as the station locations used in this study were all land based, it is likely that

the station location timeseries were correlated with a higher percentage of land-based grid

cells (coastal or interior) the shorter the distance from the station. Therefore assuming
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Figure 2.13: Monthly reference and ERA-Interim correlation functions. The dashed lines show
the reference correlation length scale.

Figure 2.14: Graph of the monthly cross correlation value at 1020km and 710km (summer)
for each station location above 65◦N and the average monthly cross correlation value at these
distances across all station locations above 65◦N. Dashed grey lines show the reference correlation
value at the distances of interest.
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an even mix of interior, coastal and ocean grid cell correlations for the relatively short

distances of interest (710 and 1020km) may not be appropriate.

In conclusion, there was a seasonal pattern in the correlation length scale on average,

and for the majority of, the station location timeseries analysed. On average the cor-

relation length scales as represented in ERA-Interim on monthly timescales were fairly

similar to, but longer than, the reference seasonal correlation length scales. The monthly

ERA-Interim correlation functions were often slightly closer to monthly reference corre-

lation functions when investigated if used, but the differences between the reference and

ERA-Interim correlation functions were still larger than noted for the annual correlation

functions. This may be due to the assumptions made in identifying reference seasonal

correlation length scales.

2.3.5 Discussion

For Arctic SAT anomalies as represented in ERA-Interim, the annual and monthly cor-

relation functions were generally similar to the reference annual and seasonal correlation

functions, and their implicit correlation length scales. For annual Arctic SAT anoma-

lies the station location correlation length scales were, on average and for nearly half of

the station locations analysed, very similar to the reference CLS but with slightly higher

correlation values at all distances until 0 correlation was reached. The slightly higher

correlation values at each distance in ERA-Interim were expected; station location time-

series were correlated with themselves at 0km in this study and ERA-Interim data are

more consistent than meteorological station records. Therefore ERA-Interim data can be

expected to have longer correlation length scales for Arctic SAT anomalies.

In common with the seasonal reference correlation functions there was a seasonal pat-

tern in the ERA-Interim correlation length scales on average and for the majority of the

station location timeseries analysed. Summer correlation length scales were shorter than

those in other seasons. As noted for annual correlation functions the monthly correlation

functions derived from ERA-Interim Arctic SAT anomalies were fairly similar to, but

with higher correlation values at each distance than, the seasonal reference correlation

functions. The higher correlation values were expected, but there was a larger difference

between the correlation functions than noted for annual anomalies. Correlation values in

monthly ERA-Interim correlation functions had correlation values 0.2-0.3 higher on aver-

age than those of the seasonal reference correlation functions at the distances of interest

rather than the 0.1 noted for annual timescales. The monthly ERA-Interim correlation

functions were often slightly closer to monthly reference correlation functions if used, but

the correlation values still had greater differences at the distances of interest compared

to the annual correlation functions. This may be due to the choice of the reference cor-

relation functions to which the ERA-Interim correlation functions was compared to; the

reference correlation function might not be representative of the areas over which the

station location timeseries were being correlated (Section 2.3.4).
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Some of the differences noted between the ERA-Interim and reference correlation

functions could be related to differences in the sample of timeseries used to create the

functions. The reference correlation functions, here assumed to be the ‘true value’, were

calculated by correlating meteorological station temperature timeseries only, whereas the

ERA-Interim correlation functions in this study were produced by correlating all grid cell

timeseries with each station location timeseries. This creates uncertainty in the compar-

isons. Nonetheless the correlation with distance in ERA-Interim Arctic SAT anomalies

is similar to the reality, which in this study are reference correlation functions produced

using parameters identified in studies by Hansen and Lebedeff 1987, Rohde et al. 2012 and

Rigor et al. 2000 using in situ observations of Arctic SATs. This shows that ERA-Interim

is physically plausible in terms of correlation length scales in Arctic SATs.

2.4 Summary

Despite a consistent warm bias of around 2K compared to temperature observations near

the surface, ERA-Interim produces generally realistic estimates of Arctic temperatures

and temperature trends. ERA-Interim was ranked first in all identified studies which

investigated Arctic SATs at 2m height and outperformed, or was comparable to, other

reanalyses in terms of SAT patterns, anomalies and SAT trends. Simmons and Poli

2014 found that ERA-Interim SATs in the Arctic were within 0.5K of SATs from the

Cowtan and Way dataset (Cowtan and Way, 2014), HadCRUT4 (timeseries only), and

other reanalyses spatially and for SAT timeseries. ERA-Interim SATs over Arctic sea ice

had ME values of -0.5 to 1.4K compared to ships and buoys, although the ME compared

to ice stations could be up to 4.5K (Simmons and Poli, 2014). ERA-Interim SATs over

Arctic land areas were found by Lindsay et al. 2014 to be the most representative, out

of the seven reanalyses investigated in that study, of monthly SATs from CRUTEM3

meteorological stations. ERA-Interim data were within 0.5K of CRUTEM3 monthly SATs

were very well correlated with this in situ data; monthly correlation values were 0.92-0.97

(Lindsay et al., 2014). ERA-Interim also performs well in terms of the representation

of annual and monthly Arctic SAT anomaly correlation length scales. The reanalysis

produced correlation functions with correlation values within 0.1-0.3 of the reference at

each distance on average and for the majority, or near majority, of station locations

investigated. Based on the literature discussed and the Arctic SAT correlation length

scales investigation described in this chapter, ERA-Interim was found to be a physically

plausible reanalysis and consequently determined to be a suitable reanalysis to use as a

testbed for studying SAT anomalies in the Arctic.
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Chapter 3

An Investigation into the Impact of

using Various Techniques to

Estimate Arctic Surface Air

Temperature Anomalies

This study was accepted for publication as a paper in the Journal of Climate on the

23rd September 2014 (Dodd et al. 2015; ©American Meteorological Society, used with

permission). This chapter contains the final accepted version of the paper with some mod-

ifications. Slight changes have been made so that this chapter conforms to the formatting

of this thesis. Changes have also been made to the introduction and discussion in order

to avoid unnecessary repetition between chapters. An additional section (Section 3.4.2.1)

has also been added. This section was not included in the final draft of the paper as there

is some uncertainty surrounding the results, as well as concerns about the potential for

the results being taken out of context despite appropriate caveats. A more comprehensive

investigation and a more robust method would allow more confidence in these results.

Nonetheless, they are included here as they do raise an interesting point about the need

for caution when using estimation techniques in extremely data-sparse regions, such as

the Arctic.

3.1 Introduction

As noted in Chapter 1, the Arctic is an important region in the study of climate change.

However, monitoring Arctic temperature change is challenging, particularly in areas cov-

ered by sea ice for all or part of the year. Timeseries of global and regional mean Surface

Air Temperature (SAT) anomalies are one of the main metrics used to estimate recent

climate change. But, in situ measurements of Arctic SATs are sparse, especially early

in the temperature record (Figure 3.1), and the records are often short. This introduces

uncertainty to the calculation of average temperature changes in this region.
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Figure 3.1: The number of stations (a) reporting at least one temperature in each year,
(b) reporting temperatures in all months of each year, and (c) the percentage of grid cells
with at least one station reporting within 1200km (‘Fractional Coverage’).

Many types of surface temperature, measured from sensors on various different plat-

forms, could be used to monitor SAT changes in the Arctic (Chapter 1). For example,

satellite instruments can provide relatively consistent, continuous and detailed observa-

tions of the radiometric temperature of ice and water surfaces in the Arctic (Merchant

et al., 2013). There are also platforms which monitor SATs in Arctic sea ice areas such as

Arctic and Antarctic Research Institute North Pole Drifting Stations. However, satellite

derived temperatures and in situ temperature observations over Arctic sea ice are not

generally utilised at present for producing datasets of SAT anomalies. Instead, many dif-

ferent groups generate datasets of SAT anomalies using various techniques and methods

to quantify SAT changes over the Arctic from sparse in situ measurements as described

in Chapter 1.3.4. These result in timeseries of temperature changes which generally pro-

duce similar trends in post-industrialisation climate change for the Arctic region (see

Figure 3.2).

How effectively do these techniques reconstruct Arctic SATs and Arctic SAT change?

Previous studies have compared different techniques used to reconstruct surface temper-

atures at different temporal and spatial scales. Kriging techniques were often found to

produce good estimates of surface temperatures. For example, Cowtan and Way (2014)

and Rohde (2013) found that kriging techniques outperformed both the Met Office Hadley

Centre and Climatic Research Unit of the University of East Anglia (CRU) global tem-

perature anomaly dataset version 4 (HadCRUT4) method of estimation and Linear In-

terpolation in the style of the National Aeronautics and Space Administration (NASA)

Goddard Institute for Space Studies (GISS) Surface Temperature Analysis, or GISTEMP,

for global monthly mean surface temperature anomalies. Hofstra et al. (2008) found that

kriging in combination with splines was the more effective technique for interpolating

temperature data at daily resolution for European land areas. Other techniques have also

been used to interpolate surface temperatures including Angular Distance Weighting (e.g.

New et al., 2000), regression based methods (e.g. Vicente-Serrano et al., 2003), splines

(e.g. Price et al., 2000) and optimal interpolation (e.g. Kaplan et al., 1998). However,
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Figure 3.2: The annual Arctic SAT anomaly (K) over land relative to 1961-1990 from
several temperature anomaly datasets; Global Historical Climatology Network-Monthly
temperature dataset (GHCN-M, Lawrimore et al. 2011), National Aeronautics and Space
Administration (NASA) Goddard Institute for Space Studies (GISS) Surface Temperature
Analysis (GISTEMP, Hansen et al. 2010), and the Climatic Research Unit of the Uni-
versity of East Anglia and Met Office Hadley Centre land surface temperature anomaly
dataset version 4 (CRUTEM4, Jones et al. 2012). The timeseries are produced from the
dataset grids using grid boxes north of 65◦N over land and converted to be relative to 1961-
1990. The dataset versions used for this figure are GHCN-M.3.2.2.20140729, GISTEMP
(downloaded on the 29th July 2014) and CRUTEM4.2.0.0.
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despite the range of studies comparing surface temperature estimation techniques at dif-

ferent temporal and spatial scales, as well as in various different areas, no previous study

has specifically looked at estimating surface temperatures in the Arctic.

The purpose of this work was therefore to investigate the impact of using several dif-

ferent estimation techniques to estimate Arctic SAT anomalies over land and sea ice areas.

Five estimation techniques are investigated in this study, which are based on the tech-

niques used for existing temperature anomaly datasets, such as CRUTEM4, GISTEMP

and Berkeley Earth, that assimilate only in situ data sources. I explored the degree

of difference arising from using these different estimation techniques to estimate Arctic

SAT anomalies using European Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA) project interim reanalysis, or ERA-Interim, data as a testbed. In

Chapter 2 of this thesis I found that ERA-Interim is consistent with independent obser-

vations of Arctic SATs and provided realistic estimates of Arctic temperatures, tempera-

ture trends and correlation length scales. ERA-Interim outperformed, or was comparable

to, all reanalyses available at the time this chapter was produced. I therefore identified

ERA-Interim data as a suitable testbed for this study. Two investigations were under-

taken. Firstly, the performance of the estimation techniques for the time period for which

ERA-Interim is available (1979-2011) was investigated, hereafter referred to as the ‘re-

cent decades’ experiment. Secondly the interaction of changing station coverage with

estimation techniques was investigated using historical meteorological station coverages

between 1850 and 2011, hereafter referred to as the ‘historical coverage’ experiment. The

outline of this chapter is as follows. Section 3.2 describes the data and techniques used

in this study. Section 3.3 evaluates estimation technique performance in recent decades.

Section 3.4 analyses the effect of the historical coverage of meteorological stations. The

final section discusses the results and a summary is provided.

3.2 Data and Techniques

The objective was to compare the accuracy of Arctic SAT anomalies produced using five

estimation techniques: Linear Interpolation (LI), Global Ordinary Kriging (GOK), Global

Simple Kriging (GSK), a restricted finite volume interpolation technique (the ‘Binning’

technique), and Not Interpolating (NI). A description of these estimation techniques is

given in Section 3.2.3.

The estimation techniques were applied to ‘input anomalies’, which are monthly SAT

anomalies from ERA-Interim sampled at Arctic meteorological station locations. In this

study the Arctic was defined as north of 65◦N, which approximately matches the area

northward of the Arctic circle while matching cleanly the grid cell edges of many gridded

datasets of relevance. Two investigations were undertaken in this study: one focusing

on estimation technique performance in recent decades, and one looking at the effect

of using historical coverage. The same input anomalies were used as an input for both
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investigations with some slight modifications specific to each investigation (Section 3.2.2).

The estimation techniques yield ‘estimated anomalies’; estimates of the ERA-Interim

SAT anomaly at several temporal resolutions and, excluding the Binning technique, for

both investigations. Two types of anomaly were investigated: ‘Arctic-average’ anomalies,

which are area-weighted averages of SAT anomalies across the Arctic region, and ‘spa-

tially resolved’ anomalies, which are complete fields of Arctic SAT anomalies. Techniques

which produced spatially resolved anomalies as well as Arctic-average anomalies (LI, GOK

and GSK) are described collectively as ‘interpolating’ techniques. The Binning and NI

techniques were used to produce Arctic-average SAT anomalies only and are hereafter

collectively referred to as ‘non-interpolating’ techniques. The target areas for the inter-

polation were land areas and areas of sea ice with a sea ice concentration of more than

15%, these being the conventional areas not addressed by SST anomalies when creating

surface temperature datasets. The ‘truth’ for the target area against which the estimated

anomalies were compared was the SAT anomaly from ERA-Interim, described hereafter

as ‘reference’ anomalies.

3.2.1 Reference Anomalies

To compare the accuracy of Arctic SAT anomalies produced using different estimation

techniques, a reference dataset was produced; the ‘truth’ to which the anomalies produced

by each estimation technique will be compared. The reference for this study was the SAT

anomaly from ERA-Interim, produced using the method described in this section.

Monthly SAT anomalies were produced for each ERA-Interim grid cell from 6 hourly

resolution ERA-Interim 2m air temperature data between 1979 and 2011 relative to a 10

year climatological period (1990-1999). A 10 year climatological period was used instead of

the conventional 30 year period in order to simulate the use of a conventional climatological

period in a longer dataset using ERA-Interim data which only cover 33 years. This was

necessary if the performance of the estimation techniques outside of the climatological

period was to be investigated. To validate the reconstruction of spatially complete fields of

estimated anomalies at various temporal scales, the spatially resolved monthly anomalies

were used to create annual anomalies for each calendar year and seasonal anomalies for

boreal winter (December, January and February), spring (March, April, May), summer

(June, July and August) and autumn (September, October and November). To validate

the reconstruction of estimated Arctic-average anomalies, area-weighted averages of the

monthly anomalies for the Arctic region were produced for each month using a cosine of

latitude weighting. Annual and seasonal Arctic-average anomalies were produced from the

monthly Arctic-average anomalies. These monthly, seasonal and annual Arctic anomalies

for each ERA-Interim grid cell and for the Arctic area as a whole constitute our reference

anomalies.
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3.2.2 Input Anomalies

‘Input anomalies’ is the term used in this study for ERA-Interim data treated as if they

were meteorological station data. Using ERA-Interim data as input anomalies instead of

actual station measurements enables us to isolate and evaluate the limitations of the esti-

mation techniques. The input anomalies were ERA-Interim grid cell anomalies, sampled

at Arctic meteorological station locations.

The locations in latitude and longitude of all meteorological stations in the CRU

and Met Office Hadley Centre land surface temperature anomaly dataset version 4

(CRUTEM4) databank were obtained from the list of CRUTEM4 meteorological sta-

tions in the International Surface Temperature Initiative (ISTI) Stage 2 dataset (Thorne

et al., 2011). The dataset version used in this study was CRUTEM.4.1.1.0. Some of

these stations are not included in the gridded CRUTEM4 temperature anomaly dataset

as they are missing required information. Nonetheless, we identified all land stations sit-

uated north of 53 ◦N which provided information on Arctic temperatures necessary for

the interpolating techniques. Some of the land stations in the CRUTEM4 databank were

located within the same ERA-Interim grid cell. These duplicates would have caused a

problem for certain methods investigated in this study such as kriging. Therefore, we

identified all stations that were duplicates at the ERA-Interim resolution and merged the

records. Where only one station reported an anomaly this comprised the merged record

for that month and year. Otherwise a simple average of the duplicate station anomalies

was used. This creates a single station record comprising the reporting record of all sta-

tions located in the same grid cell. The location associated with the merged stations is the

latitude and longitude of the first station listed. For visualisation purposes, the locations

of the identified, non-duplicated stations are shown in Figure 3.3. Monthly anomalies

from the ERA-Interim grid cell containing each identified meteorological station were ex-

tracted from the reference dataset. These station anomaly timeseries were masked and

used to create input anomaly datasets for estimating anomalies in recent decades and

using historical coverages.

3.2.2.1 Recent Decades

Not every station identified from the CRUTEM4 databank for use in creating the input

datasets reported a temperature in every year or month between 1979 and 2011. This is

due to: stations being moved, added and discontinued; problems with instrumentation;

and reports which are not communicated in real time. To account for this, information

on which stations report in each year and month between 1979 and 2011 was extracted

from the CRUTEM4 databank and the input dataset was masked accordingly. There was

no required minimum number of reports. The locations of all stations that contributed

to the input dataset for investigating the performance of the various techniques in recent

decades (stations listed as reporting between 1979 and 2011) are shown in Figure 3.3.
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Figure 3.3: The locations of all meteorological stations in the CRUTEM4 databank.
Different markers are used to show the locations of the meteorological stations depending
on whether they are above 53◦N or above 65◦N and whether or not they report a single
temperature between 1979 and 2011.
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3.2.2.2 Historical Coverage

As ERA-Interim data are only available back to 1979 it was not possible to investigate

the effect of using historical coverage to estimate Arctic SAT anomalies before 1979 using

ERA-Interim data contemporary with the meteorological station coverage. Instead we

apply each year’s historical station coverage (1850 to 2011) to the estimation of monthly

Arctic anomalies for all years of the ERA-Interim period (1979-2011).

Each ERA-Interim year was used to produce an ensemble member. Each ensemble

member is a set of repeated instances of the input anomalies for the same 12-month year

between 1979 and 2011 (33 ensemble members). As the input anomalies for each repeated

year were masked according to the historical station coverage for 1850 to 2011 (162 years),

each ensemble member is 162 times 12 months long, with the anomalies from the same

12 months repeated throughout. Information on which input stations reported in each

year and month between 1850 and 2011 was extracted from the CRUTEM4 databank.

The locations of all stations that contributed to the input dataset for investigating the

effect of using historical coverage are shown in Figure 3.3. The monthly input anomalies

for each repeated year of an ensemble member were masked according to whether each

station reported in each month of each year of historical coverage. For example, the

input anomalies for January to December 1979 were first masked according to the station

coverage in January to December 1850, then according to the station coverage in January

to December 1851, in 1852, and so on. To aid understanding, a diagram of this process

is given in Figure 3.4. For each year’s historical coverage this gives an ensemble of 33

results (ensemble members) whose statistical properties can be investigated.

ERA-Interim Input Anomalies 
(1979-2011) 

1979:  
January-December 

1980:  
January-December 

1981:  
January-December 

…. 

2011:  
January-December 

Ensemble Member (1979) 

Historical Station Coverage (1850 to 2011) 

1850:  
Jan-Dec 

1851:  
Jan-Dec 

1852:  
Jan-Dec 

… 1979:  
Jan-Dec 

… 2011:  
Jan-Dec 

Masked according 
to historical 
station coverage 

1 2 3 … 162 

1979 1979 1979 1979 1979 1979 1979 

… 130 Repeated instance 

Figure 3.4: A diagram illustrating the creation of an ensemble dataset of input anomalies
using ERA-Interim data masked according to station coverage between 1850 and 2011.
Each ensemble member comprises a set of repeated instances of one 12-month year from
the period 1979-2011, masked according to the station coverage between 1850 and 2011.
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3.2.3 Estimation Techniques

3.2.3.1 Linear Interpolation

LI is used to combine input data and estimate SAT anomalies over land and sea ice at

unsampled points in the GISTEMP dataset (Hansen et al., 2010). The anomaly at each

GISTEMP grid cell is a weighted average of the input anomalies within a certain radius.

The LI technique used in this study and described below was based on the GISTEMP

technique.

The anomaly estimated at each grid cell is a weighted average of the input anomalies

within a 1200km radius of that grid cell. The weight w decreases linearly from unity for

input anomalies located at the grid cell being analysed (distance, d, between the input

anomaly and the grid point being analysed is 0km) to 0 for input anomalies located more

than or equal to the Radius (1200km) away (Eq. (3.1)). This weighting method and the

1200km radius is the same as used for GISTEMP.

w = 1 − d

Radius
when d ≤ Radius (3.1)

3.2.3.2 Kriging

Kriging refers to a set of geostatistical methods of interpolation which interpolate variables

using a given covariance or semivariance structure (Cressie, 1990). The variance structure

is often determined from available observations of the variable. Two forms of kriging

were investigated in this study: Global Ordinary Kriging and Global Simple Kriging.

The differences between the two kriging methods applied in this study are described in

subsections 3.2.3.2.1 and 3.2.3.2.2. A full description of the equations and variables used

for both kriging methods is available in Appendix B. A summary of the approach detailed

in Appendix B is as follows:

• A semivariance function was determined from the input anomalies. This function

prescribed the weighting for this interpolation; stations up to 3585.9km away can

contribute to the kriged anomaly and the station weighting halves at about 1200km.

• The semivariance function was used to construct a semivariance matrix between the

input anomalies as well as a vector of semivariances between the input anomalies

and the grid cell to be analysed.

• Covariances were calculated from the semivariance matrix and semivariance vector.

• A vector of optimal weights was produced by solving the system of linear equations.

• An estimate of the anomaly at each ERA-Interim grid cell was given by the dot

product of the vector of optimal weights and the input anomalies.
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3.2.3.2.1 Global Ordinary Kriging The first kriging method investigated is Global

Ordinary Kriging (GOK). ‘Ordinary’ kriging assumes stationarity of the mean of the

variable, where the mean is unknown a priori. The unknown mean is determined during

interpolation by constraining the optimal weights so that they sum to 1. ‘Global’ refers

to the fact that one single covariance function is used for all grid cells. In this study the

same covariance function is also used for all months and years to be interpolated.

3.2.3.2.2 Global Simple Kriging GSK is similar to GOK, but with the assumption

that the mean of the variable is known rather than unknown. This means that the weights

are not required to sum to 1 and they are calculated without this constraint. The mean

of the variable is instead added to the dot product of the vector of optimal weights and

the input observations to produce an estimate of the variable.

The Berkeley dataset is produced using a method which includes a Simple Kriging

technique. In the Berkeley method the temperature anomaly field over land is concep-

tualised as the sum of the global mean land temperature over time, the climate at each

location, and a ‘weather’ field for each location over time (Rohde et al., 2012, 2013a).

Simple Kriging is applied to the weather field using a global correlation function instead

of a covariance function (Rohde et al., 2012, 2013a). The correlation function is assumed

to be a good approximation for the covariance function as long as the variance changes

slowly with time (Rohde et al., 2012, 2013a). This study also uses a method of Simple

Kriging with a global variance function. However, GSK in this study interpolates the

temperature anomalies rather than a weather field and uses the same global covariance

function as GOK rather than a correlation function. A mean of 0 was assumed for GSK

as the anomaly observations were expected to have this mean value.

3.2.3.3 Non-Interpolating Techniques

Non-interpolating techniques were the final techniques applied in this study. In this study

‘non-interpolation’ techniques are those which do not produce spatially complete fields

of data. The Met Office Hadley Centre and Climatic Research Unit of the University of

East Anglia datasets such as CRUTEM4, HadCRUT4, and the Met Office Hadley Centre

SST dataset version 3 (HadSST3) use a non-interpolating method. In this study two

non-interpolating methods were explored. Comparing the results from these two methods

allows us to explore the impact of spreading information through the use of 5◦ grid boxes.

3.2.3.3.1 The Binning Technique The first method, the ‘Binning’ method, is simi-

lar to the technique used by the CRUTEM4 dataset. The input anomalies were gridded to

the 5◦ by 5◦ grid used for CRUTEM4, instead of the ERA-Interim grid used by all other

estimation techniques in this study, so that each grid box anomaly is a simple average of

all available station anomaly values within that grid box (Jones et al., 2012).
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3.2.3.3.2 Not Interpolating In the second method, the Not Interpolating (NI)

method, input anomalies were treated as estimated anomalies and analysed without mod-

ification.

3.2.4 Estimated Anomalies

The estimation techniques used in this study yield estimates of ERA-Interim monthly Arc-

tic SAT anomalies when applied to the input anomalies. All estimation techniques used

in this study produced estimated monthly anomalies gridded to the ERA-Interim grid,

except for the Binning technique (Section 3.2.3.3). These monthly anomalies were used to

produce estimates of spatially resolved Arctic anomalies and Arctic-average anomalies at

monthly, seasonal and annual timescales for both recent decades and historical coverages.

