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Abstract. Recent advances in understanding have made it possible to relate global precipitation changes di-

rectly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are

developed here called the Global Precipitation-change Potential for pulse (GPPP) and sustained (GPPS) emis-

sions, which measure the precipitation change per unit mass of emissions.

The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global

warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions

on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of

emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign

between different regions and this limits the usefulness of a purely global metric.

The GPPP and GPPS formulation consists of two terms, one dependent on the surface temperature change

and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and

notably for CO2, these two terms oppose each other – as the forcing and temperature perturbations have different

timescales, even the sign of the absolute GPPP and GPPS varies with time, and the opposing terms can make val-

ues sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic,

especially for the GPPS at time horizons less than about 60 years. In addition, few studies have presented results

for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP

than the GWP or GTP.

Values of the GPPP and GPPS for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and

black carbon – BC) are presented, using illustrative values of required parameters. The resulting precipitation

changes are given as the change at a specific time horizon (and hence they are end-point metrics) but it is

noted that the GPPS can also be interpreted as the time-integrated effect of a pulse emission. Using CO2 as a

references gas, the GPPP and GPPS for the non-CO2 species are larger than the corresponding GTP values. For

BC emissions, the atmospheric forcing is sufficiently strong that the GPPS is opposite in sign to the GTPS. The

sensitivity of these values to a number of input parameters is explored.

The GPP can also be used to evaluate the contribution of different emissions to precipitation change during

or after a period of emissions. As an illustration, the precipitation changes resulting from emissions in 2008

(using the GPPP) and emissions sustained at 2008 levels (using the GPPS) are presented. These indicate that for

periods of 20 years (after the 2008 emissions) and 50 years (for sustained emissions at 2008 levels) methane is

the dominant driver of positive precipitation changes due to those emissions. For sustained emissions, the sum

of the effect of the five species included here does not become positive until after 50 years, by which time the

global surface temperature increase exceeds 1 K.
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1 Introduction

A broad range of emissions of gases and aerosols influence

climate, either directly or indirectly. That influence depends

on the characteristics of the gases and aerosols, such as their

lifetime, and their ability to influence the radiation budget.

The conventional cause-and-effect chain links emissions to

changes in concentrations, which then cause a radiative forc-

ing with subsequent downstream effects on, for example,

temperature, precipitation and sea level. By exploiting un-

derstanding of the characteristics of the gases and aerosols, in

concert with simplified descriptions of the climate system, it

is possible to develop simple methodologies that relate emis-

sions directly to climate impacts, rather than having to ex-

plicitly account for the intermediate steps. Such methodolo-

gies have pedagogic value in making clearer the link between

emissions (rather than, for example, concentration changes)

and climate response and they also have potential applica-

tions. The purpose of this paper is to present a methodology

that links global-mean precipitation directly to emissions of

different gases and aerosols. This exploits recent advances in

the understanding of how radiative forcing (RF) and tempera-

ture change influence precipitation change. The methodology

presented here yields what we call the Global Precipitation-

change Potential (GPP), which is the global-mean precipita-

tion change per unit mass of emission. The GPP is presented

for both pulse and sustained emissions.

The impact of climate change depends on more than

just global temperature change. Hence the development of

a methodology linking emissions directly to precipitation

is attractive. However, projections from ensembles of cli-

mate model simulations show that precipitation change is

much less amenable to a global representation than tem-

perature change. The projections indicate that the average

surface temperature response to increased concentrations of

greenhouse gases later in this century is largely the same

sign over the whole planet, the temperature changes are co-

herent on large spatial scales, and climate models largely

agree on the pattern of temperature change, if not the ab-

solute size (e.g., Knutti and Sendláček, 2013). By contrast,

projected precipitation changes vary regionally in sign, are

spatially much more variable and there is much less agree-

ment between climate models on the patterns of response

(e.g., Knutti and Sendláček, 2013). One part of the spatial

pattern of precipitation change can be understood in quite

simple terms, as being due to the enhanced convergence and

divergence of moisture in a warmer and more moist atmo-

sphere, assuming no change in the atmospheric flow that

transports the moisture (Held and Soden, 2006). Other parts

stem from changes in atmospheric circulation and surface

water availability in response to forcing, and from internal

variability; the response and variability differ between cli-

mate models, leading to the diverse model projections of pre-

cipitation change. Nevertheless, the global-mean precipita-

tion response is coherent amongst these climate models such

as that over the 21st century, precipitation is projected to in-

crease by about 1 to 3 % per degree C of global-mean warm-

ing (e.g., M. Collins et al., 2013). This paper addresses the

dependence of this global-mean component of precipitation

change on the emitted species, as global-mean precipitation

changes can be taken as being a useful indicator of the size

of disturbance of the global hydrological cycle.

Section 2 presents a brief overview of emission metrics

which are used to place emissions of different gases on some

common (usually CO2-equivalent) scale, as this is one po-

tential application of the GPP. Section 3 presents the simple

conceptual model that is used to relate precipitation change

to RF and temperature change, which are themselves related

to emissions. Section 4 presents some illustrative examples

of the GPP drawing values of key parameters from the lit-

erature. Section 5 then uses the methodology in the context

of climate metrics, and compares it with more conventional

metrics (the Global Warming Potential – GWP – and Global

Temperature-change Potential – GTP). Section 6 presents an

illustration of the use of the methodology for understanding

the effects of emissions in an individual year (or sustained

emissions from that year) on precipitation changes in or after

that year – this illustrates the principal drivers of the precip-

itation change, given present-day emissions. Section 7 ex-

plores some aspects of the uncertainty in characterising the

GPP and Sect. 8 discusses prospects for further developing

the GPP, including possibilities for including more regional-

scale information on precipitation response.

It is noted that Shindell et al. (2012) have demonstrated

a link between radiative forcing (due to a variety of forc-

ing mechanisms) in specific latitude bands to precipitation

change in a number of selected regions; their precipitation

change per unit radiative forcing was called a “Regional Pre-

cipitation Potential”, which is distinct from the GPP frame-

work presented here, where the precipitation change is di-

rectly related to emissions.

2 The utility of emission metrics

One potential application of the GPP is to place emissions

of different species on a common scale, in a similar way to

the GWP. The 100-year time-horizon GWP (GWP(100)) is

used by the Kyoto Protocol to the United Nations’ Frame-

work Convention on Climate Change to place emissions of

many relatively well-mixed non-CO2 greenhouse gases on

a so-called “CO2-equivalent scale”; this is necessary for the

type of multi-gas treaty that the Kyoto Protocol represents.

Metrics such as the GWP can also be used in life-cycle as-

sessment and carbon footprint studies, for assessing possi-

ble mitigation strategies, for example in particular economic

sectors, and can extend beyond the gases included in the Ky-

oto Protocol (see e.g., Fuglestvedt et al., 2010; Deuber et al.,

2014).
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The GWP characterises the RF in response to a pulse emis-

sion of a substance, integrated over some specified time hori-

zon. It is normally expressed relative to the same quantity for

an equal-mass emission of CO2. The GWP has enabled the

multi-gas operation of the Kyoto Protocol but has also been

the subject of criticism for some applications (e.g., Myhre

et al. (2013), Pierrehumbert (2014) and references therein).

