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Abstract 14 

Regulatory, safety, and environmental issues have prompted the development of aqueous 15 

enzymatic extraction (AEE) for extracting components from oil-bearing materials. The 16 

emulsion resulting from AEE requires de-emulsification to separate the oil; when enzymes 17 

are used for this purpose, the method is known as aqueous enzymatic emulsion de-18 

emulsification (AEED). In general, enzyme assisted oil extraction is known to yield oil 19 

having highly favourable characteristics. This review covers technological aspects of 20 

enzyme assisted oil extraction, and explores the quality characteristics of the oils obtained, 21 



focusing particularly on recent efforts undertaken to improve process economics by 22 

recovering and reusing enzymes.   23 

 24 
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 27 

1. Introduction 28 

Aqueous enzymatic extraction (AEE) is a promising method for the simultaneous 29 

extraction of oil and protein from oilseeds. The products are of superior quality and highly 30 

suited to human consumption. In the extraction process, water containing selected enzymes 31 

forms the extraction medium used for incubating the oilseeds. When enzymes are not 32 

employed, the process is termed as aqueous extraction which invariably results in lower oil 33 

yield. The use of enzymes allows separation of targeted extracted components with 34 

unchanged properties which can potentially influence, favourably, the final product in 35 

terms of taste and smell. Interest in this technological approach has also increased recently 36 

due to safety and environmental regulatory concerns. In comparison with solvent 37 

extraction, the use of an aqueous medium is much safer, environmental-friendly and 38 

economical. In addition, it contributes to a much safer and flexible operation, lower energy 39 

consumption and operational costs, and lower capital investment. A variety of temporal 40 

crops can be processed, and the extracted oil does not need further refining. Non-toxic meal 41 

and value-added fibre and protein are also produced as co-products, due to the milder 42 

operating conditions employed. In addition, the aqueous medium allows simultaneous 43 



separation of phospholipids from the oil. Therefore, degumming step (in case of oilseeds) 44 

is not necessary and the overall cost of processing can be reduced (Latif & Anwar, 2011; 45 

Latif et al., 2011; Yang Li et al., 2011; Chabrand & Glatz, 2009; Jung & Mahfuz, 2009; 46 

Wu et al., 2009; Soto et al., 2007; Santos & Ferrari, 2005; Gros et al., 2003; Hanmoungjai 47 

et al., 2001; Rosenthal et al., 2001; Sineiro et al., 1998; Ksenija et al., 1997; Rosenthal et 48 

al., 1996)  49 

 Despite the advantages, the application of AEE is still limited due to long 50 

processing time and the high cost spent for the drying process after the enzyme treatment 51 

(Shah et al., 2005; Dominguez et al., 1996). The high cost may also be attributed to the 52 

enzymes themselves, because a significant amount is required (normally >1% of the weight 53 

of the oilseed taken). Further, the non-availability of enzymes on a commercial scale has 54 

limited the development of such processes (Rui et al., 2009; Shah et al., 2005). An added 55 

problem with AEE is that it is impossible to avoid emulsification of the extracted oil, which 56 

requires post extraction de-emulsification to recover and enhance oil yield (Latif & Anwar, 57 

2011; Long et al., 2011; Wu et al., 2009; Chabrand et al., 2008; Santos & Ferrari, 2005; 58 

Rosenthal et al., 1998; Sineiro et al., 1998a). Addition of suitable enzymes to the cream 59 

emulsion may be able to separate the oil, and in this paper, this particular sequence of process is 60 

termed as aqueous enzymatic emulsion de-emulsification (AEED). 61 

 In an earlier review by Rosenthal et al. (1996), the principles and mechanisms of: 62 

mechanical, solvent, aqueous, and aqueous enzymatic extraction methods have been 63 

addressed, besides reviewing the effects of enzymes on plant cell composition and methods 64 

employed earlier for de-emulsification. The main purpose of this review is to critically 65 

assess the information available to date, in order to conclude whether the enzymatic route 66 



is a viable industrial option for any given oilseed. In addition, the other objectives of this 67 

review are: to discuss the effect of incubating conditions in AEE on the oil extraction 68 

efficiency; to compare AEE with other extraction methods in terms of yields and 69 

characteristics of the oils from various oil-bearing materials; to explore methods available 70 

to de-emulsify the oil- aqueous phase emulsions that are inevitably formed during 71 

extraction; and finally, to explore the possibility of re-using in the enzyme after recovery in 72 

order to make the process more cost effective. 73 

    74 

2. Aqueous enzymatic extraction (AEE) method  Table 1 lists the enzymes used in 75 

earlier research. In terms of the dispersion structure, Sineiro et al. (1998a) reported that 76 

aqueous extraction resulted in oil droplets with spherical shapes in the case of sunflower 77 

oil. However, with the use of enzymes, the oil aggregates possessed different shapes with 78 

less structured and irregular cell wall surface. Different oils exhibit different properties, and 79 

it is reasonable to assume that AEE of different oil-bearing materials result in oil droplets 80 

with different characteristics. The enhancement in oil yield with the use of enzymes, i.e. 81 

AEE as compared to aqueous extraction without enzymes from various oil-bearing 82 

materials are summarized in Table 2. The table also summarizes the differences observed 83 

in oil yields between AEE and solvent extraction methods. It is clearly shown that the use 84 

of enzymes increases the oil yield, yet it is still lower than the yield when solvent 85 

extraction is used. Therefore, numerous studies have been conducted to establish the most 86 

suitable enzymes that can be used, either individually or in combination, on various types 87 

of oil-bearing materials in order to increase the oil yields.  88 



 89 

2.1. Studies comparing extraction efficiencies using different enzymes 90 

 91 

 Figure 1(a) and 1(b) illustrate the flow sheets of AEE for soybean and olive oil, 92 

respectively. The types of enzymes added depend on the cellular composition and structure 93 

of the oil-bearing material (Passos et al., 2009). According to Rosenthal et al. (2001), the 94 

use of Alcalase 2.4L (protease) increased the oil yield from heat-treated soybean flour as 95 

compared to cellulase, hemicellulase, and pectinase. Similarly, Santos and Ferrari (2005) 96 

reported that both Alcalase and Celluclast (cellulase) were able to increase the oil yield 97 

from soybeans, with Alcalase giving higher yields. A higher yield in the case of protease 98 

(96.0%) as compared to phospholipase (73.4%) was also reported by Jung et al. (2009) in 99 

the case of extruded soybean flakes. In addition, Lamsal et al. (2006) reported that the use 100 

of individual cellulase and a mixture of cellulase and protease did not significantly increase 101 

the soybean oil yield from extruded soybean flakes (68%); yet the yield increased when 102 

individual protease was added (88%). These findings illustrate the specificity of enzymes 103 

and enzymatic mixtures for any given oil-bearing material. The presence of protein as a 104 

major component in the cell wall of soybean seeds suggests that the oil is released more 105 

easily from the cellular matrix by degrading the proteins, which is achieved by the action of 106 

protease. In the case of rapeseed, pectin is reported to be the major component of its cell 107 

wall (Zhang et al. 2007), hence the highest oil yields, up to 85.9% in emulsified form, has 108 

been reported when pectinase is used which is significantly greater than the values obtained 109 

with other carbohydrases. Zhang et al. (2007) also employed a combination of pectinase 110 



with cellulase and β-glucanase in a ratio of 4:1:1 to result in the highest yield (91.6% 111 

emulsified oil), this marginal enhancement in yield may be attributed to the elimination of 112 

other barriers to the release of oil. Similarly, Szydƚowska-Czerniak et al. (2010) reported 113 

that the application of pectolytic enzyme (ROHAPECT PTE) under optimum conditions 114 

prior to pressing produced higher rapeseed free oil yield (16.5%) as compared to 115 

cellulolytic enzyme (15.5%).  116 

 Different from oilseeds, addition of enzymes is done on the olive paste in the case of olive 117 

fruits, followed by its kneading process as shown in Fig. 1(b). Most studies on extraction of olive 118 

oil involved addition of an enzyme mixture consisting mainly pectinase, cellulase, hemicellulase, 119 

and other minor enzymes. The studies also reported the inadequacies of these enzymes to extract 120 

olive oil if added individually (Aliakbarian et al., 2008; De Faveri et al., 2008; Chiacchierini et 121 

al., 2007).  122 

 In general, a better oil extraction yield can be expected when a judiciously chosen 123 

mixture of enzymes is used because of possible synergy (Passos et al., 2009). However, 124 

according to Rovaris et al. (2012), there was no significant difference in soybean oil yields 125 

when a mixture of Alcalase 2.4 L and Viscozyme was used as compared to a mixture of 126 

Alcalase 2.4 L and Celluclast 1.5 L (29.48% as against 26.82% at pH 4.5; 20.63% as 127 

against 20.23% in the case of uncontrolled pH), even though Viscozyme itself is a mixture 128 

of enzymes. There was also no significant difference in garlic oil yields upon addition of 129 

Viscozyme as compared to addition of individual pectinase, protease, and cellulase as 130 

reported by Sowbhagya et al. (2009). A similar outcome was reported by Tabtabaei and 131 

Diosady (2013) in yellow mustard flour oil extraction when Celluclast 1.5L and Pectinex 132 

Ultra SP-L were used, as against Viscozyme L.  In addition, the use of Alcalase 2.4L and 133 



Protex 7L resulted in highest sesame (Latif & Anwar, 2011) and Moringa oleifera (Latif et 134 

al., 2011) seed oils, respectively, in comparison with Viscozyme L, Protex 7L, Natuzyme, 135 

Kemzyme, and Multifect CX 13L which are essentially mixtures of enzymes (Latif 136 

&Anwar, 2011; Latif et al., 2011). Viscozyme, being a mixture of enzymes, was reported 137 

to have performed better in the case of sunflower oil extraction, which had been proved by 138 

Latif and Anwar (2009). A higher oil yield from bush mango kernel flour was also 139 

observed upon addition of Viscozyme (68.0%) as compared to Alcalase (35.0%) and 140 

Pectinex (42.2%) (Womeni et al., 2008). The different effects of the Viscozyme on oil 141 

yields may be due to the nature of different oil-bearing materials and incubating conditions 142 

employed. 143 

 In a different study conducted by Jiang et al. (2010), five different proteases were 144 

tested to improve peanut oil yield, and the highest oil yield was obtained when Alcalase 145 

was used (73.45%), followed by As1398 (66.36%), Nutrase (60.08%), Protizyme 146 

(55.02%), and Protamex (48.89%). A combination of Alcalase with any of these enzymes 147 

did not increase the oil yield. Therefore, Jiang et al. (2010) only used Alcalase which 148 

reduced the extraction cost, and increased oil yield up to 79.32% under optimum 149 

incubating conditions. Similarly, the use of Neutrase 0.8L resulted in marginally lower 150 

