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Abstract – There is growing evidence of a substantial decline in pollinators within Europe 1 

and North America, most likely caused by multiple factors such as diseases, poor nutrition, 2 

habitat loss, insecticides and environmental pollution. Diesel exhaust could be a contributing 3 

factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, 4 

which honey bees require for flower recognition. In this study we exposed eight of the most 5 

common floral volatiles to diesel exhaust in order to investigate, whether it can affect volatile 6 

mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common 7 

flower volatiles significantly: myrcene was considerably reduced, β-ocimene became 8 

undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. 9 

Proboscis extension response (PER) assays showed that the alterations of the blend reduced 10 

the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of 11 

diesel exhaust gas was identified as capable of causing degradation of floral volatiles. 12 

 13 

Key Words - Floral scent compounds, diesel exhaust, nitrogen oxides, scent degradation, 14 

scent recognition, proboscis extension response.  15 
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INTRODUCTION 16 

 17 

Since the winter and spring of 2006-7 there have been reports of elevated colony 18 

losses of managed European honey bees (Apis mellifera) in the U.S.A., Europe, the Middle 19 

East, and Japan (Abrol 2012; Oldroyd 2007). Furthermore, there is growing evidence of 20 

substantial losses of many wild pollinator species worldwide, mainly within Europe and North 21 

America (Biesmeijer et al. 2006; Potts et al. 2010). Declines of managed honey bees and wild 22 

pollinators may have serious implications, particularly because global food security is 23 

considered to be dependent on animal pollination (Abrol 2012). Even though most staple food 24 

crops do not require insect pollination (Ghazoul 2005), 35% of the world crop production for 25 

human food depends on pollinators (Klein et al. 2007). Those pollinated crops are particularly 26 

important for our food diversity and add nutritional value to our diet (Steffan-Dewenter et al. 27 

2005). Some crops, such as oilseed rape (Brassica napus), are considered self-fertile (Free 28 

1993), but insect pollination can strongly contribute to increased yield and market value 29 

(Bommarco et al. 2012). About 73% of cultivated crop varieties are pollinated by some type 30 

of bee, with the European honey bee dominating crop pollination worldwide (Abrol 2012). 31 

The drivers behind the global pollinator decline are likely to be multifactorial and include 32 

fragmentation and loss of habitat, increased pesticide use, decreased resource diversity, alien 33 

species, spread of pathogens, and climate change (Epstein et al. 2013; Kerr et al. 2015; 34 

Oldroyd 2007; Potts et al. 2010, Vanbergen et al. 2013). However, it is unlikely that this is a 35 

definitive list, and it is, therefore, important to investigate additional potential stressors that 36 

could results in negative effects on bee fitness. 37 

Bees use mixtures of olfactory and visual stimuli to find suitable host plants (Dötterl 38 

and Vereecken 2010). They rely mainly on olfactory cues during their initial foraging bouts, 39 

and visual cues become more important in host-plant location as bees gain more experience 40 

(Dobson 1994). However, floral scent remains an important stimulus for experienced bees, 41 
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since it allows them to discriminate between rewarding and non-rewarding flowers (Dobson 42 

2006; Wright and Schiestel 2009). 43 

Ozone or reactive species, such as hydroxyl and nitroxyl or nitrate radicals, readily 44 

react with volatile organic compounds (VOC) (Atkinson and Arey 2003; Calogirou et al. 45 

1999), which contribute to floral scent and could, therefore, impact upon VOC-mediated 46 

plant-insect interactions. McFrederick et al. (2008) modelled the dispersion of three common 47 

floral scent compounds (linalool, myrcene, and β-ocimene) under different air pollution 48 

scenarios and concluded that increasing pollution levels may impair the recognition of floral 49 

scents by pollinators. 50 

In an earlier study we were able to show that diesel exhaust alters the VOC 51 

composition of a synthetic floral odour blend (Girling et al. 2013) designed to mimic the 52 

oilseed rape (OSR) cultivar Brassica napus, cv. Topas. It consisted of eight compounds, 53 

which are behaviourally active in honey bees, mixed in their naturally occurring ratios (Blight 54 

et al. 1997). The exposure of the OSR blend to diesel exhaust rendered two compounds 55 

undetectable, which significantly reduced the ability of honey bees to recognize the altered 56 

floral scent (Girling et al. 2013). Whether such changes deleteriously affect honey bee 57 

foraging or foraging by other pollinators that utilise these compounds is currently unknown. 58 