This is partly because the use of time-integrated RF does

not unambiguously relate to an impact of climate change

(such as temperature change) and also because it contains

value judgements (particularly the choice of time horizon)

that cannot be rigorously justified for any particular applica-

tion (Myhre et al., 2013).

Metrics that extend beyond time-integrated forcing have

also been proposed. The GTP (e.g., Shine et al., 2007; Myhre

et al., 2013) characterises the global-mean surface tempera-

ture change at some time after an emission. It may be more

applicable to policies that aim to restrict temperature change

below a given target level. The GTP is also subject to criti-

cism and the need for value judgements when choosing time

horizons (Myhre et al., 2013). Nevertheless the GTP (and its

variants, such as the mean global temperature-change poten-

tial – e.g., Gillett and Matthews, 2010; Deuber et al., 2014

– and integrated temperature potential – e.g., Peters et al.,

2011; Azar and Johansson, 2012) do at least extend to a pa-

rameter (temperature change) more obviously related to a cli-

mate change impact. Sterner et al. (2014) recently presented

a metric for sea-level rise. Metrics can also be derived nu-

merically on the basis of the contribution of an emission of a

component at a given time, to temperature change (or other

parameters) during some future period, as simulated by a

simple climate model driven by a specific emissions scenario

(e.g., Tanaka et al., 2009).

Metrics can also be extended to the economic effects of an

emission (for example the Global Cost Potential and Global

Damage Potential), by relating the metrics to costs and dam-

ages (e.g., Johansson, 2012) and in certain restrictive cases

these can be shown to have equivalence to physically based

metrics such as the GWP and GTP (e.g., Tol et al., 2012).

One difficulty in such approaches is that the economic dam-

age has to be represented in a highly-idealised form, as some

simple function of, for example, global-mean temperature

change. Conventional physical metrics can also be judged in

an economic context (e.g., Reisinger et al., 2013; Strefler et

al., 2014).

The GPP enables an additional and complementary

methodology to existing methods for intercomparing the im-

pacts of emissions of different species, and the impact of ac-

tual or proposed changes in those emissions.

3 Simple conceptual model

3.1 Relationships between radiative forcing and

changes in temperature and precipitation

The simple conceptual model presented here originates from

the analysis of simulated precipitation changes in response

to increases in CO2 presented by Mitchell et al. (1987). This

analysis was based around the fundamental controls on the

energy balance of the troposphere, in which, to first order,

the latent heating resulting from the net rate of condensa-

tion of water vapour (and hence precipitation) is balanced by

net radiative cooling. The conceptual model has been further

developed more recently, and extended to both multi-model

assessments and other climate forcing (and feedback) mech-

anisms (e.g., Allen and Ingram, 2002; Takahashi, 2009; An-

drews et al., 2010; Kvalevåg et al., 2013; Allan et al., 2014).

The framework starts with an expression of the global-

mean atmospheric energy budget, whereby the net emission

of radiation by the atmosphere (i.e., the atmospheric radia-

tive divergence (Rd), which is the sum of the emission of

longwave radiation by the atmosphere minus the atmospheric

absorption of longwave and shortwave radiation) is balanced

by the input of surface sensible (SH) and latent (LH) heat

fluxes so that

Rd = LH+SH. (1)

LH is directly related to the precipitation as, at the global-

mean level, evaporation (and hence LH fluxes) and precipi-

tation approximately balance.

In response to the imposition of an RF and subse-

quent changes in temperature, humidity and clouds, Rd will

change. The latent heat change 1LH can then be written

1LH=1Rd−1SH. (2)

1LH in W m−2 can be converted to precipitation units of

mm day−1 by multiplication by 0.034 (86 400 s in a day di-

vided by the latent heat of vaporisation, L (2.5× 106 J kg−1

at 273.15 K)). There is some level of approximation in this

conversion, as L is temperature dependent and some precipi-

tation falls as snow rather than rain, and hence the latent heat

of sublimation would be more appropriate. The precipitation

change could also be quoted in % of global-mean precipita-

tion (about 2.68 mm day−1 – e.g., Huffman et al., 2009).

1Rd has two components. The first component is due di-

rectly to the RF mechanism which can change the absorption

of shortwave radiation and/or the emission and absorption of

longwave radiation. The conventional top-of-atmosphere ra-

diative forcing (RF) can be written as the sum of a surface

component (RFs) and an atmospheric component (RFa), and

it is RFa that directly influences 1Rd. Because values of RF

are more readily available than RFa for a wide range of con-

stituents, it is convenient to relate RFa to RF and so, follow-

ing Allan et al. (2014), we define a parameter f such that

www.earth-syst-dynam.net/6/525/2015/ Earth Syst. Dynam., 6, 525–540, 2015
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RFa= f RF. The parameter f could be estimated directly

from RF calculations using a radiative transfer code. How-

ever, here results from fixed-sea-surface-temperature climate

model simulations (e.g., Andrews et al., 2010; Kvalevåg et

al., 2013) are used; these have the advantage that they in-

clude the impact on f of rapid adjustments of, for example,

clouds. A disadvantage is that the results of such experiments

are noisier, because of model internal variability, which can

be particularly important for small forcings. Note that a fully

consistent approach would adopt effective radiative forcings

(ERF – see Myhre et al., 2013) rather than RF, and values

of f derived using ERFs. However, assessed values of ERFs

are not available for many species and so, in common with

Myhre et al., (2013), the metric values calculated here use

RFs, but include a number of indirect chemical effects and

some cloud effects, as noted in Sect. 4. The values of f are

based on one method of deriving ERFs and a possible reason

for differences between f values in Andrews et al. (2010)

and Kvalevåg et al. (2013) (see Sect. 7) is that the fast tro-

pospheric responses that distinguish RF from ERF differ be-

tween the models used in their studies.

The second component of 1Rd is due to the tempera-

ture change resulting from the RF, which leads to changes in

emission of longwave radiation. This change is modified by

feedbacks involving other radiatively important components

such as water vapour and clouds (e.g., Takahashi, 2009; Prev-

idi, 2010) which can also influence1Rd via the absorption of

shortwave radiation. Climate model simulations indicate that

this component of 1Rd varies approximately linearly with

changes in global-mean surface temperature1Ts (e.g., Lam-

bert and Webb, 2008; Previdi, 2010; O’Gorman et al., 2012).