The estimated monthly anomalies from all interpolating techniques were masked using

information on monthly average sea ice concentration from ERA-Interim. Only anomalies

from Arctic land areas and areas of sea ice with a sea ice concentration of more than 15%

were retained as the target areas for this study were areas of land and sea ice. Estimated

monthly, seasonal and annual Arctic-average anomalies were produced by area-weighting

the estimated anomalies at these timescales using a cosine of latitude weighting. These

estimated monthly, seasonal and annual spatially resolved Arctic anomalies and Arctic-

average anomalies were compared to the reference anomalies.

3.2.5 Comparison of Estimated Anomalies to Reference Anoma-

lies

To investigate the performance of our chosen estimation techniques for both recent decades

and historical coverages the estimated anomalies were compared to the reference anoma-

lies. Errors were calculated for estimates of both spatially resolved and Arctic-average

anomalies by subtracting the relevant reference anomalies from the estimated anomalies.

These errors were assessed at monthly, seasonal and annual timescales. Two error metrics

were calculated: the Root Mean Square Error (RMSE) and Compound Relative Error

(CRE). RMSE is a metric which measures the absolute error. CRE measures the relative

error i.e. the error variance as a fraction of the expected variance. CRE was calculated

using Eq. (3.2). The estimated anomalies are represented by e, r designates the reference

anomalies and r̄ is the mean of the reference anomalies. CRE is a unitless metric where

0 is the best result and higher numbers represent a higher relative error.

CRE =

∑n
i=1(ei − ri)

2∑n
i=1(ri − r̄)2

(3.2)

Some additional metrics which measure the absolute error were also calculated, but

were found to be extremely similar to the RMSE and are therefore not reported here.

This similarity between metrics shows that there are few outliers in the errors and that

the errors are of a similar magnitude.
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3.3 The Performance of Estimation Techniques in

Recent Decades

The performance of all estimation techniques, both interpolating and non-interpolating,

in recent decades was investigated for the reconstruction of Arctic-average anomalies.

Only interpolating techniques were investigated in terms of spatially resolved anomalies

in recent decades. Their performance was analysed by comparing the estimated anomalies

to the reference anomalies.

3.3.1 Arctic-Average anomalies

To investigate the performance of estimation techniques for estimating Arctic-average

anomalies in recent decades, timeseries of estimated and reference anomalies, as well as

the errors in the estimated anomalies, were produced and examined.

The timeseries for annual anomalies are shown in Figure 3.5. NI was the least accurate

technique for annual Arctic-average anomalies. NI produced estimated annual anomalies

with errors of up to nearly 1K, whereas the errors for all other estimation techniques were

below 0.60K. Interpolating techniques were more accurate than non-interpolating tech-

niques; their errors were below 0.30K. The errors produced by the different interpolating

techniques were very similar to each other. Figure 3.6 shows the estimation errors for

monthly Arctic-average anomalies. One representative month is shown for each season.

The relative performance of the techniques for monthly anomalies was the same as for

annual anomalies. Interpolating techniques were more accurate than non-interpolating

techniques, with errors generally below 1K, and the errors produced by the different in-

terpolating techniques were very similar to each other. NI produced monthly anomalies

with the largest errors; up to nearly 4K in some months.

The errors in estimated monthly Arctic-average anomalies were found to have a sea-

sonal variation; errors were largest in winter and smallest in the summer (Figure 3.6). This

seasonality arises from seasonality in Arctic temperatures. Figure 3.7 is a box-whisker plot

of monthly area-weighted Arctic SATs over land and sea ice areas from ERA-Interim. As

shown in Figure 3.7, Arctic SATs are smaller in magnitude and have less variability in the

summer compared to winter months. In summer the SAT over sea ice varies around the

freezing point, as a result of latent heat effects from melting sea ice (Przybylak, 2003a).

SATs over sea ice are therefore smaller in magnitude and variability in the summer than

in the winter, when their variability is more dependent on the atmospheric circulation

than on insolation and latent heat effects. SATs over land areas also show less variability

and are smaller in magnitude in the summer so the same seasonal pattern is observed

over land (Przybylak, 2003a). This seasonality in Arctic SATs leads to seasonality in the

anomalies produced from these temperatures, and therefore also in the size of the errors

in the estimated anomalies.

The performance of estimation techniques in recent decades was further investigated
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Figure 3.5: Left: time series of annual Arctic-average anomalies between 1979 and 2011
produced using each estimation technique investigated in this study and from reference
anomalies. Right: the errors in estimated anomalies relative to the reference anomalies.

Figure 3.6: Timeseries of the errors in estimated monthly Arctic-average anomalies rel-
ative to the reference anomalies between 1979 and 2011 for each estimation technique
investigated in this study. One representative month for each season is shown.
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Figure 3.7: A box-whisker plot of the range, median and lower and upper quartiles of
monthly area-weighted Arctic Surface Air Temperature averaged over land and sea ice
from ERA-Interim between 1979 and 2011. A reference line is included at 273.13K.

by producing a Taylor diagram from the errors in estimated annual and monthly Arctic-

average anomalies (Figure 3.8). Taylor diagrams are a way of graphically summarising

how well estimated variables match a reference dataset. The Taylor diagram confirms the

results mentioned above for estimated monthly Arctic-average anomalies. In addition it

shows that kriging techniques were slightly more accurate for the majority of the Taylor

diagram metrics compared to LI. However, as noted previously, the differences between

the interpolating techniques were small. For example, the cross correlation for annual

anomalies produced by both kriging techniques compared to the reference was 0.996 while

for LI the cross correlation was 0.991. Kriging techniques were therefore slightly more

accurate than LI in general for Arctic-average anomalies and GSK was the most accurate

technique. However, none of the interpolating techniques were notably more accurate

than the others. This agrees with the findings of similar studies (Cowtan and Way, 2014;

Rohde, 2013).

The sizes of the errors produced by the interpolating techniques were fairly consistent

in recent decades. However, after 2005 the errors for LI increased slightly while the errors

for kriging techniques remained relatively constant as observed in Figure 3.5. One possible

explanation for this decrease in technique performance is the impact of the changes that

have been seen in the seasonal cycle of Arctic sea ice cover, sea ice extent and heat fluxes

since 2005 as a result of rapid ice loss events (Stroeve et al., 2012). However, as both of
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Figure 3.8: A Taylor Diagram comparing estimated Arctic-average monthly and annual
anomalies produced by each estimation technique investigated in this study to the ref-
erence anomalies. Each symbol plotted represents a month of the year or the annual
value. Cross correlation is shown by the angle with respect to the x-axis. The standard
deviations (normalised with respect to the reference standard deviation) can be read from
the y-axis. The Root Mean Square Error (K) of the estimated anomalies is proportional
to the distance to the point on the x-axis identified as REF (shown by the concentric
circles marked 0.25 to 1). The values for July estimated by Not Interpolating and Not
Interpolating and Regridding are off the scale of this diagram.
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the interpolation techniques investigated here use fixed variance functions for all grid cells

and for all timesteps, the changes in Arctic sea ice areas due to rapid ice loss events would

not explain the relative change in performance of LI compared to the kriging techniques.

Therefore it is more likely that the reduction in accuracy of LI after 2005 is due to the

impact on this technique of a decrease in the number of input station records as illustrated

in Figure 3.1. LI may be more sensitive to reductions in temperature record coverage than

kriging techniques. This is explored more fully in Section 3.4.2.

To summarise, the interpolating techniques used in this study provided a more ac-

curate estimate of Arctic-average anomalies than non-interpolating techniques. Kriging

techniques were found to provide slightly more accurate estimates than LI and GSK was

the most accurate. However, the choice of technique did not make a meaningful difference

to the accuracy of the results, especially for annual anomalies.

3.3.2 Spatially Resolved Anomalies

To investigate the performance of interpolating techniques for reconstructing spatially

resolved anomalies in recent decades the RMSE and CRE for each grid cell in the Arctic

was mapped and examined. Figure 3.9 shows the mapped RMSE and CRE for estimated

annual anomalies. All interpolating techniques investigated produced estimates of annual

anomalies with RMSEs below 2K for more than 99% of grid cells. For monthly anomalies

(not shown), RMSEs were below 2K for 47-99% of grid cells depending on the month of

the year; on average 83% of grid cells had RMSEs below 2K. Therefore all interpolating

techniques investigated produced estimates of monthly and annual anomalies that were,

for the majority of grid cells, within 2K of the reference. The area-weighted average of

the RMSE and CRE across the Arctic was calculated for estimated annual and monthly

anomalies using a cosine of latitude weighting. Figure 3.10 shows the monthly and an-

nual area-weighted averages for RMSE and CRE. All interpolating techniques produced

estimated anomalies that were, on average, within 2K of the ERA-Interim reference as

shown in Figure 3.10. The area-weighted averages of the metrics were found to contain

a seasonal variation; RMSEs were larger in winter than for other seasons and smallest

in summer. This seasonality was also observed for errors in Arctic-average anomalies in

recent decades and is explained in Section 3.3.1. CRE, which measures relative error,

however, had a seasonal pattern opposite to that of the RMSE; while the absolute errors

are smallest in the summer, the relative error is very small for most months and largest in

the summer. Consequently, despite the low absolute error for estimated anomalies in sum-

mer, there is lower confidence in these anomalies compared to other months as the error

is large compared to the size of the anomaly being estimated. This implies that monthly

or seasonally varying covariances may be beneficial for interpolating Arctic anomalies.

On average LI was found to produce the poorest results for all metrics for both annual

and monthly anomalies. The larger errors associated with LI can be seen in Figure 3.10.

The annual and monthly anomaly error metrics for LI were up to 0.15K and 0.77K larger
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Figure 3.9: The Root Mean Squared Error (K) and Compound Relative Error between
spatially resolved annual Arctic anomalies estimated using the investigated interpolating
techniques and reference anomalies in recent decades (1979 - 2011). CRE is a unitless
metric where 0 is the best result and higher numbers represent a higher relative error.

respectively than for kriging techniques. The larger errors in anomalies estimated using LI

can also be seen for the majority of grid cells in the maps of RMSE and CRE in Figure 3.9.

Kriging techniques therefore produced estimated anomalies closer to the reference than

LI.

The kriging methods investigated were equally good at estimating anomalies on av-

erage. The difference between the monthly and annual error metrics for the two kriging

methods was, for their area-weighted averages, less than 0.10K. In addition, at the grid

cell scale, GSK errors were, for the majority of grid cells in the Arctic, within 0.10K of

GOK errors (Figure 3.9). However, when the maps of RMSE and CRE in Figure 3.9 were

compared for the kriging methods over sea ice areas only, GSK was found to provide a

slightly more accurate estimate of anomalies over sea ice areas than GOK. This is due

to the choice of a representative mean for GSK which influenced the anomalies produced

in the Arctic for regions, such as areas of sea ice, where no observations of SAT were

available.

When estimating spatially resolved Arctic anomalies the choice of interpolation

method was found to influence the accuracy of the estimated results, unlike for Arctic-

average anomalies where the choice of interpolation method did not make a large difference

to the results. This suggests that the errors in different sub-regions of the Arctic can-

cel each other out for Arctic-average anomalies estimated using interpolation techniques.
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Figure 3.10: The area-weighted average of the Root Mean Square Error (K) and Com-
pound Relative Error between estimated spatially resolved Arctic anomalies (estimated
using the investigated interpolating techniques) and reference anomalies in recent decades
(1979-2011). Left: monthly anomalies. Right: annual anomalies. CRE is a unitless metric
where 0 is the best result and higher numbers represent a higher relative error.
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Comparing the errors spatially avoids this cancellation of errors and therefore emphasises

differences in the performance of the interpolation techniques.

3.4 The Effect of Historical Meteorological Station

Coverage on SAT Indices

The second objective of this study was to investigate the interaction of historical station

coverage with several techniques used for estimating anomalies. The impact of changing

station coverage was simulated by creating an ensemble dataset of input anomalies using

ERA-Interim data masked according to station coverage between 1850 and 2011. Each

ensemble member comprises a set of repeated instances of one 12-month year from the

period 1979-2011, masked according to the station coverage between 1850 and 2011. In

other words, each ensemble member is 162 times 12 months long, with the anomalies from

the same 12 months repeated throughout, masked according to the station coverage in

each month of successive years from 1850 to 2011. The performance of the estimation

techniques and the effect of historical coverage was analysed by comparing the estimated

anomalies for each ensemble member to the corresponding reference anomalies. This gives

an indication of the error statistics of each estimation technique based on the simulation.

For recent decades the performance of all estimation techniques was investigated for the

reconstruction of Arctic-average anomalies. The performance of interpolating techniques

only was investigated for anomaly pattern reconstructions. The results in Section 3.3

showed that NI was the least representative technique compared to the reference anomalies

for estimating Arctic-average anomalies. As a result, in this section only the performance

of the other four techniques is described.

3.4.1 Relative Performance of Estimation Techniques

3.4.1.1 Arctic-Average anomalies

The interaction of changing historical station coverage with the chosen estimation tech-

niques was investigated for Arctic-average anomalies by comparing the estimated annual

and seasonal Arctic-average anomalies for each ensemble member to the corresponding

reference anomalies. This produced ensemble datasets of errors where each ensemble

member had an error value for each year or season of historical coverage. An example of

an ensemble dataset of errors is shown graphically in Figure 3.11. The RMSE and CRE

across ensemble members for each year of historical coverage are shown in Figure 3.12.

When using historical coverages, conclusions about the relative performance of the

techniques for Arctic-average anomalies were very similar to those for recent decades. In-

terpolating methods generally provided a more accurate estimate of Arctic-average anoma-

lies than non-interpolating methods. For historical coverages before 1930 the RMSE and

CRE were generally smallest for kriging methods; kriging error metrics were smaller than

Page 70



Figure 3.11: The error in annual Arctic-average anomalies estimated by Linearly Inter-
polating each year of ERA-Interim anomalies (1979-2011, each year is shown by one line)
masked using historical station coverages (1850-2011). Similar graphs for all estimation
techniques and seasons are provided in Appendix C.

those for LI for between 62% and 92% of coverage years before 1930. The errors for

kriging methods also changed less during this time period and exhibited less interannual

variability. GSK was comparable to GOK and often produced anomaly estimates which

were more representative (Figure 3.12). However, after 1930 (and particularly between

1930 and 1950), LI was more likely than kriging methods to produce more accurate esti-

mates of anomalies; seasonal and annual metrics were smaller for 89% of coverage years

on average. Coincident with this was a rapid increase in station coverage between 1930

and 1950 as shown in Figure 3.1. The LI technique used in this study was therefore more

sensitive to reductions in station coverage than the kriging techniques. This fits with the

results detailed in Section 3.3.1. Nevertheless, the errors for the techniques are, for the

majority of years, within 0.20K of each other and LI is not substantially better than the

kriging techniques in this time period, especially after 1950.

So, for Arctic-average anomalies estimated using historical coverages the results are

similar to those for recent decades. Errors are generally smallest for kriging methods and

GSK often produced the smallest errors of the two kriging methods.

3.4.1.2 Spatially Resolved Anomalies

The interaction of historical coverage with interpolating techniques was also investigated

for spatially resolved anomalies. A field of RMSE was calculated from spatially resolved

errors for each year of historical coverage across all ensemble members. The area-weighted

average RMSE was then calculated for each year of historical coverage and the results are

shown in Figure 3.13.
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Figure 3.12: The Root Mean Square Error (K) and Compound Relative Error across
ensemble members (each year of ERA-Interim anomalies 1979-2011) in each historical
coverage year for estimated seasonal and annual Arctic-average anomalies. CRE is a
unitless metric where 0 is the best result and higher numbers represent a higher relative
error.
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Figure 3.13: The area weighted Root Mean Square Error (K) for spatially resolved Arctic
anomalies across ensemble members (each year of ERA-Interim anomalies 1979-2011)
produced by the investigated interpolating techniques.
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For spatially resolved anomalies estimated using historical coverages the results are

again very similar to those for recent decades. For most months and coverage years kriging

techniques were more likely to produce spatially resolved anomalies with greater accuracy

than LI. Errors produced by kriging techniques were smaller for 62-91% of coverage years

after 1890, on average by 0.2-0.4K. For coverages before 1890, LI was slightly more likely

to produce estimated anomalies with greater accuracy than the kriging techniques, except

in summer. However, for most months the errors are only about 0.20K smaller and LI is

therefore not notably better than kriging techniques in this time period, except for autumn

anomalies. Neither kriging technique was substantially better in terms of estimating

spatially resolved anomalies on average. However, when maps of the RMSE were examined

the performance of the kriging techniques was not constant in time. For coverages prior

to 1910, GOK often produced slightly more accurate estimates of anomalies for sea ice

areas than GSK as illustrated in Figure 3.14. After this GSK was more representative of

SATs over Arctic sea ice.

Figure 3.14: The mapped Root Mean Square Error (K) across an ensemble of 33 different
years of ERA-Interim data (1979-2011) for spatially resolved annual Arctic anomalies
produced using Global Ordinary Kriging and Global Simple Kriging for two example
historical coverage years (1901, top; 1939, bottom).

In conclusion, kriging techniques produced the smallest errors, in general, for spatially

resolved seasonal and annual anomalies when using historical station coverages between

1850 and 2011. Neither kriging technique was substantially better in terms of estimating

spatially resolved anomalies on average.
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3.4.2 The Interaction of Historical Coverage with Estimation

Techniques

All techniques, regardless of their relative performance, were found to have larger values

of RMSE and CRE for earlier historical coverages. For Arctic-average anomalies (Fig-

ure 3.12) the largest error metric values occurred before 1890. After this they decreased

until about 1950 when the smallest values were reached and the values remained relatively

constant. Using pre-1950 historical coverages caused larger errors and a greater uncer-

tainty, as measured by the spread of the errors across the ensemble members; errors can be

up to 2K larger for earlier historical coverages. This effect was observed for all four of the

estimation techniques investigated for Arctic-average anomalies. In addition, the errors

were more variable prior to 1950 which shows that the historical coverage impacted both

the magnitude and interannual variability of the errors. For spatially resolved anomalies

(Figure 3.13) the temporal evolution of error metrics was very similar to the temporal

evolution seen in Arctic-average anomaly estimations. The largest metric values occurred

in earlier historical coverage years and decreased until about 1950 before reaching their

smallest values. Errors in anomaly patterns can be up to 2.5K larger on average for

coverages before 1950 as well as showing more interannual variability.

The interaction of historical coverages prior to 1950 with interpolating techniques given

example (1979-2011) anomaly fields resulted in larger errors and a greater uncertainty in

the estimated anomalies. This was observed for both Arctic-average and spatially resolved

anomalies and for all techniques. Therefore, there were no substantial changes in the rela-

tive performance of the estimation techniques when historical coverages were used but the

general performance of the techniques did change. This shows that reductions in station

coverage have an impact on all estimation techniques investigated in this study. As the

number of stations observing decreases the observing network is increasingly likely to miss

the key features of weather patterns. This will introduce larger errors and uncertainties

into anomalies estimated from sparse data coverage.

3.4.2.1 Artificial Trends

The interaction of historical coverages prior to 1950 with interpolating techniques given

example (1979-2011) anomaly fields may introduce artificial trends between the start and

end of each ensemble member (which are repeated occurrences of the same year, so we

would not expect any significant trend in their reconstruction).

In order to investigate this further the Mean Error (ME) for each ensemble member

was calculated for estimated seasonal and annual Arctic-average anomalies in each year of

historical coverage. The Percentage of ensemble members with Positive Errors (hereafter

referred to as the PPE) was also calculated for each year of historical coverage. This

was done for each of the estimation techniques investigated in this section and the results

are shown in Figure 3.15. A negative ME shows that there is a general underestimation
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of the anomaly values in this ensemble simulation and vice versa, because 1979-2011

has generally positive anomalies. The PPE indicates whether the majority of ensemble

members show the same sign in errors as the ME (the average of these errors). If the

PPE does not match the sign of the ME then this is an indication that the distribution

of errors may be skewed.

Figure 3.15: The Mean Error (K) for ensemble members (each year of ERA-Interim
anomalies 1979-2011) and the percentage of ensemble members with positive errors in
each historical coverage year for estimated seasonal and annual Arctic-average anoma-
lies. Anomalies were estimated using all estimation techniques investigated in this study
excluding Not Interpolating.

Estimates of summer, autumn and annual anomalies have ME values that are very

small. The temporal pattern in ME corresponds with the PPE for all techniques for

all three seasons. These seasons not only have small biases, shown by the small ME
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values, but also small absolute errors as shown in Figure 3.12. This means that no

significant artificial trends will be observed for summer, autumn or annual anomalies

over the course of each ensemble member in this simulation. In winter the estimated

Arctic-average anomaly MEs are negative for all techniques based on coverages prior

to about 1930. For coverages after 1930 the kriging techniques slightly overestimate

anomalies on average while the ME for LI is very small. For spring anomalies all techniques

overestimate anomalies on average for coverage until 1930. After 1930 the ME is either

slightly positive or near 0K. For both winter and spring the PPE corresponds with the

ME for all techniques, except GOK anomalies in spring where larger negative errors

were influencing the ME. This means that not only are there biases for anomalies in

both seasons but that the MEs are also large compared to all other seasons and annual

anomalies. These larger errors were also observed in the RMSE for estimated Arctic-

average anomalies (Figure 3.12). Therefore, not only are biases present in the estimates of

anomalies for winter and spring, but also that the errors are large enough that these biases

may produce artificial trends when estimating Arctic climate change in these seasons using

the estimation techniques investigated here.

The potential artificial trends in this simulation for winter, spring and annual Arctic-

average anomalies were investigated using anomalies produced by GSK (the most repre-

sentative estimation technique in this study). Although the biases in annual anomalies

were not found to be large they were investigated as annual anomalies are an important

metric of climate change. The ME for coverages between 1850 and 1950 was plotted and

a trendline was fitted through it. The trend in the errors for each ensemble member was

also investigated and histograms of this information were plotted. These are shown in

Figure 3.16. The ME shows that there is the potential for winter and spring anomalies

to artificially increase and decrease by 1.19K and 0.72K respectively, on average, over the

course of the ensemble due to the effect of changing station coverage. The distribution

of errors in each ensemble member shows that the trends could be -1.66 to 5.05K and

-3.77 to 1.71K for winter and spring anomalies respectively. To put these values into

perspective, the average artificial trends in summer and winter Arctic-average anomalies

estimated using coverages between 1850 and 1950 in this simulation are of the same or-

der of magnitude as the trends observed in real-world temperature anomaly datasets for

annual Arctic-average anomalies during this time; CRUTEM4 shows an increase of 1.75K

in Arctic temperatures between 1850 and 1950. For annual anomalies the ME shows that

there is the potential for an artificial increase of 0.15K (error trends are between -1.37 and

2.28K) on average over 100 years due to the effect of changing station coverage in this

simulation. This is about 10% of the trend seen in annual Arctic-average SAT anomalies

from existing temperature anomaly datasets between 1850 and 1950.

However, as explained in Section 3.4 the results described in this section only indi-

cate the error statistics of each estimation technique based on the simulation, not real

world errors in estimation. The extrapolation of the conclusions of this simulation to
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Figure 3.16: The trend in (top) Mean Error (K) across the ensemble and (bottom) errors in
each ensemble member. Each ensemble member comprises repeated instances of Winter,
Spring and Annual Arctic-average anomalies for an individual year (1979-2011, see text
for further details) estimated using Global Simple Kriging.

real world errors in Arctic climate change estimates would depend on the assumption

that 1979-2011 temperature anomaly patterns, a period during which changes to Arctic

temperatures and sea ice variables are known to have been rapid, are representative of

1850-1950 temperature anomaly patterns. The results presented here should therefore

not be interpreted as concluding that the same artificial trends are present for the Arc-

tic in existing temperature anomaly datasets as a result of the use of pre-1950 historical

coverage.

3.5 Discussion

In this study the choice of technique used to estimate Arctic SAT anomalies over land and

sea ice areas was found to have an effect on the accuracy of the estimated anomalies pro-

duced. For Arctic-average anomalies, in both recent decades and for historical coverages,

it was found that interpolating methods were most representative of the ERA-Interim ref-

erence. This is a result of the sparseness of temperature data in the Arctic, particularly

over sea ice. Sparse sampling of a region means that large areas are unrepresented when

non-interpolating techniques are used to estimate anomalies. This introduces uncertainty

to the calculation of global and regional average temperature changes, especially if the

unrepresented areas are likely to be warming at a faster (or slower) rate than sampled

regions, such as in the Arctic. Therefore, as long as an interpolation technique provides

a reasonable estimate of the anomalies in unsampled areas of the Arctic it will provide a
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more representative estimate of the Arctic-average anomaly. The aforementioned sparse

sampling of Arctic temperatures also explains the more accurate results from the Bin-

ning technique compared to the NI technique. In gridding the anomalies to a larger 5◦

grid there is some spatial infilling of anomalies, leading to a slightly more representative

estimate of Arctic-average anomalies.

Of the interpolating techniques investigated, kriging techniques provided the smallest

errors in estimates of Arctic anomalies overall. GSK was often the most accurate kriging

method. This was observed for Arctic-average anomalies in both recent decades and

for historical station coverages. Nonetheless, the choice of interpolating technique did

not make a substantial difference to the accuracy of the results, especially for annual

anomalies. Kriging techniques also produced the most representative estimates of spatially

resolved anomalies. For both investigations the kriging techniques produced anomalies

that were, on average, equally good estimates. GSK was generally more representative

over sea ice regions. However, SAT anomalies over sea ice were slightly better estimated

by GOK prior to about 1910 in the historical coverage investigation. Yet GOK is not

notably better and, as the impact of changing station coverage on estimation techniques

was investigated using an ensemble dataset of example (1979-2011) anomaly fields, the

results should be regarded with caution.

