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Abstract 

This paper reports the first derived thermo-optical properties for vacuum deposited infrared 

thin films embedded in multilayers. These properties were extracted from the temperature-

dependence of manufactured narrow bandpass filters across the 4-17 µm mid-infrared 

wavelength region. Using a repository of spaceflight multi-cavity bandpass filters, the thermo-

optical expansion coefficients of PbTe and ZnSe were determined across an elevated 

temperature range 20-160 ºC. Embedded ZnSe films showed thermo-optical properties similar 

to reported bulk values, whilst the embedded PbTe films of lower optical density, deviate from 

reference literature sources. Detailed knowledge of derived coefficients is essential to the 

multilayer design of temperature-invariant narrow bandpass filters for use in non-cooled 

infrared detection systems. We further present manufacture of the first reported temperature-

invariant multi-cavity narrow bandpass filter utilizing PbS chalcogenide layer material.  

 

1. Introduction 

 

The optical and semiconductor properties of group IV-VI Lead chalcogenide compounds has been a 

subject of thin film research for several decades [1]. Lead Telluride (PbTe) has been deployed in multilayers 

extensively over this period as a mid-infrared interference material, being particularly valuable in the coating 

design due to its high refractive index (n≈5.5) and long-wave spectral location of its electronic absorption edge. 

It is also distinctive amongst other transparent infrared materials because of its negative refractive index 

temperature coefficient which enables the unique construction of temperature-invariant narrow bandpass filters 

[2-4] across both cooled and elevated operating temperatures. 

 

We previously conducted a systematic investigation into the design of temperature-invariant narrow 

bandpass filters, from which we demonstrated the thermo-optical properties of PbTe films accessible from 

literature sources were insufficient to accurately predict the temperature-induced wavelength shift of PbTe/ZnSe 

multi-cavity narrow bandpass filters across an elevated temperature range 20-200 ºC [5]. Thus, an improved and 

refined understanding of thin film thermo-optical properties is essential to simulate, and gain control of the 

behavior of bandpass temperature-invariance demanded by non-cooled infrared optical systems [6]. We further 

introduced a thermo-optical expansion coefficient term (𝛾), which denotes the expansion in optical thickness 

(𝛿) with increasing temperature. The optical thickness, being the product of the physical thickness (l) and the 

refractive index (n) 𝛿 = 𝑛𝑙 2𝜋/𝜆, whilst the temperature derivative of 𝛿 is the sum of the temperature 

derivatives of l and n; 
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The thermo-optical expansion coefficient (𝛾) is a crucial term, as it is primarily this material property that 

is responsible for the wavelength shift with temperature exhibited by any optical thin film multilayer. In a binary 

material narrow bandpass filter, we showed in [5] that the center wavelength shift with temperature obeys the 

linear relation in Eq. (1). 
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Where 𝛾𝐿 and 𝛾𝐻 are the thermo-optical expansion coefficients of the low and high index layers 

respectively, and SL and SH are sensitivity factors describing the proportional weighting of the two materials 

(SL+SH=1) which are determined as a function of the multilayer design. However, wavelength-dependence is not 

a direct function of material quantity; cavity layers dominate sensitivity, whilst the influence of reflector layer 

count reduces sensitivity in proportion with distance between cavities, as described by [2]. Equation (1) shows 

that temperature-invariance naturally requires one of the materials to exhibit negative optical expansion (𝛾 <
0). This property is however known only to exist in thin film materials with a lead (Pb) based composition, i.e., 

PbTe and other lead chalcogenides, which strongly motivates improved understanding for these thermo-optical 

properties.    

 

In this paper we utilize the elevated temperature measurements from a comprehensive repository of 

historic spaceflight bandpass filters, previously described in [5] to derive a new, realistic and practical data set 

of thermal-optical properties (𝛾) for embedded polycrystalline thin films of PbTe and ZnSe within a multilayer. 

We further consider the application of other alternative Pb-salts (PbSe, PbS) to broaden the range of 

temperature-invariance towards shorter wavelengths, and present the first reported thin film SWIR bandpass 

filter at 3.0 µm exhibiting temperature-invariance and utilizing the negative thermo-optical expansion of lead 

sulphide (PbS). 