Three of the volatile compounds in OSR are floral scent compounds that occur in more than 59 

50% of seed plants (reviewed by Knudsen et al. 2006).  60 

In order to investigate further the effects of diesel exhaust emissions on floral VOCs 61 

and to study whether such effects could be a more widespread phenomenon, we exposed eight 62 

of the 12 most common floral scent compounds (Knudsen et al. 2006) to diesel exhaust, none 63 

of which are found in OSR, mixed in equal amounts. To investigate if bees that were 64 

conditioned to our floral volatile blend were able to still recognize it after they underwent the 65 

alterations caused by diesel exhaust, we used the classical conditioning of the proboscis 66 

extension reflex (PER; Bitterman et al. 1983; Kuwabara 1957). Additionally, we exposed all 67 
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eight common floral scent compounds individually to diesel exhaust with the intention of 68 

determining their possible fate in a diesel exhaust polluted environment. In order to confirm 69 

the general mechanism behind the alteration of floral scent components in such an 70 

environment, we also exposed all compounds to various concentrations of NOX, since that 71 

was the observed mechanism behind the floral scent degradation in our earlier study (Girling 72 

et al 2013). 73 

 74 

 75 

METHODS AND MATERIALS 76 

  77 

Floral Volatile Blend. Based on a review by Knudsen et al. (2006) on the diversity and 78 

distribution of floral scent, we selected eight common floral compounds that occur in more 79 

than half of all the families of seed plants: β-Pinene, myrcene, limonene, β-ocimene, 80 

benzaldehyde, β-caryophyllene, methyl salicylate, and benzyl alcohol (Table 1). We mixed all 81 

eight compounds in equal amounts to produce a common floral volatile (CFV) blend.  82 

 83 

Floral Volatile Exposures. For the exposures the general procedure was to place 1µL of CFV 84 

blend on a filter paper (2.1cm circle, grade 3MM; Whatman plc, Maidstone, UK) and a 4.5cm 85 

stir bar in a 1000mL glass bottle (VWR International Ltd., West Sussex, UK). To assess the 86 

influence of UV light the tests were replicated in both clear and amber glass bottles. The CFV 87 

blend was exposed to either ambient air or diesel exhaust at room temperature. The ambient 88 

air treatment consisted of a bottle of air collected from the laboratory. Diesel exhaust was 89 

collected into the bottle from the exhaust pipe of a Suntom SDE 6500 E diesel generator 90 

(Fuzhou Suntom Power Machinery Co., Ltd. Fuzhou, China) for 3min at a flow rate of 91 

1L/min. Bottles were sealed with two layers of Parafilm M® (Bemis Flexible Packaging, 92 

Oshkosh, WI, USA) and a lid. The lid contained a 1mm bore hole in its centre to allow 93 
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insertion of the solid-phase microextraction (SPME) fibre holder for the collection of 94 

volatiles. The bottle content was mixed with a stir bar at 300rpm. The content of the bottle 95 

was sampled after 1min, 30min, 1h and 2h. At each sample time point the SPME fibre was 96 

extended into the bottle and exposed to the volatiles for 5min. The SPME fibre was then 97 

inserted into the injector of the gas chromatograph linked to the mass spectrometer (GC/MS) 98 

and allowed to desorb for 10min. This 10min desorption period was sufficient to clean the 99 