Moringa oleifera oil yield than when its combination with other three enzymes were 151 

employed (Abdulkarim et al., 2006). In the case of flaxseed oil extraction conducted by 152 

Long et al. (2011), the addition of cellulase, pectinase, and hemicellulase, individually, 153 

gave higher yields than  β-glucosidase and proteinase. Therefore, these authors used a 154 

mixture of cellulase, pectinase, and hemicellulase (1:1:1) which resulted in a higher oil 155 



yield of 61.7-66.1% as compared to the oil yield of each individual enzyme. With reference 156 

to Table 2, , Zhang et al. (2007) reported highest yield of 92.7% in the case of rapeseed oil, 157 

however, the oil remained very stably emulsified in the cream. Therefore, an alkaline 158 

extraction was conducted by using Alcalase which resulted in protein degradation along 159 

with an increase in total oil yield.  160 

 Based on the above studies, it is not possible to establish conclusively whether it is 161 

better to use enzymes individually or in combination, although there are numerous 162 

instances where there is a possibility that a mixture can work synergistically. The choice of 163 

enzyme depends on the location of the oil within the cellular architecture and the 164 

biochemical nature of the components surrounding it. It is therefore necessary, not only to 165 

look at the dominant biochemical component holding the cellular matrix together, but also 166 

investigate the cellular architecture and examine the specific components which act as a 167 

barrier against the release of oil. It is only when both these factors are considered 168 

simultaneously, the right enzyme mixture can be identified for a given oil-bearing material. 169 

 170 

2.2. Studies on the use of enzyme as a pre-treatment step prior to extraction  171 

 172 

 Recently, the application of enzyme pre-treatment prior to oil extraction has been 173 

shown to increase yields (Li et al., 2012). The addition of enzymes as a pre-treatment 174 

weakens the cells and facilitate the following oil extraction methods such as mechanical 175 

pressing and solvent treatment. Furthermore, the advantage of employing this approach lies 176 

in the possibility of avoiding the formation of an oil-in-water emulsion that is very difficult 177 



to separate after the extraction processes. The reported enhancement in oil yields with the 178 

use of enzyme pre-treatment is summarized in Table 3. In addition to the higher yield, 179 

Dominguez et al. (1996) also reported that it was easier to extract the sunflower oil 180 

remaining in a mass of pre-treated mechanically pressed cake. In the case of Chilean 181 

hazelnuts, enzyme pre-treatment resulted in significantly lower residual oil in the meal as 182 

reported by Zuniga et al. (2003). Overall, these studies indicate that enzyme pre-treatment 183 

is applicable to various oil-bearing materials and can be employed prior to both mechanical 184 

and solvent extraction methods. The oil yield enhancement is due to the hydrolytic action 185 

of the enzymes on the cell wall and membrane components which facilitate subsequent oil 186 

release.  187 

 188 

2.3. Studies on pre-treatment step prior to enzymatic extraction   189 

 190 

 Some studies have highlighted potential pre-treatment methods, which are not 191 

necessarily enzyme-based that could be followed up by AEE as summarized in Table 4. In 192 

the case of high pressure processing as reported by Jung and Mahfuz (2009), the use of 193 

high pressure induced protein aggregation yet it was further hydrolyzed by protease, thus 194 

facilitated oil removal. On the other hand, Shan Liu et al. (2011) reported that ultrasound 195 

generated cavitations which accelerated the leaching out of cellular components including 196 

oil. The use of extrusion prior to AEE has been extensively studied by Jung and Mahfuz 197 

(2009), Jung et al. (2009), and Wu et al. (2009). According to these authors, protein 198 

aggregates are formed during extrusion but these entrap or interact with the oil. The 199 



interactions could then be disrupted by the use of protease, which result in increasing the 200 

oil and protein yields. These studies have shown the potential of AEE assisted by other pre-201 

treatment methods to increase oil yields.  202 

 203 

2.4. Factors affecting the efficiency of enzymatic extraction 204 

 205 

 Table 5 summarizes the maximum oil yields resulting from various oil-bearing 206 

materials as influenced by the selected and optimized incubating conditions. The key 207 

factors affecting the efficiency of AEE will be discussed separately, below. 208 

 209 

2.4.1.Particle size of the oil-bearing materials 210 

 Most of the early studies did not consider the particle size of the oil-bearing 211 

material as a key factor influencing extraction efficiency (Passos et al., 2009; Rosenthal et 212 

al., 2001). Theoretically, the lower the particle size, the higher the oil yield for a given set 213 

of extraction conditions, which is attributable to higher cell wall disruption during size 214 

reduction as well as the lower diffusion path length for both enzymes and cellular 215 

components. However, according to Passos et al. (2009), materials with high oil content 216 

but exhibiting a weak structure, may collapse and lose their microporosity when treated 217 

with solvents, which can result in non-uniform percolation and be detrimental to extraction 218 

efficiency. In addition, grinding of materials with high oil content into very low particle 219 

sizes may cause the particles to adhere, as reported by Nyam et al. (2009a) in the case of 220 

Kalahari melon seeds. Therefore, in industry, starting materials with very low particle size 221 



are not recommended and there appears to be an optimum size. This illustrates the 222 

importance of selecting the right particle size prior to extraction as had been done by some 223 

authors. Sineiro et al. (1998a) used ground soybean and sunflower seeds having mean 224 

particle size <0.2 mm. The grape seeds used by Passos et al. (2009) were grouped into 225 

different particle size ranges (in mm): <0.50, 0.50-0.60, 0.60-0.71, 0.71-1.0, 1.0-1.4, 1.4-226 

2.0, and >2.0, and increment in oil yield was observed at lower particle sizes. In the case of 227 

linseed oil, Gros et al. (2003) reported no oil recovery from whole linseed kernels, because 228 

the substrate was not accessible to the enzymes added. Instead, the hull broke down and the 229 

kernels expanded due to hydration. On the other hand, when the kernels were crushed to 230 

form different particle sizes including fine powders, the yields improved, particularly after 231 

applying hydraulic pressures (Gros et al., 2003). Similarly, in the case of soybean, the use 232 

of flour resulted in 24% higher yield than the flakes (Jung et al., 2009), while 31% yield 233 

enhancement was reported by Rosenthal et al. (1998) when the particle size was reduced 234 

from 400 µm to 100 µm.  235 

 236 

2.4.2. Enzyme/substrate ratio 237 

 Higher enzyme concentration leads to greater interaction between the enzyme and 238 

substrate, thus promoting cell wall degradation and rupturing more peptide bonds (Teixeira 239 

et al., 2013; Jiang et al., 2010; Dominguez et al., 1996). However, too high enzyme 240 

concentration may result in bitterness and off flavours, as reported by Jiang et al. (2010), 241 

possibly due to the extraction of undesirable components. Most authors have reported 242 

similar trends where the oil yield increased up to certain enzyme concentration only, 243 



followed by steady or decreased rate which may be due to saturation of the substrates 244 

(Jiang et al., 2010), or caramelization of soluble sugars that limit oil release (Zuniga et al., 245 

2003).  In general, the actual concentration used will depend on process economics 246 

especially the cost of enzymes (Long et al., 2011; Zhang et al., 2007), and the quality of 247 

the oil extracted. 248 

 249 

2.4.3. Ratio of water to oil-bearing material 250 

 The water used in AEE not only serves as an extraction medium but also enters the 251 

oil-bearing material and modifies its water activity. The resulting moisture content of the 252 

oil-bearing material can assist hydrolytic reaction, diffusion, and mobility of the enzymes 253 

and products (Yang Li et al., 2011; Zhang et al. 2007; Sineiro et al., 1998a; Dominguez et 254 

al., 1996). On the other hand, very low moisture content results in the formation of thick 255 

suspensions which can prevent the enzymes from effectively penetrating into the substrate 256 

(Zhang et al., 2007). Sineiro et al. (1998a) reported that only certain 'areas' in sunflower 257 

kernels were degraded by enzymes at low moisture content. Although, materials with 258 

higher water activity demonstrate higher extraction efficiency (Soto et al., 2007), the 259 

presence of excessive moisture content in the oil-bearing material can decrease the 260 

concentration of enzymes and substrates, and have an adverse effect on extraction (Yang Li 261 

et al., 2011; Zhang et al., 2007; Dominguez et al., 1996). Therefore, selection of 262 

appropriate moisture content is critical for the success of AEE.  263 

   264 

2.4.4. pH of extraction medium  265 



 The pH at which enzymes attain maximum activity varies with the enzyme. In most 266 

earlier studies, the pH value of the solution, be it for soaking pre-treatment or extraction 267 

itself, was set at a value corresponding to maximum enzyme activity (Latif & Anwar, 2011; 268 

Jung & Mahfuz, 2009; Wu et al., 2009; Abdulkarim et al., 2005; Rosenthal et al., 2001; 269 

Sineiro et al., 1998). However, the optimum pH of a number of enzymes is in the range of 270 

the isoelectric pH of proteins which depends on the nature of the oilseeds; since proteins 271 

are highly insoluble in this range of pH, oil release may get inhibited. Therefore, the pH 272 

value employed must not only be conducive for the action of enzymes but it should also be 273 

remote from protein isoelectric point (Tabtabaei & Diosady, 2013; Wu et al., 2009; Sineiro 274 

et al., 1998; Rosenthal et al., 1996). This is yet another reason why many authors 275 

considered using a mixture of enzymes which demonstrates high activity at pH values 276 

remote from the isoelectric point and remain effective for oil extraction. The enzymes are 277 

able to solubilize and hydrolyze the proteins besides disrupting other polysaccharide 278 

constituents which facilitate oil release (Rovaris et al., 2012; Latif & Anwar, 2011; Passos 279 

et al., 2009). Long et al. (2011) had used a mixture of cellulase, pectinase, and 280 

hemicellulase (1:1:1) at pH 4.5-5.0 which resulted in highest flaxseed oil yield (73.9%) as 281 

compared to oil yield of each individual enzyme. In the case of soybean oil, at pH 4.5, 282 

Rovaris et al. (2012) used a mixture of Alcalase 2.4L and Celluclast 1.5L which resulted in 283 

26.82% oil (20.63% in the case of uncontrolled pH), and a mixture of Alcalase 2.4 L and 284 

Viscozyme which resulted in 29.48% oil (20.23% in the case of uncontrolled pH). A 285 

number of studies have also used ProtizymeTM for the AEE (Jiang et al., 2010; Gaur et al., 286 