 

2. Thermo-optical source data 

 

In [5] we conducted a literature survey to determine the existing sources of thermo-optical properties for 

PbTe and ZnSe in both bulk and thin film form with a particular focus on elevated temperatures across the 20-

200 ºC range. Our investigation concluded that the optical data available for these materials is exceptionally 

scarce. Where temperature measurements currently exist, this data is very coarse, or unsuitable for the desired 

wavelength regions. Valuable reference databases exist [7], which aim to create easy access to reported 

refractive index properties of various optical materials, however its temperature-dependence (dn/dT) property is 

rarely specified. A further challenge of incorporating thermo-optical properties in thin film simulations remains 

the non-specific physical condition from reported measurements which will differ to layers embedded within a 

multilayer assembly. Many reported thin film measurements are performed on single films exposed to ambient 

environments [8, 9] which are likely to deviate in their stress condition from embedded films in the multilayer 

structure. Other thin films are epitaxial single-crystalline films, which in [10] were found to resemble bulk 

properties, whilst the thin films deposited by physical vapor deposition are typically of a polycrystalline 

columnar structure, as is the case for our selection of manufactured bandpass filters. In addition to this, 

variations in deposition conditions affect stoichiometry, crystal morphology, and packing density all of which 

influence the opto-mechanical properties of the deposited films. 

 

For evaporated PbTe layer material, refractive index temperature measurements were reported for exposed 

polycrystalline [9] and single-crystalline films, [10] and, as anticipated, omission of any data for embedded 

polycrystalline films. Data on thermal expansion was expectedly only found in bulk form [11]. For ZnSe we 

found no reported thin film measurements of the refractive index temperature coefficient, however bulk 

refractive index coefficient data is available from Feldman [12]. The thermal expansion coefficient was 

measured for exposed thin films in [13] however the experimental coefficients were of such high magnitude that 

they were dismissed as unrealistic in proportion to embedded thin film properties and behavior. 

 

3. Experimental data and simulation method 

 

To acquire the embedded thermo-optical data properties for thin film simulations, we characterized and 

correlated the thermal behavior from a historic repository [14-16] of PbTe/ZnSe narrow bandpass filters, 

manufactured over a course of two decades, and covering a wide range of wavelengths, bandwidths, and 

multilayer design types. These filters were manufactured by thermal evaporation using a modified Balzers 

BA510 deposition chamber. This deposition system is especially fitted with a tooling arrangement of rotating 

evaporation sources and stationary substrates. This static substrate arrangement is particularly important for the 

deposition of precision thin-film multilayers, as the need for accurate elevated temperature control is essential to 

maintain good opto-mechanical properties of the materials, particularly as the stoichiometry and sticking 

coefficient of chalcogenides are highly temperature dependent. The selection of bandpass filters used in this 

study were deposited with substrate temperatures between 185-210 °C. Further deposition details are discussed 

in the papers where the filters were first published [14-16]. The filters were all newly characterized by 

extraction from high temperature FTIR spectral measurements across the range of 20-200 ºC, where the 

observed wavelength displacements were correlated with multilayer design properties in [5]. The wavelength 

shift with temperature was accurately modelled using Eq. (1).  



In order to determine the thermo-optical expansion coefficient for the embedded thin films of both PbTe 

and ZnSe layer materials, only a minimum of two filters is required with common center wavelength, but of 

significantly different multilayer design. This establishes two or more simultaneous equations to solve with 

respect to the two unknown optical properties. This requirement was achieved at three different wavelengths; 

4.3 µm, 10.4 µm, and 12.1 µm. The sensitivity factors were determined from the multilayer properties, and 

presented in [5] for the relevant designs. In Fig. 1, the measured center wavelength shift with temperature is 

shown for three center wavelengths as a function of the low-index sensitivity weighting factor 𝑆𝐿. Equation (1) 

contains only one independent variable, since the high- and low-index sensitivity weighting factors adds up to 

unity (𝑆𝐿 + 𝑆𝐻 = 1). Thus, the equation can be written and solved as a linear function of either variable, e.g., 
1

𝜆𝑐

𝑑𝜆𝑐

𝑑𝑇
= (𝛾𝐿 − 𝛾𝐻)𝑆𝐿 + 𝛾𝐻. Hence in Fig. 1, the intersection with the y-axis (𝑆𝐿 = 0) shows 𝛾𝐻, whilst the 

slope gives 𝛾𝐿 − 𝛾𝐻. As we have more than two filters at each of the three wavelengths, comprising; 11 filters at 

4.3 µm, 4 filters at 10.4 µm, and 10 filters at 12.0 µm, we performed a multivariate least squares fit to obtain the 

desired material properties of
PbTe and 

ZnSe  at the selected wavelengths. The shift in center wavelength on the 

y-axis is the mean shift across the 20-160 ºC temperature range. The upper limit was chosen to avoid non-linear 

behavior which was exhibited by some filters at temperatures greater than 160 ºC. Filters in the 4 µm region 

showed a temperature displacement with a tendency to reduce when approaching the higher temperatures, even 

within this range. This was primarily due to the reduced influence of electronic absorption in the PbTe material, 

shifting to shorter wavelengths on heating. The value fitted at the 4.3 µm wavelength is thus an average value 

over the temperature range, and will be slightly higher at room temperature.  