SPME fibre so that the same fibre could be used to collect VOCs from the same bottle and 100 

filter paper at a later time point. After the collection of VOC at all four time points the bottle 101 

was cleaned with hexane, dried under nitrogen gas, and left in the fume hood overnight to 102 

remove the hexane residue. Each of the air treatment and bottle type combinations were 103 

repeated five times at room temperature for each of the two floral blends. 104 

 105 

Floral Blend GC/MS Analyses. After each VOC adsorption period the SPME fibre assembly 106 

(65µm PDMS/DVB, fused silica, 24Ga, manual holder; Supelco, Bellefonte, PA, USA) was 107 

injected into a Hewlett Packard HP6890/5972A GC/MS at an injection port temperature of 108 

250°C and a split ratio of 10:1. The GC/MS was equipped with a SPME injection sleeve (I.D. 109 

0.75mm, Supelco) and HP-Innowax column (I.D. 0.25mm, length 30m; film thickness 110 

0.25µm; Agilent Technologies, Santa Clara, CA, USA). The helium carrier gas flow was set 111 

at 1.0mL/min, and the oven temperature was held for 2min at 50°C, increased to 70°C by 5°C 112 

per min and then ramped up to 240°C by 10°C/min. 113 

Peaks were identified using the same standards used to produce the floral volatile 114 

blends (Table 1). Isocaryophyllene the rearrangement product of β-caryophyllene, was 115 

identified based on catalytic conversion of β-caryophyllene in clove oil following US patent 116 

3621070 (Rachlin 1971). 117 

 118 
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Preparation of Bees. Honey bees were kept on the University of Southampton campus in an 119 

apiary (50° 56' 10''N, 1° 23' 39''W). During the summers of 2012 and 2013, on days when 120 

bees showed high activity, 30-35 returning forager bees were caught at their hive entrance 121 

between 14:00-16:00 GMT. Bees were caught in Sterilin 30mL universal containers (Sterilin 122 

Limited, Cambridge, UK) and kept individually. They were immobilized on ice and 123 

transferred into blue 1mL pipette tips that were cut to resemble the PER tubes used by 124 

Bitterman et al. (1983) and harnessed to it with two strips of cloth tape (tesa® extra Power 125 

Perfect). Harnessed bees could freely move their antennae, mouth parts and forelegs (Fig. 1). 126 

The PER tubes containing bees were kept in Eppendorf centrifuge tube racks placed inside 127 

plastic boxes with perforated lids. The bottom of the box was lined with wet tissue to provide 128 

humidity and prevent the bees from desiccating. The bees were fed with a 30% sucrose 129 

solution between 16:00-18:00 and kept in an environmentally controlled room at 20°C 130 

overnight. PER assays were conducted the next morning for which bees were equally divided 131 

into groups of 7-10 bees (depending on overnight survival). 132 

 133 

Proboscis Extension Response Assay. One harnessed bee at a time was placed in the 134 

experimental arena (W×D×H= 60cm×45cm×55cm) 3cm in front of an odour delivery system. 135 

Behind the bee, an extraction fan removed the odour from the arena in order to avoid a build-136 

up of any stimuli. The odour delivery system was custom-built. It allowed for a constant 137 

stream of fresh air in the arena through Teflon tubing which flowed into a glass tube. The 138 

conditioning stimuli were delivered though a three channel system that ended in the same 139 

glass tube as the fresh air, before it discharged into the arena. All three channels consisted of 140 

electronic valves and Teflon tubing connected to 10mL glass tubes, in which the stimuli were 141 

placed on a piece of filter paper. One channel served as the control (clean air), which was 142 

always open when no volatiles were delivered. In order to deliver scented air, the control 143 

channel was switched. The airflow passing through the odour delivery part of the system was 144 
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set at 300mL/min and the fresh air at 200mL/min air. Hence, the bees were constantly 145 

exposed to an airflow of 500mL/min. The following timeline applied to the PER assay: A bee 146 

was allowed to adapt to the experimental arena for 10s, then was presented with the 147 