LI was the least representative of the interpolation techniques, both for Arctic-average

anomalies and spatially resolved anomalies. This is a result of both the sparseness of

temperature data in the Arctic as well as the characteristics of the LI technique. Firstly,

the radius used for LI, which is based on the GISTEMP technique, is smaller than the

radius for the kriging techniques, which was identified from the variance of the input

data. Some areas of the Arctic Ocean are at the extreme limits of the extrapolation

radius and, as a result, the interpolation is influenced heavily by a very small number

of stations distant from the location being estimated which increases the error in the

estimated anomalies. Secondly, in sparsely observed regions where the distance to the

nearest station is large, kriging techniques relax towards a prior value, either zero or

the mean of the variable. This effectively bounds the maximum weight of an individual

station and leads to a smoother interpolation in regions which are poorly observed. LI,

however, does not relax towards a prior value and this increases the influence of a small

number of stations on the interpolation. Therefore both the sparseness of temperature

data and the features of the LI technique cause the LI technique to be less representative

than kriging techniques for Arctic SAT anomalies.

Of the kriging techniques investigated in this study, results from GSK were the most

representative of the reference anomaly fields. The difference between the kriging tech-

niques is in the prior value they relax to. GOK relaxes to the best linear unbiased estima-

tor of the mean of the variable whereas for GSK the mean is defined a priori. Therefore

GOK should be a more robust choice of technique as the results are not dependent on the

choice of a representative mean. There are a few possible explanations for the superior
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performance of GSK compared to GOK. If the central Arctic is sufficiently isolated from

the weather in the rest of the Arctic, which informs the estimated mean for GOK, then

the a priori mean chosen for GSK may be a better fit than the calculated GOK mean.

Related to this, the input anomalies include stations down to 53◦N. This includes regions

that are showing a cooling signal during a similar time period to the Arctic warming (e.g.

Cohen et al., 2012). This could also affect the estimated GOK mean and lead to the GSK

mean being more representative. The better accuracy of GSK over GOK could also be a

feature of the relatively short time period and climatology period used in this study. A

mean of 0 might be a good approximation for the 33 years of data and 10 year climatol-

ogy used in this study but may be less representative of a longer time period, in which

case GOK or the use of a slowly changing climatology as the prior might provide better

anomaly estimates. GSK provides a better estimate of Arctic anomalies in this study but

GOK may be a better choice of kriging technique in general as it is not dependent on the

choice of a representative, and, in this study, constant, mean.

NI was the least representative technique compared to the reference for Arctic-average

anomalies in both investigations. However, anomaly estimates from non-interpolating

techniques are still helpful; they serve as useful checks for confirming whether estimates

from interpolating techniques are reasonable. Also, using different techniques to estimate

anomalies allows us to look at structural uncertainty in estimates of climate change.

Furthermore, it must be noted that, while kriging techniques were found to provide more

accurate estimates of Arctic anomalies in general, the choice of an estimation technique

to apply to Arctic SAT anomalies will depend on the time period investigated, whether

anomaly patterns or Arctic-average anomalies are being studied and which area of the

Arctic is to be researched. For example, if a study’s objective were to estimate spatially

resolved Arctic SAT anomalies over sea ice in recent decades the results of this study

suggest that GSK should be applied. If land area anomalies were to be estimated instead

then the results of this study suggest that either kriging technique would be equally

accurate. Also the parameters, or variograms in the case of kriging, chosen for each

technique will have an impact on its estimation; as part of this study LI with a larger

radius of 3585.9km (informed by the kriging semivariogram) was investigated and found

to produce anomaly estimates with much larger errors.

All techniques, regardless of their relative performance, were found to have larger val-

ues of RMSE and CRE for earlier historical station coverages. The interaction of historical

coverage with all estimation techniques leads to larger errors and a greater uncertainty

in the anomalies produced. This was observed for both Arctic-average and spatially re-

solved anomalies. Sparser observing networks of temperature data are more likely to miss

key features of weather patterns and will therefore introduce larger errors and uncertain-

ties into anomalies estimated from sparse data coverage. These results were produced

using an ensemble dataset which simulates the interaction of meteorological station cov-

erage with estimation techniques. This means that these results only indicate the error
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statistics of each estimation technique based on the simulation, not real world errors in

estimation. The extrapolation of the conclusions of this simulation to real world errors in

Arctic climate change estimates would depend on the assumption that 1979-2011 temper-

ature anomaly patterns, a period during which changes to Arctic temperatures and sea

ice variables are known to have been rapid, are representative of 1850-1979 temperature

anomaly patterns. In addition, interannual meteorological variability is not included in

each ensemble, which is the anomalies from the same 12 months repeated throughout. In-

terannual meteorological variability may mask the coverage bias impact. Using a longer

time period of temperature anomaly patterns, especially ones outside the rapid changes of

the past few decades, with more ensembles would provide a more robust investigation of

this subject. Nonetheless, the results do tell us to be cautious when using such estimation

techniques in extremely data-sparse regions, such as the Arctic. They also support efforts

to increase data sharing and data rescue, for example ISTI, the international Atmospheric

Circulation Reconstructions over the Earth (ACRE) initiative and the Canadian histor-

ical data typing project, to increase the coverage of temperature records, particularly in

the Arctic (Allan et al., 2011; Thorne et al., 2011; Slonosky, 2014).

In addition to acknowledging the limitations of the above results for historical cover-

ages, it must also be noted that, as a result of using reanalysis data, the uncertainties

and noise associated with actual data are not present in this study’s test data. Reanalysis

data can, however, contain biases, uncertainties and errors and some of these issues may

be present in the ERA-Interim data used in this study (Dee et al., 2011a; Inoue et al.,

2009; Jakobson et al., 2012; Liu et al., 2008; Thorne and Vose, 2010). Furthermore, al-

though ERA-Interim provides realistic estimates of Arctic temperatures and temperature

trends for areas of the Arctic studied thus far (Chung et al., 2013; Dee and Uppala, 2009;

Jakobson et al., 2012; Lindsay et al., 2014; Lüpkes et al., 2010; Screen and Simmonds,

2011), it is not necessarily a good representation of Arctic SATs in other, uninvestigated,

areas.

3.6 Summary

In this study it was found that the technique chosen to estimate Arctic SAT anomalies

over land and sea ice had an impact on the accuracy of the estimated anomalies pro-

duced in our ERA-Interim testbed. This was observed for both recent decades and when

using historical station coverages. Interpolation techniques produced the most accurate

estimates of anomalies compared to the ERA-Interim reference data. Kriging techniques

provided the smallest errors in estimates of Arctic anomalies and Simple Kriging was

often the best kriging method in this study, especially over sea ice. Non-interpolating

techniques provided the least representative anomaly estimates. However, estimates of

anomalies from these techniques are still beneficial as they are useful checks for confirm-

ing whether estimates from interpolating techniques are reasonable. The interaction of
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meteorological station coverage between 1850 and 2011 with estimation techniques was

simulated using an ensemble dataset comprising repeated individual years (1979-2011).

All techniques, regardless of their relative performance, were found to have larger values

of RMSE and CRE for earlier historical coverages. Reduced station coverage introduced

larger errors and uncertainties into anomalies estimated from this sparser data coverage.

This supports calls for increased data sharing and rescue, especially in sparsely observed

regions such as the Arctic.
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Chapter 4

Can we Assess the Impact of

Estimating Arctic Surface Air

Temperature Anomalies with Global

Simple Kriging using In Situ Data?

4.1 Introduction

In Chapter 3 I investigated the impact of using several different estimation techniques,

based on those used in current temperature anomaly datasets, to estimate Arctic Surface

Air Temperature (SAT) anomalies over land and sea ice areas using European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) project interim reanal-

ysis, or ERA-Interim, data as a testbed. In this ‘reanalysis study’ the choice of technique

had an affect on the accuracy of the estimated anomalies, relative to the reanalysis refer-

ence.

Reanalysis data are an estimate of climatic variables, and as such will not contain the

same errors from noise and sampling as in situ data sources. But, they may still con-

tain biases, uncertainties and errors from sources such as input data biases, atmospheric

forecast model errors, and sparse sampling of input variables. This could mean that the

conclusions reached in the reanalysis study about the accuracy of estimated anomalies

may not be similar to the accuracy of these techniques in the real world. The gap be-

tween the reanalysis and the reality in terms of the results presented in Chapter 3 should

be assessed.

Therefore the objective of this chapter was to repeat the recent decades investigation

of Chapter 3 using in situ data and compare the results of this ‘in situ data study’ to the

results of the reanalysis study. This is in order to investigate whether we can validate the

results of the reanalysis study using in situ data. I applied Global Simple Kriging (GSK,

the most representative technique in the reanalysis study) to monthly SAT anomalies

from Arctic meteorological stations. I then assessed the accuracy of these in situ data
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study estimated anomalies using independent, in situ data sources. Two investigations

were undertaken: one evaluating the estimated anomalies over Arctic land areas; and

one validating these anomalies over Arctic sea ice. The outline of this chapter is as

follows. Section 4.2 describes the data and techniques used in this study. Sections 4.3

and 4.4 evaluate the accuracy of the estimated anomalies over Arctic land and sea ice

areas respectively and compare the results to those of the reanalysis study. The final two

sections (Sections 4.5 and 4.6) discuss the results and provide a summary and conclusions.

4.2 Data and Techniques

GSK was applied to ‘input anomalies’, which in this study are monthly SAT anomalies

from Arctic meteorological stations for the period 1950-2013. An overview of this esti-

mation technique is provided in Section 3.2.3 of this thesis and more details are provided

in Appendix B. Model function fitted parameter values (0 for s, 7.1 for y and 3683.0

for ε) were calculated from the Arctic meteorological station SAT records used as input

anomalies. GSK yielded estimates of spatially resolved Arctic SAT anomalies, which are

complete fields of SAT anomalies gridded to an Equal-Area Scalable Earth grid (EASE-

Grid, Section 4.2.3.3). The target areas for the interpolation are the same as for the

reanalysis study: land areas and areas of sea ice with a sea ice concentration of more

than 15%. The accuracy of the estimated anomalies was assessed using independent in

situ data sources. The validation data over land were monthly SAT anomalies from inde-

pendent Arctic meteorological stations. The validation data over sea ice were data from

‘drifting platforms’; North Pole Drifting Stations (NPDS) and U.S Army Cold Regions

Research and Engineering Laboratory (CRREL) Ice Mass Balance Buoys (IMBs). The

estimated anomalies and validation data were compared; difference metrics and double

difference metrics were calculated from validation data over land and sea ice respectively.

These difference, and double difference, metrics were compared to reanalysis study error

metrics, which were produced relative to a reanalysis ’truth’.

4.2.1 Input Anomalies

The input anomalies for this in situ data study were monthly SAT anomalies from Arctic

meteorological stations contained in the CRUTEM4 land surface temperature anomaly

dataset databank (produced by the Climatic Research Unit of the University of East

Anglia and the Met Office Hadley Centre, Jones et al. 2012). I chose this dataset for con-

sistency with the reanalysis study. The station records that constitute the CRUTEM4

databank were downloaded from the Met Office Hadley Centre Observations Dataset

website (http : //www.metoffice.gov.uk/hadobs/crutem4/data/download.html). The

dataset version was CRUTEM4.2.0.0. Stations situated north of 53 ◦N (which provide

temperature information required for interpolating techniques) were identified. The loca-

tions of the identified stations are shown in Figure 4.1. All stations were found to have
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temperature records between 1950 and 2013, which was the time period of interest for

this study. This is not the same time period as investigated in the reanalysis study, to

which the results of the in situ data study will be compared to. However, a longer time

period of interest was required here so that sufficient validation data was available over

sea ice. Monthly SAT anomalies 1950-2013 were produced for all input stations using sta-

tion normals provided in the CRUTEM4 databank. The station normals in CRUTEM4

are produced for the period 1961-1990, which is the climatological period in this study.

These station anomalies comprise the input anomaly dataset for this study. Some of the

identified input stations were located at the same latitude and longitude. As duplicate

locations would have caused a problem for GSK, these ‘duplicate’ stations were identified

and the station anomaly records merged. As in Chapter 3 a single station record is pro-

duced by averaging the duplicate station records; when one station reports an anomaly

this comprises the merged record, otherwise the merged record is a simple average of the

duplicate station anomalies.

Figure 4.1: The locations of all meteorological stations in the CRUTEM4 databank
(black), and the 63 independent land stations from ISTI (red) that constitute the land
validation data in this study. Different marker styles are used to show the locations of
the meteorological stations depending on whether they are above 53◦N or above 65◦N.
All stations had records in the time period of interest (1950-2013).
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4.2.2 Validation over Land

To evaluate this study’s estimated anomalies over land, independent validation data were

required. The independent validation data over land were anomalies from Arctic mete-

orological stations which were not used as input anomalies. Metadata and SAT records

for Arctic meteorological stations over land were extracted from the International Sur-

face Temperature Initiative (ISTI) merged Stage 3 version 1.0.0 recommended monthly

databank product (Thorne et al., 2011). This is a single consolidated databank of in

situ surface temperature observations from many different sources. I compared the meta-

data for all Arctic stations in the ISTI databank to the metadata for the input anomaly

stations. I identified independent stations, which were not included in the CRUTEM4

databank, with data records in the time period of interest (1950-2013) and at least 14

years of data in the climatological period (1961-1990). This threshold for the production

of station normals is the same as used for CRUTEM4 (Section 4.2.1).

In order to isolate errors resulting from the estimation of anomalies using GSK, the

station records used to produce the validation data were required to be reliable and of

good quality. Of the 88 independent stations suitable for this study, 28 stations were

classified in the metadata as having raw, unprocessed data; 47 stations had been quality

controlled by the originator; 10 had been homogenised by the originator and 3 were un-

classified. Additional homogenised versions of 13 station records were identified from the

Global Historical Climatology Network-Monthly temperature dataset version 2 (GHCN-

Mv2) data in the ISTI Stage 2 dataset (GHCN-Mv2.1.1.20120508). The ISTI Stage 2

dataset contains data from various sources converted to a common data format, but not

consolidated. I selected all stations with homogenised records as validation stations. I

then examined the SAT records and metadata for the remaining, unhomogenised stations.

Any station which had a quality controlled record, no large gaps in the data record and no

obvious inhomogeneities was also selected as a validation station. Using these criteria, I

identified 63 validation stations. Their locations are given in Figure 4.1. Anomalies were

produced from the validation station SAT records with respect to 1961-1990 and these

constitute the validation data over land.

4.2.3 Validation over Sea Ice

The accuracy of in situ data study estimated anomalies over sea ice areas was assessed

using temperatures from ‘drifting platforms’ as validation data. Drifting platforms is the

term I use here to describe platforms housing temperature sensors at around 1.5m height

which are deployed on Arctic sea ice (SAT is generally measured at between 1.25 and

2.0m above the surface of the Earth).

I employed two validation data sources here; North Pole Drifting Stations (NPDS) and

the U.S Army Cold Regions Research and Engineering Laboratory (CRREL) network of

Ice Mass Balance Buoys (IMBs). I identified NPDS data as suitable validation data as
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these manned, drifting meteorological stations are considered to be a reliable source of SAT

observations for the Arctic Ocean (Rigor et al., 2000). However, because they are manned

platforms, NPDS validation data are sparse. There was also a gap in NPDS deployment

from 1991 to 2003, between the dissolution of the Soviet Union and the reinstatement of

the programme by Russia. Therefore I decided to perform a second sea ice validation using

temperature records from CRREL IMBs. CRREL IMBs have been frequently deployed

on Arctic sea ice since 1997 and provide radiation shielded temperature observations at

1m height (Elder, 2013). Radiation shielding prevents the temperature observations being

influenced by direct or reflected solar radiation and precipitation, which can be an issue for

in situ temperature sensors (e.g. Hall et al., 2015). However, it must be noted that much

of the CRREL IMB data is preliminary, and therefore may not be quality controlled. In

addition, these are automatic sensors which are generally left unattended without routine

maintenance, and therefore may be subject to various issues which affect accuracy such

as rime ice. Furthermore, I found that there can be large differences between NPDS and

IMB data, which may indicate that accuracy issues are indeed present in the IMB records.

As a result I decided to produce two independent validations over sea ice, one using NPDS

and one using CRREL IMBs. If both validations show similar results this will give us

more confidence in the conclusions.

Due to the relatively short record of each drifting platform and their movement on sea

ice across the Arctic Ocean it is impossible to produce anomalies from traditional nor-

mals (generally used as a reference for temperature anomalies) for these data. Datasets

which could provide a gridded climatology for the Arctic were considered but all such

datasets were either land only, ocean only, or interpolated. Rather than using interpo-

lated data, which would contain uncertainties resulting from the use of an interpolation

technique, I decided to investigate the use of another statistic to determine the differences

between the estimated anomalies and the validation temperature data. I estimated the

accuracy of the estimated anomalies using a ‘double difference’ statistic which is described

in Section 4.2.3.4.

4.2.3.1 North Pole Drifting Station Data

NPDS 6 hourly SAT data were downloaded from the Arctic and Antarctic Research

Institute (AARI) website (http : //www.aari.nw.ru/default en.asp). I identified all

drifting station observations between 1950 and 2013. The tracks of each relevant NPDS are

shown in Figure 4.2. The NPDS SAT records were gridded to an EASE-Grid (described

in Section 4.2.3.3) and calendar month average SATs were calculated where the minimum

monthly sampling was fulfilled (see Section 4.2.3.5). I identified all grid cells with an

average temperature for at least two years in the same month and grid cell. These grid

cells were used to estimate the accuracy of the estimated anomalies over sea ice, compared

to NPDS records, using the double difference statistic (Section 4.2.3.4).
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4.2.3.2 Ice Mass Balance Buoy Data

Air temperature records from IMBs, which are generally recorded every couple of hours,

were downloaded from the CRREL website (http : //imb.erdc.dren.mil/buoysum.htm).

I identified all IMB records which had both meteorological and location data available,

reported for more than a month on Arctic sea ice (excluding land fast ice), and did not

have any noted problems with the air temperature sensor. There were 59 suitable IMB

records, providing data between 2003 and 2013. The tracks for each relevant IMB are

shown in Figure 4.2. Some IMBs did not have concurrent air temperature and location

observations; air temperatures were often recorded on the hour every couple of hours and

the position of the buoy was recorded irregularly with a sub-hourly frequency. In order

to utilise these air temperatures and increase the amount of validation data available,

I associated each air temperature observation with the latitude and longitude recorded

nearest the time of the air temperature observation. This introduced some uncertainty to

the location of the IMB temperature observations. But, sea ice drift is about 2% of wind

speed, wind speeds in the central Arctic rarely exceed 25m/s (Przybylak, 2003b), and

the locations of the buoys are recorded at sub-hourly frequency so the location errors are

extremely likely to be less than 1km. This is small compared to the nominal grid cell size

of the EASE-Grid used here. As for NPDS records, IMB air temperature observations

were gridded to an EASE-Grid, monthly average SATs were calculated and these data

were used to estimate the accuracy of the in situ data study estimated anomalies over sea

ice using the double difference statistic (where possible).

Figure 4.2: The tracks of each relevant North Pole Drifting Station (1950-2013) and
CRREL IMB (2003-2013).
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4.2.3.3 The Equal-Area Scalable Earth Grid

In situ measurements of Arctic temperatures are sparse, particularly in sea ice areas, and

the records are often short. This leads to poor grid cell coverage, a problem which is

exacerbated by the use of equal-angle grids. This is an issue for the drifting platforms

used as validation data over sea ice in this chapter. Therefore, in order to have sufficient

grid cell coverage over sea ice, it was decided to use an equal area gridding system.

The Equal-Area Scalable Earth Grid (EASE-Grid) system is an equal area gridding

system developed at the National Snow and Ice Data Center (NSIDC). It includes three

equal-area map projections (Northern Hemisphere, Southern Hemisphere, and Global

Cylindrical) which can be used, in combination with defined variables such as nominal

cell size and map origin, to define numerous equal area grids. A predefined EASE-Grid,

which is a polar subset of the Northern Hemisphere Azimuthal Equal-Area Projection

and has a 100km nominal grid cell size, was chosen for this study. A predefined grid was

utilised here, rather than defining a new grid, as this reduced computational time. A

100km grid cell size provides a sufficient number of grid cells with more than 1 year of

drifting platform data in each month, while being smaller than the expected correlation

length scale. There is also a precedent for using this type of grid; a Northern Hemisphere

EASE 100km grid was used for the IABP/POLES SAT dataset which also utilised drifting

platform temperature records (Rigor et al., 2000). An EASE-Grid version 2.0 is available,

which is defined with a different projection ellipsoid and has some advantages over the

original EASE-grid: it allows exact, rather than nominal, grid cell sizes and does not

have undefined corner cells in the azimuthal grids. However, it was decided to use an

original EASE-Grid due to the fact that a predefined Northern Hemisphere polar subset

is available in the original gridding system. I do not expect this to influence the results.

4.2.3.4 The Double Difference Statistic

In order to estimate the accuracy of estimated anomalies over sea ice, a ‘double differ-

ence’ statistic was utilised. Temperature anomalies are often produced using the Climate

Anomaly Method (CAM). This method requires traditional station normals or a gridded

climatology. However, there are other techniques which can be used to create anomalies

from station temperatures: the Reference Station Method (RSM, Hansen and Lebedeff

1987) and the First Difference Method (FDM, Peterson et al. 1998). RSM requires at

least one long record of data to refer other, shorter, station records to, and is therefore

not suitable for calculating anomalies from the validation data over sea ice. FDM requires

only monthly first differences: two successive years with a temperature value in the same

calendar month for each station or grid cell analysed. The monthly temperature for a

grid cell or station in one year is subtracted from the temperature for the same month

and grid cell in the subsequent year. A reference period is not required and grid cells

can be used instead of static meteorological stations. The concepts of the FDM were

incorporated into the double difference statistic, which was calculated using Equation
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(4.1). s(x, t) is the monthly average SAT from a drifting platform at grid cell x in year

t. a(x, t) is the monthly average estimated SAT anomaly at grid cell x in year t. These

two variables were compared with the monthly average temperature and monthly average

anomaly respectively for the same grid cell and calendar month in another year t+ i.

The difference between the estimated anomalies in years t and t+ i was then subtracted

from the difference between the drifting platform data in the same two years to create

the double difference statistic dd (Eq. (4.1).

dd = [a(x,t+i) − a(x,t)] − [s(x,t+i) − s(x,t)] (4.1)

It should be noted here that I anticipate a factor difference between the ‘single dif-

ferences’ of the land validation and reanalysis study, and the double differences used for

the sea ice validation. The difference from the validation data will contain uncertainties

arising from both sides of the dd statistic; there will be additional errors from comparing

estimated anomalies in different years as well as from comparing validation temperatures

in the same way.

4.2.3.5 Minimum Sampling for a Monthly Average Surface Air Temperature

The drifting platforms used as validation data sources over Arctic sea ice in this study

are not static. This means that a whole month of observations is unlikely to be associ-

ated with a single grid cell. Sparse temporal sampling of monthly averages may lead to

unrepresentative values being used as validation data and affect the results of this study.

Therefore the impact of sparse sampling on monthly averages produced from the valida-

tion data over sea ice was investigated and an appropriate minimum sampling for monthly

average SATs was determined for this study. Ideally I would have identified the mini-

mum sampling, and quantified the uncertainties, from partial records by subsampling full

month records. However, the sample of full month records was very small so a different

method, described below, was employed.

dd (the double difference statistic) was calculated between the estimated anomalies

and the validation data over sea ice. dd metrics (double difference metrics, Section 4.2.4)

were plotted against the average, minimum and maximum number of days observed by

the validation data in a calendar month. The average, minimum and maximum number

of days observed are derived from the number of days contributing to each of the two

monthly average temperature measurements used to calculate dd. The results were very

similar for all of the calculated dd metrics so the results for Root Mean Square dd (RMSdd)

are shown as an example. The RMSdd for validation data for both NPDS and CRREL

IMBs are shown in Figure 4.3. The NPDS and IMB metrics have larger values when

the average, minimum and maximum number of days observed are lower (Figure 4.3).

The RMSdd can be above 9.0K when the monthly average temperatures were calculated

using less than 5 days of data, whereas the RMSdd is less than 5.0K for monthly average

temperatures calculated using more than 30 daily temperatures.
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Figure 4.3: The Root Mean Square dd (K) between drifting platform temperatures and
estimated anomalies plotted against the average, minimum and maximum number of days
observed. NPDS temperatures are compared between 1950 and 2013 and CRREL IMB
temperatures are compared between 2003 and 2013.
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NPDS RMSdd were found to be almost constant when the average, minimum and

maximum number of days observed is around, or above, 20. Figure 4.3 suggests a threshold

of 15 days is sensible for NPDS as above this the RMSdd reaches its lowest values and

is relatively consistent. For IMBs the RMSdd does not reach a plateau after a certain

number of daily temperature observations, but the values are more constant after about

15 days are observed. So, NPDS and IMB RMSdd values suggest a sample of at least

15 days of data is adequate for calculating monthly average temperatures in this study.