1SH in Eq. (2) is less well constrained. It also has two

components, one due to the fast response to RF, which is

independent of surface temperature change, and one due

to surface temperature change. The fast response has been

shown to be small for greenhouse gas forcings; Andrews

et al. (2010) and Kvalevåg et al. (2013) show it to be typ-

ically less than 10 % of 1LH for a doubling of CO2, al-

though the size and sign can vary amongst models (Andrews

et al., 2009). However, it can be much larger for other forc-

ings (of order 50 % of 1LH in the case of black carbon; An-

drews et al., 2010; Kvalevåg et al., 2013). As noted by Taka-

hashi (2009) and O’Gorman et al. (2012), an improved con-

ceptual model could distinguish between 1Rd for the whole

atmosphere and 1Rd for the atmosphere above the surface

boundary layer; changes in 1Rd within the boundary layer

seem more effective at changing SH (e.g., Ming et al., 2010)

and hence less effective at changing LH. Here, following

Thorpe and Andrews (2014), we assume the fast component

1SH to be small and neglect it, but more work in this area is

clearly needed.

Lambert and Webb (2008), Previdi (2010), O’Gorman et

al. (2012) and others show that while generally a smaller

term, the surface temperature dependent part of 1SH has

a similar dependency on 1Ts (at least in the multi-model

mean) as 1Rd. Hence it is convenient to combine the 1Ts

-related changes in Rd and this component of SH in Eq. (2)

into a single term dependent on 1Ts and separate out the

RF term. Equation (2) then becomes, in precipitation units of

mm day−1,

1P = 0.034(k1Ts− fRF) . (3)

Despite its apparent simplicity, Eq. (3) has been shown by

Thorpe and Andrews (2014) to reasonably well simulate fu-

ture projections of global-mean precipitation change from a

range of atmosphere–ocean general circulation models, al-

beit with a tendency to underestimate the multi-model mean.

Uncertainty in the value of f for all forcing agents (and pos-

sible inter-model variations in f – see Sect. 7) inhibit a full

assessment.

We refer to the k1Ts term as the “T term” and the −fRF

term as the “RF term” although they could also be termed

the “slow” and “fast” responses, respectively, which relates

to the contrasting heat capacities and associated response

timescales of the ocean and atmosphere. The balance be-

tween these two terms varies between climate forcing agents;

as will be shown, they can act to either reinforce or oppose

each other. Hence the same 1Ts from two different forcing

agents can result in a different 1P .

Note the sign convention here. For the case of a positive

RF, since k is positive, the effect of the T term is to increase

Rd as temperature increases – the increased radiative diver-

gence then leads to a requirement for a greater latent heat

flux (and hence an increase in precipitation) to maintain the

tropospheric energy balance; this term provides the direct

link between surface temperature change and precipitation

change. If in this same case f (and hence RFa) is positive,

then the RF term would oppose the T term (as it would de-

crease rather than increase the radiative divergence) and act

to suppress precipitation. Physically, in this case, there is less

“demand” for latent heating to balance the tropospheric en-

ergy budget.

3.2 Illustration for doubling of CO2

As a simple example of the processes, consider the equi-

librium response to a doubling of carbon dioxide, and

take k= 2.2 W m−2 K−1 (consistent with the multi-model

means in Previdi, 2010 and Thorpe and Andrews, 2014),

RF2×CO2
= 3.7 W m−2 (Myhre et al. (2013) who give the

same value for the ERF) and f = 0.8 (Andrews et al., 2010).

The equilibrium precipitation change 1P2×CO2
(in %, as-

suming a global-mean precipitation of 2.68 mm day−1), can

then be written in terms of the equilibrium surface tempera-

ture change 1T2×CO2
as

1P2×CO2
= 2.79

(
1T2×CO2

− 1.35
)
. (4)

This equation shows that if 1T2×CO2
= 1.35 K, which, via

1T2×CO2
= λRF2×CO2

, corresponds to a climate sensitivity

Earth Syst. Dynam., 6, 525–540, 2015 www.earth-syst-dynam.net/6/525/2015/
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λ of 0.36 K (W m−2)−1, 1P2×CO2
would be zero. The slope

of the line is 2.79 % K−1. Such an expression fits well with

the intercept and slope of the linear fit to equilibrium double-

CO2 experiments from a range of climate models found by

Allen and Ingram (2002 – their Fig. 2). Hence Eq. (4) acts

as a further validation of the utility of Eq. (3) for simulat-

ing global-mean precipitation change across climate models

with varying parameterisations of, for example, convection,

with climate sensitivities varying across the range from about

0.4 to 1.3 K (W m−2)−1. The departures of individual mod-

els from this best fit could originate from differences in any

of the values of k, f , RF2×CO2
assumed here, or in inter-

model differences in the importance of the fast component of

1SH which is not accounted for here. The slope of the line

also corresponds to hydrological sensitivity due only to the

T term, and is in good agreement with the multi-model mean

derived by Thorpe and Andrews (2014).

Since more generally, 1Teq= λRFeq, Eq. (3) can also be

written in a more general form for any 1Teq (and hence

RFeq), so that the equilibrium change in precipitation 1Peq

(in %) is given by

1Peq = 1.31Teq (k− f/λ) . (5)

This emphasizes that the offset between the T and RF terms

depends strongly on λ. Using a mid-range climate sensitiv-

ity of 0.8 K (W m−2)−1, the RF term for CO2 offsets about

50 % of the precipitation change that would result from the

T term alone. Considering the IPCC (2013) “likely” range

for λ, which is 0.4 to 1.2 K (W m−2)−1, the RF term offsets

the T term by about 90 % for low λ and by 30 % at high λ.

The overall global-mean equilibrium hydrological sensitivity

(1Peq/1Teq) to CO2 forcing can be derived from Eq. (5) and

varies from about 0.25 % K−1 to 2 % K−1 over this range of

λ, which can be compared with the value of 2.79 % K−1 due

solely to the T term.

3.3 Application to emissions of a gas or aerosol

To relate the understanding encapsulated in Eq. (3) to an

emission of a gas or aerosol, we consider first the GPP

for a pulse emission of unit mass of a gas at time t = 0

and consider the precipitation change at time H after the

emission. Following convention, we label this the Abso-

lute GPP (AGPPP), which is presented here in units of

mm day−1 kg−1.

The T term in Eq. (3) becomes k times the absolute GTPP

(AGTPP) (e.g., Shine et al., 2005). Assuming for small per-

turbations that RF is linear in the concentration of the emit-

ted species, x, and that the perturbation decays exponentially

with time constant τx , then for a unit emission, the RF term is

given by −fx Ax exp(−H/τx), where Ax is the specific RF

(in W m−2 kg−1) of the emitted species. Hence the AGPP (in

mm day−1 kg−1) is given by

AGPPxP(H )= 0.034
(
kAGTPxP(H )− fxAx exp(−H/τx)

)
. (6)

Since a perturbation of CO2 does not decay following a sim-

ple exponential (see e.g., Joos et al., 2013), the calculation of

AGPP
CO2

P (H ) is slightly more involved – see the Appendix

for more details.

The effect of a sustained emission of a unit mass of gas per

year, from time t = 0 can also be considered yielding a sus-

tained AGPP (AGPPS). In this case, the AGTPS (see Shine et

al., 2005) can be used for the T term and the RF term is now

proportional to the time variation of the perturbation of the

species to a step-perturbation (e.g., Fuglestvedt et al., 2010).