2010; Sharma et al., 2002). ProtizymeTM, being a mixture of proteases, possess different 287 



optimum pH which allowed selection of any incubating pH sensitive to the isoelectric point 288 

of the major protein fraction of the seeds. Overall, proper pH selection critically influences 289 

yields of oil and other components in AEE .   290 

 291 

2.4.5. Incubation temperature 292 

 Besides being active over a narrow range of pH, enzymes also active over a narrow 293 

temperature interval. According to Rui et al. (2009), the optimum temperature range for 294 

enzymatic hydrolysis is between 40-55 ⁰C, thus many authors employ AEE temperatures 295 

which fall within this range. In practice, one often prefers to use the lowest possible 296 

temperature yielding adequate activity (Passos et al., 2009). In the case of olive fruits, a 297 

lower temperature of 30 ⁰C was found to be favourable especially to preserve the oil 298 

quality (Aliakbarian et al., 2008; De Faveri et al., 2008; Ranalli et al., 2003; Garcia et al., 299 

2001; Ranalli et al., 1999). Gros et al. (2003) also used a temperature of 34 ⁰C for similar 300 

reason in linseed oil extraction. A significant effect of temperature on oil yield was 301 

reported by Sharma et al. (2002), where highest peanut oil yield was observed at 40 ⁰C, but 302 

it decreased significantly when the temperature was reduced to 37 ⁰C. According to Zúniga 303 

et al. (2003), at temperatures greater than 45 ⁰C, enzymatic hydrolysis begins to decrease 304 

due to enzyme inactivation which leads to lower oil yield. The oil release from the cells 305 

may also be limited due to presence of soluble sugars in the composition which can 306 

undergo caramelization during the drying stage. Therefore, similar trends were reported 307 

from most of the conducted studies, where the oil yield increased up to certain temperature 308 

only, followed by steady or decreased rate afterwards. Thus, besides the oil yield, the oil 309 



quality characteristics must also be taken into consideration when selecting AEE 310 

temperature.   311 

 312 

2.4.6. Incubation time 313 

 According to Jiang et al. (2010), Abdulkarim et al. (2006), Santos and Ferrari 314 

(2005), and Dominguez et al. (1996), degradation of cell wall components can be enhanced 315 

by prolonging the incubation time. Passos et al. (2009) also reported that the use of an 316 

enzyme mixture of cellulase, protease, xylanase, and pectinase for 120 hr resulted in 3.8% 317 

higher yield as compared to 24 hr of incubation time. However, this time duration (i.e. 120 318 

hr) is far too long to be acceptable in practice (Passos et al., 2009), lower oil quality may 319 

result (Jiang et al., 2010), leading to high energy usage and production of undesirable 320 

products (Abdulkarim et al., 2006). In addition, Rui et al. (2009) highlighted that longer 321 

incubation time of AEE in relation to other solvent extraction methods is one of the 322 

disadvantages of AEE. In some cases, the oil yield decreased after a certain incubation 323 

period because the whole substrates have reacted with the enzymes; leaving negligible 324 

substrates left for further enzymatic reaction to take place (Zhang et al., 2007). On the 325 

whole, these studies have shown that although oil yield may increases with time, the rate of 326 

increase may be far too slow to warrant extended operations, and the oil quality may also 327 

get compromised.  328 

 329 

2.4.7. Agitation rate 330 



 According to Rosenthal et al. (1998) and Sineiro et al. (1998a), agitation assists in 331 

mixing and additional rupture of the cell wall, and agitation rate is one of the factors 332 

affecting the disruption of cell wall. Abdulkarim et al. (2006) reported that the agitation 333 

rates of 50 and 80 rpm were not adequate to separate the Moringa oleifera oil from other 334 

seed components, thus resulted in lower oil yield than at 120 rpm. At this agitation rate of 335 

120 rpm, bigger oil droplets were observed to accumulate at the surface which enabled 336 

easier separation. A similar observation was reported at 80 rpm in extraction of peanut oil 337 

(Sharma et al., 2002) and at 100 rpm in the extraction of Kalahari melon seed oil (Nyam et 338 

al., 2009a). On the other hand, the use of higher speeds leads to higher energy consumption 339 

and cost (Rosenthal et al., 1998), besides resulting in the formation of a more stable oil-340 

aqueous phase emulsion that is difficult to separate (Nyam et al., 2009a; Abdulkarim et al., 341 

2006; Sharma et al., 2002, Hanmoungjai et al., 2000). These studies highlight the 342 

importance of selecting appropriate agitation rate that will result in the highest oil yield 343 

possible, considering both the oil recovered and emulsion stability at the end of the AEE 344 

process.  345 

 346 

2.5. Multi factorial studies on AEE 347 

 348 

 A number of authors have employed statistical methods to indicate the relative 349 

importance of the AEE parameters listed above. According to Rosenthal et al. (2001), 350 

soybean oil yield was significantly influenced by the type of enzyme used, the particle size 351 

of the ground seeds, the ratio of water to oil-bearing material, and the interaction between 352 



the two latter parameters. However, according to Hanmoungjai et al. (2001), only the 353 

enzyme concentration had the most significant effect on the extraction of rice bran oil, 354 

while both the incubation time and temperature did not significantly affect the oil yield. 355 

Different AEE parameters used for other samples such as bayberry kernels (Zhang et al., 356 

2012), kalahari melon seeds (Nyam et al., 2009a), palm fruit (Teixeira et al., 2013), peanuts 357 

(Jiang et al., 2010), and pine kernels (Yang Li et al., 2011) also had different degree of 358 

significant effect on oil yield. These studies show that it is almost impossible to generalize 359 

which factor is important and which is not, for a given material. It is necessary to undertake 360 

an experimental investigation before designing and scaling up an AEE process.  361 

  362 

3. De-emulsification methods for aqueous enzymatic process (AEED)   363 

When oil is extracted into an aqueous enzymatic phase, it inevitably forms an emulsion, 364 

which is often difficult to separate because of the added stability imparted by the 365 

interfacially active cellular components which are also extracted in the same process. It is 366 

therefore necessary to carefully consider the techniques employed to separate the oil, 367 

because the final yield and oil quality, and the economic viability of the process, will 368 

depend critically on de-emulsification steps.  When AEE is followed by a centrifugation 369 

step, besides oil, other fractions recovered include a skim and a cream emulsion (Figure 370 

1(a)). The cream emulsion is very stable due to its protein content which acts as an 371 

excellent emulsifier. Addition of suitable enzymes to the cream emulsion may be able to 372 

separate the oil, and in this paper as had been mentioned earlier, this particular sequence of 373 

process is termed as aqueous enzymatic emulsion de-emulsification (AEED). The enzymes 374 



used in the AEED processes were also listed in Table 1. In this method, the enzymes added 375 

to the cream emulsion hydrolyze the interfacial proteins, thus reducing their molecular size 376 

and decreasing the rigidity of the oil droplet interface. The enzymes also remove the high 377 

molecular weight polypeptides which may occupy the emulsion interface and further 378 

reduce the interfacial membrane thickness. These enzymatic reactions lead to greater oil 379 

droplet coalescence and assist in free oil release (Tabtabaei & Diosady, 2013; Raghavendra 380 

& Raghavarao, 2010; Chabrand & Glatz, 2009; Jung & Mahfuz, 2009; Marina et al., 2009; 381 

Wu et al., 2009; Chabrand et al., 2008). The original enzymes used in the AEE may also be 382 

carried out into the cream emulsion and assist hydrolytic reactions if suitable incubating 383 

conditions were employed (Chabrand & Glatz, 2009; Jung et al., 2009). The free oil yield 384 

is commonly expressed as a percentage based on the initial weight of the cream emulsion. 385 

 In the case of oil-bearing coconut milk, the emulsion needs to be destabilized in 386 

order to obtain virgin coconut oil as shown in Figure 1(c). According to Jena and Das 387 

(2006), Garcia et al. (2005), Tangsuphoom and Coupland (2005), and Balasundaresan et al. 388 

(2002), coconut milk emulsion is low in stability due to its high fat content and the 389 

presence of coconut proteins (~65% is globulin known as cocosin) with low emulsifying 390 

properties. Therefore, these authors noted that the separation was not too challenging and 391 

concluded that the oil droplets were prone to undergo aggregation and tended to separate. 392 

In contrast, Marina et al. (2009), Tangsuphoom and Coupland (2008), Peamprasart and 393 

Chiewchan (2006), and McGlone et al. (1986) reported that a coconut cream emulsion was 394 

highly stable due to presence of natural phospholipids and coconut proteins (mainly 395 

globulins and albumins) which requires extra energy to be destabilized. It is not uncommon 396 



to find such conflicting reports in literature, in this area, which is principally because, most 397 

papers do not take a holistic view on the whole process. Whether the downstream de-398 

emulsification is challenging or not depends on the process conditions employed during 399 

AEE. If the conditions employed are such that the emulsion formed is very stable, then the 400 

de-emulsification will naturally become challenging. On the other hand, careful process 401 

design upstream, and use of conditions that do not favour the formation of a stable 402 

emulsion whilst releasing significant yields of oil, will simplify de-emulsification and 403 

enhance free oil yields and oil quality.  404 

 405 

3.1. Studies comparing different enzymes for de-emulsification of cream emulsion  406 

 407 

 Table 5 summarizes the types of enzymes and the incubating conditions used in 408 

AEED methods for maximum free oil yields. In the case of yellow mustard flour, Tabtabaei 409 

and Diosady (2013) reported that Protex 6L possessed greater efficiency in the de-410 

emulsification process, as compared to other proteases and carbohydrases tested. Lipomode 411 

(Phospholipase A2), being one of the carbohydrases, resulted in the production of 412 

lysophospholipids which is an emulsifier, thus increased the emulsion stability and 413 

decreased the free oil yield. Lysophospholipids also present in small amount in G-ZYME 414 

G999, resulted in an insignificant increase in the free oil yield. In the case of soybean oil, 415 

Lamsal and Johnson (2007) concluded that the use of Phospholipase C resulted in higher 416 

free oil yield (73±5%) as compared to the mixture of LysoMaxTM and G-ZYME G-999 at 417 

1:1 ratio (68±9%) under the optimum pH and temperature of the enzymes. Wu et al. (2009) 418 



have also reported that the use of enzymes shown in Table 5 at their optimum pH and 419 

temperature resulted in total de-emulsification of the cream emulsions, either the enzymes 420 

had been used individually or in combination, or sequentially. These studies indicated that 421 

the free oil yield depends on the stability of the cream emulsion which is mainly affected 422 

by the AEE, besides the incubating conditions of the AEED which are discussed below. 423 