However, if we look at the scatter plots of the monthly absolute errors for the CRREL

IMBs in Figure 4.4, using this minimum sample for monthly averages leads to extremely

small samples of this validation data in most months and an inability to calculate dd

metrics in March. This was also found for NPDS temperatures (Figure 4.8). Therefore it

was decided to use a 10 day minimum sample for monthly averages for both the NPDS and

IMB validation data. This was a compromise between the increase in apparent anomaly

error arising from undersampling of the validation data and having enough data available

to calculate dd metrics for the estimated anomalies.

4.2.4 Comparison of Estimated Anomalies to Validation Data

The estimation technique used in this study yielded estimates monthly Arctic SAT anoma-

lies when applied to the input anomalies over Arctic land and sea ice areas. These in situ

data estimated anomalies were validated using independent data sources over Arctic land

and sea ice areas on a monthly timescale. The results of the validations were compared

to those from Chapter 3. For Arctic land areas, monthly differences were calculated by

comparing the estimated anomalies in the EASE-Grid cell nearest the location of each

validation data station. These differences were used to calculate difference metrics: the

Root Mean Square Difference (RMSD), Standard Deviation of Difference (SDD) and Com-

pound Relative Difference (CRD). For estimated anomalies over sea ice areas, monthly

dds were calculated for each grid cell in which there are at least two years of monthly

average SAT observations in the same month and grid cell from the validation data. This

was done for both validation data sources over sea ice. dd metrics were calculated: the

RMSdd, Standard Deviation of dd (SDdd) and Compound Relative dd (CRdd). The met-

rics noted above were also used in the reanalysis study, calculated using errors rather than

the differences used here (see Section 3.2.5 of this thesis for more information). These

error metrics are: the Root Mean Square Error (RMSE), Standard Deviation of Error

(SDE) and Compound Relative Error (CRE). Some additional difference, dd and error

metrics were calculated, but were not reported due to their similarity to other metrics as

in Chapter 3.

The difference and dd metrics were compared to corresponding error metrics from

the reanalysis study. The error metrics were created from reanalysis study estimated

anomalies (produced using GSK) by gridding the estimated anomalies and the reanalysis

reference to the EASE-grid used in this study and comparing them. The error metrics were

Page 92



Figure 4.4: A scatter plot of the Absolute dd (K) between CRREL IMB temperatures and
anomalies estimated using GSK between 2003 and 2013 against the minimum number of
days observed. The minimum number of days observed is calculated from the number
of observations which contribute to the two monthly average temperature measurements
from CRREL IMBs used to create the dd. Two reference lines show 10 and 15 days
observed.
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produced using all grid cells in land, or sea ice, areas unless otherwise stated. Spatially

resolved and spatial-average metrics were produced for both the in situ data and reanalysis

studies and were compared over land and sea ice areas. Area-weighting of the averages

was not required here due to the use of an equal-area grid. Metrics from this chapter and

those from Chapter 3 were compared and the results are given in Section 4.3 and 4.4 for

Arctic land and sea ice areas respectively.

4.3 The Validation of Estimated Anomalies over Arc-

tic Land Areas

Difference metrics, produced by validating the estimated anomalies over Arctic land ar-

eas, were compared to corresponding error metrics from the reanalysis study detailed in

Chapter 3. The average monthly RMSE and CRE from the reanalysis study, and RMSD

and CRD from the land validation investigation, are shown in Figure 4.5. 95% confidence

interval estimates were calculated for the RMSD and RMSE using the SDD and SDE

respectively. The sample size of the observations is large enough (n ≥ 30) to calculate

confidence intervals using the standard deviation of the sample according to the Central

Limit Theorem.

The monthly metrics from the two studies have the same seasonal pattern; the

RMSE/RMSD is largest in the boreal winter months (December, January and Febru-

ary) and smallest in boreal summer, while the CRE/CRD is low for most months and

slightly larger in the summer (Figure 4.5). This seasonal pattern is due to seasonality in

Arctic temperatures and was explained in Section 3.3.1. There are some slight differences

between the two studies; for example the CRD shows an unexpected increase for March

and October. These differences may be due to incomplete spatial coverage of validation

data as shown in Figure 4.1. Many of the independent land stations are in Scandinavia,

Arctic Canada and on islands and coastal regions of Russia. This also means that there

is a smaller sample of comparisons for the in situ data study compared to the reanalysis

study, which is spatially complete over Arctic land areas. There may be inhomogeneities

and noise present in the validation data over land, although this is unlikely as the valida-

tion data have been quality controlled, checked and some have been homogenised. These

differences may also be due to the slightly different time periods of interest of the two

studies. Finally, there may be local effects from comparing gridded estimated anomalies

with independent station records which may not be representative of the grid cell they

are located in. Nonetheless, the general pattern for the metrics from the in situ data

study is very similar to that of the reanalysis study metrics. The sizes of the metrics are

also very similar; the metric values from both studies are within 0.25(K, CRE/CRD are

unitless metrics) of each other and RMSE values are often within the estimated confidence

intervals of RMSD values (Figure 4.5). This shows the effectiveness of the ERA-Interim

reanalysis as a testbed over Arctic land areas.
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Figure 4.5: Monthly average of the Root Mean Square Error (K) and Compound Relative
Error for the reanalysis study (left) and the the Root Mean Square Difference (K) and
Compound Relative Difference for the land validation investigation (right). 95% confi-
dence intervals are given in grey. CRD is a unitless metric where 0 is the best result and
higher numbers represent a higher relative error.
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The metrics in each month from both studies were also analysed spatially. The differ-

ence metric values for each land station were mapped and compared to spatially resolved

error metrics derived from the reanalysis study. The mapped RMSE and RMSD is shown

for several example months in Figure 4.6. The difference metrics from the in situ data

study are a little larger in most months, but the values are generally within 1.0(K, CRD is

a unitless metric) of the error metrics. However, in some cases they may be 2.0(K) larger

than the reanalysis study metrics. There is no obvious spatial pattern to the metric values

for the sample of validation stations used.

Figure 4.6: The spatially resolved Root Mean Square Error (K) from the reanalysis study
and the Root Mean Square Difference (K) for each independent land station for several
example months.

4.4 The Validation of Estimated Anomalies over Arc-

tic Sea ice Areas

Double difference (dd) metrics, produced by validating the estimated anomalies over Arc-

tic sea ice areas, were compared to corresponding error metrics from the reanalysis study

(Chapter 3). The results from validating the estimated anomalies using two independent

validation data sources, NPDS and CRREL IMBs, are given separately.
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4.4.1 North Pole Drifting Stations

The monthly average RMSdd over sea ice from NPDS validation data was plotted and

compared with corresponding error metric from the reanalysis study (Figure 4.7). The

reanalysis study metrics over sea ice were calculated across all EASE-Grid cells over sea

ice; across only grid cells and months present in the validation data (using random years

between 1979 and 2011); and from simulated double differences for the same grid cells,

months and years where possible (validation data years before 1979 or after 2011 were

replaced randomly with years within this time period). For the reanalysis study metrics

calculated across all EASE-Grid cells the sample size was large (n ≥ 30) so the 95%

confidence interval estimates for the metrics were calculated using the SDE. For the in

situ data study, and the reanalysis metrics sampled to the same grid cells and month,

the sample size was relatively small (n < 30) so Student’s t-distribution was employed to

estimate the confidence intervals from the SDdd or SDE as appropriate.

Figure 4.7: Monthly average of the Root Mean Square dd (K) for the NPDS sea ice
validation data (top), and the Root Mean Square Error (K) for the reanalysis study
(bottom) calculated across all EASE-Grid cells over sea ice (left), across only grid cells
and months present in the validation data (middle, using metrics for random years between
1979 and 2011), and from simulated double differences for the same grid cells, months and
years where possible (right, validation data years before 1979 or after 2011 were replaced
randomly with years within this time period). 95% confidence intervals are given in grey.

Again both studies show a broadly similar seasonal pattern in the monthly metrics

(Figure 4.7). The NPDS sea ice validation metric values in April are larger than would be

expected given the general seasonal pattern in the RMSE. I investigated this further by

plotting monthly absolute dd against the minimum number of days observed (Figure 4.8).
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It was found that there are few dd values in April with more than 10 days of data

contributing to them. This is because fewer NPDS report for the whole of April than in

any other month (Figure 4.9) and even fewer fulfil the sampling requirements (Figure 4.8).

Many NPDS were deployed, retired or abandoned during April, especially those deployed

by the Soviet Union, leading to a small sample of data in this month. This reduces data

availability in this sparsely sampled area resulting in an extremely small sample of dds.

In addition, within this small sample of April dd values there are some absolute dd values

which are larger than would be expected given the seasonal pattern (Figure 4.8). These

probably result from the interpolation missing key features of the weather field due to the

sparse observation network, and therefore not being as representative of the anomalies in

a given grid cell, year and month for one or more months used to calculate the dd. This

is backed up by the absence of a peak in the April RMSE for the reanalysis study plots in

Figure 4.7. If the larger error was a consistent feature of a grid cell and/or month, arising

from the sampling of validation data, then larger RMSdd values for April would also be

noted for the reanalysis study metrics.

The monthly RMSdd values from the in situ data study are around twice as large as

RMSEs from the reanalysis study produced using all grid cells over sea ice (Figure 4.7).

The difference between the metrics from the two studies are around 2.0K in general and

can be up to 5.8K. A factor difference between single and double differences was expected

(Section 4.2.3.4), and in addition there is a smaller sample of data used for the RMSdd

values (due to the relatively small sample of NPDS validation data). Both have an impact

as illustrated in the three reanalysis plots in Figure 4.7. When the reanalysis metrics are

produced using simulated dds for the same grid cells, months and years (where possible)

the difference between the metrics reduces to around 1.0K in general. The metrics are

within 2.0K of each other for 9 of 12 months, and are within each others confidence

intervals. The differences can, however, still be up to 3K for some months. March and

August RMSEs were found to be slightly larger for the reanalysis study, when simulated

dds are used, than would be expected given the general seasonal pattern; they are larger

than the April and September values respectively. This could be an artefact of the decision

to simulate the dd for validation data years before 1979 or after 2011 (outside the time

period of the reanalysis data) using random years that occur during this time period,

which was a period of large sea ice changes in the Arctic.

So, in conclusion, the seasonal patterns in the reanalysis and in situ data study metrics

are very similar. The metric values are larger for the in situ data study, however this seems

to be explained by the small sample of validation data and the use of the dd statistic

instead of directly comparing anomalies. In addition, the fact that the validation data

over sea ice typically sample less than the whole of a month may lead to an increase in dd

of around 1.0K on average (shown in Figure 4.3, Section 4.2.3.5). Finally, it must be noted

that the confidence intervals for the in situ study metrics are large and the sample size is

small so caution is needed in drawing conclusions from these data. However the seasonal
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Figure 4.8: The monthly Absolute dd (K) between NPDS temperatures and estimated
anomalies estimated using GSK between 1950 and 2013 plotted against the minimum
number of days observed. The minimum number of days observed was calculated from the
number of daily temperatures which contribute to the two monthly average temperature
measurements from NPDS used to calculate the dd statistic. A line shows the minimum
required number of days observed in this study.
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Figure 4.9: The number of years between 1950 and 2013 where NPDS report for the whole
of each month.

pattern and the sizes of the metrics are very similar, and the confidence intervals overlap,

when the reanalysis study metrics are created using the dd statistic and re-sampled.

4.4.2 Ice Mass Balance Buoys

The monthly average RMSdd from the in situ data study was plotted and compared with

that from the reanalysis study (Figure 4.10), in the same way as for the NPDS validation

(Section 4.4.1). A very similar result to the NPDS investigation was found here; there is a

similar seasonal pattern in the metrics for the two studies over sea ice, but also differences,

most notably in March (Figure 4.10). This is for the reasons noted for April metrics in

Section 4.4.1. This result also illustrates the influence of both small sampling and a larger

than anticipated dd. There are other months with very few IMB SAT observations and

consequently very large confidence intervals, for example February and April, but the dd

metrics are not as large as in March. In March one particular dd is larger than would be

expected given the general seasonal pattern, whereas in February and April the dds fit

the seasonal pattern. The monthly RMSdd values from the in situ data study are again

larger than reanalysis study RMSEs, as anticipated if the sampling and effect of using

a dd statistic are not accounted for. When the reanalysis metrics are produced using

simulated dds the difference between the metrics is around 1.5K in general. The metrics

are often within 2.0K (for 9 of 12 months), but differences can be more than 4K for some

months. The conclusions for the validation of the estimated anomalies over Arctic sea ice

areas using CRREL IMBs are the same as those resulting from the use of NPDS validation
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data.

Figure 4.10: Monthly average of the Root Mean Square dd (K) for the CRREL sea ice
validation data (top) and Root Mean Square Error (K) for the reanalysis study (bottom);
(left) sampled to the same grid cells and months as the validation data using anomalies
for random years between 2003 and 2013, (right) simulated dd for the same grid cells,
months and years where possible. 95% confidence intervals are given in grey.

4.5 Discussion

In this study it was found that the accuracy of monthly SAT anomalies in the Arctic,

estimated from in situ meteorological station SAT records using Global Simple Kriging,

was similar to the accuracy of the anomalies simulated using the same technique within

a reanalysis testbed. The difference and double difference (dd) metrics have the same

seasonal pattern as the equivalent metrics from the reanalysis study over land and sea ice

respectively. Some differences were noticed in the sea ice validation (Section 4.4), but this

was attributed to small samples of validation data as well as some dds with large errors.

The size of the metrics was also found to be similar. For the land validation the monthly

average metrics and spatially resolved metrics from both studies were within 0.25(K) and

1.0(K) of each other respectively. In addition, RMSE values from the reanalysis study

were often within the estimated confidence intervals of RMSD values from the in situ data

study. This is despite using a fairly small sample of validation data (63 meteorological

stations) which have incomplete spatial coverage (most of the independent land stations

are located in Scandinavia). This shows that the ERA-Interim reanalysis is an effective

testbed over Arctic land areas. For the validation over sea ice the differences between the
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metrics of the two studies were larger than those noted for the land investigation; around

2 or 3K in general. Much of this difference seems to be explained by the small sample size

of the reference data, and the use of the dd statistic (which was expected). Differences

between the two studies reduce when the reanalysis data are subsampled and the double

differences are simulated. When using NPDS as validation data the difference between the

monthly average metrics from the two studies was around 1.0K if the reanalysis metrics

are created using simulated dd. For the IMB validation they were within 1.5K of each

other in general under the same conditions. The accuracy of the in situ data estimated

anomalies are remarkably similar to those from within the reanalysis testbed over sea

ice areas when the sample size and the use of the dd are accounted for. Within the sea

ice validation data there are uncertainties resulting from drifting platforms not sampling

a whole month in a given grid cell. Even with the required minimum sampling for a

monthly average, metric values may be 1.0-2.0K larger when less than a whole month

of observations are available. Uncertainties may also result from local effects, noise, and

inhomogeneities as in the land validation. In addition, much of the CRREL IMB data is

preliminary and may not be quality controlled. These platforms were also not designed for

producing meteorological records. The confidence intervals for drifting platform metrics

are large and the sample size is very small so caution is needed in drawing conclusions

from this data. However, the two independent datasets produced very similar results

despite the small samples of these datasets.

The issues arising from using drifting platforms in this study highlight the difficulty

of investigating SATs over Arctic sea ice. SAT data records over sea ice are temporally

and spatially sparse. Here this necessitated the use of an EASE-Grid with an 100km grid

cell size. In addition the drifting nature of these platforms increases the uncertainties

associated with producing monthly average temperatures from their SAT observations.

There are also uncertainties and issues related to the data rather than the spatial coverage

of data. Sometimes, in situ data are not available. The possibility of including IABP data

was also considered as this programme has maintained a network of drifting buoys in the

Arctic Ocean since 1979. However, raw data from these buoys is no longer made available

on the IABP website, so IABP data could not be used as a validation dataset in this

study. Another issue experienced with drifting platform data in this study was differences

in data format and metadata. For CRREL IMBs, 10 different data file formats were

used for the data between 2003 and 2013. 22 of the IMBs had air temperatures and

location data which were not recorded at the same time. The air temperatures were often

recorded on the hour every couple of hours and the position of the buoy was recorded

irregularly with a sub-hourly frequency. In addition, some IMBs had essential data files

missing, metadata and data were not always consistent within data files, and some data

quality information may be missing as the IMB data are often preliminary. Furthermore,

automatic sensors, such as IMBs, which are installed in the Arctic and left unattended

without routine maintenance may be impacted by issues such as rime ice and snow cover
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which will impact their accuracy (Hall et al., 2015).

Finally, additional errors were added to the results in this in situ data study due to use

of the double difference statistic as noted previously. This statistic used as a result of the

impossibility of creating traditional normals for drifting platform data. It was also decided

not to use another dataset as a climatology as only datasets which could be identified that

provide Arctic SATs for the normal period (1961-1990) were either land only, ocean only,

or interpolated. Interpolated data, for example the IABP derived datasets (Rigor et al.,

2000; EOL, 2014), would contain uncertainties resulting from the use of an interpolation

technique. It was therefore decided to try and use another statistic to determine the

differences between the estimated anomalies and the validation temperature data. But,

using the double difference may have increased the error in the results by around 2.0K

which may be larger than the error that would be introduced by using an interpolated

climatology.

4.6 Summary

The in situ study metrics over land are very close to the reanalysis study metrics. Over sea

ice the metrics have a similar seasonal pattern and size (once the sample size and double

difference statistic are accounted for). However, the confidence intervals are large and the

sample size is very small so caution is needed in drawing conclusions from this data. This

highlights the difficulty of investigating SATs over sea ice where data records are sparse.

In addition, there are many other complications that might arise when attempting to use

SAT data over sea ice areas including different types of monitoring platform, a lack of

uninterpolated data, and many different data and metadata formats.
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Chapter 5

Can the Inclusion of Additional Data

Sources be used to Improve

Estimates of Arctic Surface Air

Temperature Anomalies?

5.1 Introduction

As noted in Chapter 1, temperature anomaly datasets generally use SATs measured at

meteorological stations to generate the datasets over land and sea ice. However, many

of these datasets use only a subset of the available meteorological station records; for

example 88 Arctic meteorological stations independent from the 956 stations present in

the CRUTEM.4.2.0.0 dataset (utilised in Chapter 3, the ‘reanalysis study’) were identified

in the ISTI merged Stage 3 version 1.0.0 recommended monthly databank product in

Chapter 4. Furthermore, at present none of the major temperature anomaly datasets use

SAT data recorded over Arctic sea ice. Even those data sources considered to be reliable

such as Arctic and Antarctic Research Institute (AARI) North Pole Drifting Station

(NPDS) data are not utilised (Rigor et al., 2000). Utilising these supplementary data

sources, especially those reporting over sea ice areas, might provide better estimates of

SATs in this data sparse region. If it can be shown that including extra data in the Arctic

leads to an improvement in the accuracy of estimated SAT anomalies in this region, this

would indicate a need to further investigate potential sources of data over Arctic sea ice

and how to utilise these data sources for improved monitoring of Arctic climate change.

Therefore, the objective of this study was to investigate how sensitive various estima-

tion techniques are to the inclusion of additional sources of data in the Arctic and whether

their inclusion has an impact on the accuracy of the estimated anomalies. My original

concept for this study was to investigate the objective using in situ data. However, I

decided that the uncertainties and issues associated with in situ data noted in Chap-

ter 4 would make it difficult to isolate the impacts of additional data on the accuracy of
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the techniques. Therefore the study detailed in this chapter repeats the recent decades

investigation of the reanalysis study with additional ERA-Interim data sampled at sup-

plementary data source locations and compares the results of this ‘additional data study’

to those of the reanalysis study. I undertook two investigations; one using the locations

of independent land-based meteorological stations, hereafter referred to as the ‘additional

land data’ investigation, and another using NPDS data locations, hereafter referred to as

the ‘additional sea ice data’ investigation. These are data sources likely to provide climate

quality records of SATs. The outline of this chapter is as follows. Section 5.2 describes

the data and techniques used in this study. Section 5.3 evaluates the impact of including

additional land data on the accuracy of the estimation techniques. Section 5.4 evaluates

the impact of including additional data over sea ice areas. The final sections discuss the

results and provide a summary and conclusions.

5.2 Data and Techniques

This additional data study repeats the recent decades investigation of the reanalysis study

in Chapter 3 with additional ERA-Interim data sampled at supplementary data source lo-

cations and analyses the results. Five estimation techniques were applied to ‘input anoma-

lies’ combined with ‘additional input anomalies’. The input anomalies were monthly SAT

anomalies from ERA-Interim sampled at Arctic (north of 65◦N) meteorological station

locations. The additional input anomalies are monthly SAT anomalies from ERA-Interim

sampled at supplementary data source locations over Arctic land, or sea ice, areas. The

supplementary data source locations were the locations of independent meteorological

stations over land, and NPDS observation locations over sea ice.

The estimation techniques yield ‘estimated anomalies’; estimates of the ERA-Interim

SAT anomaly at several temporal resolutions for both investigations. ‘Arctic-average’

anomalies are area-weighted averages of SAT anomalies across the Arctic region, and

‘spatially resolved’ anomalies are complete fields of Arctic SAT anomalies. As in Chap-

ter 3, techniques which produced spatially resolved anomalies as well as Arctic-average

anomalies are described collectively as ‘interpolating’ techniques, while those producing

only Arctic-average SAT anomalies were referred to as ‘non-interpolating’ techniques.

The target areas for the interpolation were land areas and areas of sea ice with a sea ice

concentration of more than 15%.

The estimated anomalies were compared to monthly SAT anomalies produced for each

ERA-Interim grid cell. These ERA-Interim anomalies are the ‘truth’ for the target area

and are the same ‘reference’ anomalies used for Chapter 3 (Section 3.2.1). Errors and

error metrics were produced for both the additional land data and additional sea ice data

investigations as described in Section 3.2.5. These errors and error metrics were then

compared to the reanalysis study errors and error metrics.
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5.2.1 Reference Anomalies

To compare the accuracy of Arctic SAT anomalies produced using different estimation

techniques, a reference dataset was produced. This is the ‘truth’ to which the anomalies

produced by each estimation technique will be compared. The reference anomalies for

this study were monthly SAT anomalies produced for each ERA-Interim grid cell between

1979 and 2011 relative to a 10 year climatological period (1990-1999). This is the same

reference dataset as used for the reanalysis study, and as such is described in further detail

in Section 3.2.1 of this thesis.

5.2.2 Input Anomalies

In this additional data study the input anomalies used for the reanalysis study in Chap-

ter 3, which were ERA-Interim grid cell anomalies sampled at the location of all Arctic

meteorological stations in the CRUTEM4 databank (Section 3.2.2), were combined with

additional input anomalies produced using the locations of supplemental data sources.

Using ERA-Interim data as input anomalies instead of actual station measurements en-

ables us to isolate the limitations of the estimation techniques from errors arising from

using in situ measurements. These additional input anomalies over land and sea ice areas

were produced using the methods described below.

5.2.2.1 Additional Input Anomalies over Land

In Chapter 4 independent Arctic meteorological stations over land, which were not in-

cluded in the CRUTEM.4.2.0.0 databank, were identified from the the ISTI merged Stage

3 version 1.0.0 recommended monthly databank product. 63 validation stations were

identified in that study with data records in the time period of interest (1950-2013), and

at least 14 years of data in the climatology period (1961-1990), and temperature records

which were either homogenised or quality controlled with no large gaps in the data record

and no obvious inhomogeneities (Section 4.2.2).

The locations in latitude and longitude of the identified independent meteorological

stations were obtained from the ISTI Stage 3 dataset (Thorne et al., 2011). I combined

these additional station locations over land with the CRUTEM.4.1.1.0 databank station

locations used to produce the input anomalies for Chapter 3. Monthly anomalies from

the ERA-Interim grid cell nearest the combined station locations were extracted from the

reference anomaly dataset. These station location anomaly timeseries were then masked

according to whether the stations reported a temperature in each month or year between

1979 and 2011. Some of the stations were located within the same ERA-Interim grid

cell. As in Chapter 3 all stations that were duplicates at the ERA-Interim resolution were

identified and the station location anomaly timeseries were merged. These timeseries

constitute the input anomalies for this additional land data study. 56 additional station

location timeseries were added to the 852 utilised in Chapter 3 (Figure 5.1).
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Figure 5.1: The locations of input anomalies for Chapter 3 (black) and additional input
anomalies (red) over land between 1979 and 2011.

5.2.2.2 Additional Input Anomalies over Sea Ice

NPDS 6 hourly SAT data between 1979 and 2011 were downloaded from the AARI web-

site. I identified the ERA-Interim grid cell nearest each NPDS temperature observation

and extracted monthly anomalies for these identified grid cells from the reference anomaly

dataset. The anomaly timeseries were then masked according to whether the NPDS re-

ported a 6 hourly temperature in each month or year between 1979 and 2011, as done for

the additional input anomalies over land. These timeseries constitute the input anomalies

for this additional sea ice data study.

It should be noted that this is slightly unrealistic in terms of the coverage of monthly

temperatures from NPDS; these drifting platforms are unlikely to sample a whole month

of temperatures in a single grid cell even if a coarser, equal area grid is used (such as the

100km EASE grid utilised in Chapter 4) rather than the ERA-Interim grid utilised here.