The AGPPS is given by

AGPPxS(H )= 0.034
(
kAGTPxS(H )− fxAxτx (1− exp(−H/τx ))

)
, (7)

which can also be expressed as a function of both AGTPS

and AGWP as

AGPPxS(H )= 0.034
(
kAGTPxS(H )− fxAGWPx(H )

)
. (8)

The calculation of AGPP
CO2

S (H ) is explained in the Ap-

pendix. Note that when H is long compared to the timescale

of the climate response (several hundred years in this case

– see the Appendix) the AGTPxS(H ) can itself be related to

the AGWPxP(H ) (see e.g., Shine et al., 2005) which would

simplify Eq. (8) further.

Here the AGPPP and AGPPS are used to calculate the

GPPP and GPPS relative to a reference gas, and following

common practice for GWP and GTP, CO2 is used as that ref-

erence gas here, although difficulties with this choice will be

noted. The GPPP, relative to an equal mass emission of CO2,

is then given by

GPPxP(H )=
AGPPxP(H )

AGPP
CO2

P (H )
, (9)

with a similar expression for GPPS.

Note we have chosen to present the AGPPP and AGPPS

as end-point metrics, i.e., as the effect at the time horizon H

of an emission at (or starting at) t = 0. For some purposes, a

time-integrated metric might give a useful perspective. Fol-

lowing Peters et al. (2011 – see in particular its Supplement)

we note that time-integrated pulse metrics are mathemati-

cally equivalent to end-point metrics for sustained emissions.

Hence, the AGPPS and GPPS can equally be interpreted as

time-integrated forms of the AGPPP and GPPP.

4 Illustrative values for the absolute global

precipitation-change potential

In this section, illustrative calculations of the AGPP are

presented. Values for gas lifetimes and Ax are taken from

Myhre et al. (2013) and are described in more detail in

the Appendix. The AGTP calculation requires a represen-

tation of the surface temperature response, which depends
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on the climate sensitivity and rate of ocean heat uptake. We

use the simple impulse response function in Boucher and

Reddy (2008) (as used in Myhre et al. (2013) for GTP cal-

culations). Details are given in the Appendix. Values of f ,

which describe the partitioning of the RF between surface

and atmosphere are taken from Andrews et al. (2010) – these

will likely be quite strongly model dependent, but for illus-

tration purposes, they suffice. Some sensitivity tests to the

representation of the impulse response function and f are

presented in Sect. 7. The calculations for CH4 and N2O emis-

sions include indirect effects, the most prominent being their

impact on ozone. Different values of f should be used for

each indirect component, but in the absence of robust assess-

ments for these, the same value of f is used for the indirect

components as is used for the direct components.

4.1 Well-mixed greenhouse gases

Figure 1 shows the AGPPP for CO2, CH4 and N2O, for the

total and the RF and T terms individually, for a period of

100 years after the pulse emission. In Andrews et al. (2010),

f is larger for CO2 (0.8) than for methane (0.5) because, for

present-day concentrations, the lower opacity of the methane

bands means that the surface feels more of the top-of-the-

atmosphere forcing than it does for CO2. Since N2O has a

similar atmospheric opacity to CH4, it is hypothesized that

surface–atmosphere partitioning of the RF also behaves in

a similar way to CH4 and so the value of f for N2O is

also taken to be 0.5; further work is needed to establish this.

Hence, from Eq. (3), the degree of offset between the RF and

T terms is larger for CO2 than for CH4 and N2O.

Figure 1a for CO2 illustrates the general behaviour. For a

pulse emission, the size of the RF term is maximised at the

time of emission, as this is when the concentration is largest,

and then decays as the perturbation decays. The T term is

dictated by the timescale of the response of the surface tem-

perature to the forcing. The characteristic temperature re-

sponse to a pulse forcing (e.g., Shine et al., 2005) is an initial

increase in T , as the thermal inertia of the surface means it

takes time to respond to the forcing, reaching a maximum,

followed by a decrease that is controlled by the timescales

of both the decay of the pulse and the climate response. For

the first 5 years, the CO2 precipitation response is negative

as the RF term dominates, after which the T term dominates,

but the total is approximately 50 % of the T term. The long

perturbation timescales mean that the effect on precipitation

persists for more than 100 years after an emission, as does

the competition between the T and RF terms.

N2O has a lifetime of the order of a century and its AGPPP

(Fig. 1b) is qualitatively similar to CO2 but the T term domi-

nates, because f is smaller. As CH4 is much shorter lived, its

behaviour is somewhat different. As the pulse, and the asso-

ciated RF, has disappeared by about year 40, after this time

the AGPPP is determined by the T term only.

Figure 1. AGPPP for 1 kg pulse emissions of CO2, N2O and CH4.

The T term and RF term refer to the first and second terms on the

right hand side of Eq. (3) respectively, and the Total is the sum of

these.

4.2 Short-lived species

The AGPP is illustrated for two short-lived species, sulphate

and black carbon (BC) aerosols. For both cases, the radia-

tive efficiency and lifetime values from Myhre et al. (2013)

are used and given in the Appendix; for these illustration

purposes only the sulphate direct effects are included, and

the BC values include some aerosol-cloud interaction and

surface albedo effects. In terms of the surface–atmosphere

partitioning of RF, these are two contrasting cases. For sul-

phate, the Andrews et al. (2010) model results indicate an

f value less than 0.01 in magnitude and is assumed here

to be zero; this indicates that essentially all of the top-of-

the-atmosphere forcing reaches the surface. By contrast, An-

drews et al. (2010) find that for BC, f is 2.5, so that RFa is

much greater than RF; the surface forcing is of opposite sign

to RF and RFa as the surface is deprived of energy, while

the atmosphere gains energy. As will be discussed further in

Sect. 7, there are considerable uncertainties in these values,

especially for BC, where both RF and f depend strongly on

the altitude of the BC. Nevertheless, the values used here suf-

fice to illustrate a number of important points.

Figure 2 shows the AGPPP for BC and sulphate. As both

are very short-lived (weeks) compared to the greenhouse

gases, their RF term decays to zero within a year (and hence

is not visible on Fig. 2), and it is only the thermal inertia of

the climate system that enables them to influence tempera-

ture (and hence precipitation) beyond this time period.

An alternative perspective is provided for the sustained-

emissions case. In this case, because the BC and sulphate

perturbations persist, so too does the influence of the RF term

on precipitation. Figure 3 shows the AGPPS for CO2, BC and

sulphate. For CO2, the long timescales of the CO2 perturba-

tion mean that both the RF term and T term increase through-
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Figure 2. AGPPP for 1 kg pulse emissions of black carbon (BC)

and sulphate. Note that the RF term in Eq. (3) is negligible for such

short-lived gases, except at time horizons less than a few weeks, and

only the total is shown.

