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Abstract We assess the roles of long-lived greenhouse gases and ozone depletion in driving
meridional surface pressure gradients in the southern extratropics; these gradients are a defining feature
of the Southern Annular Mode. Stratospheric ozone depletion is thought to have caused a strengthening
of this mode during summer, with increasing long-lived greenhouse gases playing a secondary role. Using
a coupled atmosphere-ocean chemistry-climate model, we show that there is cancelation between the
direct, radiative effect of increasing greenhouse gases by the also substantial indirect—chemical and
dynamical—feedbacks that greenhouse gases have via their impact on ozone. This sensitivity of the mode
to greenhouse gas-induced ozone changes suggests that a consistent implementation of ozone changes
due to long-lived greenhouse gases in climate models benefits the simulation of this important aspect of
Southern Hemisphere climate.

1. Introduction

Variations in the Southern Annular Mode (SAM), as defined by the hemispheric pressure gradient between
polar and extrapolar regions, affect the strength and position of the midlatitude wind maximum (the
“Roaring Forties”), and temperature and precipitation fields throughout the southern extratropics. A
considerable increase in the frequency of occurrence of the positive phase of the SAM and associated
blocking events [O’Kane et al., 2013] during summer (December to February), observed during recent
decades, thus means increased wind speeds over the Southern Ocean [Thompson et al., 2011; Abram et
al., 2014; World Meteorological Organization (WMO), 2014]. In a mechanism understood to involve deep
coupling of the stratosphere and troposphere, stratospheric ozone changes have influenced Southern
Hemisphere climate, from the tropics to the pole, causing an expansion of the tropical Hadley Cell and
southward shifts of climate regimes [Kang et al., 2011]. For the remainder of this century, models project
some cancelation of these impacts of ozone depletion, set to reduce under ozone recovery, with those
of further increases in long-lived greenhouse gases (GHGs), chiefly CO2, CH4, and N2O [Intergovernmental
Panel on Climate Change (IPCC), 2013; Zheng et al., 2013]. However, these GHGs do not just affect climate by
trapping heat and influencing the equator-to-pole temperature gradient; they also have diverse impacts on
ozone and its recovery. Increases in any of them, particularly CO2, cool the stratosphere. This slows down
gas phase ozone-depleting reactions and generally leads to an acceleration of stratospheric overturning
(the “Brewer-Dobson Circulation”), enhancing poleward transport of ozone [WMO, 2011, 2014]. Within the
polar vortices, the cooling increases the prevalence of polar stratospheric clouds [Roscoe and Lee, 2001],
which under contemporary, high-chlorine conditions causes more polar ozone depletion. In combina-
tion, the GHG-induced cooling and accelerated overturning cause ozone to increase in midlatitudes and to
decrease in the tropics and seasonally over the poles [Denman et al., 2007]. In addition to these dynamical
and temperature effects, CH4 and N2O also affect chemistry. Increases in CH4 reduce the rate of
chlorine-catalyzed ozone loss by promoting the return of chlorine to its reservoir form, hydrogen chloride
(HCl), and also directly cause increased ozone production in the stratosphere in a catalytic process
involving nitrogen oxides. N2O increases, by contrast, induce ozone depletion by enhancing
nitrogen-catalyzed ozone loss reactions [Revell et al., 2012]. Anthropogenic emissions of N2O now cause
more ozone depletion than those of any of the ozone-depleting substances (ODSs) regulated under
the Montreal Protocol [Ravishankara et al., 2009]. Despite these known chemical and dynamical effects
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Table 1. NIWA-UKCA Simulations Used Herea