However, if the same 10 day minimum sample for monthly averages used in Chapter 4 was

required here, only 207 ERA-Interim grid cells would contain a monthly average between

1979 and 2011. Therefore, I assumed a monthly average observation in the additional

input anomaly timeseries over sea ice if there was at least 1 NPDS 6 hourly temperature

record in a grid cell, month and year. This is a compromise between the need to use data

and techniques that are as close as possible to the previous chapter and having enough

extra input data to investigate the impact of adding additional data. The locations of

these additional input anomalies over sea ice are shown in Figure 5.2.
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Figure 5.2: The locations of additional input anomalies over sea ice between 1979 and
2011.

5.2.3 Estimation Techniques

The estimation techniques applied to the input anomalies for the two additional data

investigations in this study were the same techniques investigated in Chapter 3 of this

thesis. The five estimation techniques were Linear Interpolation (LI), Global Ordinary

Kriging (GOK), Global Simple Kriging (GSK), a restricted finite volume interpolation

technique (the ‘Binning’ technique), and Not Interpolating (NI). A description of the es-

timation techniques is provided in Section 3.2.3 of this thesis, with additional information

about the kriging techniques in Appendix B. The model function fitted parameter values

employed in Chapter 3 (see Appendix B) were used here.

5.2.4 Comparison of Estimated Anomalies to Reference Anoma-

lies

The estimation techniques used in this study yield estimates of ERA-Interim monthly

Arctic SAT anomalies when applied to the input anomalies for the additional land and

additional sea ice data investigations in this study. All estimation techniques used here

produced estimated monthly anomalies gridded to the ERA-Interim grid, except for the

Binning technique. The monthly anomalies were used to produce estimates of spatially

resolved Arctic anomalies and Arctic-average anomalies over land and sea ice areas (sea

ice concentration of more than 15%) at monthly, seasonal and annual timescales for recent

decades in the same way as for the reanalysis study.
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The anomalies estimated in the additional data study were compared to the reference

anomalies and errors were calculated for estimates of both spatially resolved and Arctic-

average anomalies at all timescales. As in Chapter 3, several error metrics were calculated

which assess the absolute and relative error in the estimated anomalies. The Root Mean

Square Error (RMSE) and Compound Relative Error (CRE) were reported here; the other

absolute error metrics were again found to be extremely similar to the RMSE and as a

result are not reported here.

5.3 The Impact of Including Additional Land Data

on the Performance of Estimation Techniques

5.3.1 Arctic-Average Anomalies

Timeseries of reference and estimated Arctic-average anomalies produced in this addi-

tional land data investigation, as well as the errors in the estimated anomalies, at both

annual and monthly timescales were plotted and compared to the results from the reanal-

ysis study for the Arctic in recent decades. It was found that for most techniques it was

difficult to visibly distinguish any differences in the timeseries and estimation errors from

the two studies. A Taylor diagram, which graphically summarises how well estimated vari-

ables match a reference dataset, was produced from the estimated anomaly errors of both

the additional land investigation and reanalysis study (Figure 5.3). All interpolating tech-

niques and the Binning technique show slight decreases in RMSE and increases in cross

correlation for annual estimated Arctic-average anomalies, and for most (≥ 8) calendar

months, when supplemental input anomalies over land are used. However, the changes in

accuracy were very small; a maximum of 0.01K for RMSE and 0.004 for cross correlation.

The accuracy of the anomalies estimated using the NI technique decreased for all months

and for annual anomalies. The increases in RMSE were larger than the changes seen for

the other techniques; the increases were between 0.05 and 0.4K, which is not trivial. The

cross correlation decreased by up to 0.2. The increases in error for NI are due to certain

characteristics of this technique. When Arctic-average anomalies are estimated using NI,

which does not spatially infill, areas which are well observed have more influence on the

Arctic-average anomalies. This means that if additional anomaly timeseries are utilised

in already well observed regions, the influence of these regions will increase and lead to a

decrease the accuracy of the estimated anomalies. This is assuming that the anomalies in

the well observed region are not representative of the Arctic-average anomaly. For other

techniques the additional anomaly timeseries contribute to grid cells which already con-

tain data (Binning), or are interpolated (Kriging techniques and LI), which means that

the anomalies of one region have less influence on the estimated Arctic-average anomalies

compared to those produced using NI.

In conclusion, all interpolating techniques and the Binning technique show slight de-
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Figure 5.3: A Taylor diagram comparing the monthly and annual Arctic-average anomaly
timeseries produced in the additional land investigation (colour) and from the reanalysis
study (black). Each symbol plotted represents a month of the year or the annual value.
Cross correlation is shown by the angle with respect to the x-axis. The standard deviations
(normalised with respect to the reference standard deviation) can be read from the y-
axis. The Root Mean Square Error (K) of the estimated anomalies is proportional to the
distance to the point on the x-axis identified as REF (shown by the concentric circles
marked 0.25 to 1).
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creases in RMSE for annual Arctic-average anomalies, as well as for most months, when

supplemental station location anomalies were added over land areas. They also show small

increases in the cross correlation values. The accuracy of estimated Arctic-average anoma-

lies produced using the NI technique decreased for all months and for annual anomalies

in this additional land data investigation compared to the reanalysis study. However, the

differences for most techniques are small and not notable.

5.3.2 Spatially Resolved Anomalies

The RMSE and CRE for spatially resolved annual anomalies produced in this additional

land data investigation were mapped and compared to the corresponding results from the

reanalysis study. The change in the annual error metrics between the two studies is given

in Figure 5.4. The annual anomalies estimated in the additional land data investiga-

tion, for all estimation techniques, were slightly more accurate compared to the reference

anomalies than those from the reanalysis study. The RMSE and CRE for these estimated

anomalies decreased by up to around 0.2(K) for areas of Scandinavia, and a decrease in

RMSE of 0.2K was observed for sea ice areas near Franz Josef land. The LI technique

error metrics additionally decreased by up to about 0.1(K) in the central Arctic Ocean.

Figure 5.4: The change in Root Mean Square Error (K) and Compound Relative Error
for spatially resolved annual SAT anomalies in the Arctic between the additional land
data investigation and the reanalysis study.

Page 111



The changes in RMSE and CRE between estimated monthly anomalies from the ad-

ditional land data investigation and the reanalysis study are given in Figures 5.5 (GOK)

and 5.6 (LI) for several months of interest. The changes for GSK were not plotted here as

the results for both kriging techniques were nearly identical. There is a general increase

in accuracy for all interpolating techniques; the GOK and LI error metrics decreased in

size by around 0.2(K) in general. The GOK error metrics decreased by up to 0.6K for

RMSE and more than 1.0 for CRE (Figure 5.5) while the LI error metrics decreased by up

to 0.4K and more than 1.0 for RMSE and CRE respectively (Figure 5.6). Both metrics

have improvements in accuracy extending from extra stations in the Franz Josef Land

archipelago into the central Arctic Ocean. The decrease in CRE also extends into the

Laptev and East Siberian Seas in July and can be relatively large (more than 1.0). RMSE

also shows large decreases in Scandinavia (where many of the additional land stations are

located) for both techniques. This increase in accuracy over Scandinavia is more extensive

for LI compared to GOK. This is due to differences in the size of the initial reanalysis

study metrics; for Scandinavia the kriging metrics were already very close to 0 and there-

fore cannot show as much improvement as seen for LI. In addition to the areas already

mentioned, GOK (Figures 5.5) also showed small areas of localised decreases in metric

values in Canada for both metrics. These results show that it is not only the amount of

additional stations added which have an influence, as in Scandinavia, but also additional

stations in a beneficial location, such as those extra stations in the Franz Josef Land

archipelago. Two stations provided data in this archipelago in the input anomalies for

the reanalysis study, but these stations were situated on the other side of the archipelago

from the Arctic Ocean. Therefore, adding these new stations which are nearer the sparsely

observed Arctic Ocean has lead to a reduction in errors in this area.

However, some decreases in accuracy also occur. Increases in error metrics were noted

for RMSE in March and for CRE in July and August (Figures 5.5 and 5.6). For GOK

these were small changes and often local in extent. The decreases in accuracy for LI

were larger (up to 0.6K for RMSE in sea ice edge areas in the Atlantic) and slightly

more extensive geographically than observed for GOK. The increase in error results from

differences in the way LI and kriging techniques treat spatially clustered stations. Kriging

accounts for clustering of stations and assigns these stations lower weights than those

in sparsely observed areas. For LI the extra station location anomalies in Scandinavia

increase the influence of these anomalies in nearby areas which these anomalies may not

be representative of, such as Arctic sea ice areas.

For spatially resolved estimated anomalies at annual and monthly timescales, adding

supplemental station location anomaly timeseries over land generally increased the ac-

curacy of the anomalies relative to the reanalysis study. The RMSE and CRE values

generally decrease by about 0.1-0.2(K). Larger improvements were seen in some areas

of the Arctic, such as northern Scandinavia and near Franz Josef Land. In these areas

RMSEs could decrease by up to 0.6K which is not trivial. Decreases in accuracy were
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Figure 5.5: The change in the Root Mean Square Error (K) and Compound Relative Error
between the reanalysis study and the additional land data investigation for the Global
Ordinary Kriging technique. Maps are plotted for several months of interest for each error
metric.

Figure 5.6: The change in the Root Mean Square Error (K) and Compound Relative
Error between the reanalysis study and the additional land data investigation for the
Linear Interpolation technique. Maps are plotted for several months of interest for each
error metric.
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noted for anomalies estimated using LI in the present of additional data over land. This

shows that caution may be needed if additional land stations are to be added to datasets

using the LI technique. Moreover, there may be issues associated with large changes in

the distribution of the observing network for this technique.

5.4 The Impact of Including Additional Sea Ice Data

on the Performance of Estimation Techniques

5.4.1 Arctic-Average Anomalies

Timeseries of reference and estimated Arctic-average anomalies, as well as the errors in the

estimated anomalies, from this additional sea ice data investigation were compared with

those from the reanalysis study. This was done for annual and monthly Arctic-average

anomalies. Similar to the additional land data investigation, for most techniques it was

difficult to distinguish any differences in the errors so a Taylor diagram was produced (Fig-

ure 5.7). All interpolating techniques and the Binning technique showed slight decreases

in the RMSE and slight increases for the cross correlation for annual anomalies and for

most, if not all, months. These improvements in accuracy were also observed for the NI

technique, in contrast to the results for additional data over land (Section 5.3.1). The

changes in accuracy observed for this additional sea ice investigation were fairly small, but

were slightly larger than those generally noted in Section 5.3.1. Decreases in RMSE were

up to 0.1K. Increases in cross correlation were slightly smaller than for Arctic-average

anomalies produced with additional land data; 0.03 compared to 0.2.

In conclusion, all techniques show slight decreases in RMSE for annual Arctic-average

anomalies, as well as for most or all months, when supplemental anomalies were added

over sea ice areas. They also show very small increases in the cross correlation values.

Unlike for the additional land data investigation, the improvement is universal across all

techniques. In addition, the improvements in RMSE values are larger than noted when

supplemental station location anomalies are added over land. The decrease in RMSE is

still fairly small, up to 0.1K, but it is not entirely trivial.

5.4.2 Spatially Resolved Anomalies

The change in RMSE and CRE for annual, spatially resolved anomalies produced by the

additional sea ice data investigation and the reanalysis study were mapped and examined.

The change in the annual anomaly error metrics is shown in Figure 5.8. All techniques

show both increases and decreases in the error metrics. There are decreases in the RMSE

of up to 0.3K and decreases in the CRE of more than 0.5 over Arctic sea ice areas. The

increases in RMSE and CRE are around 0.2-0.3(K). These decreases in accuracy generally

occur in western Arctic sea ice areas, on the North American side of the Arctic, near the

Beaufort Sea for both Kriging techniques and off the north coast of Greenland for LI. The
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Figure 5.7: A Taylor diagram comparing the monthly and annual Arctic-average anomaly
timeseries from this additional sea ice investigation (colour) and from the reanalysis study
(black). Each symbol plotted represents a month of the year or the annual value. Cross
correlation is shown by the angle with respect to the x-axis. The standard deviations
(normalised with respect to the reference standard deviation) can be read from the y-
axis. The Root Mean Square Error (K) of the estimated anomalies is proportional to the
distance to the point on the x-axis identified as REF (shown by the concentric circles
marked 0.25 to 1).
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geographical extent of the area where accuracy has decreased, and the size of the increase

in the error metrics is larger for LI than for the kriging techniques. To investigate this

further, maps of the error and the location of NPDS were examined for annual anomalies.

The decreases in accuracy in all techniques result from a combination of the climate in

this region of the Arctic and the locations of the supplementary anomalies added over

sea ice in this investigation. The area of decreased accuracy is in the Canadian climatic

region, a more continental climate than the Interior Arctic where much of the NPDS

data is reported (Przybylak, 2003c,a). Reference anomalies located in the Beaufort and

Lincoln Seas are likely better represented by anomaly timeseries located over land in the

Canadian climatic region than by NPDS observation anomaly timeseries located in the

interior Arctic. This effect is worse for LI than for Kriging; LI is vulnerable to clustering

effects, as noted in Section 5.3.2.

Figure 5.8: The change in Root Mean Square Error (K) and Compound Relative Error
for spatially resolved annual SAT anomalies in the Arctic between the additional sea ice
data investigation and the reanalysis study.

The changes in RMSE and CRE between estimated monthly anomalies are given in

Figures 5.9 and 5.10 for GOK and LI respectively for several months of interest. GSK was

again not plotted. As with the additional land data study, most of the areas of change

between the metrics of the two studies show an increase in accuracy for interpolation

techniques. The decrease in RMSE and CRE values was around 0.4(K) in general, with

a decrease of more than 1.0(K) for the metrics in some areas. This is a notable increase
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in accuracy. The largest decrease in error metric values was seen for the central Arctic

Ocean where the NPDS report temperatures, while modest improvements in accuracy also

occur in other areas of the Arctic Ocean. This suggests that adding NPDS data can lead

to a considerable increase in accuracy for estimated spatially resolved monthly anomalies.

The RMSE for the estimated anomalies reduces from 2.0-3.0K in the reanalysis study to

around 1K for the additional sea ice investigation in this study. There are, however, some

areas where the metric values increased. For GOK these increases were in the Beaufort

Sea area and generally small; less than 0.2K for RMSE and up to 0.5 for CRE. For the LI

technique, error metric values increased for the Arctic Ocean near to Greenland and in

sea ice edge areas. These increases in RMSE and CRE values can be more than 1K and

up to 0.6 respectively. As mentioned previously, this is probably due to a lack of NPDS

data in this area and the slightly more continental climate in this region, as well as the

sensitivity of LI to station clustering.

Figure 5.9: The change in the Root Mean Square Error (K) and Compound Relative
Error between the reanalysis study and the additional sea ice data investigation for the
Global Ordinary Kriging technique. Maps are plotted for several months of interest for
each error metric.

Finally, the error metrics associated with each interpolation technique from both the

additional sea ice investigation and the reanalysis study were area-weighted and compared

(Figure 5.11). This was also done for the additional land data investigation but there

were no noticeable differences in the metrics. For kriging techniques, represented in

Figure 5.11 by GOK, there is a slight decrease in the RMSE and CRE for most months.

This improvement in accuracy is, however, very small. The error metric values decrease

by less than 0.05(K), except for CRE in August and July where the improvement can be

up to 0.3. There is a very slight increase in the GOK RMSE for December when additional

observation location anomaly timeseries are added over sea ice. However this is around

0.02K, and therefore negligible. The difference in the annual area-weighted averages of
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Figure 5.10: The change in the Root Mean Square Error (K) and Compound Relative
Error between the reanalysis study and the additional sea ice data investigation for the
Linear Interpolation technique. Maps are plotted for several months of interest for each
error metric.

the error metrics is essentially 0. The results were very similar for LI.

In conclusion, the use of NPDS observation locations in this additional sea ice data

investigation generally leads to an increase in the accuracy of estimated anomalies. This

increase in accuracy is particularly notable for monthly anomalies, where there may be

up to a 1K improvement in the RMSE in areas where station location anomalies were

added over sea ice. This is a substantial decrease in the error considering that the NPDS

observation locations are only added to 23 of the 33 years of this study’s time period

of interest. However there are increases as well as decreases in error metric values for

anomalies produced using the LI technique when NPDS observation locations are em-

ployed. These increases in error can be large; more than 1K for the RMSE for the Arctic

Ocean near to Greenland and for sea ice edge areas. It is likely that these errors are again

due to the influence of station anomalies in areas they are not representative of. This is

caused by the weighting system used in LI, which also makes this technique vulnerable

to station location effects such as clustering.

5.5 Discussion

The addition of supplementary station location anomaly timeseries over land and sea

ice to the input anomalies from the reanalysis study had an impact on the accuracy of

anomalies estimated using various techniques. Generally there was an improvement in

accuracy when additional data locations were added. In some areas of the Arctic there

were substantial or non-trivial improvements in the anomalies. There were also, less
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Figure 5.11: Area weighted average of the spatially resolved RMSE and CRE from the
reanalysis study and the additional sea ice data investigation.

Page 119



frequently, decreases in anomaly accuracy.

The improvements resulting from adding supplemental anomaly timeseries over land

were smaller and less consistent than noted for the additional sea ice data investigation.

This was due to the locations and coverage of the independent ISTI meteorological stations

used as supplemental station locations over land. Many of these stations are clustered

in Scandinavia and other areas where input anomalies were already present. The use of

input anomalies over land which were clustered in certain areas was a limitation in this

chapter. For several of the estimation techniques, the changes to the input anomalies

for the additional land data investigation had little or no effect on the accuracy of the

estimated anomalies produced. However, this spatial clustering of input and additional

input anomalies was an issue for some techniques.

For Arctic-average anomalies estimated using NI, areas which are well observed have

more influence on the Arctic-average anomalies. Additional anomalies which are clustered

in an already well observed area will increase the influence of these regions and decrease

the accuracy of the estimated anomalies if the additional anomalies are not representative

of the Arctic-average anomaly. In contrast, for the Binning technique these additional

anomaly timeseries contribute to grid cells which already contain data. The Arctic-average

anomaly is not excessively influenced by a greater coverage of anomaly timeseries in one

area. The addition of anomaly timeseries over land led to an increase in accuracy for

spatially resolved anomalies estimated by kriging techniques, but a decrease in accuracy

for anomalies estimated using LI in some sea ice edge areas. This is due to the fact that

the linear weighting used for LI does not account for clustering of stations. The addition of

anomaly timeseries over land in an already well observed area near to a sparsely observed

area (e.g. the Atlantic sector of the Arctic) causes an increase in the influence of those

clustered data within the sparsely observed region, whose climate can be distinct, and

hence an increase in the size of the error metrics. This means that caution is needed if

additional SAT records are used in conjunction with LI to estimate Arctic SAT anomalies.

Moreover, this indicates potential issues may arise for anomalies estimated using LI if there

are large changes in the distribution of the observing network.

It is not just clustered station locations that can have an impact on the estimation

of anomalies using the five estimation techniques employed in this study. Two additional

station location anomaly timeseries located in Franz Josef Land reduced the error for a

relatively large area of sea ice coverage for spatially resolved estimated anomalies produced

using all interpolation techniques. These station locations are in the particularly sparsely

observed Atlantic region of the Arctic and are situated on the Arctic Ocean side of this

archipelago. The location and number of station locations added, and their location

relative to that of existing input anomalies, are both factors which contribute to the

impact of additional data on various estimation techniques, as well as features of the

techniques themselves.

For the investigation using additional data over sea ice, the additional input anomalies
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were added in areas of the Arctic which were not observed by the reanalysis study input

anomalies. As a result the improvements in accuracy were generally larger as well as

more consistent spatially and across techniques. The estimated Arctic-average anoma-

lies produced using supplemental observation locations over sea ice and all investigated

estimation techniques had RMSEs up to 0.1K smaller. This was noted for annual anoma-

lies as well as most, or all, months. For spatially resolved anomalies, the use of NPDS

stations led to a decrease in the errors for estimated anomalies. This is most noticeable

for monthly anomalies, where there may be up to a 1K improvement in the RMSE for

interpolating techniques in areas where NPDS report. This is a substantial decrease in

the error, not just considering the size of the improvement but also because the NPDS

stations only provide a small amount of extra data in each month and year for 23 of the

33 years of this study’s time period. In addition there are fewer increases in the metrics

compared to the additional land data investigation.

However, LI of the additional input anomalies over sea ice still leads to increases in

error for some regions. These increases can be large; more than 1K for the RMSE or the

Arctic Ocean near to Greenland and for sea ice edge areas. This is probably due to a lack

of NPDS data in this area and the slightly more continental climate in this region, as well

as the weighting used for LI in this study. NPDS do not report in all areas of the Arctic

Ocean. These are manned stations which cannot operate where sea ice thickness and/or

sea ice concentrations are small. Some areas of Arctic sea ice, such as in the Beaufort

Sea, have a more continental climate than the Interior Arctic where much of the NPDS

data is reported. Therefore the addition of many station location anomalies in the interior

Arctic will decrease the accuracy in estimated anomalies for areas better represented by

anomalies from land based stations when the LI technique is used.

So, the addition of extra data over land and sea ice often led to an improvement in

the performance of the investigated estimation techniques. This is especially true for ad-

ditional data sources located over sea ice or on islands in the Arctic Ocean where data are

particularly sparse. The results of Chapter 4 suggest that a similar improvement in accu-

racy would be seen for actual in situ data as well as the reanalysis data used here. Further

improvements in accuracy may be accomplished by the addition of other data sources such

as automated drifting platforms; for example the U.S Army Cold Regions Research and

Engineering Laboratory network of ice mass balance buoys which provide near-surface air

temperatures for areas of sea ice which the NPDS, as manned stations, cannot reach. In

Appendix D I identify and summarise potentially suitable sources of further SAT data

over sea ice areas in the Arctic from in situ observations, satellite sensors and reanalysis

datasets. These include in situ data sources from manned platforms (such as ships and

manned drifting ice stations) and unmanned platforms (buoys, automatic radiometeoro-

logical stations, radiosondes/rawinsondes and ice mass balance buoys); satellite thermal

infrared (TIR) and microwave (MW) instruments measuring Ice Surface Temperatures

(ISTs), near ISTs and lower tropospheric temperatures; and reanalysis datasets which
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provide estimated, globally complete fields of SATs. The focus for satellite sensors men-

tioned in Appendix D is on those which are used for surface or atmospheric temperature

anomaly datasets, or those which can provide a long and/or reliable record of temperature

observations. This Appendix identifies many sources of surface temperatures over Arctic

sea ice areas which could be employed to improve estimates of SAT anomalies. More data

sources may become available as part of efforts to increase data sharing and data rescue

(e.g. Allan et al., 2011; Thorne et al., 2011; Slonosky, 2014).

5.6 Summary

The addition of extra data over land and sea ice to the input anomalies from the reanalysis

study detailed in Chapter 3 had an impact on the accuracy of anomalies estimated using

various techniques. Generally there was a small improvement in the error metrics when

additional data was added. However, in some area of the Arctic there were also substantial,

or non-trivial improvements, in the anomalies as well as, less frequently, decreases in

anomaly accuracy. The improvements resulting from adding extra data over sea ice were

larger and more consistent than for adding extra data over land. This is due to the

locations of the additional land stations which are often clustered in already well-observed

areas whereas no data over sea ice was included in the reanalysis study input anomalies.

Therefore, the addition of data in an area which is not previously represented in the input

anomalies led to more accurate estimates of anomalies in general.

However, the performance of the techniques in response to the additional data was not

consistent. Kriging techniques showed consistent improvements in the accuracy of their

estimated anomalies in the presence of extra data while LI error metrics both increased

and decreased in accuracy. This is because kriging techniques account for clustering of

stations whereas LI can be quite vulnerable to the negative impacts of this. NI also

had issues with the addition of extra land data due to the clustering of stations in some

areas. This meant that some areas had a larger influence on the Arctic-average anomalies.

If these areas are not representative of the Arctic-average anomaly then the increase in

their influence will lead to larger errors. In contrast, the Binning technique accounts for

clustering of stations in a small area as a result of regridding the anomalies.
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Chapter 6

Can the Inclusion of Surface

Temperatures Derived from Satellite

Sensors be used to Improve

Estimates of Arctic Surface Air

Temperature Anomalies?

6.1 Introduction

In Chapter 5 I found that the inclusion of additional data sources improved the estima-

tion of Arctic SAT anomalies when reanalysis data were used as a testbed. Generally

there was an increase in accuracy when additional data were added, with larger and more

consistent improvements when supplementary input anomalies were added over sea ice

or on islands in the Arctic Ocean. The inclusion of additional data impacted the perfor-

mance of the estimation techniques to different extents; some techniques were negatively

impacted by station clustering and/or station weighting issues when additional data were

added, whereas others were more robust. The results of Chapter 4 suggest that a simi-

lar improvement in accuracy would be seen when the techniques were applied to in situ

data assuming the additional data were of sufficient quality. I identified potential addi-

tional sources of data (from in situ data sources, satellite instruments and reanalyses) in

Appendix D.