 
 

 
Fig. 1. Measured center wavelength shift with temperature as a function of 
multilayer design specified by the low index sensitivity factor (dots) shown 

together with the results of multivariate least square fits (lines). 

 

4. Results  

 

 Applying the measured wavelength shift properties with temperature, a thermo-optical expansion coefficient for 

the embedded thin films was derived for both PbTe and ZnSe at three different mid-infrared wavelengths. The 

resulting coefficients are given in Table 1, and shown in Fig. 2 together with corresponding literature data. 

 
Table 1. Thermo-optical expansion coefficients derived for embedded PbTe and ZnSe films. 

λ [µm] 𝜸PbT𝐞  [10
-5 

K
-1

] 𝜸ZnSe [10
-5 

K
-1

] 

4.3 -17.7 ± 2.3 2.9 ± 0.8 

10.4 -14.6 ± 0.7  3.3 ± 0.2 

12.0 -13.6 ± 1.1 3.2 ± 0.6 

 

To each extracted coefficient we have given a variance which was generated by fixing one coefficient in Eq. (1) 

at a time and calculating the resulting sample standard deviation for the temperature coefficient of the alternate 

material. The stated variances in table 1 represent twice the sample standard deviation (±2σ) and is further 



included in Fig. 2 as vertical error bars. Whilst these variations may appear large in value, they are small 

compared to the discrepancies within the currently existing knowledge of thin film PbTe properties. 

 
Fig. 2. Thermo-optical expansion coefficients of embedded PbTe and ZnSe determined by multivariate 

least square fit to Eq. (1) shown together with literature data, the origin of which are listed in Table 2. 

Additionally, a value for 𝜸𝐏𝐛𝐓𝐞 was extracted from each bandpass filters based on a fixed 𝜸𝐙𝐧𝐒𝐞 value. 

Reference literature values for ZnSe offers a near wavelength-independent value of  based on bulk samples; 

𝛾ZnSe = 3.4 ⋅ 10−5 K−1. This value is in very good agreement with our findings of 3.25 ⋅ 10−5 K−1 in the long 

wavelength region. At 4.3 µm, we extract a slightly lower value of 2.9 ⋅ 10−5 K−1. Although still within the 

experimental variation, we consider that the low value is a consequence of the electronic absorption edge 

influence of PbTe receding from the bandpass filter as the temperature increases and skewing the measurement 

of 𝑑𝜆/𝑑𝑇. In total, it appears that embedded polycrystalline thin films of ZnSe exhibit optical properties similar 

to those of bulk ZnSe, whilst in contrast for PbTe, we obtain values that are significantly different from the 

literature data. This can be understood in terms of a lower optical density of deposited PbTe film [17], compared 

to single-crystal material which is the origin of the  𝛾∗
PbTe data [10]. In contrast, the polycrystalline 𝛾+

PbTe data 

was obtained from exposed PbTe film [9], which is not subject to the similar mechanical stresses experienced by 

the embedded films. It is therefore reasonable to conclude the embedded thin film values lies between these two 

extrema.   

 
Table 2. Origin of reference α and β literature data 

 = +   
1 dl

l dT
   1 dn

n dT
   

𝛾∗
PbTe 

-21·10
-5 

K
-1 

bulk [11]  

2.0 ·10
-5 

K
-1

 

Single-crystal, exposed film [10] 
-23·10

-5 
K

-1
 (at 10 µm) 

𝛾+
PbTe 

-7.9·10
-5 

K
-1

 

Polycrystalline, exposed film [9] 

-9.9·10
-5 

K
-1 

(at 10 µm) 

𝛾𝑍𝑛𝑆𝑒 

3.4·10
-5 

K
-1

 

bulk [18]  
0.77·10

-5 
K

-1
 

Bulk [12] 

2.6 ·10
-5 

K
-1

 

 
At wavelengths where bandpass filters with two distinct multilayer designs were not available to permit a 

multivariate fit, we applied the method of fixing 𝛾ZnSe to literature values. This is justified by the good 

agreement obtained with literature 𝛾ZnSe established using the multivariate fits. In this manner we obtained a 

value for 𝛾PbTe for each bandpass filter by the solution of Eq. (1); 
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The resulting extracted coefficients are shown in Fig. 2 along with the multivariate fit results, which offer an 

indication of the experimental variations together with additional information about wavelength-dependence. 