 424 

3.2. Factors affecting the efficiency of enzymatic de-emulsification 425 

 426 

3.2.1. Enzyme concentration 427 

 Generally, the use of higher enzyme concentration resulted in higher free oil yield. 428 

According to Jung et al. (2009), at 25 ⁰C, the use of Protex 6L resulted in higher free 429 

soybean oil yield of 96% at 2.5% (w/w) concentration when compared to a 85-89% yield 430 

while employing enzyme at 1.25% (w/w). Similarly, Wu et al. (2009) reported that free 431 

soybean oil yield increased with increasing enzyme concentration starting from 0.2% 432 

(w/w). In this study, when the LysoMaxTM enzyme was used at a concentration lower than 433 

0.2% (w/w), the enzyme modified soybean phospholipids and caused the production of an 434 

emulsifier known as lysolecithin. This emulsifier enhanced the stability of the cream 435 

emulsion and therefore resulted in lower free oil yield. In addition, according to Wu et al. 436 

(2009), increasing the LysoMaxTM enzyme concentration did not increase the oil droplets 437 

size. These authors also reported that in the concentration range of 0.2-2.0% (w/w), the use 438 

of Protex 51FP resulted in higher free oil yield as compared to the LysoMaxTM which 439 

indicated the dominant role of soybean protein in stabilizing the cream emulsion.  440 



 441 

3.2.2. pH value 442 

 As had been discussed earlier (section 2.4.4), different enzymes possess different 443 

optimum pH where maximum activity is observed. Therefore, most studies employed the 444 

optimum pH of the enzyme used in order to obtain the highest free oil yield (Table 5). In 445 

the case of soybean oil, according to Wu et al. (2009), the oil droplet size and free oil yield 446 

increased when the pH was lowered to 4.5, but not lower than 4.0. At the pH of 4.5, which 447 

is the isoelectric point of soy protein, electrostatic repulsion between oil droplets decrease,  448 

thus further enhancing oil droplets coalescence, formation of larger oil droplets, and higher 449 

free oil yield (Wu et al., 2009). In a study conducted by Chabrand and Glatz (2009), the 450 

authors reported as high as 83% free soybean oil yield when the pH of the cream emulsion 451 

was reduced to pH 4.5, and addition of enzyme (G-ZYME G999) at this similar pH 452 

increased the free oil yield up to 100%. Similarly, Wu et al. (2009) reported that the use of 453 

G-ZYME G999 and Protex 50FP separately at pH 4.5 resulted in 100% free oil yield. 454 

These authors suggested that the combination of enzymatic reaction and pH reduction leads 455 

to coalescence of the oil droplets and formation of much bigger droplets than when 456 

enzymes are not used. Chabrand and Glatz (2009) had also reported the use of high pH on 457 

the free soybean oil yield. At pH 9, only 2% of free oil yield was recovered. With the use 458 

of enzymes (i.e. AEED) at pH 8 which was the original pH of the cream emulsion, no free 459 

oil yield was obtained. Similarly, Wu et al. (2009) reported that the free soybean oil yield 460 

decreased when the pH was increased beyond pH 4.5 up to pH 8. Therefore, the 461 

significance of enzymes addition at suitable pH values for higher free oil yield is clear.  462 



 463 

3.2.3. Incubation time and temperature  464 

 Similar to the pH value, different enzymes possess different optimum temperature 465 

where maximum activity is observed. Therefore, most earlier studies employed the 466 

optimum temperature reported for the enzyme used in order to obtain highest free oil yield 467 

(Table 5). Jung et al. (2009)reported the effect of different de-emulsification temperatures 468 

and times on the free soybean oil yield when Protex 6L was used. Prolonged incubation 469 

time from 2 min to 90 min enhanced the free oil yield from 86% to 100% at 65 ⁰C. 470 

However, the incubation time did not affect the free oil yield at lower temperatures of 25 471 

⁰C and 50 ⁰C. Increment of temperature from 50 ⁰C to 65 ⁰C also increased the free oil 472 

yield from 90% to 100% after incubation for 90 min. In the case of coconut milk de-473 

emulsification, Raghavendra and Raghavarao (2010) reported a higher free oil yield when 474 

the use of enzyme was followed by chilling and thawing. In this case, a higher free oil yield 475 

of 94.5% was reported at a higher temperature of 37 ⁰C as compared to 91.0% yield at 25 476 

⁰C, because according to these authors, most enzymes possess an optimum temperature of 477 

37 ⁰C. In addition, chilling resulted in packed oil bodies which are easier to separate 478 

(Raghavendra & Raghavarao, 2010).  479 

 It is also possible to demulsify without the use of enzymes as reported by Jung et al. 480 

(2009). In this study, the increase in temperature from 50 ⁰C to 65 ⁰C increased the free oil 481 

yield from 75% to 94%. According to the authors, the significant increase in free oil yield 482 

may be due to the action of remaining protease in the cream emulsion which was carried 483 

out from the AEE. In the case of yellow mustard flour, Tabtabaei and Diosady (2013) 484 



subjected the emulsion recovered after AEED process to an alkaline treatment which 485 

resulted in higher oil yield than AEED alone.  486 

 Other processing parameters such as shaking, de-canting, and stirring may also 487 

influence de-emulsification efficiency (Jung et al., 2009).  488 

    489 

4. Oil characteristics  490 

Most authors have reported the effects of extraction methods on the oil characteristics 491 

which are summarized in Table 6. With reference to the table, the oil yields from most of 492 

the enzyme treatments were lower in oxidative deterioration and rancidity, indicated by the 493 

lower free fatty acids and peroxide values as compared to the yields from solvent 494 

treatments. It was assumed that the high temperature used during the solvent extraction 495 

resulted in lower oxidative quality of the oils (Latif et al., 2011; Latif & Anwar, 2011; Latif 496 

& Anwar, 2009; Latif et al., 2008). The peroxide value of rice bran oil extracted by solvent 497 

was also higher than that extracted enzymatically, but the difference was too small to the 498 

limit industrial application (Hanmoungjai et al., 2001). In contrast, Kalahari melon seed oil 499 

from AEE process gave higher free fatty acid and peroxide value than solvent extracted oil. 500 

This may be due to the lipase activity in the seeds during the initial heating in the case of 501 

AEE process (Nyam et al., 2009).  502 

 With reference to Table 6, some of the enzymatically extracted oils gave higher 503 

iodine value (IV)  than aqueous and solvent extracted oils. Hanmoungjai et al. (2001) and 504 

Long et al. (2011) reported that the higher IV indicated higher polyunsaturated fatty acid 505 

content which therefore suggested a higher antioxidant activity. In addition, highest total 506 



tocopherols was observed in most seed oils obtained from the AEE, followed by aqueous 507 

and solvent extracted oils. It was suggested that the higher temperature employed in the 508 

solvent treatment reduced the tocopherol content in the oil (Latif et al., 2011; Latif & 509 

Anwar, 2011). The total tocopherols in olive oils reported by Ranalli et al. (2001) and 510 

Ranalli et al. (2003) were also higher when AEE was employed as compared to aqueous 511 

extractions without enzymes. In contrast, Nyam et al. (2009) reported lower total 512 

tocopherol content in the Kalahari melon oil obtained by AEE than solvent extraction 513 

method. This may be due to the production of components during the digestion process in 514 

the AEE that can influence the amount of non-saponifiable matter, including tocopherols 515 

(Gunstone, 2000),   516 

 In terms of total phenolic content, the values varied with different oil-bearing 517 

materials, extraction methods employed, and the types of enzymes used in the AEE 518 

process. In the case of olive oil, AEE resulted in higher total phenolic content than the 519 

aqueous extractions without enzymes. This may be due to cell wall hydrolysis by the 520 

enzymes used which further assists partitioning of the phenolics into the oil. The phenolic 521 

content positively influences oxidative stability, shelf life, nutritional, sensory, and health 522 

properties of the olive oil, besides flavour which got a greater sensory score (Latif & 523 

Anwar, 2009, 2011; Aliakbarian et al., 2008; Ranalli et al., 2003; Ranalli et al., 1999; 524 

Ranalli & De Mattia, 1997). Najafian et al. (2009) also reported that at higher enzyme 525 

concentration, the phenolic content increased whilst the oil turbidity decreased, which may 526 

be due to the enzymatic effect in reducing the amount of colloidal particles.  527 



 In terms of the fatty acid compositions (FAC), most authors reported similarities 528 

between the oils obtained from solvent and enzymatic extraction methods (Teixeira et al., 529 

2013; Li et al., 2012; Zhang et al., 2012; Latif et al., 2011; Latif & Anwar, 2009, 2011; 530 

Jung et al., 2009; Nyam et al., 2009, 2009a; Latif et al., 2008). In a study conducted by Rui 531 

et al. (2009), the FAC of the pitaya oil obtained from microwave-pre-treated enzyme 532 

treatment was similar to the recommended FAC by the US dietary standard. Rui et al. 533 

(2009) suggested that microwave irradiation enhanced volumetric swelling of the cells in 534 

the seed kernels which caused cell walls rupture, while the enzymes hydrolyzed the cell 535 

wall and the bonds between the protein or pectin. A combination of these methods led to 536 

extraction of pitaya oil with varying fatty acid types as compared to  other methods. In the 537 

case of flaxseed oil, Long et al. (2011) reported that the oil yield from enzyme-pre-treated 538 

ultrasonication possessed higher monounsaturated and polyunsaturated fatty acids than the 539 

flaxseed oil obtained by solvent extraction. According to the authors, the use of water 540 

allowed diffusion of water-soluble components instead of the oil. Therefore, the oil 541 

possessed approximately similar FAC as the original flaxseed oil (Long et al., 2011).  542 

 In addition to the characteristics listed in Table 6, the colour intensity of oil had also 543 

been reported in some studies based on red and yellow units; higher values of these units 544 

correspond to higher colour intensity. In the case of Moringa oleifera seeds, according to 545 

Latif et al. (2011) and Abdulkarim et al. (2006), the different enzymes used in the AEE 546 

processes act on different components of the seeds which resulted in oil yields having 547 

different colour intensity. However, the difference was more significant between the oil 548 

obtained by AEE and solvent extraction methods, which is similar to the results reported by 549 