The addition of valuable land-based meteorological stations in the Arctic, such as

those identified on the Franz Josef Archipelago (Chapter 5), to the calculation of global

and regional mean SAT anomalies would be straightforward. SATs from meteorological

stations are one of the main data sources for current temperature anomaly datasets. For

data sources over Arctic sea ice, which are not currently employed in the most prominent

timeseries of temperature change, utilising the data is a more complex issue. In situ

temperature records from drifting platforms are spatially and temporally sparse, and
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traditional normals cannot be produced from these drifting observations (Chapter 4).

In addition, issues were noted with the double difference statistic utilised in Chapter 4

to explore the difference between estimated anomalies and validation data from drifting

platforms.

Surface temperatures derived from satellite sensors are available over Arctic sea ice

for the last few decades. Ice Surface Temperatures (ISTs) are not generally used to

monitor surface temperature change, but could provide a useful temperature record for

the Arctic sea ice regions. Thermal infrared (TIR) derived surface temperatures observe

the temperature of the surface skin, and are therefore not the same as SAT (measured at

around 1.5m height). But TIR derived ISTs could be used as a proxy for SATs over ice and

snow, similar to the use of SST as a proxy for MAT (Section 1.2.1.2), as changes in these

two types of temperatures are often well correlated. Indeed, TIR surface temperature

records show promise for estimating Arctic sea ice temperature change (Comiso, 2003,

2006; Comiso and Hall, 2014; Hansen et al., 2010) and there are many TIR satellite

instrument derived surface temperature datasets and data products already available (e.g.

ESA, 2014; Heidinger et al., 2014; Merchant et al., 2012). However it must be noted that

TIR sensors cannot observe surface temperatures in the presence of cloud.

Therefore, this chapter investigates whether the addition of ISTs derived from TIR

sensors on satellites could be useful for improving temperature anomaly dataset accuracy

in the Arctic. In this ‘additional satellite data’ study I focus on the accuracy of estimates

of monthly SAT anomalies over Arctic sea ice. This chapter also investigates whether

datasets such as the International Arctic Buoy Programme/Polar Exchange at the Sea

Surface (IABP/POLES) SAT and ARCSS Surface Air Temperature (ARCSS-SAT) anal-

yses could be used as a climatology over Arctic sea ice areas. This would allow surface

temperature anomalies to be calculated from in situ observations in these areas using the

commonly employed Climate Anomaly Method (CAM). I applied Global Simple Kriging

(GSK) to Arctic meteorological station records, supplemented with a sample of surface

temperature data over sea ice areas derived from the Advanced Very High Resolution

Radiometer (AVHRR). I assessed the accuracy of estimated anomalies from this ‘AVHRR

interpolation’ using independent validation anomalies over Arctic sea ice. The validation

anomalies are Surface Air Temperature (SAT) anomalies produced from in situ SATs and

the IABP/POLES dataset as a climatology. The results were then compared to those

produced from validating a ‘reference interpolation’; GSK was applied to monthly SAT

anomalies from Arctic meteorological stations only. The reference interpolation is similar

to the in situ data study interpolation (Chapter 4). The input data are the same but a

different climatological period is used. The outline of this chapter is as follows. Section 6.2

describes the data and techniques used in this study. Section 6.3 then provides the results.

The final section discusses the results and provides a summary and conclusions.
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6.2 Data and Techniques

Global Simple Kriging (GSK) was applied to ‘input anomalies’; which are in situ monthly

SAT anomalies from the CRUTEM4 databank between 1981 and 2013, either used exclu-

sively (the ‘reference interpolation’) or with surface temperature timeseries derived from

AVHRR for the same time period (the ‘AVHRR interpolation’). An overview of GSK is

provided in Chapter 3 and more details are provided in Appendix B. The same model

function fitted parameter values used for GSK in Chapter 4 were employed here. GSK

yields ‘estimated anomalies’; estimates of spatially resolved Arctic SAT anomalies, which

are complete fields of Arctic SAT anomalies gridded to an 100km Equal-Area Scalable

Earth (EASE) grid (see Chapter 4). Using this grid allows the calculation of monthly av-

erage validation data with sufficient observations in each month and grid cell while being

smaller than the expected correlation length of anomalies. The estimated anomalies from

both interpolations were compared to validation anomalies over sea ice areas, produced

from various in situ SAT data sources identified in Appendix D and the IABP/POLES

dataset. Error metrics were produced for both interpolations and the accuracy of the

estimated anomalies compared.

6.2.1 Input Anomalies

6.2.1.1 Meteorological Station Surface Air Temperature Anomalies

Input anomalies over land were produced from station records contained in the

CRUTEM.4.2.0.0 land surface temperature anomaly dataset (Jones et al., 2012), down-

loaded from the Met Office Hadley Centre Observations Dataset website (http :

//www.metoffice.gov.uk/hadobs/crutem4/data/download.html). The input anomalies

are similar to those for Chapter 4; the data source is the same but a different climatological

period is used.

The CRUTEM4 station records contain the monthly average temperatures for each

station in the databank, as well as station normals 1961-1990 (if available) for each cal-

endar month. Some of the datasets used in this study (AVHRR data and IABP/POLES)

do not contain data back to 1961. I therefore calculated meteorological station anomalies

from the station records with respect to station normals for the time period common to

all data used to produce a climatology or normal in this study: 1981-2004. This ensures

that differences between the anomalies are not a result of differing climatological periods.

Station normals for 1981-2004 were created for each meteorological station where at least

14 years of data were available in this time period. This follows the method used to pro-

duce station normals 1961-1990 in the CRUTEM4 dataset (Jones et al., 2012). Figure 6.1

shows the stations for which valid normals could be produced between 1981 and 2004.

Of the 956 stations in the CRUTEM4 databank which are located above 53◦N (which

provided information on Arctic temperatures necessary for the interpolating techniques),

856 had valid normals for 12 months while 19 had valid normals for only certain months
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of the year. 81 had no valid monthly normals between 1981-2004. However, many of the

stations with fewer than 12 months of station normals are located in areas which are rel-

atively well-observed, such as Scandinavia, or are located near to stations which have full

normals, for example in Greenland where the station with no normals is within 300km of

three stations with normals for 12 calendar months. Therefore, I do not expect a notable

loss of accuracy in the interpolation resulting from changes to the climatology period.

Figure 6.1: The locations of all meteorological stations in the CRUTEM4 databank.
Different markers are used to show the locations of the meteorological stations depending
on whether they are above 53◦N or above 65◦N and whether station normals are available
between 1981 and 2004.

Monthly station SAT anomalies between 1981 and 2013 (the time period for which

AVHRR data were available) were produced, where possible, with respect to 1981-2004.

In the CRUTEM4 databank the same location in latitude and longitude can be associated

with more than one station record. These duplicates would have caused a problem for

the kriging method utilised in this study. Therefore all stations that are located at

the same latitude and longitude were identified and the station anomaly records merged

as in previous chapters of this thesis. These resulting meteorological station anomalies

constitute the input anomalies over land for this additional satellite data study.
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6.2.1.2 AVHRR Surface Temperature Anomalies

Input anomalies over sea ice, utilised in the AVHRR interpolation, were produced from a

monthly surface temperature dataset derived from AVHRR data. The AVHRR satellite

instruments are across-track scanning radiometers measuring visible and infrared radia-

tion. They have been deployed on various satellites since 1978. Surface temperatures

have been derived from the thermal infrared channels of AVHRR sensors using various

different algorithms (e.g. Comiso and Hall, 2014; Comiso, 2003; Key and Haefliger, 1992).

AVHRR surface temperatures are generally produced back to 1981, when AVHRR/2 was

launched, due to the complexities and issues in producing surface temperatures from only

one thermal infrared channel.

6.2.1.2.1 The Re-normalised AVHRR Monthly Surface Temperature Dataset

of Comiso and Hall 2014 An AVHRR monthly surface temperature dataset (Comiso

and Hall, 2014) was kindly provided for this study by Dr J. Comiso. This AVHRR

dataset was produced using surface temperatures derived from AVHRR/2 and AVHRR/3

radiometric temperatures.

Cloud masking was performed using a combination of a thresholding technique and a

daily differencing technique (Comiso, 1994). The thresholding technique utilises the dif-

ference in radiance between the channels centered at 3.7µm and 10.8µm, and the channels

centered at 10.8µm and 12.0µm (Comiso, 2001). The daily differencing method masks

clouds using the difference in daily orbital data from the 10.8µm channel with a given

threshold; clouds are identified based on the changes in observed radiances caused by

their movement (Comiso, 2000). This cloud masking method, which has an emphasis on

the use of the daily differencing method, was found by Comiso 2000 to be the most effec-

tive method for cloud masking in a polar environment. Different thresholds were used to

mask open ocean, sea ice, and ice sheet surfaces (Comiso, 2000). Day and night data were

analysed separately and additional masking was applied over open ocean areas (Comiso,

2000). Atmospheric attenuation was corrected for using the split-window algorithm over

open ocean, and a slightly modified version over areas of ice (Comiso, 2000). The AVHRR

radiances were then used to derive surface temperatures using the same emissivities for

ice and water as used by Comiso 1994. Monthly average surface temperatures were then

produced.

The AVHRR instruments were, however, originally intended to be for meteorological

purposes rather than climate monitoring (Embury, 2015), in common with meteorological

stations. Orbital drift in the satellites carrying the AVHRR sensors, and discontinuities

arising from the deployment of new satellites, affect long records of surface temperatures

derived from these sensors (e.g. Jin and Treadon, 2003). In addition, the selection of a

satellite orbit which avoids direct sunshine on the instruments (Jin and Treadon, 2003;

Price, 1991), but is subject to orbital drift, may not continue to avoid direct radiation

in the event of orbit drift. Furthermore, as the AVHRR instruments were not meant for
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long-term monitoring they may not be calibrated adequately for climate data purposes,

sensor degradation may occur, and calibration may differ between individual instruments.

Therefore AVHRR surface temperatures are affected by calibration and degradation prob-

lems.

To account for changes in calibration as well as degradation by Comiso and Hall

2014 used “established techniques” (Comiso, 2001). In addition, the monthly AVHRR

surface temperatures were re-normalised so that they are more consistent with in situ

measurements (Comiso, 2001, 2014b). The re-normalisation was completed using the fol-

lowing procedure. In situ data were acquired from the World Meteorological Organization

(WMO) for meteorological stations above 60◦N (Comiso, 2014a). The station records were

quality controlled so that data which were too noisy or different from neighbouring stations

were removed (Comiso, 2014a). A regression was calculated between the AVHRR and in

situ data and calibration coefficients were derived in order to adjust the AVHRR surface

temperatures (Comiso, 2001, 2014a). Adjustments were made on a year to year basis us-

ing individual WMO station records (Comiso, 2014a). A normalisation based on monthly

averages of all station records was produced as a final refinement (Comiso, 2014a). These

re-normalised monthly average AVHRR surface temperatures were found to be consistent

with meteorological stations and other in situ data sources (Comiso, 2014b). However,

it must be noted that these AVHRR data have some serious cloud masking deficiencies

resulting from instrument limitations which the re-normalisation technique employed by

Comiso and Hall 2014 will not correct. Furthermore there may also be algorithm limita-

tions.

6.2.1.2.2 A Comparison of Re-normalised AVHRR Surface Temperatures

and Temperature Anomalies to Other Data Sources Re-normalised AVHRR

monthly surface temperatures (Comiso and Hall, 2014), along with SATs from the

IABP/POLES dataset (used as a climatology in this study) and European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) project interim reanal-

ysis, or ERA-Interim, data in the Arctic were mapped and are shown in Figure 6.2. In

common with the study of Comiso and Hall 2014, I found that the spatial distribution of

surface temperatures in the AVHRR dataset was consistent with expectations and similar

to the spatial distribution of SATs in the IABP/POLES and ERA-Interim datasets. How-

ever, as shown in Figure 6.3, the spatially resolved Mean Difference between the datasets

can be large.

I compared the monthly surface temperatures from AVHRR to in situ SAT data over

sea ice, which constitute the validation data for this study. The AVHRR surface tem-

peratures were generally within 3K of the validation data as shown in Figure 6.4. There

is, however, often a warm bias in AVHRR surface temperatures, which can be up to 2K

on average for temperatures around 240K, as well as a cold bias of approximately 1K

for temperatures around 270K. The RMSE for the whole time period was 2.6K. In bo-

real summer (June, July, August) the RMSEs were 1.5K, while for all other months the
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Figure 6.2: Spatially resolved calendar monthly average surface temperatures (K) from the
AVHRR dataset of Comiso and Hall 2014, and monthly average surface air temperatures
from IABP/POLES (Rigor et al., 2000) and ERA-Interim for the period 1981-2004.

RMSE values were 2.8K. Other studies comparing AVHRR ISTs to in situ data over sea

ice found that there were few differences in the statistics of the temperatures and that

AVHRR ISTs were within 3K of in situ SATs (Comiso, 2001; Key and Haefliger, 1992;

Key et al., 1994, 1997; Yu et al., 1995). In these previous studies AVHRR ISTs had bi-

ases of +0.1K in summer and -0.4K for other months compared to in situ SATs (Comiso,

2001; Key and Haefliger, 1992; Key et al., 1994, 1997; Yu et al., 1995). The differences in

statistics between these studies likely result from the use of different algorithms to derive

surface temperatures from AVHRR, as well as the different techniques used to correct

calibration, degradation and atmospheric effects.

Lastly, I compared monthly temperature timeseries from the AVHRR dataset and in

situ data sources for two grid cells on Arctic sea ice to the temperature timeseries from a

nearby Arctic land-based meteorological station (Figure 6.5) and a distant meteorological

station (Figure 6.6). The temperature timeseries from all sources show a similar seasonal

pattern. In addition, SATs and surface temperatures from all sources were generally

within 3.5K of each other for most months. In boreal summer there are more notable

differences between the timeseries; the re-normalised AVHRR surface temperatures vary

around 271.15K, in situ SATs vary around 273.15K, and land station SATs are higher

and more variable (Figures 6.5 and 6.6). Land station SATs are larger and more variable

than SATs over sea ice in summer as they are not constrained by latent heat effects from
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Figure 6.3: The Mean Difference (K) between spatially resolved monthly average surface
temperatures from the AVHRR dataset of Comiso and Hall 2014, and monthly aver-
age surface air temperatures from IABP/POLES (Rigor et al., 2000) and ERA-Interim
between 1981 and 2004.

Figure 6.4: Monthly surface temperature data 1981-2008 from the AVHRR dataset of
Comiso and Hall 2014 compared to the validation data used in this study (from NPDS
and other reliable data sources over Arctic sea ice).
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melting sea ice (Przybylak, 2003a). The AVHRR surface temperatures were closer than

those from land stations to temperatures from North Pole Drifting Stations (NPDS), as

would be expected (Przybylak, 2003a). However, the temperatures from NPDS, other in

situ data sources, and previous studies (e.g. Chen et al., 2002; Wiese et al., 2015) suggest

that surface temperatures over sea ice should be around 273.15K during the melt season.

This relatively consistent cold bias could point to cloud masking issues in this dataset, or

an inappropriate emissivity of sea ice in the summer. AVHRR data are known to have

some serious cloud masking deficiencies resulting from instrument limitations (Comiso,

2014b).

Figure 6.5: Monthly temperature timeseries from the AVHRR dataset of Comiso and Hall
2014 and NPDS observations (both those in the grid cell and those up to 100km away)
for the EASE grid cell located at 83.62N, 8.13W compared to the temperature timeseries
from a nearby Arctic land-based meteorological station (within 300km of the grid cell).

Anomalies were also produced from the temperature timeseries investigated above

and the anomaly timeseries were compared (Figures 6.7 and 6.8). Land station and

AVHRR anomalies were produced with respect to normals produced from these datasets

(see Section 6.2.1.1 and 6.2.1.2.3). NPDS anomalies were produced with respect to the

IABP/POLES analysis (see Section 6.2.2). It was found that the anomalies were fairly

similar between datasets (Figures 6.7 and 6.8), with RMSEs often less than 3.5K. For

AVHRR compared to NPDS observations the RMSE was less than 2.5K for all but one

timeseries comparison.
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Figure 6.6: Monthly temperature timeseries from the AVHRR dataset of Comiso and Hall
2014 and NPDS observations (both those in the grid cell and those up to 200km away) for
the EASE grid cell located at 81.83N, 73.66W compared to the temperature timeseries
from a distant Arctic land-based meteorological station (more than 1200km distance from
the grid cell).
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Figure 6.7: Monthly temperature anomaly timeseries from the AVHRR dataset of Comiso
and Hall 2014 and NPDS observations (both those in the grid cell and those up to 100km
away) for the EASE grid cell located at 83.62N, 8.13W compared to the temperature
timeseries from a nearby Arctic land-based meteorological station (within 300km of the
grid cell).
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Figure 6.8: Monthly temperature timeseries from the AVHRR dataset of Comiso and Hall
2014 and NPDS observations (both those in the grid cell and those up to 200km away) for
the EASE grid cell located at 81.83N, 73.66W compared to the temperature timeseries
from a distant Arctic land-based meteorological station (more than 1200km distance from
the grid cell).
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Therefore, the re-normalised AVHRR surface temperature dataset used to produce in-

put anomalies in this additional satellite study are similar to the validation data, although

some biases were noted. In addition, the spatial distribution of temperatures and anoma-

lies in the Arctic are similar to those of the ERA-Interim reanalysis, which is physically

plausible in the Arctic (Chapter 2), and the IABP/POLES analysis, which is produced

by optimally interpolating in situ data (Rigor et al., 2000).

6.2.1.2.3 AVHRR Derived Monthly Surface Temperature Anomalies The

monthly re-normalised AVHRR surface temperatures were regridded to a 100km EASE

grid (see Chapter 4). Surface temperatures between 1981 and 2004 were used as a clima-

tology to produce monthly AVHRR surface temperature anomalies. Sea ice concentration

information from ERA-Interim was gridded to the same EASE-grid and grid cells with at

least 15% sea ice in all months between 1981 and 2013 were identified. AVHRR surface

temperature anomaly timeseries from these 311 grid cells were used as input anomalies

in this study and their locations are shown in Figure 6.9.

Figure 6.9: The location of AVHRR input surface temperature anomalies (dark grey).
The AVHRR input anomalies are located in grid cells which contain permanent sea ice
(at least 15% sea ice in all months) in ERA-Interim reanalysis data (gridded to a 100km
EASE grid) in the time period 1981-2013.
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6.2.2 Validation Anomalies

6.2.2.1 Validation Data

In situ sources of SAT data over Arctic sea ice, which reported radiation shielded SATs at

between 1.25m and 2m height (the WMO definition of SAT) between 1981 and 2013 and

for which data was available online, were identified from Appendix D. The selected data

sources were: NPDS, the Arctic Ocean Experiment-2001 (AOE-2001, Tjernström 2005;

Tjernström et al. 2005), the Arctic Summer Cloud-Ocean Study (ASCOS, Tjernström

et al. 2014), the Applied Physics Laboratory Ice Station (APLIS, IARC 2012) 2007, Na-

tional Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental

Laboratory (PMEL) weather stations (2004-2009), the Surface Heat Budget of the Arctic

Ocean (SHEBA, Uttal et al. 2002) Ice Station, and Ice Station Tara (Vihma et al., 2008).

Sub-daily SAT data from the identified data sources were averaged into daily SAT

records and gridded to the EASE grid as in Chapter 4. A full month of data records from

drifting platforms is not generally available for a grid cell in a given year. The required

sampling for a monthly average SAT in this study was determined using a similar method

to that of Chapter 4. Based on this investigation it was decided to use a required sampling

of 15 days for a monthly average. This was a compromise between the increase in apparent

anomaly error arising from undersampling of the validation data and having enough data

available to calculate difference metrics for the estimated anomalies. It should be noted

here that the investigated grid cells are not required to have observations in more than one

year, due to the use of a climatology to calculate anomalies rather than comparing actual

temperatures using a double difference statistic. Validation anomalies were produced from

these monthly average SATs, with respect to 1981-2004, using IABP/POLES data as a

climatology (see Section 6.2.2.2). These monthly SAT anomalies constitute the validation

anomalies in this study.

6.2.2.2 An Arctic Surface Air Temperature Climatology from IABP/POLES

The climatology used to produce validation anomalies from in situ sources of SAT data

in this chapter was the IABP/POLES SAT analysis (Rigor et al., 2000). IABP/POLES

provides 12-hourly gridded fields of Arctic SATs between 1979 and 2004 (Rigor et al.,

2000; IABP, 2014). The analysis was produced by interpolating SAT data from various

sources to produce a complete analysis of Arctic SATs (see Section 6.2.2.2.1, Rigor et al.

2000).

The ARCSS Surface Air Temperature (ARCSS-SAT) Analysis is a preliminary update

to this dataset which extends IABP/POLES to 2008 and improves the analysis (Rigor

et al., 2000; EOL, 2014). However, an initial investigation of ARCSS-SAT in this study

noted that there may be issues with the format of the dataset version available at the time

of this additional satellite data study. The data file had constant monthly temperature

values for each grid cell when 12 hourly data were expected. Furthermore, these data
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do not correspond with monthly average temperatures from other sources of temperature

data in the Arctic such as NPDS. It is likely that these values are repeated instances

of the first 12 hourly temperature in each month. These issues were not present in the

IABP/POLES analysis. As a result the suitability of the IABP/POLES analysis, rather

than the updated ARCSS-SAT analysis, for providing a climatology for the validation

data was investigated.

6.2.2.2.1 The IABP/POLES Surface Air Temperature Analysis The

IABP/POLES SAT analysis was produced primarily from in situ SAT observations from

manned drifting stations and quality controlled buoy observations (Rigor et al., 2000).

These SAT observations were optimally interpolated using a monthly first guess field, and

monthly correlation length scales derived from the correlations between different observa-

tion types (ocean, coastal or land interior) for observation weighting (Rigor et al., 2000).

The first guess field was produced by spatially binning and optimally interpolating in

situ SAT observations supplemented with NCEP/NCAR Reanalysis 1 (NCEP R1) data

in sparsely observed areas such as the North Atlantic (Rigor et al., 2000). The monthly

correlation length scales were also utilised in producing these first guess fields (Rigor et al.,

2000).

6.2.2.2.2 The Suitability of IABP/POLES as a Climatology I compared

monthly average SATs produced from the IABP/POLES analysis to the in situ vali-

dation data, as well as other datasets, in order to try and examine the suitability of this

dataset as a climatology. In Figure 6.2 the spatial distribution of SATs in IABP/POLES

were compared to the re-normalised AVHRR dataset used for input anomalies, as well

as to ERA-Interim reanalysis data. As noted in Section 6.2.1.2.2, the spatial distribu-

tion IABP/POLES SATs were consistent with those in the AVHRR dataset. In addition,

the temperature distribution was found to be consistent with expectations and similar to

the distribution of ERA-Interim SAT data which is physically plausible for Arctic SATs,

although some large differences between the datasets were noted.

I also compared calendar monthly average SATs from IABP/POLES to in situ val-

idation data from NPDS (an input to IABP/POLES) as well as to other validation

data sources which are independent of the IABP/POLES analysis (AOE-2001, ASCOS,

SEDNA, NOAA PMEL weather stations, Ice Station SHEBA and Ice Station Tara). The

IABP/POLES monthly SAT values are largely within 2.5K of both the NPDS and inde-

pendent in situ SAT data as shown in Figure 6.10. The Root Mean Square Error (RMSE)

for the entire time period is 2.3K when compared to NPDS SATs and 2.4K when com-

pared to independent data. For boreal summer (June to August) and winter (November

to March) the RMSE is 0.6K and 2.6K respectively for NPDS data, and 0.8K and 2.8K

for independent data. There is not a large discrepancy in the differences compared to

NPDS and independent data. This corresponds with the findings of Rigor et al. 2000 who

found that the IABP/POLES dataset had a Root Mean Square Error (RMSE) of 2.5K
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(1.1K in summer and 2.8K in winter) compared to SAT observations from NP-28, which

was excluded as an input to the analysis for that test.

Figure 6.10: Monthly Surface Air Temperature data (K) 1981-2004 from the
IABP/POLES dataset compared to the validation data used in this study, both NPDS
and other data sources which are not used in the IABP/POLES analysis.

The bias in IABP/POLES data compared to the validation data is generally positive

with larger biases for lower temperatures as shown in Figure 6.10. The average warm bias

compared to NPDS data is 1-2K for temperatures of 260K or lower and is of a similar

size compared to independent validation data (Figure 6.10). This positive bias of around

1-2K over sea ice can also be seen in Figure 6.3 when IABP/POLES SATs are compared

to AVHRR surface temperatures. This bias has been noted in previous studies (Chen
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et al., 2002) and biases are a known issue for this SAT analysis (EOL, 2014; Rigor, 2014).

Buoy data, used as an input for IABP/POLES, have warm biases, especially early in the

record, resulting from absorption of solar radiation and snow cover insulating the buoy

and temperature sensor (Chen et al., 2002). In addition NCEP R1 data, which is also an

input, has warm biases in the Arctic (see Chapter 2).

However, there are few datasets which can provide a climatology for Arctic sea ice.