Experiment REF-C2 SEN-C2-fGHG SEN-C2-fODS fOZONE NoIndir

Description all forcings fixed GHGs fixed ODSs fixed ozone No GHG effect on ozone
No. of simulations 5 1 2 5 5
Ozone Interactive Interactive Interactive 1960-1969 REF-C2 mean SEN-C2-fGHG smoothed
Non-ODS GHGs RCP 6.0 1960 abundances RCP 6.0 RCP 6.0 RCP 6.0
ODSs WMO [2011] WMO [2011] 1960 abundances 1960 abundances WMO [2011]
Effects present OD, dGHG, iGHG OD dGHG, iGHG dGHG OD, dGHG

aThe first three experiments are as defined for the Chemistry-Climate Modelling Initiative (CCMI) [Eyring et al., 2013b]. RCP = Represen-
tative Concentration Pathway. OD = anthropogenic ozone depletion. dGHG = direct radiative effect of changing GHGs. iGHG = indirect,
ozone-mediated effect of changing GHGs. Differencing REF-C2 and NoIndir, or SEN-C2-fODS and fOZONE, quantifies the iGHG effect. Note
that all ozone climatologies used here are zonally variable.

of the leading GHGs onto ozone, only a minority of models participating in the Fifth Climate Model
Intercomparison Project (CMIP5) calculated ozone interactively [Eyring et al., 2013a], partly because
including interactive stratospheric ozone chemistry has not been clearly shown to benefit the quality of
climate simulations for nonchemical model fields [Son et al., 2010], and because explicit ozone chemistry is
a computationally expensive addition to climate models.

Here we investigate the roles of ozone depletion and long-lived GHGs in driving the SAM, differentiating
between the above-discussed direct and indirect, ozone-mediated effects of GHG changes. For this we
use a climate model, alternatively using interactive or prescribed ozone. The model (National Institute
of Water and Atmospheric Research-United Kingdom Chemistry and Aerosols, “NIWA-UKCA”) is an
atmosphere-ocean model, based on an early version of the HadGEM3-AO climate model, optionally
including an explicit stratosphere-troposphere chemistry scheme [Morgenstern et al., 2009, 2013]. Apart
from the interactive chemistry, the model is similar to the version described by Hewitt et al. [2011] but at a
lower resolution in both the atmosphere (3.75◦×2.5◦, 60 levels to 84 km) and the ocean (∼ 2◦×1◦, 31 levels).
Relative to the model used by Nowack et al. [2014], there are only some differences in chemistry.

2. Experiments

Table 1 summarizes the experiments used here. The simulations all cover 1960–2100. The experiments
using interactive ozone (REF-C2: all forcings; SEN-C2-fODS: ODSs fixed to their 1960 abundances; and
SEN-C2-fGHG: GHGs fixed to their 1960 abundances) comply with corresponding definitions of the
Chemistry-Climate Model Initiative (CCMI; http://www.met.reading.ac.uk/ccmi) [Eyring et al., 2013b]. These
simulations all use the same surface emissions of tropospheric ozone and aerosol precursors, and do not
consider volcanic eruptions and solar variability.

In the SEN-C2-fODS simulations, where ODSs are held constant, we expect trends in ozone due to only
the chemical and dynamical influences of the changing long-lived GHGs as discussed above, which may
drive trends in the SAM. In the SEN-C2-fGHG simulation, where the long-lived GHGs are held constant, we
expect only ozone depletion to influence the SAM. fOZONE uses a prescribed, annually periodic ozone field
generated by ensemble- and time-averaging monthly mean ozone fields from the first 10 years of the five
REF-C2 simulations. As such it will not contain changes in ozone, and any trend in the SAM can be attributed
to only the radiative effects of the GHGs. NoIndir uses a prescribed ozone field generated by smoothing in
time the monthly mean ozone field produced by SEN-C2-fGHG, in order to reduce the interannual variability
in the field while retaining the annual cycle and the decadal-scale influence of ozone depletion. Thus, in
this experiment, trends in the SAM can be caused by ozone depletion or the direct radiative forcing of
greenhouse gases, but the indirect chemical and dynamical effects of changing greenhouse gases on ozone
are absent. This suite of five experiments allows us to isolate the contributions not only of just changing
GHGs or just changing ODSs but also the benefits of including interactive chemistry. Hence, both the
direct and indirect (ozone-mediated) effects of GHG changes are present in the REF-C2 and SEN-C2-fODS
experiments, but the indirect effect is suppressed in NoIndir and fOZONE. Therefore, differencing the REF-C2
and NoIndir experiments isolates this indirect effect.