Figure 3. AGPPS for 1 kg yr−1 sustained emissions of CO2, BC

and sulphate. The T term and RF term refer to the first and second

terms on the right hand side of Eq. (3) respectively, and the Total is

the sum of these. For sulphate, the RF term is assumed to be zero

(see text) and so only the Total is shown.

out the 100-year period shown. At short time horizons, the

RF term dominates, leading to suppression of global precip-

itation, but after about 15 years, the T term starts to domi-

nate, and the AGPPS becomes positive. For BC, the impact

of the large RF term is dramatic. It is strongly negative and

constant with time (because of the short lifetime), while the

T term is positive and increases until the temperature is al-

most in equilibrium with the RF. This counteracts the impact

of the RF term, but the total nevertheless remains negative

throughout. For sulphate, because f is assumed to be zero,

the total remains equal to the T term.

5 The GPP relative to CO2

Absolute GPP values were presented in Sect. 4. In this sec-

tion we normalize the GPP values to the effects of the ref-

erence gas CO2 to provide a relative measure, using Eq. (9)

and its equivalent for sustained emissions.

Figure 4. GPPP (in bold) and GTPP for 1 kg pulse emissions of

N2O and CH4 relative to a 1 kg pulse emission of CO2.

5.1 Well-mixed greenhouse gases

Figure 4 shows the GPPP for N2O and CH4; for compar-

ison, the GTPP is also shown. Note that the plots start at

H = 20 years, as the time at which the AGPPP crosses the

zero axis differs slightly amongst the gases, and this results

in a singularity in Eq. (9). For N2O, the GPPP is at least

300 times greater than CO2 on all timescales shown, and, per

unit emission, is more than 40 % more effective at changing

precipitation than temperature (as given by the GTPP), com-

pared to CO2. This is because the RF term is less effective

at muting the T term for N2O’s GPPP than is the case for

CO2. For CH4 the difference between the GPPP and GTPP

is most marked in an absolute sense at shorter time horizons,

when the GPPP of methane is affected most by the RF term;

the GPPP and the absolute difference with the GTP decline

at longer timescales when it is entirely due to the difference

between the AGTPP and AGPPP for CO2.

Table 1 presents the values of all absolute metrics used

here for CO2 and Table 2 presents the values of the GWP,

GTPP and GPPP for H of 20 and 100 years; these time hori-

zons are chosen for illustrative purposes, rather than being

indicative that they have special significance, except insofar

as 100 years is used for the GWP within the Kyoto Protocol

(e.g., Myhre et al., 2013). For CH4, the GPPP(20) is 50 %

larger than the GWPP(20) and almost double the GTPP(20)

mostly because of the larger effect of the RF term on the

AGPPP for CO2. The time-integrated nature of the GWP

means that it is much higher than the GTPP and GPPP at

100 years, while the GPPP remains about double the GTPP.

The GPPP for N2O is 25–50 % higher than the GWP and

GTPP at both values of H , again because of the larger effect

of the RF term on the AGPPP for CO2.

5.2 Short-lived species

Figure 5 shows the GPPP and GTPP for BC and sulphate. As

noted in Sect. 4.2, the radical difference in their values of f
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Table 1. Absolute metrics, AGWP, AGTPP, AGTPS, AGPPP and AGPPS for CO2 at time horizons of 20 and 10 years, which are chosen for

illustrative purposes. The first and second sets of AGPP values use the CO2 f factor from Andrews et al. (2010) and Kvalevåg et al. (2013),

respectively (see Table A1).

Time horizon (years)

Unit 20 100

AGWP W m−2 kg−1 yr 2.50× 10−14 9.19× 10−14

AGTPP K kg−1 6.85× 10−16 5.48× 10−16

AGTPS K kg−1 yr 1.05× 10−14 5.90× 10−14

AGPPP (Andrews) mm day−1 kg−1 2.27× 10−17 2.13× 10−17

AGPPS (Andrews) mm day−1 kg−1 yr 1.05× 10−16 1.91× 10−15

AGPPP (Kvalevåg) mm day−1 kg−1 2.99× 10−17 2.63× 10−17

AGPPS (Kvalevåg) mm day−1 kg−1 yr 2.75× 10−16 2.53× 10−15

Table 2. The GWP, GTPP and GPPP, relative to CO2, for pulse emissions of four species at time horizons of 20 and 100 years, which are

chosen for illustrative purposes. The absolute values of metrics for CO2 are given in Table 1.

GWP (20) GWP (100) GTPP(20) GTPP(100) GPPP(20) GPPP(100)

CH4 84 28 67 4.3 120 8.1

N2O 263 264 276 234 396 325

Sulphate −141 −38 −41 −5.28 −92 −10.1

Black carbon 2415 657 701 91 1580 173

Figure 5. GPPP (in bold) and GTPP for 1 kg pulse emissions of BC

and sulphate relative to a 1 kg pulse emission of CO2.

(2.5 for black carbon, 0 for sulphate) has no impact on the

AGPPP for BC and sulphate beyond very short timescales.

Because of this, in Fig. 5, the only difference between the

GPPP and GTPP comes from the influence of the RF term

on AGPP
CO2

P , and on an equal emissions basis both short-

lived species are, relative to CO2, more effective at changing

precipitation than temperature – this is also shown in Table 2.

Figure 6 shows the GPPS, comparing it with the GTPS. For

sulphate, the difference between the GPPS and GTPS origi-

nates entirely from the effect of the RF term on AGPP
CO2

S ,

because of the assumption that f is zero. For BC they differ

dramatically – whilst both BC and CO2 cause a warming, so

Figure 6. GPPS (in bold) and GTPS for 1 kg yr−1 sustained emis-

sions of BC and sulphate relative to a 1 kg yr−1 sustained emission

of CO2.

that GTPS is positive, their impact on precipitation is oppo-

site, and the BC GPPS is negative.

Table 3 presents values of the GTPS and GPPS forH = 20

and 100 years, including the values for CH4 and N2O for

completeness. The GPPS values at 20 years are particularly

influenced by the fact that the AGPPS for CO2 is relatively

small at this time, due to the strong cancellation between

the T and RF terms. At both values of H , GPPS values are

higher in magnitude than the corresponding GTPS values for

all non-CO2 components considered here.
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Figure 7. Precipitation change, in µm day−1 (top panel), and tem-

perature change, in mK, (bottom panel) in the years after 2008, fol-

lowing a pulse emission in 2008, calculated using the AGPPP and

AGTPP and using estimated emissions of the species in 2008.

6 Precipitation response to realistic emissions

To illustrate a further usage of the AGPPP and AGPPS,

Figs. 7 and 8 apply them to 2008 emissions, to examine the

consequences of the emissions of the five example species on

precipitation. Figure 8.33 of Myhre et al. (2013) presents a

similar calculation applying the AGTPP and shows that the

five species used here are the dominant emissions for de-

termining temperature change; hence it was felt useful to

also present the total effect of the five emissions in the fig-

ures. Emissions are taken from Table 8.SM.18 of Myhre et

al. (2013) and reproduced in Table A1. For reference, the

corresponding values using the AGTPP and AGTPS are also

shown in the figures.