Datasets which could potentially provide a climatology in this region are: IABP/POLES

and ARCSS-SAT (interpolated and extrapolated from primarily in situ data); satellite

datasets with a long record (such as AVHRR); and reanalysis datasets. ARCSS-SAT,

as mentioned before, was found to have data format issues at the time this study was

conducted. Satellite instruments which provide surface temperatures in the Arctic (see

Appendix D) either had short temperature records during the time period of interest for

this study (MODIS, TOVS) or datasets/data products could not be identified. Using

AVHRR data as a climatology would mean that the validation anomalies would not pro-

vide an independent validation of the AVHRR interpolation and this would affect the

results of this study. Finally, reanalysis datasets can have biases and errors compared

to in situ data and therefore may not be suitable as a climatology. For example, ERA-

Interim, which was noted in Chapter 2 as physically plausible in the Arctic and a suitable

testbed for investigating SATs in this region has a persistent warm bias compared to in

situ SAT observations. When compared to the validation data used in this chapter the

average warm bias is up to 4K, with higher biases for lower temperatures. Therefore, it

was decided to use IABP/POLES as a climatology for the validation data used in this

study.

6.2.2.2.3 An IABP/POLES Climatology IABP/POLES was gridded to the com-

mon 100km EASE Grid and calendar monthly average SATs were produced from the 12

hourly data between 1981 and 2004. These monthly average SATs were then bias cor-

rected; the bias relative to the validation data was estimated using a linear regression

and the estimated bias was removed. The estimated bias is given by y = −0.06x + 16.8,

where x is the uncorrected IABP/POLES SAT (K). These bias corrected monthly aver-

age IABP/POLES SATs constitute the climatology used to produce validation anomalies

from the in situ validation data sources over sea ice.

6.2.3 Comparison of Estimated Anomalies to the Validation

Data

The estimated anomalies from both the reference interpolation and the AVHRR interpo-

lation, produced by applying GSK to the input anomalies for this study, were compared

to monthly validation anomalies over Arctic sea ice. Monthly differences were calculated

by comparing the estimated anomalies of both interpolations to the validation anomalies

for all months and grid cells where validation data are available. Difference metrics were
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then produced from the monthly difference. As in other Chapters of this thesis the Root

Mean Square Difference (RMSD), Mean Difference (MD), Standard Deviation of Differ-

ence (SDD), and Compound Relative Difference (CRD) metrics were calculated. These

metrics are described, and the equation used to produce the CRD metric is given, in

Chapter 3 of this thesis. As in Chapter 4, these metrics are calculated using the differ-

ence from the validation data, rather than the errors used in Chapter 3 and Chapter 5

where the ‘true’ temperature value was known due to the use of a reanalysis testbed.

An additional metric, which measures the absolute difference, was also calculated in this

study, but was found to be fairly similar to the RMSD, and therefore not reported here.

6.3 The Impact of Including Additional, AVHRR

Derived Surface Temperature Data on the Per-

formance of Estimation Techniques

The anomalies from both interpolations were compared to the validation anomalies for all

months and grid cells where validation anomalies are present. Scatter plots of the monthly

anomalies 1981-2013, from both the reference and AVHRR interpolations, compared to

validation anomalies are given in Figure 6.11. The estimated anomalies from both inter-

polations were generally within 2K of the validation anomalies and have a slightly positive

bias in most months. Overall the MD and RMSD is 0.5K and 2.4K for the reference, and

0.4K and 2.3K for the AVHRR interpolation. The RMSD was lower for AVHRR esti-

mated anomalies on average, and slightly lower or the same for the majority of months.

The bias in the AVHRR estimated anomalies was also lower on average, but the bias was

lower in the reference estimated anomalies for the majority (7 out of 12) of months.

To investigate the differences between interpolations further, monthly difference met-

rics were produced (Figure 6.12). 95% confidence interval estimates for the metrics were

calculated using the SDD. The sample size of the validation data was relatively small,

around 30 (21 ≥ n ≥ 33), so I decided to use the Student’s t-distribution to estimate

the confidence intervals. The AVHRR interpolation produces anomalies with smaller dif-

ference metric values than the reference interpolation for half of the months. For these

months the RMSD and CRD values are around 0.2K and 0.1 (CRD is a unitless metric)

smaller respectively. Similar changes in accuracy were seen for months where the reference

interpolation is more representative.

The AVHRR interpolation shows a more consistent improvement in summer anomalies

(Figure 6.12), despite a relatively consistent cold bias of the re-normalised AVHRR derived

surface temperatures in this season (Section 6.2.1.2.2). AVHRR surface temperatures

show a similar size and variation in summer compared to the in situ SATs over sea ice;

both are influenced by the latent heat effects from melting sea ice. In comparison, SATs

from land stations are larger and show greater variation in the summer (Figures 6.5 and

Page 140



Figure 6.11: Monthly scatter plots of monthly anomalies 1981-2013 from the reference
and AVHRR interpolations compared to validation anomalies. Black markers represent
the reference interpolation, red markers represent the AVHRR interpolation.
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6.6). This may explain the relatively large decrease in CRD values when supplementary

surface temperatures derived from AVHRR are added over Arctic sea ice areas. But,

this improvement could also be a feature of the small size of the anomalies in summer

and the calculation of the CRD value. A small improvement in the absolute difference

leads to a large improvement in the CRD if the variation in the reference, in this case

the variance in the validation anomalies, is small, as is noted over Arctic sea ice in the

summer. However, as shown in Figure 6.12, the confidence interval estimates for both

interpolations overlap in all months and therefore they are not significantly different at

the 95% confidence interval.

Figure 6.12: The Root Mean Square Difference (K) and Compound Relative Difference
between estimated Arctic anomalies, from the reference and the AVHRR interpolations,
and validation data 1981-2013. 95% confidence intervals are given for the RMSE from
both interpolations. CRE is a unitless metric where 0 is the best result and higher numbers
represent a higher relative error.

The change in RMSD between the two interpolations was mapped and is shown for

several example months in Figure 6.13. As noted for the scatter plots and metric graphs

there is often a decrease in the difference metrics when AVHRR data are added to the

input anomalies, but increases in the metrics are also often noted. 50% of the 323 grid

cells for which an RMSD could be calculated show an increase in accuracy for the AVHRR

interpolation (Figure 6.13). For all of the spatial comparisons mentioned here there was

no obvious spatial pattern to the change in RMSD values. It was difficult to ascertain

spatial differences in errors in this study as a result of the relatively temporally and

spatially sparse sample of validation data.
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Figure 6.13: Change in Root Mean Square Difference (K) for several example months
between AVHRR interpolation and reference interpolation monthly estimated anomalies
for produced.
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The decadal accuracy of estimated anomalies from the reference and AVHRR inter-

polations was investigated by producing decadal scatter plots (Figure 6.14). The chosen

decades start from the beginning of the time period of interest (1981-2013). The sparse-

ness of data for the second decade investigated (1991-2000) is due to the gap in the NPDS

data between 1991-2003 and a paucity of suitable validation data prior to 2001. The ref-

erence and AVHRR estimated anomalies have similar biases and RMSD values in each

decade; the MD is between -0.2 and 0.8K and the RMSD values are between 2.1 and 2.5K.

Both interpolations show slight increases in accuracy for later decades. For the AVHRR

interpolation, the decades chosen happen to be almost concurrent with changes in the

AVHRR sensor version deployed on satellites which are relevant to this study (AVHRR/2

1981-2007, AVHRR/3 1998-present) so the increases in accuracy for later decades could

be a result of changes in sensor accuracy. For the reference interpolation, this increase

in accuracy is difficult to explain. As shown in Figure 3.1 of this thesis, the number of

meteorological station records in the CRUTEM4 databank version used for this study

has decreased (although fractional coverage is fairly static), and has likely decreased in

the input anomalies used for this study. Therefore the increase in accuracy is not due to

an increase in input anomaly coverage. It could be that uncertainties are larger in the

validation anomalies for earlier years or that there are time-varying biases in the data

contributing to the validation anomalies.

The metric values from the two interpolations are very similar for 1991-2000 and 2001-

2010 as shown in Figure 6.14. Between 1981 and 1990 the AVHRR interpolation MD and

RMSD are slightly higher than those from the reference interpolation (Figure 6.14); in

this decade there is a decrease in accuracy when AVHRR data are added to the input

anomalies. However, it must be noted that the differences in decadal accuracy between

the estimated anomalies produced by the two interpolations, and within the same in-

terpolation, are small and, as there is a relatively small sample of validation data, the

differences may not be meaningful.

6.4 Discussion

The impact of the addition of TIR satellite sensor derived surface temperatures over Arctic

sea ice to the estimation of SAT anomalies in this region using GSK was investigated.

Often there was a slight increase in accuracy when surface temperatures derived from

the AVHRR instruments were utilised. AVHRR interpolation estimated anomalies have

smaller error metric values than the reference interpolation for half of calendar months.

For these months the difference metrics were generally 0.2-0.1(K) smaller than those

produced from the reference interpolation with consistently better anomaly accuracy in

boreal summer months; RMSE and CRE values are around 0.2K and about 1.6 smaller

respectively. However, decreases in accuracy were noted nearly as often as increases in

accuracy. Furthermore the differences were generally small, for example the differences
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Figure 6.14: Decadal scatter plots of monthly anomalies (K) from the two interpolations
compared to validation anomalies. A reference line is given showing x=y. The Mean Error
and Root Mean Square Error values are given for each decade and for each interpolation.

were within the 95% confidence intervals for monthly average difference metrics. So, in

general there is not a notable improvement in the accuracy of estimated anomalies over

Arctic sea ice from adding AVHRR derived surface temperatures. But equally the results

do show that the addition of this data equally did not lead to large decreases in accuracy.

The metric values for estimated anomalies from both interpolations are similar in

size and seasonal pattern to those produced using a reanalysis testbed in Chapter 3. In

contrast, the RMSD in anomalies estimated from in situ data using GSK (Chapter 4) were

larger when compared to validation data over sea ice using very similar, or the same, data

sources as used for validation in this study. These larger metric values were related to the

use of a double difference statistic as noted in Chapter 4. The results of this additional

satellite data study show that datasets such as IABP/POLES can be used as a climatology

over Arctic sea ice areas, to allow the use of the Climate Anomaly Method. In addition,

use of IABP/POLES introduced fewer errors into the calculation of difference metrics

compared to the double difference statistic, even though notable biases are present.

The results of the study detailed in this chapter also show similarities with those from

Chapter 5, which investigated the impact of adding supplemental input anomalies in a

reanalysis testbed. Adding supplemental data often leads to an increase in the accuracy of

estimated anomalies. Error metrics decreased by around 0.2(K) overall when additional

data are added while larger decreases can occur for some areas and grid cells; up to around

1K for some grid cells in Chapter 5 while in this additional satellite data study some grid

cell RMSEs decreased by up to 6.2K. Both studies utilised a relatively small sample

of additional data sources for a limited time period so these increases in accuracy are
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impressive. However, decreases in accuracy also occurred in these two studies. Additional

data do not always increase accuracy as discussed in Chapter 5, however, this is generally

noted for techniques such as Linear Interpolation which do not account for observation

clustering, unlike GSK. Therefore decreases in accuracy in this chapter are more likely

to result from uncertainties in the data sources used. But, the similarity of the changes

in accuracy between the two additional data studies gives some confidence to the results

detailed here, even though the monthly average metrics for both interpolations were not

significantly different.

As mentioned previously, there are various uncertainties present in the data sources

used for this study. The AVHRR derived data were re-normalised in order to pro-

duce monthly surface temperatures more consistent with in situ measurements (Comiso,

2014b). However, these data have some serious cloud masking problems, resulting from

instrument limitations, which the re-normalisation technique will not correct and which

may degrade the normalisation. Residual calibration and degradation problems may also

remain after this re-normalisation. In addition, the AVHRR data were re-normalised us-

ing in situ data from Arctic meteorological stations from the WMO. Quality control was

undertaken on these station records, but there may still be biases and inhomogeneities

associated with these in situ records. Furthermore, these land-based stations may be

located quite a distance from the AVHRR observations re-normalised over sea ice areas.

This may impact the representativeness of these AVHRR surface temperatures over sea

ice areas. Other uncertainties and issues may also be present in this dataset. The use of

other satellite sources of TIR which are known to be relatively stable (e.g. Along Track

Scanning Radiometers, Veal et al. 2013) or those which have fewer instrument limitations

for cloud masking (e.g. Moderate Resolution Imaging Spectroradiometers, Comiso 2014b)

should be investigated. The addition of data from other satellite sensors could lead to

further, or larger, improvements in anomaly accuracy.

The in situ data sources used to provide validation data in this study may suffer from

biases, inhomogeneities, noise and local effects. There are also uncertainties resulting from

producing monthly average temperatures from less than a month of observations from

these data sources. In addition, the climatology used for this study was IABP/POLES

data between 1981 and 2004. The ARCSS-SAT analysis, which is preliminary and was

not utilised in this study, is noted as extending and improving the IABP/POLES dataset

(EOL, 2014). A positive bias was noted in the IABP/POLES dataset compared to the

validation data used here and has been noted in previous studies. This bias may result

from absorption of solar radiation, snow cover insulating the buoy and temperature sensor

(Chen et al., 2002), and/or the incorporation of NCEP reanalysis data which is known to

have a positive bias compared to in situ observations. Work is still ongoing to identify and

account for all biases, inhomogeneities and other issues in the input data for these analyses

(Rigor, 2014). There may also be biases and uncertainties resulting from the reanalysis

dataset used as a first guess field for the IABP/POLES analysis as well as the optimal
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interpolation method used. Other potential climatology datasets, for example reanalysis

or satellite datasets and the finalised version of the ARCSS-SAT analysis, should be

considered.

6.5 Summary

The addition of surface temperatures derived from the AVHRR instruments often in-

creased the accuracy of anomalies estimated using GSK relative to independent valida-

tion data. The difference metrics were 0.2-0.1(K) smaller than those produced from the

reference interpolation where increases in accuracy were observed. For some grid cells

the accuracy increased by up to 6.2K. However, decreases in accuracy were also often

noted and these could be up to 4.9K for some grid cells. Furthermore the differences were

generally small.

These results show similarities with those from Chapter 5, a similar study using re-

analysis data as a testbed. Adding supplemental data generally leads to an increase in

accuracy although decreases in accuracy also occurred in these two studies. However, it

must be noted that there are numerous uncertainties and limitations associated with the

data utilised in this satellite data study.
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Chapter 7

Summary and Conclusions

7.1 Importance of the Work

The Arctic is recognised as an important region in the study of climate change. However,

monitoring Arctic temperature change is challenging, particularly in areas covered by sea

ice for all or part of the year. How should the sea ice regions of the Arctic be treated in

global and regional averages of surface temperature? This question guided the aims and

objectives of this thesis.

7.2 Summary of the Work

Currently, the main temperature anomaly datasets estimate Arctic temperature change

from Surface Air Temperature (SAT) and Sea Surface Temperature (SST) measurements

using various techniques. In order to ascertain whether we can improve estimates of

recent climate change, by altering how Arctic temperatures are monitored, we first need

to quantify the uncertainties associated with these estimation techniques. Accordingly

the first aim of this thesis was to:

1. Quantify the uncertainties in extrapolation and interpolation of information over

the Arctic.

As the Arctic is a very data sparse region I decided to investigate the above aim

initially using a reanalysis dataset as a testbed. The first objective of the first aim was:

(a) Examine how well the ECMWF (European Centre for Medium-Range Weather Fore-

casts) Re-Analysis (ERA) project interim reanalysis, or ERA-Interim, represents

surface temperatures in the Arctic in order to determine whether ERA-Interim data

are a suitable testbed for studying Surface Air Temperatures in this region.

I produced a review of the literature on reanalyses and their representation of Arc-

tic temperatures (Section 2.2). According to the investigated literature, ERA-Interim
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produces generally realistic estimates of Arctic temperature and variability trends (Sec-

tion 2.2.6.3). This was despite a consistent warm bias of around 2K near the surface.

ERA-Interim was also found to outperform other reanalyses available at the time of this

study, in terms of biases and Root Mean Square Errors (RMSEs), for Arctic SATs (Sec-

tion 2.2.7). Further to this I conducted an investigation into the representation of Arctic

SAT Correlation Length Scales (CLS) in ERA-Interim (Section 2.3). I compared CLS

derived from ERA-Interim SATs to reference CLS, determined in previous studies by

Hansen and Lebedeff 1987 and Rigor et al. 2000. The annual and monthly ERA-Interim

CLS were found to be close to, but slightly longer than, the reference annual and seasonal

CLS (Sections 2.3.3 and 2.3.4). These longer CLS were anticipated; ERA-Interim data are

gridded (unlike meteorological station data) and reanalysis data do not contain the inho-

mogeneities, uncertainties, noise and local effects associated with meteorological station

records. On the basis of the literature review and the CLS investigation, I concluded that

ERA-Interim is physically plausible for Arctic SAT anomalies and is a suitable reanalysis

testbed to be utilised for the second objective:

(b) To investigate the impact of using various techniques to estimate Arctic surface air

temperature anomalies.

I investigated the degree of difference arising from using five different techniques, based

on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies

over land and sea ice using reanalysis data as a testbed (Chapter 3). The estimation

techniques were applied to monthly SAT anomalies from ERA-Interim sampled at Arctic

meteorological station locations. This yielded estimates of Arctic-average and spatially

resolved SAT anomalies at several temporal resolutions. I compared these estimated

anomalies to monthly SAT anomalies from ERA-Interim, which was the reference in this

study. Techniques which interpolated anomalies were found to result in smaller errors

than non-interpolating techniques relative to the reanalysis reference (Section 3.3). Krig-

ing techniques provided the smallest errors in estimates of Arctic anomalies and Simple

Kriging was often the best kriging method in this study, especially over sea ice. A lin-

ear interpolation technique had, on average, RMSEs up to 0.55 K larger than the two

kriging techniques tested. Non-interpolating techniques provided the least representa-

tive anomaly estimates. Nonetheless, they serve as useful checks for confirming whether

estimates from interpolating techniques are reasonable. I simulated the interaction of me-

teorological station coverage with estimation techniques between 1850 and 2011 using an

ensemble dataset comprising repeated individual years (1979-2011). All techniques were

found to have larger RMSEs for earlier station coverages (Section 3.4). This supports

calls for increased data sharing and data rescue, especially in sparsely observed regions

such as the Arctic. However, do we see similar results outside of a reanalysis testbed?

Therefore, the third objective was to:

(c) Determine whether we can assess the impact of estimating Arctic surface air tem-

perature anomalies with Global Simple Kriging using in situ data and whether it
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corresponds with the results of objective (b).

I applied Global Simple Kriging (GSK), which was the most representative technique

in the reanalysis study, to monthly SAT anomalies from Arctic meteorological stations

(Chapter 4). I assessed the accuracy of the estimated anomalies produced using inde-

pendent validation data. Independent meteorological stations were used over land and

drifting platforms over sea ice. A ‘double difference’ statistic was used to estimate the

accuracy of anomalies over sea ice. The accuracy of estimated anomalies over land were

found in Section 4.3 to be very close to those from the reanalysis, both in seasonal pat-

tern and size. Over sea ice the difference from the validation data from the two studies

had a similar seasonal pattern, and size once the impacts of sample size and the double

difference statistic were accounted for (Section 4.4). However, it should be noted that the

confidence intervals are large and the sample size is very small so caution is needed in

drawing quantitative conclusions from these data. There were also various uncertainties

associated with the use of in situ validation data over sea ice, such as undersampling of

monthly average temperatures, as noted in Section 4.5. Despite this the seasonal patterns

and metric sizes from the two studies were similar and the two independent validation

data sources over sea ice produced very similar results, despite providing a relatively small

sample of data. This gives us confidence in using the results from the reanalysis testbed

to quantify the uncertainties in extrapolation and interpolation of information over the

Arctic, especially over land areas.

The second aim of this thesis was to:

2. Explore whether additional data sources would improve estimates of surface tempera-

ture change over the Arctic.

I investigated the use of supplemental data within a reanalysis testbed initially (Chap-

ter 5). The additional input anomalies were monthly SAT anomalies from ERA-Interim

sampled at supplementary data source locations over Arctic land, or sea ice, areas. Over-

all, adding data over land and sea ice led to an increase in accuracy within the reanalysis

testbed. For Arctic-average anomalies the RMSE can decrease by up to 0.01K when addi-

tional data is added over land (Section 5.3.1), and by up to 0.1K when additional data is

added over sea ice (Section 5.4.1). For spatially resolved anomalies with additional land

data the RMSE decreases by around in general 0.1-0.2K, with decreases in RMSE of up

to 0.6K (Section 5.3.2). For sea ice the decrease in RMSE is generally 0.2-0.4K, but can

be up to 1K (Section 5.4.2). Substantial improvements in accuracy were associated with

additional data sources located in the Arctic Ocean, such as over sea ice or on islands

in sparsely observed regions. Furthermore, techniques which accounted for station clus-

tering showed a more consistent improvement in accuracy. The results of this study and

Chapter 4 suggest that the use of additional data sources would improve the estimation

of Arctic SAT anomalies over land and sea ice from in situ data sources, assuming the

additional data are of sufficient quality. As such the third aim of this thesis is to:
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3. Identify appropriate data sources which could be used to monitor Arctic surface tem-

perature change over Arctic sea ice.

In Appendix D I identified many surface temperature data sources over Arctic sea

ice areas from in situ data sources, satellite instruments and reanalyses which could be

employed for monitoring temperature changes in this region. Following this, and also

in accordance with the second aim of this thesis, in Chapter 6 I explored whether the

inclusion of surface temperatures over Arctic sea ice derived from the Advanced Very

High Resolution Radiometer (AVHRR) satellite instruments would improve the accuracy

of estimated SAT anomalies in this region. I also examined whether a gridded dataset

of Arctic SATs could be used as a climatology, which would allow surface temperature

anomalies to be calculated using the commonly employed Climate Anomaly Method in

that chapter. This was prompted by the increase in error associated with the use of the

double difference statistic in Chapter 4.

I applied GSK to in situ monthly SAT anomalies either from the CRUTEM4 databank

exclusively, or combined with surface temperature timeseries derived from AVHRR. I

compared the estimated anomalies from both interpolations to validation anomalies over

sea ice areas. The validation anomalies were produced using a selection of in situ data

sources identified in Appendix D, and the International Arctic Buoy Programme and

NASA Polar Exchange at the Sea Surface program (IABP/POLES) analysis as a reference

climatology. Often there was a slight increase in accuracy when surface temperatures

derived from the AVHRR instruments were utilised. Overall the AVHRR interpolation

estimated anomalies have slightly smaller biases and difference metrics than those from

the reference interpolation (Section 6.3). Furthermore, the monthly difference metrics are

0.2-0.1(K) smaller for half of calendar months with consistently better anomaly accuracy

in boreal summer months. But, decreases in accuracy were noted nearly as often as

increases in accuracy and differences between the estimated anomalies were small. There

is not a notable improvement in estimated anomalies over Arctic sea ice from adding

AVHRR derived surface temperatures, but likewise it did not result in large decreases

in accuracy. It is likely that uncertainties in AVHRR data, such as resulting from cloud

masking limitations, impacted the results of this study. More notable improvements in

accuracy may be accomplished by using temperature data derived from other satellite

sensors. However, these results show similarities with those from Chapter 5 outside of the

reanalysis testbed which gives some confidence to the results of these studies.

The final aim of this thesis is to:

4. Provide some recommendations on how to monitor temperature changes in the Arctic,

especially over sea ice areas.

These recommendations are given in Section 7.4.
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7.3 Research Limitations

As with all research, limitations exist in the data and methods used for this thesis. Some

limitations are chapter specific, and are noted within the relevant chapter, whereas others

are more general. Here I outline and discuss the general limitations of this thesis.

7.3.1 Data Sparseness

The challenge of representing the Arctic in global surface temperature time-series given

that in situ measurements of Arctic temperatures are both spatially and temporally sparse,

and the records are often short, was the catalyst for this thesis. It was also a limitation

in exploring how the sea ice regions of the Arctic should most appropriately be treated

in global and regional averages of surface temperature. In some chapters this limitation

was overcome. In Chapters 3 and Chapter 5 I utilised spatially and temporally complete

ERA-Interim reanalysis data as a testbed due to the sparseness of in situ observations.

Comparing these with similar studies utilising in situ data assessed the gap between the

reanalysis and the reality and gave us more confidence in the results of those chapters.

For some chapters the limitation of data sparseness could be mitigated, but not over-

come. In Chapter 4 I used a longer time period of interest (compared to Chapter 3) so that

sufficient sea ice data were available for the validation. In addition, I employed an equal

area grid, instead of using the same grid as ERA-Interim, as equal angle grids exacerbate

data sparseness. However, the validation data was still temporally and spatially sparse

and monthly average temperatures were generally undersampled. In Chapter 5 these mit-

igation techniques could not be employed. So, in order to include enough additional data

to see an impact in the estimated anomalies, I decided that if there was at least one NPDS

record in a grid cell, month and year then it would be assumed that a monthly average

could be computed. This is, however, a limitation as it is a compromise between the need

to use data and techniques that are as close as possible to a previous chapter and having

enough extra input data to investigate the impact of adding additional data.

The limitation of surface temperature data sparseness for the Arctic may be further

mitigated or overcome in the future through data sharing and rescue efforts, the use of

satellite sensor derived temperatures and/or the use of reanalysis.