conditioning stimulus (CS) for 10s. Five seconds after the onset of CS, the antennae of the bee 148 

was touched with a cocktail stick that was dipped in 30% sucrose solution (unconditioning 149 

stimulus (US)). Upon extension of her proboscis, the bee was allowed to feed on the sucrose 150 

solution for the remaining part of the 10s US period. The bee was then removed from the 151 

arena. Thirty seconds was allowed between bees to give the extraction fan additional time to 152 

clear the experimental area from any remaining odours. 153 

The bees were conditioned six times to the  CFV blend. During these conditioning 154 

trials most bees learned to associate the sugar reward with the odour stimuli. Bees which had 155 

learned to extend their proboscis in response to the odour stimuli by the sixth conditioning 156 

trial were used in the subsequent recognition trials. The recognition trial resembled the 157 

conditioning trial but without the use of the US. Its purpose was to test the proboscis response 158 

of the bees to the original flower blends and to three different test stimuli for each blend 159 

(Table 2). The test stimuli were based on the original blend but some chemical compounds 160 

were omitted based on our results from the floral volatile exposure experiment. Extension of 161 

the proboscis in response to the test stimulus was rated as a positive recognition. The PER 162 

assay was repeated until n ≥ 25 was achieved for each test group of bees. The results show the 163 

percentage of bees that had successfully learned to recognize the floral odour blends and then 164 

responded to either of the test stimuli. 165 

 166 

Fate of Individual Floral Volatiles. The floral volatile exposure method described above was 167 

altered slightly when investigating the fate of all individual compounds as these analyses were 168 

conducted on a replacement Agilent Technologies 7890B/5977A GC/MS. Because of its 169 

higher sensitivity only 0.2µL of each compound was placed on a filter paper and transferred 170 
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into an amber bottle with either ambient air or diesel exhaust. The content of the bottle was 171 

sampled after 30min, and the SPME fibre was exposed to the volatile for 1min. The SPME 172 

fibre was then inserted into the injection port of the GC/MS at 250°C and a split ratio of 10:1. 173 

The GC/MS was equipped with a SPME injection sleeve, a HP-Innowax column (I.D. 174 

0.25mm, length 30m; film thickness 0.25µm) and a retention gap (I.D. 0.18mm, length 4.1m, 175 

film thickness 0µm; both Agilent Technologies, Santa Clara, CA, USA). The helium carrier 176 

gas flow and oven temperature programme remained the same as for the floral blend analyses 177 

described above. 178 

 179 

Diesel Exhaust Measurements. In order to determine the concentration of toxic and reactive 180 

gases in our diesel exhaust we used a Wolfsense TG501 probe equipped with O2, NO, NO2, 181 

SO2, and CO photochemical sensors (GrayWolf Sensing Solutions, Shelton, CT, USA). 182 

Diesel exhaust was pumped through the probe at a flow rate of 1L/min by attaching a 183 

calibration hood. Measured values were logged every 30s. Five 3min measurements were 184 

taken to mimic the diesel exhaust collection for floral volatile exposures. 185 

 186 

Influence of Nitrogen Oxides. For the exposures to nitric oxides (NOX) a filter paper with 1µL 187 

of the CFV blend and a stir bar were added to an amber 1000mL bottle. Nitrogen oxides were 188 

produced by reducing nitric acid with elemental copper, which resulted in a 1:1 ratio of NO 189 

and NO2, which was confirmed by the Wolfsense TG501 probe. Concentrations of 20ppm, 190 

2ppm, 0.2ppm per bottle were achieved by using gas tight syringes and volumetric 191 

calculations. The bottle was closed with two layers of Parafilm M® and a lid. The content was 192 

allowed to stir for 30min at 300rpm before the SPME fibre was extended into the bottle. 193 

SPME exposure and the GC/MS method were the same as for floral blend volatile exposures. 194 