Figure 7 shows the impact of the 2008 emissions, emit-

ted as a single pulse, on global precipitation and temperature

change in subsequent years. While the emissions of CH4, sul-

phate and BC are 2 to 4 orders of magnitude smaller than

those of CO2, in the early years after the emission, their ef-

fects are competitive with CO2 because of the size of the

GPPP and GTPP; emissions of N2O are small enough that,

despite its large GPPP, its absolute contribution remains low

throughout. Because of the differing compensations between

the T and RF terms for CO2 and CH4, their relative im-

portance differs quite significantly between precipitation and

temperature. Methane’s contribution to precipitation change

is less negative or more positive than that of CO2 until about

20 years; it exceeds the CO2 contribution by a factor of 2

at about 10 years, and remains 25 % of the CO2 effect even

at 50 years. For temperature, the contributions are approx-

imately the same until 10 years, after which the CO2 con-

tribution dominates, being about 7 times larger by 50 years.

For the two aerosol components, the GPPP is unaffected by

Table 3. The GTPS and GPPS, relative to CO2, for sustained emis-

sions of four other species at time horizons of 20 and 100 years,

which are chosen for illustrative purposes. The absolute values of

metrics for CO2 are given in Table 1.

GTPS(20) GTPS(100) GPPS(20) GPPS(100)

CH4 93 31.5 357 49.6

N2O 256 267 846 401

Sulphate −199 −43.2 −1490 −100

Black carbon 3410 741 −23 500 −979

Figure 8. Precipitation change, in mm day−1 (top panel), and tem-

perature change, in K, (bottom panel) in the years after 2008,

assuming constant emissions at 2008 levels, calculated using the

AGPPS and AGTPS and using estimated emissions of the species

in 2008.

the RF term (because the RF due to a pulse emission of a

short-lived gas declines rapidly – see Sect. 4) but their impor-

tance for precipitation relative to CO2 is enhanced, because

the RF term acts to suppress the effect of CO2 on precipita-

tion change. Thus, for example, the BC effect on precipita-

tion is larger than CO2 out to year 10, compared to year 4 for

temperature.

Figure 8 shows the effect of assuming sustained emis-

sions at 2008 levels. Although not a plausible future sce-

nario (since, for example, emissions of greenhouse gases are

at present continuing to rise) it provides a useful baseline

experiment to assess the relative roles of current emissions

when their atmospheric burdens are replenished each year.

As expected from the AGPPS values, the role of the short-

lived species differs considerably from the pulse case, as the

RF term remains active – in the case of precipitation, BC’s

effect is now negative throughout. Until about 30 years, the

net effect of all five emissions is a reduction of precipitation,

after which the warming due to CH4 and CO2 is sufficient

for their T terms to overwhelm the reduction caused by sul-

phate (due to its T term) and BC (due to its RF term). This

near-term reduction of precipitation is also seen in the re-
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Table 4. The GPPP and GPPS, relative to CO2, for pulse emissions of four other species at time horizons of 20 and 100 years, which are

chosen for illustrative purposes, using the values of surface–atmosphere partitioning of radiative forcing from Kvalevåg et al. (2013). The

two black carbon values are, respectively, using values of f for a model-derived vertical profile for present-day emissions and assuming that

the present-day burden is placed entirely at 550 hPa. The absolute values of metrics for CO2 are given in Table 1.

GPPP(20) GPPP(100) GPPS(20) GPPS(100)

CH4 101 6.6 187 44.4

N2O 370 303 486 367

Sulphate −70 −8.2 −741 −94.0

Black Carbon 1200 141 −36 600, −87 400 −3740, −9250

sults of Allan et al. (2014), where the precipitation changes

are driven directly by forcings and temperatures (rather than

by emissions, as is the case here). By contrast, the temper-

ature effect is positive after year 1. Perhaps most marked is

the role of CH4. It is the dominant driver of positive precip-

itation change until about year 50 and even after 100 years

its effect is about 50 % of that due to CO2. This differs from

temperature, where the CO2 effect is greatest after 15 years

and 3 times larger by 100 years. Figure 8 also illustrates the

extent to which the sulphate and BC emissions are oppos-

ing the precipitation increase due to the greenhouse gases,

at large values of H ; those components would respond rela-

tively quickly to any changes in emissions.

While these are clearly idealised applications of uncertain

metrics, they nevertheless illustrate their potential utility for

assessing the relative importance over time of different emis-

sions on global precipitation change. The approach could

be extended to past or possible future emission profiles, by

convolving the time-dependent emissions with the GPPP and

GPPS values.

7 Sensitivities and uncertainties

There are many uncertainties and sensitivities in the calcu-

lation of metrics such as assumptions about the background

state (which can affect Ax and τx), and the impulse response

function for CO2 (see e.g., Fuglestvedt et al., 2010; Joos et

al., 2013; Myhre et al., 2013). Two sensitivities are explored.

First, the impulse response model for surface temperature

change used here (see Sect. 4) is a fit to output from exper-

iments with one particular climate model with its own par-

ticular climate sensitivity. Olivié et al. (2012) present simi-

lar fits derived from 17 different climate models, or model

variants – the fits shown in Table 5 of Olivié et al. (2012)

are used, along with the Boucher and Reddy (2008) fit used

in Sect. 4, and cover a wide range of climate sensitivities

(0.49 to 1.06 K (W m−2)−1) and timescales of climate re-

sponse, although we note that model uncertainty range may

not fully straddle the true uncertainty range. Olivié and Pe-

ters (2013) used these fits to explore the sensitivity of the

GTP calculations. Figure 9 shows the mean and standard de-

Figure 9. Mean and standard deviations of the AGTP, AGPP,

GTP and GPP for both pulse (PUL) and sustained (SUS) emis-

sions for time horizons of 20 and 100 years (which are cho-

sen for illustrative purposes), using 18 different representa-

tions of the impulse response function for temperature change.

(a) AGTP and AGPP for carbon dioxide, for both pulse and

sustained emissions, and then GTPP, GPPP, GTPS and AGPPS

for (b) methane, (c) nitrous oxide, (d) sulphate and (e) black

carbon. For CO2 the units are 10−16 K kg−1 for AGTPP,

10−14 K kg−1 yr for AGTPS, 10−18 mm day−1 kg−1 for AGPPP

and 10−16 mm day−1 kg−1 yr for AGPPS. The AGPPS for all other

gases are in 10−15 mm day−1 kg−1 yr.

viation of the pulse and sustained GTP and GPP derived us-

ing these 18 different representations.

Considering the absolute pulse metrics for CO2, Fig. 9a

shows that the AGTPP is only moderately sensitive (with a

coefficient of variation (cv) of about 20 %) to model choice.

