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Abstract. An important application of Big Data Analytics is the real-
time analysis of streaming data. Streaming data imposes unique chal-
lenges to data mining algorithms, such as concept drifts, the need to
analyse the data on the fly due to unbounded data streams and scalable
algorithms due to potentially high throughput of data. Real-time clas-
sification algorithms that are adaptive to concept drifts and fast exist,
however, most approaches are not naturally parallel and are thus lim-
ited in their scalability. This paper presents work on the Micro-Cluster
Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive
statistical data summary based on Micro-Clusters. MC-NN is very fast
and adaptive to concept drift whilst maintaining the parallel properties
of the base KNN classifier. Also MC-NN is competitive compared with
existing data stream classifiers in terms of accuracy and speed.

Keywords: Data Stream Classification, Adaptation to Concept Drift,
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1 Introduction

The work presented in this paper focuses on some of the challenges associated
with the velocity aspect of Big Data [4]. Velocity in Big Data Analytics refers
to data instances that arrive at a very high speed and thus challenge our com-
putational capabilities in processing data [6]. Data stream classification trains a
classifier in real-time on incoming data instances with a known classification, in
order to enable the classification of previously unseen data instances. It is impor-
tant that the classifier adapts to changes in the pattern encoded in the stream
in order to keep the model accurate over time. Such changes in the pattern
are also called concept drifts [5]. Some applications of data stream classifica-
tion include sensor networks; Internet traffic management and web log analysis
[8]; intrusion detection [9]. It is not feasible to capture, store and process data
streams; as data streams are potentially infinite. Hence, algorithms are needed
that can analyse data on the fly as it is being generated. Systems that make use
of such algorithms are of great importance to applications such as the ones de-
scribed above. In the past two decades various data stream classifiers have been
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published, such as Hoeffding Trees [3], G-eRules [10], Very Fast Decision Rules
(VFDR) [7] etc. These algorithms induce a classifier and adapt to concept drifts
with only one pass through the data, making them relatively fast. This research
paper proposes a new adaptive computationally efficient data stream classifier.
The new classifier proposes a Micro-Cluster based data structure with Variance
based splitting. This Micro-Cluster structure is coupled with a K Nearest Neigh-
bour (KNN) classifier approach termed MC-NN. Variance based Micro-Clusters
continuously adapt to concept drifts through updating statistical summaries of
data instances from the data stream and are robust to noise. KNN has been used
as a base classification approach, as KNN is naturally parallel and thus allows
for future works to be applied in a parallel framework.

This paper is organised as follows: Section 2 describes the MC-NN algorithm
whereas Section 3 provides an empirical evaluation of MC-NN and a comparison
against existing data stream classifiers. Conclusions are discussed in Section 4.

2 Adaptive Micro-Cluster Nearest Neighbour Data
Stream Classification

2.1 Micro-Cluster based Nearest Neighbour

In the authors’ previous feasibility study [12], a parallel real-time classifier was
implemented based upon KNN. In KNN a data instance is assigned the class
that is most common amongst its K nearest neighbours. The basic approach
of the real-time KNN is to keep a sliding fixed size time window of the most
recent data instances and execute KNN from the sliding window set. Real-
time KNN retrains on recent instances whilst older instances are deleted. How-
ever, real-time KNN is computationally slow with faster data streams [12].
To overcome the computational bottleneck of real-time KNN and the prob-
lems associated with the sliding window, the here presented classifier adapts
Micro-Clusters. Micro-Clusters, originally developed for data stream clustering
[1] in order to provide a summary of the locality of the data are of the form:

< CF2x, CF1x, CF2t, CF1t, n >.
The sum of the squares of the attributes are maintained the vector CF2x,

the sum of the values in vector CF1x; the sum of time stamps in vector CF1t;
and the number of data instances is stored in scalar n. CF2x and CF1x can
be used to calculate the locality and boundary of the Micro-Clusters whereas
CF2t and CF1t can be used to determine the recency of the data summarised
in the cluster. MC-NN adapts Micro-Clusters to compute nearest neighbours for
classification. The Micro-Cluster structure has been extended by terms CL for
the cluster’s class label, ε as error count, Θ as error threshold for splitting, α as
initial time stamp and Ω as a threshold for the Micro-Cluster’s performance:

< CF2x, CF1x, CF1t, n, CL, ε,Θ, α,Ω >

The centroid of the Micro-Cluster can be calculated by CF1x

n . In order to
classify a new data instance from the stream the MC-NN classifier calculates the
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Euclidean distances between the data instance and each Micro-Cluster centroid
and the class label of the nearest Micro-Cluster is assigned to the data instance. ε
of a Micro-Cluster is initially 0 and incremented by 1 if the Micro-Cluster is used
for classification and missclassifies the data instance. Likewise ε is decremented
by 1 if the Micro-Cluster is involved in a correct classification. Θ is a user defined
upper limit of acceptable ε. It is expected that a low Θ will cause the algorithm
to adapt to changes faster, but will be more susceptible to noise. A larger Θ
value will be more tolerant to noise but may not ‘learn’ as fast. As more labelled

Algorithm 1: Training the MC-NN classifier
Data: Train Instance
Result: Re-Positioned Localised sub-set of Micro-Clusters
Remove Micro-Clusters with poor performance (under Ω value)
foreach Micro-Cluster in LocalSet do

Evaluate Micro-Cluster against NewInstance;
end
Sort EvaluationsByDistance();
if Nearest Micro-Cluster is of the Training Items Class Label then

CorrectClassification Event
NewInstance is Incremented into Nearest Micro-Cluster Nearset Micro-Cluster Error
count (ε) reduced.

else
MisClassification Event
2 Micro-Clusters Identified:
1) Micro-Cluster that should have been identified as the Nearest to the New Instance of
the same Classification Label.
2) Micro-Cluster that incorrectly was Nearest the New Instance.
Training Item incrementally added to Micro-Cluster of Correct Classification Label.
Both Micro-Clusters have internal Error count (ε) Incremented
foreach Micro-Cluster Identified do

if Micro-Cluster Error count (ε) exceeds Error Threshold (θ) then
Sub-Divide Micro-Cluster upon attribute of largest Variance

end

end

end

instances are received for learning they will change the distribution of the Micro-
Clusters. According to Algorithm 1 two scenarios are possible after the nearest
Micro-Cluster has been identified when a new training instance is presented to
the classifier:

Scenario 1 : If the nearest Micro-Cluster is of the same label as the training
instance, then the instance is incrementally added to the Micro-Cluster and ε is
decremented by 1.

Scenario 2 : If the nearest Micro-Cluster is of a different class label, then
the training instance is incrementally added to the nearest Micro-Cluster that
matches the training instance’s class label. However, the error count ε of both
involved Micro-Clusters is incremented.

If over time a Micro-Cluster’s error count ε reaches the error threshold Θ,
then the Micro-Cluster is split. This is done by evaluating the Micro-Cluster’s
dimensions for the size of its variance, which can be calculated using Equation
(1), where x denotes a particular attribute. The splitting of a Micro-Cluster
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generates two new Micro-Clusters, centred about the point of the parent Micro-
Cluster’s attribute of greatest variance; while the parent Micro-Cluster is re-
moved. The assumption behind this way of splitting attributes is that a larger
variance value of one attribute over another indicates that a greater range of
values have been seen for this attribute. Therefore the attribute may contribute
towards miss-classifications. This splitting of a Micro-Cluster causes the two
new Micro-Clusters to separate and better fit the underlying concept encoded
in the stream. Once the attribute of largest variance has been identified, the
two new Micro-Clusters are initially populated with the parent’s internal mean
/ centre data (CF1x). The split attribute (with the largest variance), is al-
tered by the variance value identified in the positive direction in one of the new
Micro-Clusters and negatively in the other. This ensures that future training
will further re-position the two new Micro-Clusters better than the parent could
alone.