Nyam et al. (2009) and Latif et al. (2008) for Kalahari melon and canola seed oil, 550 

respectively. The solvent-extracted oil had higher colour intensity which may due to the 551 

pigments extracted by the solvent into the oil, such as carotenes and chlorophylls. The oil 552 

obtained from AEE process may not need refining due to low colour intensity which 553 

reduces the processing costs (Latif & Anwar, 2009; Nyam et al., 2009; Latif et al., 2008; 554 

Abdulkarim et al., 2006, Abdulkarim et al., 2005).  555 

 Besides the colour of the oils, the sterols were also significantly lower in oil 556 

obtained by AEE than solvent extracted oil, which suggests the ability of the solvent used 557 

to extract lipid-soluble components (Nyam et al., 2009). In addition to these characteristics, 558 

Sowbhagya et al. (2009) reported that the use of enzymes as a pre-treatment prior to steam 559 

distillation or hydrodistillation resulted in garlic oil with higher concentration of dithiins 560 

which possess health benefits and highly desirable from a nutraceutical point of view. In 561 

the case of soybean oil, with the use of enzymes, Jung et al. (2009) reported lower 562 

phosphorus content (<200ppm) which comply with the specification of the National 563 

Oilseed Processors Association trading rules for crude degummed soybean oil. In a study 564 

done by Ranalli et al. (1999), the Cytolase 0 enzyme used in olive oil extraction was 565 

harmless and water-soluble. Therefore, after the enzyme exerted all its effects on oil 566 

extraction, it came out into the water (i.e. olive juice) and left no residue in the oil. Thus the 567 

olive oil composition was not modified. 568 

 In extraction of virgin coconut oil from coconut milk emulsion, a combination of 569 

AEED, chilling, and thawing for the coconut milk destabilization resulted in highest 570 

creaming index as compared to other destabilization methods which indicated faster oil 571 



droplets movement and higher droplets aggregation. As compared to commercial coconut 572 

oil sample, the coconut oil possessed higher caprylic (9.4%), capric (6.3%), and medium 573 

chain (69.7%) fatty acids. These fatty acid types are known to impart health benefits, and 574 

contribute to higher oxidative stability to the oil itself. In addition, the resulting coconut oil 575 

was also lower in acid value (0.27%) which also corresponds to lower free fatty acids, as 576 

compared to the commercial coconut oil (0.91%). The free fatty acids are responsible for 577 

undesirable flavour in the oil. Therefore overall, the coconut oil obtained from AEED 578 

followed by chilling and thawing seems to possess greater oxidative stability, and the 579 

attributes measured were within the Asian and Pacific Coconut Community standards 580 

(Raghavendra & Raghavarao, 2010). 581 

 Overall, enzyme based extraction methods result in oils with better characteristics 582 

as compared to oil obtained from solvent and aqueous extraction methods. Therefore, 583 

further studies are desirable to enable industrial application by scaling up.  584 

 585 

5. Potentials for re-using enzymes in enzymatic extraction methods   586 

Rosenthal et al. (1996) highlighted the possible alternatives for improvement of aqueous 587 

extraction, including the use of enzymes (i.e. AEE), the optimization of both extraction and 588 

de-emulsification processes, utilization of membrane technology, and the potential of water 589 

recycling (i.e. enzyme recycling in the case of AEE). Enzyme recycling may assist in 590 

reducing the cost of AEE which bears the potential to compete with conventional 591 

extraction method based on the market price commanded by the oil (Nyam et al., 2009a)    592 



 According to Jung et al. (2009), after conducting AEE (Protex 6L) to produce 593 

soybean oil, the aqueous phase recovered contained 84.7% of the remaining Protex 6L 594 

activity. After separation, a major part of this enzyme activity was recovered in the skim 595 

fraction (Jung et al., 2009). Similarly, 100% of Protex 6L activity remained in the skim 596 

fraction in a study conducted by Chabrand and Glatz (2009). These findings indicate the 597 

possibility of recovering and re-using the skim fraction as a source of water and enzyme at 598 

the upstream end of the process (Jung et al., 2009). In addition, Jung et al. (2009) reported 599 

lower Protex 6L activity in the cream emulsion, yet adequate to increase the free oil yield 600 

with the use of suitable incubation time and temperature. Droplet coalescence was also 601 

promoted by the gentle stirring during the incubation of the cream emulsion (Jung et al., 602 

2009). 603 

 Studies concerning the enzyme recycling were conducted in order to improve 604 

process economics and lower the environmental impact of the process. Another method 605 

which has gained recent interests is the enzyme immobilization, where the enzymes are 606 

separated from the treated products before being re-used. It was reported that the separated 607 

enzymes possessed enhanced stability (Long et al., 2011; Wan et al., 2008; Roy et al., 608 

2004). The increasing demands on enzyme-based methods have resulted in production of 609 

more enzymes at lower production costs (Roy et al., 2004; Mondal et al., 2003; Sharma et 610 

al., 2003; Chase, 1994).     611 

 612 

6. Concluding remarks 613 



This review has highlighted the main process, advantages, and disadvantages of AEE and 614 

AEED as alternative methods for conventional solvent based extraction methods. In order 615 

to enhance the oil yield, a combination of AEE with other non-enzymatic processing 616 

methods prior to, or after AEE, has been widely conducted and relevant studies have been 617 

reviewed in this paper. The process factors influencing AEE and AEED efficiencies, as 618 

well as the oil characteristics, have also been discussed. On the whole, the process factors 619 

are correlated with each other, and statistical optimization is currently the best solution for 620 

investigating the interacting effects between the contributing factors for obtaining highest 621 

oil yield with favourable quality. The high cost of enzymes and production of lower oil 622 

yield than that of solvent extraction method have been the major drawbacks of AEE 623 

process. Despite the problems, the interest in this method for oil and protein extraction has 624 

progressively increased due to the perceived environmental advantages.  625 
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Table 1. Commercial enzymes used for aqueous enzymatic extraction (AEE) and aqueous enzymatic emulsion 

de-emulsification (AEED) processes: descriptions and compositions.  

Enzymes commercial names Description/Composition Reference 

 

Single enzyme 

Alcalase® Protease Womeni et al. (2008) 

Alcalase 2.4L Protease Rosenthal et al. (2001) 

Latif & Anwar (2009) 

Jiang et al. (2010) 

Latif & Anwar (2011) 

Rovaris et al. (2012) 

Tabtabaei & Diosady (2013) 

As1398 Protease Jiang et al. (2010) 

Celluclast 1.5L® Cellulase Dominguez et al. (1996) 

Sineiro et al. (1998) 

Abdulkarim et al. (2006) 

Rovaris et al. (2012) 

Tabtabaei & Diosady (2013) 

Teixeira et al. (2013) 

Flavourzyme® 1000 L Protease Nyam et al. (2009) 

Nyam et al. (2009a) 

Glucanex Glucosidases Garcia et al. (2001) 

G-ZYME® G999 Lysophospholipase A1 Chabrand & Glatz (2009) 

Wu et al. (2009)  

Tabtabaei & Diosady (2013) 

Lipomod 699L Phospholipase A2 Tabtabaei & Diosady (2013) 

LysoMaxTM Phospholipase A2 Wu et al. (2009) 

Multifect Neutral® Protease Lamsal & Johnson (2007) 

Neutrase 0.8L Bacterial neutral protease Abdulkarim et al. (2005) 

Abdulkarim et al. (2006) 

Nyam et al. (2009) 

Nyam et al. (2009a) 

Nutrase Xylanase Jiang et al. (2010) 

Papain Protease Jiang et al. (2010) 

Pectinase 1.06021 Pectinase Najafian et al. (2009) 

Pectinase Multieffect FE® Pectinase Teixeira et al. (2013) 



Pectinex® Pectinase Womeni et al. (2008) 

Pectinex Ultra SP Pectinase Dominguez et al. (1996) 

Pectinex Ultra SP-L Pectinase Abdulkarim et al. (2006) 

Tabtabaei & Diosady (2013) 

Promozyme Pullulanase  Shah et al. (2005) 

Protamex Protease Jiang et al. (2010) 

Protex 6L Alkaline serine endopeptidase Chabrand & Glatz (2009) 

Jung et al. (2009) 

Wu et al. (2009) 

Shan Liu et al. (2011) 

Xiaonan Sui et al. (2011) 

Tabtabaei & Diosady (2013) 

Protex 7L Natural metallo endopeptidase 

 

Latif et al. (2008) 

Chabrand & Glatz (2009) 

Jung & Mahfuz (2009) 

Latif & Anwar (2009) 

Wu et al. (2009) 

Latif & Anwar (2011) 

Latif et al. (2011) 

Protex 30L Alkaline serine endopeptidase Chabrand & Glatz (2009) 

Protex 50FP Acid fungal endopeptidase-

exopeptidase complex 

Wu et al. (2009) 

Protex 51FP Neutral fungal endopeptidase-

exopeptidase complex 

Wu et al. (2009) 

Tabtabaei & Diosady (2013) 

Protex 89L Endopeptidase Tabtabaei & Diosady (2013) 

ROHALASE® OS Cellulase Szydƚowska-Czerniak et al. 

(2010) ROHAPECT® PTE Pectinase 

Termamyl 120L α-amylase Abdulkarim et al. (2006) 

 

Enzymes mixture 

Bioliva Cellulase, hemicellulase, pectinase, 

other minor enzymes 

Ranalli et al. (2003) 

Cytolase 0 Cellulase, hemicellulase, pectinase, 

other minor enzymes 

Ranalli et al. (1999) 

Ranalli et al. (2003) 

Kemzyme Cellulase complex, hemi-cellulase 

complex, α-amylase, β-glucanase, 

protease, xylanase  

Latif & Anwar (2009) 

Latif & Anwar (2011) 

Latif et al. (2011) 



Maxoliva Cellulase, hemicellulase, pectinase, 

other minor enzymes 

Ranalli et al. (2003) 

Multifect CX 13L Cellulase, hemicellulase, β-glucanase, 

arabinoxylans 

Latif et al. (2008) 

Latif et al. (2011) 

Multifect Pectinase FE Pectinase, cellulase, hemicellulase Latif et al. (2008) 

Natuzyme Cellulase, xylanase, phytase, α-

amylase, pectinase 

Latif et al. (2008) 

Latif & Anwar (2009) 

Latif & Anwar (2011) 

Latif et al. (2011) 

Olivex  Cellulase, hemicellulase, pectinase  Garcia et al. (2001) 

Olivex-Celluclast 50%: Cellulase, hemicellulase pectinase 

50%: Cellulase, hemicellulase 

Soto et al. (2007) 

Pectinex Ultra SP-L Cellulase, pectinase, xylanase  Shah et al. (2005) 

Najafian et al. (2009) 

Tabtabaei & Diosady (2013) 

ProtizymeTM Three different proteases with pH 

optima 3-4, 5-7, 7-10 

Sharma et al. (2002) 

Gaur et al. (2007) 

Jiang et al. (2010) 

Rapidase® Liq plus Hemicellulases, pectinases, cellulases Gros et al. (2003) 

Viscozyme® (Carbohydrases): Cellulase, 

hemicellulase, arabinase, xylanase, 

amylase, β-glucanase 

Sowbhagya et al. (2009) 

Womeni et al. (2008) 

Viscozyme L (Carbohydrases): Cellulase, 

hemicellulase, arabinase, xylanase, β-

glucanase 

Latif & Anwar (2009) 

Latif & Anwar (2011) 

Latif et al. (2011) 

Rovaris et al. (2012) 

Tabtabaei & Diosady (2013) 

 

 

 

 

 

 

 

 

 



Table 2. Oil yield difference between the aqueous and aqueous enzymatic extraction, and between solvent and aqueous enzymatic extraction methods. 