By contrast the cv is about 60 and 40 % for the AGPPP(20)

and AGPPP(100), respectively. This is because the T term

is highly sensitive to the choice of impulse response model,

whilst the RF term is independent; hence the degree of com-

pensation between these two terms varies amongst these

models. The GTPP is most sensitive for short-lived species

and this uncertainty is amplified for the GPPP, by up to a

factor of 2 for the GPPP(100) for sulphate (Fig. 9d). By con-
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trast, for the longer-lived species the uncertainty in the GTPP

and GPPP differ greatly – for N2O (Fig. 9c), the cv for GTPP

values is only a percent or so, but is typically 40 % for the

GPPP, as both the numerator and denominator in Eq. (9) are

impacted by compensations in the T and RF terms to differ-

ent degrees at different times.

The GPPS is more sensitive because even the sign of

the AGPP
CO2

S is not well constrained at 20 years (Fig. 9a).

Roughly half of the impulse response models yield posi-

tive values and half negative ones, with two near zero, be-

cause of the differing degrees of compensation between the

T and RF terms. The value of H at which the AGPP
CO2

S is

zero varies from 11 to 61 years amongst the models. (For

comparison, for the AGPP
CO2

P , the corresponding range is 4

to 13 years.) In these circumstances, it becomes difficult to

compare the GPPS values as they vary wildly from model to

model (from −18 000 to 24 000 for the GPPS(20) for N2O)

and for this reason the AGPPS is presented in Fig. 9. Even

the AGPP
CO2

S (100) values vary by over an order of magni-

tude across the 18 models. In general, the uncertainties in the

AGPPS exceed those in the AGTPS; this is most marked in

the case of N2O, where the GTPS is almost insensitive to the

choice of impulse response model, as the effect of this choice

on the AGTPS for CO2 and N2O is almost the same.

The second sensitivity explored here is to the assumed val-

ues of f by replacing the Andrews et al. (2010) values by

those from Kvalevåg et al. (2013) (see Table A1). Where

available, we use the values of f from the larger forcing per-

turbations given by Kvalevåg et al. (2013) as these give a

clearer signal. For BC, Kvalevåg et al. (2013) present a range

of values, for perturbations at different altitudes – for exam-

ple they find a value of f of 6.2 (for 10 times the model-

derived vertical profile of BC in response to present-day

emissions) and 13 (when 10 times the present-day burden

is placed entirely at 550 hPa); these can be compared to the

Andrews et al. (2010) value of 2.5. The difference results

mostly from the semi-direct effect of BC and clouds; when

BC is entirely placed at certain pressures (750 and 650 hPa),

Kvalevåg et al.’s (2013) results indicate that f is particularly

poorly constrained, because RF is close to zero, while RFa

is large and positive. This is an example of where casting

Eq. (3) directly in terms of RFa rather than RF would be ad-

vantageous (see Sect. 3). It should be noted that this sensitiv-

ity test concerns the impact of BC altitude on f rather than

on τx and Ax .

Table 1 shows the AGPPP and AGPPS for CO2 and Ta-

ble 4 shows the GPPP and GPPS; these should be compared

with the appropriate columns in Tables 2 and 3 (the GWP,

GTPP and GTPS are unaffected by f ). For the GPPP for CH4

and N2O, the effect of changing the f values is rather mod-

est (10–20 %) because changes in the numerator and denom-

inator of Eq. (9) compensate to some extent. For BC and

sulphate, changes are entirely dependent on the change in

AGPP
CO2

P , as the change in f factor has little influence (see

Sect. 4.2) and hence changes are correspondingly larger (20–

30 %).

The AGPP
CO2

S (20) (Table 1) is rather sensitive to the

change in f because of the degree of compensation between

the T and RF terms, and increases by more than a factor of 2

(Table 1). This is the dominant reason why the GPPS(20) for

N2O and CH4 decrease by about a factor of 2. The changes at

100 years are much smaller, nearer 10 %. The AGPPS for the

short-lived species are, unlike the AGPPP, now affected by

the change in f . Table 5 shows the effect on the sulphate

GPPS(20) to be about a factor of 2, while the GPPS(100)

is little affected. By contrast, the GPPS for black carbon at

both time horizons depends significantly on the altitude of

the black carbon perturbation.

8 Discussion and conclusions

This paper has used a simple, but demonstrably useful, con-

ceptual model of the drivers of global-mean precipitation

change in response to the imposition of a radiative forcing, to

relate precipitation change directly to emissions. The GPPP

and GPPS metrics illustrate the interplay between the two

drivers (the atmospheric component of the radiative forcing,

and the surface temperature change) for different forcings,

at different time horizons, and for both pulse and sustained

emissions. The GPPP and GPPS are given as the change at

a specific time horizon (and hence are end-point metrics).

There may be climate effects related to the total change in

precipitation over time for which an integrated metric would

be appropriate, so it is useful to note that the GPPS can also

be interpreted as the time-integrated GPPP.

It has been shown that relative to CO2, the pulse and sus-

tained GPP values for the non-CO2 species examined here

are larger than the corresponding GTP values, because the

CO2 GPP is the sum of two quite strongly opposing terms.

Further, for black carbon emissions, while they act to warm

the climate system, they also act to reduce global-mean pre-

cipitation; while this has been clear from the modelling lit-

erature for some time, the present work shows how the per-

spective is different for pulse and sustained emissions. The

reduction of precipitation is driven entirely by the radiative

forcing component and since, for pulse emissions of short-

lived species this falls away on timescales of weeks, it is only

apparent on longer timescales for the sustained perspective.

This is an example of how the perturbation design can have

a large impact on the calculated response.

The evaluation of precipitation metrics assumes that the

parameters required for the simple conceptual model are

available, and in particular the partitioning of radiative forc-

ing between surface and atmosphere. Only a rather lim-

ited number of model studies of this partitioning are cur-

rently available, and there are significant differences amongst

these and particular sensitivity to the altitude of absorb-

ing aerosol (e.g., Ming et al., 2010; Kvalevåg et al., 2013).
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In addition, further development of the simple conceptual

model (particularly to account for fast changes in the sensi-

ble heat flux) would be beneficial, once understanding im-

proves, as would a fully consistent usage of effective ra-

diative forcings. The ongoing Precipitation Driver Response

Model Intercomparison Project (PDRMIP) (http://cicero.uio.

no/PDRMIP/) should provide important information on the

utility of the conceptual model and of the degree of robust-

ness of the surface–atmosphere partitioning amongst a range

of climate models for a number of radiative forcing mech-

anisms. Clearly further studies for a wider range of forcing

agents are also needed and indeed casting Eq. (3) directly in

terms of the atmospheric component of radiative forcing RFa

(rather than top-of-atmosphere radiative forcing) would be

desirable if values of RFa become more readily available.

It is not suggested that the new metrics could replace con-

ventional emissions metrics such as the GWP and GTP in

climate policy or emission trading contexts, but they do pro-

vide a useful additional perspective for assessing the effects

of emissions; they particularly help to emphasise where the

impact on precipitation differs significantly from that on tem-

perature or forcing. One difficulty in its application is that

conventional metrics generally use CO2 as a reference gas.