Figure 1 shows effective equivalent stratospheric chlorine (EESC; a measure of the combined effect of
chlorine and bromine onto ozone) [Daniel et al., 2007] in the ODS scenario considered here [WMO, 2011]
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Figure 1. Regression functions used in the attribution analysis. Solid:
EESC [Daniel et al., 2007] indicating an increase from 1.1 to 4.5 parts per
billion by volume (ppbv) of chlorine, followed by a decrease during the
21st century to 1.8 ppbv. Dashed: Combined CO2-equivalent RF due to all
long-lived GHGs in parts per million by volume (ppmv) of CO2, indicating
a doubling during the course of the simulations. The nondimensional
scale (left) is used in the regression analysis for both regression functions.
On this scale, both regression functions satisfy r = 0 and max |r| = 1.

and total CO2-equivalent radiative
forcing (RF; a measure of the
combined effect of anthropogenic
greenhouse gases onto climate)
[Forster et al., 2007] in the
Representative Concentration
Pathway (RCP) 6.0 [Meinshausen et
al., 2011]. These forcing functions
are used in this analysis to represent
in a simplified way the anthropogenic
forcings (ozone depletion and
long-lived GHGs) applied in the model
simulations. A regression analysis,
detailed below, using these functions
as basis functions can isolate the
relative contribution of each to any
trend in the SAM.

Figure 2. Zonal mean total-column ozone in the NIWA-UKCA simulations,
in Dobson Units (DU). (first panel) Mean annual cycle for 1995–2004, from
the REF-C2 ensemble average. Contours: NIWA-assimilated satellite data
[Bodeker et al., 2005]. (second panel) REF-C2 annual mean. (third panel)
SEN-C2-fODS annual mean. (fourth panel) SEN-C2-fGHG annual mean.

3. Results

An inspection of total-column ozone
simulated by NIWA-UKCA shows
that basically, the model produces a
good representation of total-column
ozone, with an annual cycle similar to
observations (Figure 2). A small positive
bias is within the usual range
characterizing chemistry-climate
models [Austin et al., 2010]. The
model produces ozone decline and
subsequent recovery, caused by
anthropogenic ozone depletion, some
ozone superrecovery (i.e., late 21st
century ozone abundances exceed-
ing their 1960s values) in the Northern
Hemisphere, caused by the impacts
of increasing GHGs, and more intense
ozone depletion in the fixed-GHG
simulation (SEN-C2-fGHG) than in
the reference experiment (REF-C2),
suggesting that the model captures the
partial cancelation of ozone depletion
with the impact of increasing GHGs
discussed above.

Next, we assess surface pressure in
these simulations. The SAM is an
approximately ring-shaped feature
with (for a positive SAM index) negative
pressure anomalies over the South
Pole and positive ones in a belt around
midlatitudes [e.g., Gillett and Thompson,
2003]. Hence, here we define the SAM
index as the difference in seasonal
mean, area mean, and ensemble mean
surface pressure between midlatitudes
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Figure 3. Seasonal SAM indices (hPa) for December–February. Ensemble-average (thin black). Ensemble-average (thick
black), smoothed with 7 year boxcar filter. Least squares regression fits using the EESC and RF explanatory functions
(violet). Regression coefficients against the nondimensional radiative-forcing regression function (hPa; Figure 1) (orange).
Same but for the EESC regression function (green). Uncertainties refer to the 95% confidence level. Note the different
scale applied to the ERA-Interim panel.
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(38.75◦S–61.25◦S) and polar latitudes (63.75◦S–90◦S), minus the 1979–2012 mean of this quantity. This
simple definition avoids complications to do with climatological drifts which affect other definitions based
on empirical orthogonal function analysis [Morgenstern et al., 2010].