 

5. PbS temperature-invariant narrow bandpass filter 

 

Whilst the concept of temperature-invariance has been governed by the opposing negative temperature 

coefficients of PbTe and complementary dielectric layer pair, extending the application of invariant narrow 

bandpass filters towards the shorter infrared wavelength region (SWIR) requires the use of a lighter molecular 

mass lead chalcogenide salt. The deployment of Galena, lead (II) sulphide (PbS) multilayer was first suggested 

as a material by Braithwaite [19] in 1954, from which attempts to manufacture interference layers were 

unsuccessful at that time due to unexpectedly high absorption, induced by poor stoichiometry decomposition 

during deposition. PbS has subsequently remained an unutilized layer material that has been extensively 

reported for its semiconductor properties in opto-electronic quantum dot infrared photodetectors and 

photovoltaic devices, but as a transparent infrared layer material has been scarcely reported in literature sources 

for over 60 years. Here we present the manufacture of the first fully-transparent temperature-invariant narrow 

bandpass filter comprising a PbS/ZnSe 3-cavity multilayer of 8% FWHM bandwidth at 3.0 µm. The PbS/ZnSe 

bandpass is deposited on a Sapphire substrate and similarly exhibits invariant wavelength behavior throughout 

the 20-200 °C temperature range (Fig 3).  

 

Manufacture of the filter was performed by conventional thermal deposition using the same experimental 

conditions as PbTe, however avoiding the differential stoichiometric loss and free carrier absorption were 

compensated by the introduction of a partial pressure of oxygen into the chamber during PbS layer deposition. 

This was best performed at a pressure of 4x10
-5

 Torr, from which transparency becomes fully restored. The 

lower absorption properties of PbS in comparison with PbTe subsequently offers transparency across the SWIR 

wavelength region down as far as 2.3 μm (α<1x10
4
 cm

-1
) [20]. Simulations of refractive index matching, based 

on the bandpass FWHM and bandwidth broadening with temperature (0.1 nm K
-1

),  suggests a deposited PbS 

thin film refractive index of 4.0 at 20 °C decreasing to 3.82 at 200 °C. The center wavelength stability is better 

than 0.02 nm K
-1

. The thermo-optical expansion coefficient for bulk PbS is close to PbTe at long wavelengths 

~2.3 K
-1

 (8-10 μm) with a rapid decrease towards the absorption edge at 2.3 μm [10,11]. The experimental data 

available for PbS is still too scarce to extract a reliable experimental value, but preliminary results indicate that 

thin film temperature coefficient (as for PbTe) is significantly less negative than the bulk value. Further 

determination of γ
PbS

 is of ongoing research.  

 

Environmental durability of this deposited PbS/ZnSe multilayer was assessed by subjecting 1-inch 

diameter witness samples to the general provisions of military specification MIL-F-48616. This testing included 

a visual surface quality assessment, adhesion testing, moderate abrasion, humidity testing at 50 °C for 24 hours 

in >95% relative humidity, together with additional cryogenic to high temperature thermal cycling (20–473 K) 

and liquid nitrogen thermal shock testing. Further extreme testing included dicing by diamond saw in deionized 

water lubricant, all of which passed with satisfactory compliance.   

    

 
 

Fig 3. Temperature-invariant PbS/ZnSe 8% FWHM narrow bandpass filter at 3.0 µm on Sapphire 

(Single-side coating inclusive of rear surface reflection losses)   

 

 

 



6. Discussion 

 

The narrow bandpass filter set from which the presented data was extracted, are all double-side coated complete 

manufactured optical filters, that contain continuous out-of-band wavelength blocking and antireflection 

matching layers. The passband ripples of these subsidiary blocking stacks may exert some influence to modulate 

the final shape and center wavelength positioning of the bandpass profile. However, in [5] we showed that 

random layer thickness errors have negligible influence on the temperature-invariance transmission profile, as 

this is dominated by the design and materials interdependence. The substrate has previously been reported to 

influence temperature dependence of narrow bandpass filters [21] but in [5] the choice of substrate, or substrate 

thickness did not appear to affect the temperature behavior of the bandpass filter profile. Further, although all of 

the filters studied were of triple half-wave (3-cavity) multilayers, we can consider the extracted thermo-optical 

values to be representative also for embedded thin films in other multilayer structures, particularly as variations 

in cavity order and number of inter-cavity layers did not appear to affect the thermo-optical behavior. However, 

the precise deposition conditions may conceal further opto-mechanical stress dependence of the extracted 

thermo-optical properties. 

 

7. Conclusions 

 

In this investigation we have derived the thermo-optical expansion coefficients for embedded thin films of 

polycrystalline PbTe and ZnSe. Embedded thin film ZnSe was found to exhibit bulk thermo-optical properties, 

whilst embedded thin film PbTe deviated significantly from reported literature values. This was attributed to the 

lower density of deposited PbTe film compared to single-crystal material. A thin film bandpass filter based on 

thermally deposited PbS material was demonstrated, extending the range of temperature-invariant behavior to 

shorter wavelengths and a wider range of bandwidths. 
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