 195 
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Statistical Analysis. As we found that UV light had no statistically significant effect on the 196 

composition of volatiles in our experiments, we pooled the data gained from exposures in 197 

amber and clear glass bottles. Due to the large number of samples for the floral volatile 198 

exposures, it was necessary to use more than one SPME fibre, which did not allow 199 

comparative statistical analyses based on peak area according to the SPME guidelines of the 200 

journal. However, the SPME fibres used were from the same lot, and the peak area data of the 201 

floral volatile exposures had less variance than that of the NOX exposure data that was 202 

collected using a single SPME fibre. Therefore, we plotted the peak areas as bar graphs with 203 

95% confidence interval error bars, which provides a graphical display of the significance of 204 

differences of the CFV blend when exposed to either ambient air or diesel exhaust (Fig. 6, 205 

online supplementary material). 206 

The PER assay data was analysed by comparing the recognition of each test stimuli to 207 

the response of bees to the complete CFV blend. Pairwise comparisons were made using χ2- 208 

tests. The criterion for significance was corrected after Bonferroni: α’= α/k, where k is the 209 

number of comparisons. 210 

The influence of NOX on the CFV blend was measured with the same SPME fibre, so 211 

we were able to directly compare the effect of the different NOX concentrations on the 212 

abundance of compounds. The peak area data was analysed with a MANOVA followed by 213 

univariate ANOVAs for each compound and Tukey post-hoc tests for comparing the 214 

influence of different NOX concentrations on the single compounds. All statistical analyses 215 

were conducted with SPSS 20.0 for Windows (IBM Corporation, Armonk, New York, USA). 216 

 217 

 218 

RESULTS 219 

 220 
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Floral Volatile Exposures. At the one minute time point of diesel exhaust exposure of the 221 

CFV blend the compounds myrcene, Z- and E-β-ocimene were drastically reduced, and 222 

β-caryophyllene started to be transformed into its cis-isomer, isocaryophyllene (Fig. 2). After 223 

30min, when all compounds in the mixture had reached equilibrium in the glass bottle, 224 

myrcene remained strongly reduced, whereas Z- and E-β-ocimene (assignment of geometrical 225 

isomers followed Babushok et al. 2011) became undetectable, and β-caryophyllene was 226 

completely transformed into isocaryophyllene. 227 

 228 

Proboscis Extension Response Assays. The recognition assay for the CFV blend revealed that 229 

the PER response of the honey bees was significantly influenced by the test stimuli 230 

composition. The original CFV blend was recognized by 93% of all bees in the absence of a 231 

sugar reward (Fig. 3). The CFV blend without β-ocimene (CFV-1) was still recognized by 232 

76% of bees compared to the original blend, which is non-significant (χ2
(1) = 2.928, P = 233 

0.092). Omission of myrcene (CFV-2) had a significant effect on the bees’ PER response, and 234 

only 37% still recognized the test stimuli (χ2
(1) = 18.941, P < 0.001). The test stimuli which 235 

lacked β-ocimene and myrcene (CFV-3) was recognized by 39% of the bees, which is 236 

significantly lower than the recognition of the full CFV blend (χ2
(1) = 17.923, P < 0.001).  237 

 238 

Fate of Individual Floral Volatiles. Investigation on the effect of diesel exhaust on each single 239 

floral volatile showed that β-caryophyllene was transformed into its cis-isomer, confirming 240 

the results that we had seen when we exposed the complete CFV blend to diesel exhaust. 241 

These further investigations revealed that the β-caryophyllene standard sample also contained 242 