Figure 3 shows the resulting SAM indices for the summer season. Similar to observations, for the period of
1960–2000, the REF-C2 ensemble mean SAM index increases by about 3 hPa during this period. Relative
to the ERA-Interim meteorological reanalyses [Dee et al., 2011], the magnitude of the trend is likely
underestimated. For the period after 2000, the REF-C2 simulations indicate little trend during summer,
consistent with other modeling experiments that show some cancelation of the impacts of ozone recovery
and increasing GHGs [e.g., Gillett and Fyfe, 2013]. If underestimation of the 1960–2000 trend in REF-C2 is not
a coincidence—our ensemble exhibits some considerable variability of this trend—it is consistent with an
imperfect simulation of the SAM in our model. This might be the consequence of a cloud radiative forcing
bias over the Southern Ocean which is common in climate models [IPCC, 2013, and references therein]. A
further investigation of this aspect is however beyond the scope of this paper.

We now perform a multiple linear regression analysis on the SAM indices, using as basis functions the
large-scale forcing functions shown in Figure 1. Details of the analysis are in Appendix A. The resulting
least squares regression fits are depicted as violet lines in figure 3. First, we note that in the experiments
subject to both global warming and ozone depletion, both influences are of comparable magnitude (e.g.,
1.68 ± 0.5 and 1.12 ± 0.46 hPa for REF-C2; the regression coefficients are given in Figure 3). In the three
experiments subject to ozone depletion (REF-C2, SEN-C2-fGHG, and NoIndir), the regression coefficients
representing ozone depletion (given in green) are consistent with each other (namely 1.12±0.46, 0.95±0.75,
and 0.82 ± 0.5 hPa), suggesting a reproducible trend in the SAM due to ODSs. The fixed-ozone (fOZONE)
experiment produces a significant strengthening of the SAM (i. e., at 2.1 ± 0.42 hPa a positive regression
coefficient with RF), which is significantly stronger than 1.05 ± 0.75 hPa which is found for the fixed-ODS
(SEN-C2-fODS) experiment. Together, these two experiments suggest that the indirect, ozone-mediated
influence of increasing GHGs onto the summer SAM offsets around half of the direct, radiative-forcing effect
of increasing GHGs. (Note that the direct effect on the SAM of GHGs is present in both experiments, but
their ozone-mediated, indirect effect is only present in SEN-C2-fODS, see Table 1). Hence, as a best estimate
based on this analysis, we postulate that there is a 50% cancelation of the direct effect of GHG changes by
the impact of ozone changes in SEN-C2-fODS.

We test this hypothesis using the other simulations. To assess whether the influence of the long-lived GHGs
on the SAM is demonstrably larger in NoIndir than in REF-C2, we perform the regression on the difference
in the SAM index between these two experiments. At −0.34 ± 0.70 hPa, with the uncertainty interval
reflecting the 95% confidence limits, the resulting regression coefficient is less than 0 at about 83%
confidence. We obtain numerically almost the same result if we replace NoIndir with fOZONE in this
analysis (−0.36 ± 0.66 hPa). Both results suggest that about 20% of the direct effect of increasing GHGs
onto the SAM (as inferred from the fOZONE experiment) is offset by their impact on ozone. While this
appears to be a smaller effect than the above-derived half cancelation, both results are within each others’
respective 95% confidence intervals. There is considerable variability within each of the different ensembles
for the regression coefficients, which makes it impossible to attribute this discrepancy to anything other
than random variations.

4. Discussion

The analysis suggests that all three influences on the SAM in REF-C2 appreciably contribute toward
its long-term trend, and that there is a sizeable cancelation between the direct and indirect effects of
increasing GHGs onto the SAM. A caveat pertaining to this analysis is that this is just a single-model study
which should be expanded into a multimodel analysis. Some of the simulations used here form part of a
multimodel intercomparison (CCMI) which will in time facilitate such an analysis. The magnitude of the
effect is scenario dependent; we have only studied one scenario [Meinshausen et al., 2011; WMO, 2011] here.

However, if the above results are found to be robust, they would have important implications for large
climate-model intercomparisons such as CMIP5 which informed IPCC 2013. There, the majority of
simulations used prescribed ozone climatologies [Eyring et al., 2013a]. Considering the different sensitivities
of stratospheric ozone to changes in CO2, CH4, and N2O [WMO, 2014], the resulting trends in the SAM
could depend on not just the combined radiative forcing of these gases, which is essentially what a climate
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model forced with prescribed ozone responds to, but also the specific assumptions made about the
future evolutions of CH4 and N2O, increases of which have opposing chemical effects on ozone. This
means scenario-specific ozone climatologies are required which are consistent with the GHG evolutions
assumed in these scenarios [Nowack et al., 2014]. Such consistency may be model dependent,
making it difficult to establish consistency across a range of different models. The findings presented here
may increase the motivation to enter successors to CMIP5 (such as CMIP6) with coupled chemistry-climate
models which by construction generate internally consistent ozone fields.