For precipitation change, the forcing and surface temperature

components oppose each other, which means that the effect

of CO2 emissions on precipitation can be zero (at least in the

global-mean) at short time horizons for both pulse and sus-

tained emissions. This is clearly undesirable for a reference

gas, and it has also been shown that the timing of this zero

point is rather sensitive to the particular parameters used in

its calculation. Hence absolute metrics may be more instruc-

tive. By applying the absolute metrics to a specific illustra-

tive case (emissions in 2008, either as a pulse, or sustained

indefinitely) the importance of methane in influencing the

global-mean precipitation change is highlighted – using the

default model parameters here, in the sustained 2008 emis-

sions case, the precipitation change from methane exceeds

that from CO2 for about 50 years, By contrast, for temper-

ature, the effect of CO2 emissions is almost immediately at

least comparable to, or stronger than, methane.

It has been stressed that use of global-mean precipitation

change as a measure of impact has difficulties, because pre-

dicted future changes differ in sign between regions – the

global-mean is a small residual of these opposing more lo-

calised changes and hence it only gives rather general guid-

ance on the effect of different drivers on the changing hy-

drological cycle. Nevertheless, some of the regional pattern

of response can be understood as a generic and coherent

response to temperature change. Increases and decreases in

precipitation are largely reflective of an amplification of pre-

cipitation minus evaporation fields, primarily explained by

increasing concentrations of water vapour with warming (as

expected from the Clausius–Clapeyron equation); this leads

to systematic increases and decreases in precipitation de-

pending on the region (e.g., Held and Soden, 2006; Liu and

Allan, 2013).

The approach here could be enhanced to a more regional

level of response by either using a simple pattern-scaling

approach (whereby the pattern of predicted precipitation

change scales with the global-mean) or, better, to derive a

regional variation that accounts for the different effects of

the forcing and temperature response on precipitation change

(Good et al., 2012). The patterns emerging from such an ap-

proach would likely depend significantly on which climate

model was used to derive them. In addition, such patterns

would be needed for all the primary forcing agents. For short-

lived emissions, it is known that even global-mean metrics

such as the GWP and GTP depend on the emission loca-

tion (e.g., Fuglestvedt et al., 2010) – this will also be true for

the precipitation metrics. Metrics can also be posed in terms

of the regional response to regional emissions. For example,

W. J. Collins et al. (2013) employed the Regional Tempera-

ture Potential proposed by Shindell (2012) whereby a matrix

is produced that characterises the effect of RFs in a set of

given regions on the temperature change in a set of given re-

gions; a similar approach could be taken using the Regional

Precipitation Potential proposed by Shindell et al. (2012).

In spite of the difficulties in quantifying the precipitation

metrics given present knowledge of the driving parameters,

the framework presented here adds a useful extra dimension

to simple tools that are currently available for assessing the

impact of emissions of different gases and particulates.
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Appendix A

The impulse response function, R(t), for a pulse emission of

CO2 is assumed to be of the form

R(t)= ao+

3∑
j=1

aj exp

(
−
t

αj

)
, (A1)

where the parameters used here follow Myhre et al. (2013),

with ao= 0.2173, a1= 0.2240, a2= 0.2824, a3= 0.2763 and

α1= 394.4 years, α2= 36.54 years and α3= 4.304 years.

The impulse response function for global-mean surface

temperature in Sects. 4 to 6 is taken from Boucher and

Reddy (2008) and is of the form

R(t)=

2∑
i=1

ci

d
i

exp

(
−
t

di

)
, (A2)

with c1= 0.631 K (W m−2)−1, c2= 0.429 K (W m−2)−1 and

d1= 8.4 years and d2= 409.5 years. The equilibrium climate

sensitivity for this function is 1.06 K (W m−2)−1, equivalent

to an equilibrium surface temperature change for a doubling

of CO2 of about 3.9 K. Additional impulse response func-

tions are used in Sect. 7, with alternative values of ci and

di .

To derive the AGPPP in Eq. (6), for species for which

the perturbation decays exponentially with a single time-

constant τx , an expression for AGTPP is required. For a

species with a specific RFAx and using Eq. (A2) this is given

by (see, for example, Fuglestvedt et al., 2010)

AGTPxP(t)= Axτx

2∑
i=1

ci

τx − di
(exp(−t/τx )− exp(−t/di )) . (A3)

This equation does not apply in the case where τx = di ; the

appropriate expression is given in Shine et al. (2005) for

this case, which has to be modified for the two-term form

of Eq. (A2).

For the case of CO2, where the decay of a pulse is given

by Eq. (A1), the AGTPP is given by (see, for example, Fu-

glestvedt et al., 2010)

AGTP
CO2

P (t)= ACO2

[
ao

2∑
i=1

ci

(
1− exp

(
−
t

di

))

+

2∑
i=1

ci

3∑
j=1

ajαj

αj − di

(
exp(−t/αj )− exp(−t/di)

)]
, (A4)

and the exponential in the second term on the right-hand side

of Eq. (6) is replaced by Eq. (A1).

To derive the AGPPS in Eq. (7), the GTPS for non-CO2

species is given by (by rearranging the expression in Shine et

al., 2005 following Peters et al., 2011)

AGTPxS(t)= Axτx

[
2∑
i=1

ci

τx − di
(τx (1− exp(−t/τx))

−di (1− exp(−t/di)))
]
, (A5)

and again the case where τx = di is given in Shine et

al. (2005), which has to be modified for the two-term form

of Eq. (A2).

The calculation of the AGPPS for CO2 requires the AGTPS

and is given by

AGTP
CO2

S (t)=

2∑
i=1

ACO2
ci
[
ao (t − di (1− exp(−t/di)))

+

3∑
j=1

αjaj

αj − di

(
αj (1− exp(−t/αi))

−di (1− exp(−t/di)))
]
, (A6)

and also AGWPCO2 , for the second term on the right hand

side of Eq. (7) which is

AGWPCO2 (t)= ACO2

(
aot +

3∑
j=1

ajαj

(
1− exp

(
−
t

αj

)))
. (A7)

The parameters used for the five different species employed

here are presented in Table A1.
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Table A1. Parameter values used for each species included in calculations. All values are taken from Myhre et al. (2013), unless otherwise

stated, and the CH4 and N2O values of Ax include the indirect effects described there.

Ax τx f (Andrews f (Kvalevåg 2008

(W m−2 kg−1) (years) et al. 2010) et al. 2013) emissions

(kg)

CO2 1.76× 10−15 See text 0.8 0.6 3.69× 1013

CH4 2.11× 10−13 12.4 0.5 0.3 3.64× 1011

N2O 3.57× 10−13 121.0 0.5 0.3 1.07× 1010

Sulphate −3.2× 10−10 0.011 0.0 −0.4 1.27× 1011

Black carbon 3.02× 10−9 0.02 2.5 6.2, 13.0 5.31× 109
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