α-copaene and α-humulene as impurities (verified by standard injection). The amount of both 243 

of them was also drastically reduced after being exposed to diesel exhaust (see supplementary 244 

material, Fig. 6), however, we were unable to identify any degradation products. Similarly, we 245 
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could not trace the fate of myrcene and β-ocimene, the two acyclic monoterpenes in the CFV 246 

blend. Benzyl alcohol was partly oxidized to  benzaldehyde. 247 

 248 

Diesel Exhaust Measurement. The averages of all measurements of all toxic and reactive 249 

gases ± S.E. acquired with the Wolfsense TG501 probe are given in Table 3. Carbon 250 

monoxide represented the biggest fraction of the emission gases. Within the NOX fraction, NO 251 

and NO2 were produced approximately at a ratio of 1:1. No sulphur dioxide was detected 252 

which is most likely due to the fact that we used low sulphur diesel. 253 

 254 

Influence of Nitrogen Oxides. The abundances of myrcene, Z-β-ocimene, E-β-ocimene, β-255 

caryophyllene, and benzyl alcohol were altered significantly by NOX (Table 4). In particular, 256 

the abundances of myrcene, Z-β-ocimene, E-β-ocimene, β-caryophyllene, and benzyl alcohol 257 

were significantly reduced when exposed to 20ppm NOX (Fig. 4). The conversion of β-258 

caryophyllene into isocaryophyllene began at a concentration of 0.2ppm NOX. 259 

 260 

 261 

DISCUSSION 262 

 263 

Exposure to diesel exhaust led to a reduction of myrcene in the CFV blend, β-ocimene 264 

disappeared, and β-caryophyllene was converted into its cis-isomer, isocaryophyllene. 265 

Investigations on nitration mechanisms have shown that the reaction of unsaturated 266 

compounds with nitrogen dioxide, which is abundant in diesel exhaust, can lead to cis/trans-267 

isomerization (Augusto et al. 2002; Titov 1963). In the blend used for the behavioural 268 

recognition assays we omitted myrcene and β-ocimene. The lack of β-ocimene did not 269 

influence the recognition of the test stimulus significantly. When myrcene was absent, 270 

recognition decreased significantly to only 37%. Similarly, when both compounds were 271 
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missing 39% of honey bees recognized the test stimuli, suggesting that the absence of 272 

myrcene predominantly contributes to the lack of recognition. Similarly, Reinhard et al. 273 

(2010) identified myrcene as a key odorant and ocimene as a non-key odorant in the 274 

recognition of complex scent mixtures by honey bees. Isocaryophyllene was not available for 275 

the behavioural assays, however, we hypothesise that the change from β-caryophyllene to 276 

isocaryophyllene could also have changed the insects’ odour perception of the CFV blend. 277 

Geometric isomers may differ in their quality of odour (Roderick 1966), e.g. to humans, the 278 

cyclic sesquiterpene (E)-γ-bisabolene smells soapy and spicy, whereas the odour of (Z)-γ-279 

bisabolene is described as fatty and woody (Kjeldsen et al. 2003). The discrimination of 280 

geometric isomers by insects has been mainly studied in the context of straight chain sex-281 

pheromones of moths (e.g. Klun et al. 1973; Naka et al. 2013; Silverstein and Young 1976). 282 

Investigations into the fates of individual flower volatiles could not detect substantial 283 

amounts (if any) of degradation products of the acyclic terpenes myrcene and β-ocimene. On 284 

their oxidative way to carbon dioxide, most biogenetic volatiles pass acetone and 285 

formaldehyde (Atkinson and Arey 2003), which, due to their low boiling points, would have 286 

been difficult to find by our analytical method. However, primary oxidation products of 287 

myrcene such as 4-methylene-5-hexenal and of β-ocimene such as 4-methyl-3,5-hexadienal 288 

(Lee et al. 2006, Reissell et al. 2002) should have been reliably registered. 289 

Each of the floral scent compounds used in our study that degraded when exposed to 290 

diesel exhaust also occur in numerous other plant families: β-caryophyllene in 52% (46 291 

families), β-ocimene in 71% (E-β-ocimene in 64 families and Z-β-ocimene in 44 families), 292 

and myrcene in 70% (63 families) of all investigated seed plant families (Knudsen et al. 293 

2006). Half of the highly ubiquitous flower scent compounds that we tested experienced 294 

significant reduction as a result of exposure to diesel exhaust, indicating that it has the 295 

potential to disrupt and modify plant floral volatile signalling at a broad scale. 296 
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Diesel exhaust emissions have received considerable attention due to their health risks 297 

and environmental concerns, the main focus has been on particulate matter and NOX 298 