V ariance[x] =

√(
CF2x

n

)
−
(
CF1x

n

)2
(1)

When a Micro-Cluster has a new instance added to it, it’s internal instance count
n is incremented by 1 and the sum of time stamps(CF1t) is incremented by the
new time stamp value(T). The Triangle Number ∆(T ) = ((T 2 + T )/2) of this
time stamp will give an upper bound to the maximum possible value of CF1t.
Therefore, if all instances were entered into this Micro-Cluster CF1t would be
equal to the triangular number of T. The lower the value of CF1t is from the
Triangular Number the poorer the Micro-Cluster has been participating in the
stream classification. The use of Triangular Numbers give more importance to
recent instances over earlier ones added to the Micro-Cluster, as the time stamp
value (T) is always increasing and MC-NN uses the sum of these incremental
values. Triangular numbers assume that all Micro-Clusters were created at time
stamp 1. To counter this each Micro-Cluster keeps track of the time stamp
when it was initialised (α). The Micro-Cluster’s real ∆(T ) can be calculated by
∆(T ) − ∆(α). Any Micro-Clusters that fall under a pre-set threshold value of
(Ω) are deleted as they are considered old. For the rest of this paper a value of
50% was given to all Micro-Cluster Ω values as it seemed to work best for most
classification problems.

3 Evaluation

This Section evaluates MC-NN in terms of accuracy, adaptivity to concept drifts
and computational efficiency on a quad core ‘Intel core’ I5 processor with 8Gb
RAM. All classifiers and data stream generators are implemented in the Massive
Online Analysis (MOA) framework. Three data streams have been utilised: The
SEA data stream [11] contains three continuous attributes and two class la-
bels. A class label of True is given only if the Threshold level of a preset value is
surpassed by summing two of the attributes, otherwise class label False is given.
Arbitrarily function 1 (value 8) was chosen for the initial concept and function
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3 (value 7) for the concept change. The Random Tree Generator [2] cre-
ates a random tree with each leaf node randomly assigned a class label. In our
experiments the random tree(s) comprise ten continuous attributes and three
class labels. A drift is achieved by simply generating a different random tree.
Both, the Random Tree and the SEA datastreams generated 35,000 instances.
The concept drift begins at instance 10,000 with a gradual change over 1,000
instances to the second stream. The Hyperplane generator creates a linearly
separable model. A Hyperplane in ‘D’ dimensions slowly rotates continuously
changing the linear decision boundary of the stream. The experiments using the
Hyperplane generator created 10 million data instances, with five numerical at-
tributes and two classes. In order to add an additional challenge 10% noise was
generated as well with probability P(0.75) chance of reversing the direction of
the rotation causing an ‘Oscillation’ effect. A version of the stream with proba-
bility P(0) chance of reversing the direction of the concept drift was also created.
MC-NN was compared against Hoeffding Trees [3], incremental Näıve Bayes and
real-time KNN classifier [12]. Each instance was tested upon the classifier to log
the classifier’s performance before being used for training: this is also know as
prequential testing.

Adaptation to new concepts: Two MC-NN classifiers were created, one
with Θ = 2 (error threshold) and the other with Θ = 10. Table 1 compares MC-
NN against other stream classification algorithms on the SEA and Random Tree
data streams. Please note that for real-time KNN several experiments have been
carried out and only the experiments with the best setting for K are included in
the table. The results show that real-time KNN’s results are competitive to the
Hoeffding Tree and Näıve Bayes classifiers. MC-NN achieves accuracies close to
all competitors, while clearly outperforming real-time KNN in terms of runtime.
Regarding accuracy MC-NN is similar to Hoeffding Trees and Näıve Bayes. It
is also noticeable that a larger Θ results in a shorter runtime of MC-NN. This
can be explained by the fact that when Θ is larger it will take more time for a
Micro-Cluster to reach Θ and thus it will perform splits less frequently.

Table 1: Accuracies and runtime of MC-NN compared with other data stream
classifiers. Accuracies are listed in percent and runtime is listed in seconds. Θ
denotes the error threshold used in MC-NN

Algorithm SEA accuracy(runtime) Random Tree accuracy(runtime)

Näıve Bayes 94.40(0.11) 64.17(0.10)
Hoeffding Tree 95.96(0.19) 69.88(0.28)
real-time KNN 97.17(24.73) K=5000 71.34(9.04) K=2000

MC(Θ = 2) 94.03(0.28) 70.30(2.02)
MC(Θ = 10) 92.99(0.03) 60.99(1.49)

Figures 1 and 2 illustrate the same experiments as listed in Table 1, the
accuracy is displayed over time. For SEA it can be seen that all classifiers achieve
a relatively high accuracy at any time and only show a slight deterioration in
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(a) Hoeffding Tree (b) Näıve Bayes (c) KNN (2000)

(d) KNN (5000) (e) Micro-Cluster(2) (f) Micro-Cluster(10)