Oil-bearing material Type of enzyme Difference in oil yield (%) Reference 

Aqueous extraction 

and aqueous 

enzymatic extraction 

Solvent treatment 

and aqueous 

enzymatic extraction 

Crushed borage seeds (≤2.0 mm) Olivex / Celluclast (1:1) 7.80 - Soto et al. (2007) 

Extruded soybean flakes Protease 20.00 - Lamsal et al. (2006) 

Multifect Neutral® 13.40 - Lamsal & Johnson (2007) 

Protex 7L 22.10 - Jung & Mahfuz (2009) 

Protex 51FP 16.00a - Wu et al. (2009)  

Protex 6L 20.00a - 

Protex 7L 17.00a - 

Ground canola seeds Multifect CX 13L 9.50 17.10 Latif et al. (2008) 

Protex 7L 6.90 19.70 

Natuzyme 6.20 20.40 

Ground Jatropha seed kernels 

(inedible) 

ProtizymeTM   26.00  Shah et al. (2005) 

Ground Kalahari melon seeds Neutrase 0.8L  9.58 Nyam et al. (2009a) 

Flavourzyme 1000L  8.67 

Ground Moringa. oleifera seeds Neutrase 0.8L  8.20 Abdulkarim et al. (2005) 

Neutrase 0.8L 12.12 9.39 Abdulkarim et al. (2006) 

Termamyl 120L 10.15 11.36 

Pectinex Ultra SP-L 6.98 14.53 

Celluclast 1.5L 10.12 11.39 

Neutrase 0.8L / Termamyl 120L / 

Pectinex Ultra SP-L / Celluclast 1.5L 

12.83 8.68 



Natuzyme  9.10 23.30 Latif et al. (2011) 

Kemzyme 10.30 22.10 

Multifect CX 13L 14.00 18.40 

Protex 7L 14.70 17.70 

Viscozyme L 13.10 19.30 

Ground peanuts Alcalase 42.86 - Jiang et al. (2010) 

As1398 35.77 - 

Nutrase 29.49 - 

Protizyme 24.43 - 

Protamex 18.30 - 

ProtizymeTM - 3.36-5.88 Sharma et al. (2002) 

Papain - 10.08 

Chymotrypsin - 16.38 

Trypsin - 13.86 

Ground sesame seeds Alcalase 2.4L 12.50 25.40 Latif & Anwar (2011) 

Natuzyme 4.50 33.40 

Protex 7L 6.40 31.50 

Viscozyme L 9.10 28.80 

Kemzyme 4.20 33.70 

Ground sunflower seeds (0.75-1 

mm) 

Celluclast 1.5L 35.00 - Sineiro et al. (1998) 

Ground sunflower seeds Alcalase 2.4L 8.30 18.90 Latif & Anwar (2009) 

Kemzyme 13.90 13.30 

Natuzyme 17.20 10.00 

Protex 7L 10.00 17.20 

Viscozyme L 21.40 5.80 

Heat-treated soybean flour Alcalase 2.4L 16.90 - Rosenthal et al. (2001) 



Kernel flour of bush mango Alcalase® 7.60 - Womeni et al. (2008) 

Pectinex® 14.80 - 

Viscozyme® 40.60 - 

Minced yellow horn seed kernels Cellulase / Hemicellulase / Pectinase 

(1.8 : 1.3 : 2.5) 

 9.00 Li et al. (2013) 

Olive paste Bioliva 1.20 - Ranalli et al. (2003) 

Maxoliva 1.37 - 

Cytolase 0 1.44 - 

A  (pectinase, cellulase, hemicellulase) 

/ B (pectinase, hemicellulase) /  

C (pectolytic enzyme) (1:1:1) 

152.00 (30 min) - Aliakbarian et al. (2008) 

91.40 (150 min) - 

Pectinex Ultra SP-L 1.96b  - Najafian et al. (2009) 

Pectinase 1.6021 1.41b - 

Palm fruit Pectinase / cellulase 35.57 5.36 Teixeira et al. (2013) 

Pectinase / cellulase / tannase 35.90 5.03 

Tannase 12.70 28.23 

Rapeseed slurry Pectinase 38.10 - Zhang et al. (2007) 

Cellulase 21.50 - 

Β-glucanase 16.20 - 

Pectinase / Cellulase / β-glucanase 

(4:1:1) 

43.80 - 

Multifect Pectinae FE 5.70 - 

Shattered bayberry kernels (60-

mesh sieved) 

Cellulase / Neutral protease (1:2)  31.85 Zhang et al. (2012) 

Yellow mustard flour Celluclast 1.5L 3.74 10.59 Tabtabaei & Diosady 

(2013) Pectinex Ultra SP-L 3.03 11.30 



Viscozyme L 3.99 10.34 

Celluclast 1.5L / Pectinex Ultra SP-L / 

Viscozyme L (1: 1:1)  

6.70 7.63 

The oil yield differences were determined based on the oil yields under the best incubating conditions of each enzyme used, or based on the fixed incubating 

conditions for all enzymes used, in the conducted studies. 

All aqueous enzymatic extractions resulted in higher oil yields than aqueous extractions, and all solvent treatments resulted in higher oil yields than aqueous 

enzymatic extractions. 

a total oil as in the skim and cream emulsion 

b average oil yield enhancements from three olive species with the use of enzymes at high concentrations 



Table 3. Enhancement in oil yield due to presence of enzyme pre-treatment prior to the extraction method, as 

compared to the extraction method alone. 

Oil-bearing material Type of enzyme  

(pre-treatment) 

Extraction method Enhancement 

in oil yield 

(%) 

Reference 

Crushed borage seeds 

(≤2.0 mm) 

Olivex / Celluclast (1:1) Double pressing 5.40a Soto et al. 

(2007) 

Crushed garlic cloves Cellulase Steam distillation 0.11 Sowbhagya et 

al. (2009) Pectinase 0.23 

Protease 0.22 

Viscozyme 0.18 

Cellulase Hydrodistillation 0.14 

Pectinase 0.26 

Protease 0.24 

Viscozyme 0.19 

Ground flaxseeds Cellulase / Pectinase / 

Hemicellulase (1:1:1) 

Ultrasonication 29.50 Long et al. 

(2011) 

Ground rapeseeds ROHAPECT® PTE  Pressing 5.70 Szydƚowska-

Czerniak et 

al. (2010) 
ROHALASE® OS  1.70 

Milled grape seeds A mixture of cellulase, 

xylanase, protease, 

pectinase 

Solvent extraction (24 hr) 106.00 Passos et al. 

(2009) 
Solvent extraction (120 hr) 163.00 

Minced yellow horn seed 

kernels 

Cellulase / hemicellulase / 

pectinase (1.8 : 1.3 : 2.5) 

Microwave 4.30 (oil yield 

enhancement 

as compared to 

AEE alone) 

Li et al. 

(2013) 

Pre-heated ground 

Chilean hazelnut seeds 

(inedible, ≤1.4 mm) 

Ultrazyme / Celluclast 

(1:1) 

Double pressing (hydraulic 

pressing at each of 39.2 

MPa) 

~8.00 Zuniga et al. 

(2003) 

Silybum marianum seed 

powders 

Cellulase / Xylanase / 

Pectinase / Protease 

(2:1:1:2) 

Solvent extraction (1.5 hr) 10.46 Li et al. 

(2012) 
Solvent extraction (14.0 hr) 50.72 

Whole sunflower kernels Celluclast 1.5L / Pectinex 

Ultra SP (2:1) 

Pressing (Batch press) 13.11 Dominguez et 

al. (1996) 

Mango kernel powders ProtizymeTM Three-phase partitioning 

method 

16.00 Gaur et al. 

(2007) Soybean flour 8.00 



Rice bran powders 14.00 

a the oil yield enhancement was based on the difference between an enzymatic and non-enzymatic pre-treatment, 

followed by double pressing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. The advantages of the use of pre-treatments (non-enzymatic) prior to the enzymatic extraction 

method. 

Oil-bearing 

material 

Pre-treatment Type of 

enzyme  

Advantages  Reference 

Ground Isatis 

indigotica 

seeds 

Microwave Cellulase / 

Proteinase / 

Pectinase 

(1:1:1) 

- In combination with AEE, the use of 

optimal microwave irradiation power 

increased the oil yield up to 59.27%, and 

the oil yield had greater antioxidant 

properties than solvent-extracted oil.  

Gai et al. (2013) 

Ground 

Jatropha seed 

kernels 

(inedible) 

Ultrasonication 

(5 min) 

ProtizymeTM  The enzyme treatment time was reduced 

from 18 hr to 6 hr for maximum of 74% oil 

yield 

Shah et al. 

(2005) 

Ground 

linseeds 

Electrical 

discharge 

- Mucilage (stabilizing agent) is removed 

which caused easier oil separation from the 

resulted residue by using enzyme treatment 

Gros et al. (2003) 

Grounds 

peanuts 

Alkaline 

extraction 

Alcalase Oil yield of 5.87% higher than AEE alone   Jiang et al. 