Appendix A: Details of Regression Analysis

We stipulate that in REF-C2, the ensemble average SAM index is the sum of
five contributions:

t = 𝛼rEESC + (𝛽d + 𝛽i)rRF + 𝛾 + 𝜌. (A1)

Here t is the ensemble mean SAM index for one of our five experiments, rEESC is the dimensionless EESC
regression function, rRF is the dimensionless RF regression function (Figure 1), 𝛼 and 𝛽d + 𝛽i are regression
coefficients, quantifying the influences of ozone depletion and the direct and indirect GHG impacts,
respectively, 𝛾 is the generally nonzero average of t, and 𝜌 = 

(
n−1∕2

)
is the remainder not explained

by the other terms, which scales with n−1∕2 (n = ensemble size). We calculate the coefficients performing
a linear least squares regression. Uncertainties are given relative to the 95% confidence interval. 𝛽d and 𝛽i

are individually quantified by differencing the regression coefficients of pairs of experiments that include
and exclude, respectively, the impact of changing GHGs on ozone, such as SEN-C2-fODS and fOZONE. To
reduce uncertainty in the regression coefficients, in experiments in which either GHGs do not change or
anthropogenic ozone depletion does not occur, the corresponding regression coefficients are assumed 0.
For example, 𝛼 = 0 for SEN-C2-fODS. Such zero coefficients are omitted in Figure 3.

The error calculation, which forms part of the above analysis, relies on two assumptions about the SAM
indices: Residuals 𝜌 need to be normally distributed, and autocorrelation needs to be small. Autocorrelation
is addressed by applying the Durbin-Watson test [Montgomery et al., 2001] to 𝜌:

Figure A1. Cumulative distribution functions for the residuals 𝜌,
displayed as G(𝜌∕𝜎), where 𝜎 is the standard deviation of 𝜌 and
G(x) = 1√

𝜋
∫ x
−∞ exp

(
−t2

)
dt is the Gaussian integral. Perfect

normal distribution (black). The five experiments (colors).

d =
∑T

t=2(𝜌t − 𝜌t−1)2

∑T
t=1 𝜌

2
t

, (A2)

where T = 140 is the number of complete
summer seasons in the time series for an
experiment and 𝜌 is the residual in the
regression fit (equation (A1)). No
autocorrelation is indicated by d = 2, whereas
d ≈ 1 would usually indicate significant
autocorrelation. For the eight time series
shown in Figure 3 we find 1.85 < d < 2.06.
Hence, we conclude that autocorrelation
does not significantly affect the regression
analysis. Normality is assessed using a
graphical approach: Figure A1 shows the
cumulative distribution functions (CDF) for
the five different experiments of the residuals
𝜌, expressed in multiples of their standard
deviations 𝜎. Residuals in all five ensemble
averages satisfy essentially the same CDF
which differs only slightly from a perfect
Gaussian integral. Hence, we can assume that
the residuals are normally distributed.
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The paper compares simulations with interactive ozone with other simulations driven with prescribed
ozone. This opens up the question of whether a model driven with interactive ozone behaves differently
from an equivalent model in which ozone is prescribed. We have conducted an additional ensemble of four
simulations which are forced by the same GHG and ODS scenario as REF-C2 but ozone is not calculated
interactively. Instead, it is prescribed as the smoothed ensemble mean and monthly mean ozone field of
the REF-C2 experiment. Note that this ozone climatology is zonally varying. We have applied the analysis
to these simulations as well. The resulting regression coefficients do not differ significantly from REF-C2,
suggesting that whether ozone is interactive or prescribed does not—within the limits of statistical analysis
inherent here—affect the slowly varying components of the SAM discussed in this work.
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