Fig. 1: Concept drift adaptation on the SEA data stream. Accuracy is plotted
along the vertical axis, instance stream is plotted along the horizontal axis.

accuracy during the concept drift (instances 10,000 - 11,000). For the Random
Tree it can be seen that Hoeffding Tree and Näıve Bayes classifiers are clearly
challenged with adapting to the concept drift as they need a long time to fully
regain their previous classification accuracy level. The real-time KNN classifer
also have a noticeable deterioration of their classification accuracy during the
concept drift but recover much faster compared with Hoeffding Tree and Näıve
Bayes. However, they do not reach the same level of classification accuracy as
Hoeffding trees and Näıve Bayes. The results of MC-NN clearly show the lowest
classification accuracy deterioration and almost recover instantly. MC-NN is able
to reach the same classification accuracy levels as Hoeffding tree and Näıve
Bayes, whereas real-time KNN performs poorly.

The Results in Figures 3 and 4 show the total accuracy of the different clas-
sifiers evaluated on the Hyperplane data streams with their runtime in brackets.
In terms of classification accuracy it can be seen that MC-NN(10) achieves sec-
ond highest accuracy, but only 0.04% behind Näıve Bayes on the stream with no
oscillation. On the the stream with oscillation effect MC-NN(10) clearly outper-
forms all its competitors. Please note that the Figures display only the runtime
for the best configurations with real-time KNN. In terms of runtime, MC-NN
is faster than Hoeffding Trees and achieves a similar speed to that of Näıve
Bayes. However, MC-NN is approximately 30 times faster than real-time KNN.
Please note that for the larger Θ MC-NN performs slightly faster, which can
be explained by MC-NN being less likely to perform Micro-Cluster splits which
consume some of the runtime. Figure 3 shows the experiments for the Rotating
Hyperplane data stream over time for all 10 million data instances. All classifiers
need some initialisation phase before producing a stable classification accuracy.
Overall MC-NN(10) achieves a similar performance to Näıve Bayes and out-
performs is predecessor real-time KNN clearly. Figure 4 shows the experiments
for the Oscillating Hyperplane data stream over time for all 10 million data in-
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(a) Hoeffding Tree (b) Näıve Bayes (c) KNN (2000)

(d) KNN (5000) (e) Micro-Cluster(2) (f) Micro-Cluster(10)

Fig. 2: Concept drift adaptation on the Random Tree data stream. Accuracy is
plotted along the vertical axis, instance stream is plotted along the horizontal
axis.

Fig. 3: Concept Drift adaptation on the
Hyperplane with Rotating Boundary.

Fig. 4: Concept Drift adaptation on the
Hyperplane with Oscillating Boundary.

stances. MC-NN(10) remains stable and clearly outperforms all its competitors.
Both Näıve Bayes and the Hoffeding Tree classifiers suffer at the beginning of
the data stream with a negative accuracy trend. This is due to the overlapping
data values that are contradicting each other due to oscillation. Overall MC-NN
achieves a similar performance compared with well established data stream clas-
sifiers in terms of accuracy and runtime and clearly outperforms its predecessor.
MC-MM is more robust in terms of adaptation to concept drifts, especially com-
plex continuous concept drifts. Moreover MC-NN is naturally parallel and thus
has the advantage to be scaled up to high speed data streams.

4 Conclusions

This paper presents the development of the novel MC-NN data stream classifier
that is competitive with popular existing data stream classifiers in terms of ac-
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curacy and adaptability to concept drifts, but is also computationally efficient
and potentially scalable to parallel computer architectures. The developed clas-
sifier is based on a nearest neighbour approach for classification and on a novel
kind of Micro-Cluster for classification purposes to maintain a recent summary
of the data observed and its performance. MC-NN has been compared empir-
ically with Hoeffding tree, Näıve Bayes for streaming data and its predecessor
real-time KNN. Empirical results show that MC-NN achieves similar or better
accuracy, adaptability to concept drifts and shorter runtime compared with its
competitors. Notably MC-NN is very robust when confronted with continuously
changing concepts and noise. The paper also points out that MC-NN is naturally
parallel as Micro-Clusters can be distributed over multiple computational nodes
in a computer cluster. Therefore ongoing work comprises the implementation
and empirical evaluation of a new parallel MC-NN classifier.
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