(Setiabudi et al. 2004), which are considered to be the main air pollutants of diesel exhaust 299 

together with carbon monoxide and hydrocarbons. The NOX
 concentrations of our diesel 300 

exhaust were approximately 20ppm for both NO and NO2. When we exposed the floral 301 

volatiles to 20ppm NOX we observed that it had a similar effect as diesel exhaust: β-302 

caryophyllene was turned into isocaryophyllene, the amount of myrcene was reduced, β-303 

ocimene was reduced as well, but still detectable, whereas it had completely disappeared 304 

when exposed to diesel exhaust. In contrast to oxygenation involving oxygen species, radical 305 

reactions induced by NOX appear to be responsible for the majority of the changes observed in 306 

our CFV blend when exposed to diesel exhaust. In addition, the particulate matter in diesel 307 

exhaust may have yet unknown adsorptive and catalytic properties. Because of their isoprene 308 

(butadiene) substructure, myrcene and β-ocimene are particularly labile, and radical reactions 309 

may easily cause polymerisation, leading to products that would escape our analytical system. 310 

Ambient air quality standards in the EU (ec.europa.eu) and the US (www.epa.gov) 311 

suggest a maximum hourly average NO2 concentration of 0.1ppm, a concentration at which β-312 

caryophyllene started turning into isocaryophyllene in this study, and α-terpinene and 313 

phenylacetaldehyde were already significantly degraded, in our previous study. Furthermore, 314 

in 2013 the UK Supreme Court declared that the nitrogen dioxide limits are regularly 315 

exceeded in 16 zones across the UK (European Commission, press release). 316 

Ambient NOX levels can exhibit strong diurnal patterns, with maximum values in the 317 

early morning and another increase in the late afternoon (Fuentes et al. 2007), following 318 

periods of high traffic. Fluctuating NOX levels will change the ratio of compounds in floral 319 

scent throughout the course of the day (McFrederick et al. 2008). Additionally, high NOX 320 

levels lead to increased ozone levels (Fehsenfeld et al. 1992), which may further contribute to 321 

the degradation of floral scent. Changing floral scent of a flower can cause floral-constant 322 
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pollinators, like honey bees, to reject the flower (Wright and Schiestl 2009), which may 323 

impact on pollination efficiency. To date, there is only little research on how air pollution 324 

directly impedes on plant-insect interactions. Fuentes et al. (2013) found that ozone pollution 325 

obstructs host finding in the cucumber beetle (Acalymma vittatum). Pinto et al. (2007a; 2007b; 326 

2008) investigated the impacts of ozone on tritrophic interactions under both laboratory and 327 

field conditions. They showed that parasitoids are able to use herbivore-induced plant VOCs 328 

to find their hosts in the presence of ozone, but preferred the intact signal over the ozone-329 

degraded signal. There is also a possibility that the reaction products of floral scent 330 

compounds with ozone and other air pollutants might form new compounds that may serve as 331 

novel signals (McFrederick et al. 2009). 332 

 Our study demonstrates that NOX and/or other components of diesel exhaust are 333 

capable of degrading floral signals and have the potential to alter floral recognition. How this 334 

impacts upon the fitness of pollinators requires further investigations, however it has been 335 

proposed that pollinators in polluted areas may need to spend more time searching for 336 

adequate host plants, which if true could lead to decreased fitness and decreased pollination 337 

rates (McFrederick et al. 2008). 338 
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Table 1 Information about compound purity, vapour pressure, supplier information and their occurrence in seed 470 
plant families as reported in Knudsen et al. 2006 471 