(2010) 

Ground pitaya 

seeds (40-

mesh sieved) 

Microwave  Pectinase / 

Cellulase / 

Acid protease 

(1:1:1) 

- Oil yield of 0.84% higher than AEE 

alone  

Rui et al. (2009) 

Ground 

watermelon 

kernels 

Ultrasound Protex 6L -Under the fixed parameters of the 

ultrasound, the yield was 20.67% higher 

than AEE alone   

-Under the selected parameters of 

ultrasound for maximum oil yield, the 

yield was 21.39% higher than AEE alone 

Xiaonan Sui et 

al. (2011), Shan 

Liu et al. (2011) 

Soybean 

flakes 

High pressure 

processing (200 

MPa) 

Protex 7L Oil yield of 3.20% higher than AEE alone Jung & Mahfuz  

(2009) 

High pressure 

processing (500 

MPa) 

Oil yield of 1.30% higher than AEE alone 

Extrusion - Oil yield of 29.90% higher than AEE 

alone 

- Free oil yield of 17.00% higher than AEE 



alone 

Extrusion Protex 6L - Oil yield of 35.52% higher than AEE 

alone 

- After de-emulsification: Free oil from 

cream emulsion of 62.00% higher than 

AEE alone 

Jung et al. (2009) 

AEE: aqueous enzymatic extraction. 

 



Table 5. Maximum oil yields as affected by the selected and optimized incubating conditions of the aqueous enzymatic extraction and aqueous 

enzymatic emulsion de-emulsification methods.  

Oil-bearing material Type of enzyme Moisture / 

Material ratio 

(w/w; for 

aqueous 

enzymatic 

extraction) 

Enzyme / 

Material 

ratio  

pH Tempera-

ture (⁰C) 

Time (hr) Agitation 

rate (rpm) 

Oil yield 

(%) 

Reference 

 

Selected(*) and optimized (**) incubating conditions used for maximum oil yield in aqueous enzymatic extraction 

Crushed borage seeds 

(≤2.0 mm) 

Olivex / Celluclast 

(1:1)a 

20%* 

(corresponded 

to 1:5) 

0.25%*  - 45.0* 9.00* - 85.50 Soto et al. 

(2007) 

Ground Jatropha seed 

kernels (inedible) 

ProtizymeTM a 6:1 0.25 

(w/w)% 

9.00* 50.0* 18.00 100 64.00 Shah et al. 

(2005) 

Ground Moringa. 

oleifera seeds 

Celluclast 1.5La 6:1 2.00% 

(v/w)* 

4.80*** 60.0* 36.00* 120* 22.01 Abdulkarim et 

al. (2006) Termamyl 120La 5.50*** 22.04 

Pectinex Ultra SP-L a 3.50*** 45.0* 18.87 

Neutrase 0.8L a 6.80*** 24.02 

Neutrase 0.8L / 

Termamyl 120L / 

Pectinex Ultra SP-L / 

Celluclast 1.5L a 

7.50*** 24.72 

Ground peanuts Alcalase a 5:1* 1.50% 

(w/w)* 

8.50* 60.0* 5.00* - 73.45 Jiang et al. 

(2010) 



ProtizymeTM a 2:1 2.50% 

(w/w)* 

4.00* 40.0* 18.00* 80* 36.12-

38.64 

Sharma et al. 

(2002) 

Ground pitaya seeds 

(40-mesh sieved) 

Pectinase / Cellulase / 

Acid protease (1:1:1) 

a 

8:1 - 7.00 50.0* 1.00 90 6.94 Rui et al. 

(2009) 

Ground rice bran  

(16-mesh sieved) 

Alcalase 0.6L a - 1.00% 

(w/w)* 

9.00 60.0* 3.00* 1000 79.10 Hanmoungjai 

et al. (2001) 

Ground sunflower 

seeds (0.75-1 mm) 

Celluclast 1.5L a 5:1* 2.00% 

(w/w)* 

4.80*** 50.0*** 2.00* 150 35.65 Sineiro et al. 

(1998) 

Heat-treated soybean 

flour 

Alcalase 2.4L a - 3.00% 

(v/w)*  

8.00 *** 50.0*** 1.00 200 58.70 Rosenthal et 

al. (2001) 

Olive paste A (pectinase, 

cellulase, 

hemicellulase) /  

B (pectinase, 

hemicellulase) /  

C (pectolytic 

enzyme)  (1:1:1) a 

- 0.25% 

(v/w)* 

- 30.0 2 hr 30 

min* 

10  

(kneading) 

17.50 Aliakbarian et 

al. (2008) 

Rapeseed slurry Pectinase / Cellulase / 

β-glucanase (4:1:1) a 

5:1* 2.50% 

(v/w)* 

5.00 48.0 4.00* 200 92.70  Zhang et al. 

(2007) 

Ground Kalahari 

melon seeds 

Neutrase 0.8L a - 2.50% 

(w/w)** 

7.00** 58.0** 31.00** 100 68.58 Nyam et al. 

(2009a) 

Flavourzyme® 1000 

L a 

- 2.10% 

(w/w)** 

6.00** 50.0** 36.00** 100 71.55 

Ground Moringa. 

oleifera seeds 

Neutrase 0.8L a 6:1 (v/w) 2.00% 

(v/w)  

6.80 *** 45.0** 24.00** 120 22.60 Abdulkarim et 

al. (2005) 



          

Ground pine kernels Alcalase endo-

protease a 

5:1** 1.97%** 8.40** 51.0** 3.00** - 89.12 Yang Li et al. 

(2011) 

Ground pumpkin 

seeds 

Cellulase a - 1.70% 

(w/w)** 

- 47.0** 2.64** - 89.12 Hu & Zou 

(2013) 

Ground watermelon 

kernels 

Protex 6L a 4.35:1** 2.63%** 7.89** 47.1** 4.29** - 77.25 Xiaonan Sui et 

al. (2011); 

Shan Liu et al. 

(2011) 

Palm fruits Pectinase / Cellulase / 

Tannase (1:1:1) a 

2:1 (v/w)** 4.00** 4.00** 50.0 0.50* 200 91.52 Teixeira et al. 

(2013) 

Shattered bayberry 

kernels (60-mesh 

sieved) 

Cellulase / Neutral 

protease (1:2) a 

4.91:1 (v/w)** 3.17%** - 51.6** 4.00** - 31.15 Zhang et al. 

(2012) 

          

Selected (*) and optimized (**) incubating conditions for maximum free oil yield in aqueous enzymatic emulsion de-emulsification method 

Alkaline pre-treated 

ground peanuts 

Alcalase 2.4La As1398b 1.00% - - 2.0 hr - 12.66 Jiang et al. 

(2010) 

Coconut milk 

emulsion 

- Aspartic 

protease 

(endoprotease)b 

0.10% - 37.0* 3.0 hr - 83.00 Raghavendra 

& Raghavarao 

(2010) 

Extruded soybean 

flakes 

Protease Multifect 

Neutral®a 

LysoMaxTM / 

G-ZYME G999 

(1:1) b 

- 4.5*** 60.0*** 1 hr 30 

min 

- 68.00 Lamsal & 

Johnson (2007) 

Phospholipase - 7.0*** 37.0*** 1 hr 30 - 73.00 



Cb min 

Protex 6La Protex 6L b 2.50%* 4.5* 50.0 1 hr 30 

min 

- 100.00 de Moura et al. 

(2008) 

Protex 6La Protex 6L b 1.25%** - 50.0** 1 hr 30 

min** 

- 100.00 Jung et al. 

(2009) 

Protex 7La LysoMaxTM b 2.00% 8.0*** 40.0*** 1 hr 30 

min 

- 100.00 Wu et al. 

(2009) 
G-ZYME®  

G999b 

4.5*** 50.0*** 

Protex 6Lb 8.0*** 50.0*** 

Protex 7Lb 7.0*** 50.0*** 

Protex 50FPb 4.5*** 50.0*** 

Protex 51FPb 8.0*** 50.0*** 

Ground Perilla 

frutescens seeds 

- Protex 6Lb 1.90%** 9.4** 62.6** 1.6 hr** - 85.52 Zhang et al. 

(2013) 

Soybean flour Protex 7La G-ZYME 

G999b 

2.00%* 4.5*** 50.0 3.0 hr 700* 100.00 Chabrand & 

Glatz (2009)  

Protex 6Lb 3.00%* 9.0*** 50.0 3.0 hr 500* 72.00 

Yellow mustard flour Celluclast 1.5L / 

Viscozyme L / 

Pectinex Ultra SP-L 

(1:1:1) a 

Protex 6Lb 2.50% 

 

4.5-

6.0*** 

50-60*** 3.0 hr - 91.30 Tabtabaei & 

Diosady 

(2013) Alcalase 2.4Lb 6.5-

8.5*** 

45-65*** 42.10 

Lipomode 

699Lb 

8.0*** 40.0*** 1.30 



G-ZYME 

G999b 

4.5*** 50-60*** 41.20 

Values without any notation are fixed incubating conditions. 

a Type of enzymes used for aqueous enzymatic extraction 

b Type of enzymes used for aqueous enzymatic emulsion de-emulsification   

*selected incubating condition; the authors varied the level of each incubating condition and finalized the conditions which resulted in highest oil yield. 

**optimized incubating condition; the authors varied the level of each incubating condition and optimized the conditions which resulted in highest oil yield based 

on an experimental design and statistical software used. 

*** optimum incubating condition of the enzyme used; different types of enzymes possess different optimum pH and temperature where the enzymes attain 

maximum activity    

 



Table 6. The characteristics of oil yields from solvent, aqueous, and aqueous enzymatic extraction methods. 

Oil 

characteris-

tic 

Oil-bearing material Solvent 

extraction 

Aqueous 

extraction 

Aqueous enzymatic extraction Reference 

      

Free fatty 

acids (%) 

Extruded soybean 

flakes 

0.26 * 0.18 Protex 6L Jung et al. 

(2009) 

Ground canola seeds 0.81 0.56 0.52 Multifect CX 13L Latif et al. 

(2008) 0.57 Protex 7L 

0.55 Natuzyme 

0.54 Multifect Pectinae FE 

Ground Kalahari 

melon seeds 

0.60 * 0.90 Flavourzyme® 1000 L Nyam et al. 

(2009) 0.90 Neutrase 0.8L 

Ground Moringa. 

oleifera seeds 

2.48 * 1.13 Neutrase 0.8L Abdulkarim 

et al. (2005) 

2.48 1.22 1.13 Neutrase 0.8L Abdulkarim 

et al. (2006) 1.24 Termamyl 120L 

1.22 Pectinex Ultra SP-L 

1.25 Celluclast 1.5L 

1.23 Neutrase 0.8L / 

Termamyl 120L / 

Pectinex Ultra SP-L / 

Celluclast 1.5L 

1.26 0.42 0.43 Natuzyme Latif et al. 