7.3.2 Data Accessibility and Quality

A further limitation was data accessibility and quality. In Chapters which used in situ

data sources over sea ice (Chapter 4 and 6) data accessibility and quality limitations were

mitigated though alternative data choices. In Chapter 4 I considered using International

Arctic Buoy Programme (IABP) data, but individual observations from these buoys are

no longer made available on the IABP website. This is a response to data quality limita-

tions identified in IABP records. Therefore I decided to use NPDS and Ice Mass Balance
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Buoy (IMB) data from the U.S Army Cold Regions Research and Engineering Labora-

tory (CRREL) as validation data sources. In addition to being accessible these data are

radiation shielded, which is important for temperature data quality; temperature sensors

may suffer from solar heating effects if not radiation shielded, leading to errors in their

observations. Automatic sensors, such as IMBs, may also be subject to bias problems

resulting from rime ice and snow cover as they are not subject to routine maintenance.

For this reason, I selected only manned drifting platforms as validation data in Chap-

ter 6. However, data accessibility and quality limitations remain. For example, much of

the CRREL IMB data is preliminary and may not be quality controlled.

Looking forward, the trend in science is to make data more widely accessible. There are

currently efforts by many initiatives (see Section 7.4.2) to increase sharing, and rescue,

of temperature data. This allows more people to work on the data and will help to

mitigate and overcome data accessibility limitations in the future. However, increasing

data sharing and accessibility can be difficult for many reasons and often people will

want to see the benefits before sharing data. Efforts are also being made to quantify and

document data quality, which is also very important for research and a particular concern

in the Arctic. Conditions in this region are harsh and observation platforms are difficult to

maintain. Furthermore, the wide variety of types of sensors deployed in the Arctic make

the question of data quality for in situ observations in this region more complex. Hall

et al. 2015 have highlighted a need for discussions and the development of protocols for

measuring air and surface temperatures in the Arctic. Increased data accessibility would

enable intercomparison of data from various sensors and platforms observing temperatures

over sea ice and allow biases to be assessed.

7.3.3 The Use of a Single Reanalysis Dataset as a Testbed

ERA-Interim data were used as a testbed for Chapters 3 and 5. However, as reanalysis

data can contain biases, uncertainties and errors, repeating the analyses in the above

chapters would strengthen the analysis and conclusions of these chapters. Using multiple

reanalysis testbeds would ascertain whether the results are sensitive or insensitive to the

choice of reanalysis. In addition, the use of other reanalyses would improve the Historical

Coverage investigation detailed in Section 3.4 and help provide a more robust investiga-

tion. Using other reanalyses as testbeds would strengthen the analysis by ascertaining the

sensitivity of results to the reanalysis chosen. Also, these data could be used in combi-

nation with ERA-Interim to produce a larger ensemble of anomaly errors. Furthermore,

using a 20th century reanalysis, such as ERA-20C would allow us to investigate the impact

of changing station coverage for actual 1850-1950 temperature anomaly patterns rather

than simulating the impact using 1979-2011 temperature anomalies. These steps could

be used to overcome this limitation and produce a more robust investigation.
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7.4 Recommendations for Monitoring Temperature

Changes in the Arctic over Sea Ice and Future

Work

In this section I provide some recommendations and ideas for how to monitor temperature

changes over Arctic sea ice areas, as well as identifying areas of further research. The

focus is on sea ice areas with a sea ice concentration of more than 15%. This is due

to the focus of this thesis and because data sources in these regions, which can cover a

large fraction of the Arctic, are not generally employed in temperature anomaly datasets.

This does not, however, mean that other Arctic areas are observed well enough not to

be considered. Surface temperature data are temporally and spatially sparse throughout

the Arctic. As a result I support data sharing and data rescue efforts for this region. In

particular, monitoring temperature changes in areas of open ocean, seasonal sea ice areas,

and marginal ice zones warrants further study. In common with areas of sea ice they are

very sparsely observed, often treated differently between temperature anomaly datasets,

and are experiencing rapid changes as a result of climate change.

7.4.1 Estimation Techniques

It was found in Chapter 3 that the choice of estimation techniques had an impact on

the accuracy of estimated Arctic SAT anomalies over land and sea ice areas. Some

techniques, such as kriging techniques, were found to result in smaller errors than other

techniques, such as non-interpolating techniques. Furthermore, the estimation techniques

are impacted differently when additional data are added; techniques which accounted

for clustering were more robust and showed more consistent improvements in accuracy

(Chapter 5). Similar results were noted when in situ data were used (Chapters 4 and

6). These studies give us an estimate of the uncertainties in estimating Arctic SAT

anomalies using the investigated techniques. However, despite these results, I do not

recommend the sole use of any one interpolation technique for generating timeseries of

Arctic surface temperature change. Using different techniques to estimate anomalies

allows us to investigate structural uncertainty in estimates of climate change.

These estimation technique studies could be extended to look at other estimation

techniques; parametric, observational and structural uncertainty; and the impact of using

monthly or seasonal covariance values. These areas of future work would help identify

other valuable estimation techniques, further quantify uncertainties in estimation tech-

niques, and may lead to improvements in the representation of the Arctic in global surface

temperature timeseries. The inclusion of monthly or seasonal weighting functions is of

particular interest as CLS in Arctic surface temperatures are shorter in boreal summer

than in other seasons (see Section 2.3) and this is not accounted for in current tempera-

ture anomaly dataset methods. Furthermore the CLS also differ between surface types in
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the Arctic (Rigor et al., 2000).

7.4.2 Surface Temperature Data in Sea Ice Areas

In situ data sources, from both manned and unmanned platforms, provide the longest

records of surface temperatures over Arctic sea ice compared to other potential data

sources. These data sources have been included in Arctic only datasets, but are not

included in global temperature anomaly datasets. This is a result of the complexities

involved in calculating SAT change from sparse, short, data records measured on drifting

platforms. Yet Chapter 5 and 6 show that the addition of data sources over Arctic sea

ice can improve the accuracy of estimated anomalies. The increases in accuracy noted

in those studies were small compared to variability and trends in Arctic temperatures in

recent decades. However, those chapters only used relatively small amounts of data so the

estimates of increases in accuracy are likely conservative. These studies begin to assess

the impact of using additional sources of temperature data in these areas, but further

investigation is needed to quantify the influence of these data as well as how they could

be included in temperature anomaly datasets.

Anomalies could be produced from in situ observations of surface temperatures using

the Climate Anomaly Method by employing a gridded climatology. Existing datasets

could be used as a climatology, for example: interpolated datasets such as IABP/POLES

(Rigor et al., 2000) and ARCSS-SAT (EOL, 2014); reanalysis datasets such as ERA-

Interim; or climate quality records of satellite derived surface temperatures. Further

research should be conducted into the utilisation of existing datasets as a climatology

over Arctic sea ice areas. A new climatology dataset could also be created by combining

various data sources. One way this could be accomplished is by combining in situ obser-

vations from various data sources with climate quality satellite datasets and/or physically

plausible reanalysis datasets using a technique which appropriately weights the contribu-

tion of each data source, such as optimal estimation. Once a climatology is chosen and

an analysis is created it can then be improved and iterated upon. The climatology and

analysis can be compared and contrasted with other datasets, and this can guide the in-

corporation of improved methods, further data sources and the identification of any data

quality problems. In addition to the Climate Anomaly Method, further research could

explore whether other methods could be utilised for producing estimates of temperature

change in the Arctic, such as the Reference Station Method (Hansen and Lebedeff 1987,

perhaps using satellite derived or reanalysis data as a ‘reference station’) or the First Dif-

ference Method (Peterson et al., 1998). Given the reliability of some in situ observations

(e.g. NPDS, Rigor et al. 2000) and the potential improvement in accuracy of estimated

anomalies in the Arctic, I recommend efforts to include in situ data sources over Arctic

sea ice in global temperature anomaly datasets.

To increase the amount of in situ data available, as mentioned previously, I encourage

data sharing and data rescue for the Arctic through initiatives such as the International
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Surface Temperature Initiative (ISTI), the international Atmospheric Circulation Recon-

structions over the Earth (ACRE) initiative, and the Canadian historical data typing

project (Allan et al., 2011; Thorne et al., 2011; Slonosky, 2014). To facilitate this I be-

lieve that there is the need for production of an Arctic sea ice SAT databank. This is

within the scope of the ISTI (Thorne et al., 2011), which is a databank for in situ ob-

servations of surface meteorological variables and associated quality control information

and metadata at several temporal resolutions. ISTI already includes some SAT data

over Arctic sea ice and it is an established initiative, which would help facilitate Arctic

data exchange. Ideally efforts would also be made to produce uncertainty estimates for

these data. Further to this, I echo the conclusions of Hall et al. 2015; there is a need

for discussions within the international scientific community about developing protocols

for measuring air and surface temperatures in the Arctic, as has happened for land- and

ocean-based observing systems used for climate monitoring. Also of benefit would be the

extension of the work in Chapter 3 and Chapter 5 to create a map which identifies the

most important regions in terms of including additional data. This could be accomplished

by identifying each grid cell which is not used for input anomalies in Chapter 3, adding

each of these grid cells in turn into one of the kriging estimation techniques (as these are

most representative and not influenced by station clustering), and analysing the results.

This would produce a map showing the change in RMSE resulting from adding each grid

cell to the interpolation. This would identify the most important data sources currently

available, help tailor data sharing and rescue initiatives, and identify key areas for future

observing networks and in situ sensor deployment.

However, even with data sharing and data rescue efforts, in situ measurements in

the Arctic will be sparse. Therefore I recommend using observations from other sources,

such as satellites and reanalysis, both in combination with in situ data in this region

and independently. Satellite-derived surface temperature data or reanalysis temperature

estimates could be used to infill gaps in temperature records from in situ data, as a first

guess field such as employed for ARCSS-SAT (EOL, 2014), or, as mentioned before, as a

gridded climatology for in situ data over sea ice. I also recommend using reanalysis and

satellite datasets independently of in situ observations in order to provide additional, and

in some cases independent, datasets of temperature anomalies over the Arctic. Comparing

and contrasting datasets produced using different methods and data sources in this region

will be very informative. Finally, it must be noted that the use of satellite and reanalysis

data is likely to become increasingly important as the reduction in sea ice extent and

thickness both increases the difficulty of deploying manned and unmanned measuring

platforms and shortens the length of time these sensors can operate on ice.
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7.5 Concluding Remarks

Monitoring surface temperature change in the Arctic is an important, yet complex, area of

research. Temperature changes in this region are accelerated compared to those at lower

latitudes and will have local, regional and global impacts on the atmosphere, cryosphere,

hydrosphere and biosphere. But the observing network in this area - in particular over

the Arctic Ocean - is sparse, records are short, and conditions for instruments deployed

here are harsh. In this thesis I have shown that using certain estimation techniques

and additional data sources can improve our estimation of temperature changes in this

region. If these methods and data are incorporated into global and Arctic temperature

anomaly datasets they will help to quantify temperature changes in, and improve our

understanding of, this dynamic and rapidly changing polar region.
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Appendix A

Acronyms

Acronym Meaning

20CR NOAA-CIRES 20th Century Reanalysis

3D-Var Three-dimensional Variational analysis

4D-Var Four-dimensional Variational analysis

AARI Arctic and Antarctic Research Institute

AATSR Advanced Along-Track Scanning Radiometer

ACRE Atmospheric Circulation Reconstructions over the Earth initiative

ADEOS Advanced Earth Observing Satellite

AIDJEX Arctic Ice Dynamics Joint Experiment

AIRS Atmospheric Infra-Red Sounder

AMSR(-E) Advanced Microwave Scanning Radiometer (for EOS)

AMSU(-A/B) Advanced Microwave Sounding Unit (-A/B)

AOE Arctic Ocean Experiment

APLIS Applied Physics Laboratory Ice Station

AR5 IPCC Fifth Assessment Report

ARCSS Arctic System Science program

ARCSS-SAT ARCSS Surface Air Temperature analysis

ARLIS Arctic Research Laboratory Ice Station

ASCOS Arctic Summer Cloud-Ocean Study

ASR Arctic System Reanalysis

AT Atmospheric Temperature

ATMS(-E) Advanced Technology Microwave Sounder (for EOS)

ATS Application Technology Satellite

ATSR Along-Track Scanning Radiometer

AVHRR Advanced Very High Resolution Radiometer

BROMEX BRomine, Ozone, and Mercury EXperiment

CAM Climate Anomaly Method

CEAREX Coordinated Eastern Arctic Research Experiment

COADS Comprehensive Ocean-Atmosphere Data Set
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COBE-SST Centennial in situ Observation-Based Estimates of the variability

of SSTs and marine meteorological variables dataset

CRD Compound Relative Difference

CRDdd Compound Relative dd (Double Difference)

CRE Compound Relative Error

CrIS Cross-track Infrared Sounder

CRREL U.S Army Cold Regions Research and Engineering Laboratory

CRU Climatic Research Unit of the University of East Anglia

CRUTEM CRU and Met Office Hadley Centre land surface temperature

anomaly dataset

ECMWF European Centre for Medium-Range Weather Forecasts

DARMS Drifting Automatic Radiometeorological Stations

DMI Danish Meteorological Institute

DOE U.S Department of Energy

EASE-Grid Equal-Area Scalable Earth grid

EOL Earth Observing Laboratory

EOS Earth Observing System

ERA-15 ECMWF 15 year Reanalysis

ERA-20C ECMWF 20th Century atmospheric Reanalysis

ERA-40 ECMWF 40 year Reanalysis

ERA-Clim ECMWF Reanalysis of Global Climate Observations project

ERA-Interim ECMWF Interim Reanalysis

ERS European Remote-sensing Satellite

ERSST Extended Reconstructed Sea Surface Temperature dataset

ETM+ Enhanced Thematic Mapper Plus

FDM First Difference Method

FGGE First Global Atmospheric Research Program Global Experiment

FMI Finnish Meteorological Institute

GCM General Circulation Model

GCOM Global Change Observation Mission for water

GEOS Goddard Earth Observing System

GHCNCAMS Global Historical Climatology Network and the Climate Anomaly

Monitoring System

GHCN-M Global Historical Climatology Network-Monthly temperature

dataset

GISS Goddard Institute for Space Studies

GISTEMP NASA GISS Surface Temperature Analysis

GLI Global Imager

GOES Geostationary Operational Environmental Satellite

GOK Global Ordinary Kriging
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GSK Global Simple Kriging

HadAT Met Office Hadley Centre Atmospheric Temperature dataset

HadCET Met Office Hadley Centre Central England Temperature dataset

HadCRUT Met Office Hadley Centre and CRU global temperature anomaly

dataset

HadISST Met Office Hadley Centre’s interpolated SST and sea ice concen-

tration dataset

HadMAT Met Office Hadley Centre Marine Air Temperature dataset

HadNMAT Met Office Hadley Centre Nighttime only Marine Air Temperature

dataset

HadSST Met Office Hadley Centre SST dataset

HIRS High-resolution Infrared Sounder

HRIR High Resolution Infrared Radiometer

IABP International Arctic Buoy Programme

IABP/POLES IABP and NASA Polar Exchange at the Sea Surface program

IAOE International Arctic Ocean Expedition

IARC International Arctic Research Center

IASI Infrared Atmospheric Sounding Interferometer

ICOADS International Comprehensive Ocean-Atmosphere Data Set

IKFS Infrared Fourier Spectrometer

IMB Ice Mass Balance Buoy

IMG Interferometric Monitor for Greenhouse gases

INSAT Indian National Satellite

IOEB Ice-Ocean Environmental Buoy

IPCC Intergovernmental Panel on Climate Change

IRAS Infra Red Atmospheric Sounder

IRIS InfraRed Interferometer Spectrometer

ISPD International Surface Pressure Databank

IST Ice Surface Temperature

ISTI International Surface Temperature Initiative

ITPR Infrared Temperature Profile Radiometer

IUK Iterative Universal Kriging radiosonde analysis project

JAMI Japanese Advanced Meteorological Imager

JAMSTEC Japan Agency for Marine-Earth Science and Technology

J-CADs JAMSTEC Compact Arctic Drifters

JDCAS JMA Climate Assimilation System reanalysis

JMA Japanese Meteorological Agency

JPSS Joint Polar Satellite System

JRA-25 Japanese 25 year Reanalysis

JRA-55 Japanese 55 year Reanalysis
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LeadEx Lead Experiment

LI Linear Interpolation

LST Land Surface Temperature

LSWT Lake Surface Water Temperature

MAD Mean Absolute Difference

MADdd Mean Absolute dd (Double Difference)

MAT Marine Air Temperature

ME Mean Error

MERRA NASA Modern Era-Retrospective Analysis for Research and Appli-

cations dataset

MLOST NOAA NCDC Merged Land-Ocean Surface Temperature Analysis

MODIS MODerate-resolution Imaging Spectroradiometer

MRIR Medium Resolution Infrared Radiometer

MSU Microwave Sounding Unit

MSU-MR Multispectral scanning imager-radiometer

MTS-1/2 Micro-Wave Temperature Sounder - 1/2

MVISR Multichannel Visible Infrared Scanning Radiometer

MW Microwave

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NCDC NOAA National Climatic Data Center

NCEP National Centers for Environmental Prediction

NCEP CFSR NCEP Climate Forecast System Reanalysis

NCEP R1 NCEP-NCAR Reanalysis

NCEP R2 NCEP/DOE Reanalysis

NI Not Interpolating

NMAT Nighttime only Marine Air Temperature

NOAA National Oceanic and Atmospheric Administration

NOAA-CIRES National Oceanic and Atmospheric Administration - Cooperative

Institute for Research in Environmental Sciences

NOCv2.0 National Oceanography Centre Surface Flux and Meteorological

Data set v2.0

NPDS AARI North Pole Drifting Stations

NPEO North Pole Environmental Observatory

NSIDC National Snow and Ice Date Center

OCTS Ocean Color and temperature Scanner

OSTIA Operational Sea Surface Temperature and Sea-Ice Analysis

PATMOS-X AVHRR Pathfinder Atmospheres - Extended

PAWS Polar Automatic Weather Station

PMEL Pacific Marine Environmental Laboratory
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PPE Percentage of ensemble members with Positive Errors

RAOBCORE RAdiosonde OBservation COrrection using REanalyses

RATPAC Radiosonde Atmospheric Temperature Products for Assessing Cli-

mate

RICH Radiosonde Innovation Composite Homogenization

RMSD Root Mean Square Difference

RMSDdd Root Mean Square dd (Double Difference)

RMSE Root Mean Square Error

RSM Reference Station Method

RSS Remote Sensing Systems

SAT Surface Air Temperature

SDD Standard Deviation of Difference

SDDdd Standard Deviation of dd (Double Difference)

SDE Standard Deviation of Error

SEVIRI Spinning Enhanced Visible Infra-Red Imager

SHEBA Surface Heat Budget of the Arctic Ocean

SI-GDR Spectrometer/Interferometer - German Democratic Republic

SIMBA Scottish Association for Marine Science Ice Mass Balance Array

Buoys

SIRS-A/B Satellite Infra-Red Spectrometer - A/B

SLSTR Sea and Land Surface Temperature Radiometer

SMMR Scanning Multichannel Microwave Radiometer

SMS Synchronous Meteorological Satellite

SR Scanning Radiometer

SSM/I Special Sensor Microwave - Imager

SSM/T Special Sensor Microwave - Temperature

SSMIS Special Sensor Microwave - Imager/Sounder

SST Sea Surface Temperature

SSU Stratospheric Sounding Unit

ST Surface Temperature

S-VISSR Stretched Visible-Infrared Spin Scan Radiometer

TES-Nadir Tropospheric Emission Spectrometer - Nadir

THIR Temperature-Humidity Infrared Radiometer

TIR Thermal Infrared

TIROS Television and Infra-Red Observation Satellite

TLT Lower Tropospheric Temperature

TM Thematic Mapper

TOVS TIROS Operational Vertical Sounder

TRMM Tropical Rainfall Measuring Mission

UAH University of Alabama in Huntsville
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UAV Unmanned Aerial Vehicle

VAS Visible-Infrared Spin Scan Radiometer Atmospheric Sounder

VHRR Very High Resolution Radiometer

VIIRS Visible/Infrared Imager Radiometer Suite

VIRS Visible and Infra Red Scanner

VTPR Vertical Temperature Profile Radiometer

WMO World Meteorological Organization

WRF Weather Research and Forecasting model
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Appendix B

Kriging

Kriging is used to estimate the value of a variable at an unsampled point where the

covariance or semivariance function as a function of distance is known. This appendix

describes the equations and variables used for both kriging methods in this study.

The value of the variable of interest t at an unsampled coordinate xo is estimated using

a linear combination of observed values of t at coordinates xi, i = 1...n calculated using

Eq. (B.1). w is a vector containing the optimal weights w(xi) for each observation of

variable t at coordinates xi, i = 1...n. t is a vector containing the observations of variable

t at coordinates xi, i = 1...n.

t̂(xo) = w · t (B.1)

where: w =


w(x1)

...

w(xn)

φ

 and t =


t(x1)

...

t(xn)

φ


The optimal weights in vector w are calculated using Eq. (B.2). A is a matrix of

the expected covariance between each pair of observations of variable t at coordinates

xi, i = 1...n so that a(xi, xn) is the expected covariance between t(xi) and t(xn). B is a

matrix of the expected covariance between observations of variable t at coordinates xi,

i = 1...n and the output point x0 so that b(xo, xn) is the expected covariance between

t(xo) and t(xn).

w = A−1 · B (B.2)

Two methods of kriging were investigated in this study: Global Ordinary Kriging

and Global Simple Kriging. The optimal weights in vector w were calculated slightly

differently depending on the method of kriging used.

For ‘Ordinary’ kriging, where the mean is unknown a priori, the mean is calculated

during interpolation by constraining the optimal weights so that they sum to 1. For
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Ordinary kriging the optimal weights in vector w are therefore calculated using Eq. (B.2)

with the vectors and matrices shown below. φ is a Lagrange multiplier required for solving

the equations. 
w(x1)

...

w(xn)

φ

 =


a(x1, x1) ... a(x1, xn) 1

... ... ... 1

a(xn, x1) ... a(xn, xn) 1

1 1 1 0


−1

·


b(xo, x1)

...

b(xo, xn)

1


For ‘Simple’ kriging which assumes that the mean is known a priori the optimal weights

do not need to be constrained to sum to 1. Instead the mean is added to the dot product

of the vector of optimal weights w and the vector of the observations of variable t, T to

produce an estimate of t(xo). Note that, due to the use of a mean of 0 for Global Simple

Kriging in this study, the same equation (Eq. (B.1)) is used for both kriging methods.

Therefore the optimal weights in vector w are calculated using Eq. (B.2) with the vectors

and matrices shown below.

w(x1)

...

w(xn)

 =

a(x1, x1) ... a(x1, xn)

... ... ...

a(xn, x1) ... a(xn, xn)


−1

·

b(xo, x1)...

b(xo, xn)


The expected covariance is calculated using a model function, which approximates the

covariance as a function of distance, determined from available observations as follows.

An experimental semivariogram was produced by calculating the semivariance from the

average difference between each pair of this study’s input anomalies separated by binned

distances. 25 km bins were used. The experimental semivariogram was plotted and it was

determined that a spherical model would provide the best model fit to the experimental

semivariogram. The model function is given in Eq. (B.3) with fitted parameter values

of 0 for s, 7.6 for y and 3585.9 for ε . d is the distance in km and γ(d) is the model

semivariance at distance d.

γ(d) =

s+ y[3
2
(d
ε
) − 1

2
(d
ε
)3] for 0 < d < ε

s+ y for d ≥ ε
(B.3)

This model function fitted to the semivariogram was used to calculate the expected

covariances in this study by calculating the expected semivariances first and then calculat-

ing the expected covariances from the expected semivariances. The expected covariances

were then used in Eq. (B.2) to calculate the weights required for kriging.
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Appendix C

Supplemental Material from Chapter

3

Figure C.1: The error in annual Arctic-average anomalies estimated by using Global
Ordinary Kriging on each year of ERA-Interim anomalies (1979-2011, each year is shown
by one line) using historical station coverages (1850-2011).
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Figure C.2: The error in annual Arctic-average anomalies estimated by using Global
Simple Kriging on each year of ERA-Interim anomalies (1979-2011, each year is shown
by one line) using historical station coverages (1850-2011).
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Figure C.3: The error in annual Arctic-average anomalies estimated by using the Binning
technique on each year of ERA-Interim anomalies (1979-2011, each year is shown by one
line) using historical station coverages (1850-2011).
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Figure C.4: The error in seasonal Arctic-average anomalies estimated by Linearly Inter-
polating each year of ERA-Interim anomalies (1979-2011, each year is shown by one line)
using historical station coverages (1850-2011).
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Figure C.5: The error in seasonal Arctic-average anomalies estimated by using Global
Ordinary Kriging on each year of ERA-Interim anomalies (1979-2011, each year is shown
by one line) using historical station coverages (1850-2011).
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Figure C.6: The error in seasonal Arctic-average anomalies estimated by using Global
Simple Kriging on each year of ERA-Interim anomalies (1979-2011, each year is shown
by one line) using historical station coverages (1850-2011).
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Figure C.7: The error in seasonal Arctic-average anomalies estimated by using the Binning
technique on each year of ERA-Interim anomalies (1979-2011, each year is shown by one
line) using historical station coverages (1850-2011).
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Appendix D

Potential Sources of Surface Air

Temperature Data in the Arctic
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