Common flower volatile blend   

compound purity (%) 

vapour pressure 

(mm Hg-1 at 25°C) supplier occurrence 

β-Pinene 98 2.9300 Sigma Aldricha 59% 

Myrcene 90 2.0900 Sigma Aldricha 70% 

Limonene 97 1.9800 Sigma Aldricha 71% 

β-Ocimene ≥ 90 1.5590 Sigma Aldricha 71% 

Benzaldehyde 99 0.1270 Sigma Aldricha 64% 

β-Caryophyllene  ≥ 80 0.0130 Sigma Aldricha 52% 

Methyl salicylate ≥ 99 0.0343 Flukab 57% 

Benzyl alcohol 99 0.0940 Sigma Aldricha 56% 

a Sigma Aldrich (St. Louis, MO, USA), b Fluka (Sigma-Aldrich, Buchs, Switzerland)  472 
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Table 2 Compound composition of the common floral volatile and the oilseed rape blend and their according test 473 
stimuli for the proboscis extension response assays 474 

Common flower volatile blend  

compound CFV CFV-1 CFV-2 CFV-3  

β-Pinene 1 µL 1 µL 1 µL 1 µL  

Myrcene a 1 µL 1 µL - -  

Limonene 1 µL 1 µL 1 µL 1 µL  

β-Ocimene b 1 µL - 1 µL -  

Benzaldehyde 1 µL 1 µL 1 µL 1 µL  

β-Caryophyllene c 1 µL 1 µL 1 µL 1 µL  

Methyl salicylate 1 µL 1 µL 1 µL 1 µL  

Benzyl alcohol 1 µL 1 µL 1 µL 1 µL  

dose 8 µL 7 µL 7 µL 6 µL  
a compound reduced by diesel exhaust, b compounds erased by diesel exhaust, 3 compound turns into its cis-isomer  475 
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Table 3 Diesel exhaust gas composition  476 

gas (unit) mean  S.E. 

Oxygen (%) 19.78 ± 0.10 

Nitric Oxide (ppm) 19.84 ± 2.27 

Nitrogen Dioxide (ppm) 17.54 ± 1.25 

Sulphur Dioxide (ppm) 0.00 ± 0.00 

Carbon Monoxide (ppm) 226.84 ± 20.47 

  477 
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Table 4 ANOVA results for single compounds which abundances were significantly decreased by NOX exposure 478 
(also see Fig. 4) 479 

compound F-value P-value 

Myrcene F(3,12) = 11.803 0.001 

Z-β-Ocimene F(3,12) = 89.226 < 0.001 

E-β-Ocimene F(3,12) = 96.951 < 0.001 

β-Caryophyllene F(3,12) = 568.459 < 0.001 

Benzyl alcohol F(3,12) = 9.184 0.002 

  480 
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Fig. 1 Harnessed honey bee ready for PER assay 481 

 482 

Fig. 2 Total ion current (TIC) chromatogram of the common flower volatile under 30min 483 

ambient air and diesel exhaust exposure. Consecutive numbers represent the following 484 

chemical compounds: β-Pinene (1), myrcene (2), limonene (3), Z-β-ocimene (4a), 485 

E-β-ocimene (4b), benzaldehyde (5), β-caryophyllene (6a), isocaryophyllene (6b) methyl 486 

salicylate (7), benzyl alcohol (8). 487 

 488 

Fig. 3 Proboscis extension response assay results representing the ability of honey bees to 489 

recognize the common floral volatile (CFV) blend, CFV blend without β-ocimene (CFV-1), 490 

CFV blend without myrcene (CFV-2), and CFV blend without both (CFV-3). The response to 491 

the test stimuli was compared to the response to the full blend. A Bonferroni correction was 492 

applied, and all significant differences are indicated with an asterisk at a 0.016 level of 493 

significance 494 

 495 

Fig. 4 The effect of 30min exposures of different nitrogen oxides (NOX = NO and NO2 at a 496 

1:1 ratio) concentrations on the abundance of all floral compounds used in this study. Bars 497 

represent the average peak area (±S.D). Different lowercase letters indicate a statistically 498 

significant difference. 499 
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Fig. 4 510 