(2011) 0.41 Kemzyme 

0.39 Multifect CX 13L 

0.38 Protex 7L 

0.42 Viscozyme L 

Ground rice bran (16-

mesh sieved) 

7.40 * 2.36 Alcalase 0.6L Hanmoungjai 

et al. (2001) 

Ground sesame seeds 0.54c 0.48 0.47 Natuzyme Latif & 

Anwar (2011) 0.44 Kemzyme 

0.51 Protex 7L 

0.46 Alcalase 2.4L 

0.44 Viscozyme L 

Ground sunflower 

seeds 

0.94 0.68 0.66 Alcalase 2.4L Latif & 

Anwar (2009) 0.65 Kemzyme 



0.67 Natuzyme 

0.69 Protex 7L 

0.64 Viscozyme L 

       

Iodine value  

(g / 100g)  

Ground canola seeds 117.00 114.00 116.00 Multifect CX 13L Latif et al. 

(2008) 114.00 Protex 7L 

117.00 Natuzyme 

116.00 Multifect Pectinae FE 

Ground flaxseeds 140.80 * 161.20 Cellulase / Pectinase / 

Hemicellulase (1:1:1) 

Long et al. 

(2011) 

Ground Kalahari 

melon seeds 

125.00 * 141.00 Flavourzyme® 1000 L Nyam et al. 

(2009) 135.20 Neutrase 0.8L 

Ground Moringa. 

oleifera seeds 

65.40 * 66.10 Neutrase 0.8L Abdulkarim 

et al. (2005) 

65.40 66.00 67.10 Neutrase 0.8L Abdulkarim 

et al. (2006) 66.50 Termamyl 120L 

67.20 Pectinex Ultra SP-L 

66.50 Celluclast 1.5L 

67.00 Neutrase 0.8L / 

Termamyl 120L / 

Pectinex Ultra SP-L / 

Celluclast 1.5L 

67.00 70.00 76.00 Natuzyme Latif et al. 

(2011) 73.00 Kemzyme 

75.00 Multifect CX 13L 

74.00 Protex 7L 

76.00 Viscozyme L 

Ground pitaya seeds 

(40-mesh sieved) 

173.10 * 118.00 Pectinase / Cellulase / 

Acid protease (1:1:1) 

Rui et al. 

(2009) 

Ground rice bran (16-

mesh sieved) 

95.40 * 97.18 Alcalase 0.6L Hanmoungjai 

et al. (2001) 

Ground sesame seeds 107.00 106.00 104.00 Natuzyme Latif & 

Anwar (2011) 109.00 Kemzyme 

108.00 Protex 7L 

105.00 Alcalase 2.4L 

103.00 Viscozyme L 

Ground sunflower 127.00 120.00 124.00 Alcalase 2.4L Latif & 



seeds 121.00 Kemzyme Anwar (2009) 

123.00 Natuzyme 

122.00 Protex 7L 

121.00 Viscozyme L 

       

Peroxide 

value (meq 

O2 / kg) 

Extruded soybean 

flakes 

6.50 * 4.05 Protex 6L Jung et al. 

(2009) 

Ground canola seeds 1.29 0.69 0.72 Multifect CX 13L Latif et al. 

(2008) 0.70 Protex 7L 

0.71 Natuzyme 

0.64 Multifect Pectinae FE 

Ground flaxseeds 1.20 * 1.00 Cellulase / Pectinase / 

Hemicellulase (1:1:1) 

Long et al. 

(2011) 

Ground Kalahari 

melon seeds 

2.30 * 6.40 Flavourzyme® 1000 L Nyam et al. 

(2009) 7.30  Neutrase 0.8L 

Ground Moringa. 

oleifera seeds 

2.09 1.60 1.58 Natuzyme Latif et al. 

(2011) 1.56 Kemzyme 

1.61 Multifect CX 13L 

1.63 Protex 7L 

1.59 Viscozyme L 

Ground pitaya seeds 

(40-mesh sieved) 

1.93 * 1.44 Pectinase / Cellulase / 

Acid protease (1:1:1) 

Rui et al. 

(2005) 

Ground rice bran (16-

mesh sieved) 

8.20 * 12.01 Alcalase 0.6L Hanmoungjai 

et al. (2001) 

Ground sesame seeds 1.50 1.30 0.90 Natuzyme Latif & 

Anwar (2011) 1.30 Kemzyme 

1.40 Protex 7L 

1.10 Alcalase 2.4L 

1.20 Viscozyme L 

Ground sunflower 

seeds 

1.78 1.36 1.25 Alcalase 2.4L Latif & 

Anwar (2009) 1.33 Kemzyme 

1.32 Natuzyme 

1.31 Protex 7L 

1.37 Viscozyme L 

       

Saponifica-

tion value  

Ground Kalahari 

melon seeds 

173.20 * 185.20 Flavourzyme® 1000 L Nyam et al. 

(2009) 184.80 Neutrase 0.8L 



(mg KOH / g 

oil) 

Ground Moringa. 

oleifera seeds 

164.00 * 163.00 Neutrase 0.8L Abdulkarim 

et al. (2005) 

164.00 158.00 156.00 Natuzyme Latif et al. 

(2011) 158.00 Kemzyme 

155.00 Multifect CX 13L 

159.00 Protex 7L 

156.00 Viscozyme L 

Ground pitaya seeds 

(40-mesh sieved) 

194.40 * 191.10 Pectinase / Cellulase / 

Acid protease (1:1:1) 

Rui et al. 

(2005) 

Ground rice bran (16-

mesh sieved) 

187.60 * 188.72 Alcalase 0.6L Hanmoungjai 

et al. (2001) 

Ground sesame seeds 169.00 159.00 158.00 Natuzyme Latif & 

Anwar (2011) 162.00 Kemzyme 

167.00 Protex 7L 

164.00 Alcalase 2.4L 

156.00 Viscozyme L 

Ground sunflower 

seeds 

190.00 187.00 187.00 Alcalase 2.4L Latif & 

Anwar (2009) 186.00 Kemzyme 

187.00 Natuzyme 

187.00 Protex 7L 

185.00 Viscozyme L 

      

Total 

tocopherols; 

α, δ, and γ  

(α, β, δ, and γ 

for Kalahari 

melon seeds 

and olive 

paste)  

(mg / kg oil) 

. 

Ground canola seeds 739.00 598.00 794.00 Multifect CX 13L Latif et al. 

(2008) 805.00 Protex 7L 

783.00 Natuzyme 

819.00 Multifect Pectinae FE 

Ground Kalahari 

melon seeds 

174.80 * 143.20 Flavourzyme® 1000 L Nyam et al. 

(2009) 143.30 Neutrase 0.8L 

Ground Moringa 

oleifera seeds 

179.30 216.90 220.80 Natuzyme Latif et al. 

(2011) 228.50 Kemzyme 

221.70 Multifect CX 13L 

221.50 Protex 7L 

228.30 Viscozyme L 

Ground sesame seeds 584.10 603.30 628.50 Natuzyme Latif & 

Anwar (2011) 641.20 Kemzyme 

627.30 Protex 7L 

619.80 Alcalase 2.4L 



612.80 Viscozyme L 

Ground sunflower 

seeds  

799.00 778.00 845.00 Alcalase 2.4L Latif & 

Anwar (2009) 849.00 Kemzyme 

849.00 Natuzyme 

842.00 Protex 7L 

833.00 Viscozyme L 

Olive 

paste 

Cipressino * 

 

77.30 89.20 Cytolase 0 Ranalli et al. 

(2001) Cassanese 95.20 114.10 

Leccino 117.00 135.40 

Dritta * 

 

231.00 288.00 Cytolase 0 Ranalli et al. 

(2003) 279.00 Maxoliva 

266.00 Bioliva 

Caroleo * 

 

218.00 273.00 Cytolase 0 

269.00 Maxoliva 

252.00 Bioliva 

Coratina * 244.00 305.00 Cytolase 0 

300.00 Maxoliva 

289.00 Bioliva 

Palm fruit * 325.27 251.11 Pectinase / Cellulase Teixeira et al. 

(2013) 200.54 Pectinase / Cellulase / 

Tannase 

204.26 Tannase 

       

 Total 

phenolic 

content  

(mg / kg oil), 

as in gallic 

acid 

equivalent for 

sesame seeds,  

sunflower 

seeds, 

Moringa 

oleifera 

seeds, and 

palm fruit; 

Ground Kalahari 

melon seeds 

18.00 * 18.00 Flavourzyme® 1000 L Nyam et al. 

(2009) 19.00 Neutrase 0.8L 

Ground Moringa 

oleifera seeds 

12.00 13.00 15.00 Natuzyme Latif et al. 

(2011) 14.00 Kemzyme 

13.00 Multifect CX 13L 

14.00 Protex 7L 

18.00 Viscozyme L 

Ground sesame seeds 17.00 18.00 19.00 Natuzyme Latif & 

Anwar (2011) 18.00 Kemzyme 

22.00 Protex 7L 

21.00 Alcalase 2.4L 

24.00 Viscozyme L 

Ground sunflower 

seeds  

8.00 9.00 13.00 Alcalase 2.4L Latif & 

Anwar (2009) 14.00 Kemzyme 



caffeic acid 

equivalent for 

olive paste; 

and sum of 

phenolic 

acids for 

Kalahari 

melon seeds 

 

13.00 Natuzyme 

13.00 Protex 7L 

15.00 Viscozyme L 

Olive 

paste 

Cipressino * 90.00 105.00 Cytolase 0 Ranalli et al. 

(2001) Cassanese 122.00 153.00 

Leccino 112.00 131.00 

Dritta * 314.00 435.00 Cytolase 0 Ranalli et al. 

(2003) 427.00 Maxoliva 

388.00 Bioliva 

Caroleo * 222.00 329.00 Cytolase 0 

318.00 Maxoliva 

287.00 Bioliva 

Coratina * 382.00 479.00 Cytolase 0 

462.00 Maxoliva 

431.00 Bioliva 

Coratina * 691.30 751.00 A  / B / C** (1:1:1) Aliakbarian 

et al. (2008) 

Coratina * 574.50 804.30 A  / B / C** (1:1:1) De Faveri et 

al. (2008) 

Koroneiki * 179.00 309.00 Pectinex Najafian et 

al. (2009) 245.00 Pectinase 

Iranian 

oleaginous 

* 302.33 357.67 Pectinex 

359.00 Pectinase 

Mission * 199.67 306.67 Pectinex 

258.33 Pectinase 

 Palm fruit * 21.43 17.43 Pectinase / Cellulase Teixeira et al. 

(2013) 14.76 Pectinase / Cellulase / 

Tannase 

26.43 Tannase 

The column adjacent to the olive paste refers to the different olive species used. 

*data not reported 

**A: pectinase, cellulase, hemicellulase; B: pectinase, hemicellulase; C: pectolytic enzyme 


