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1. The replication of coronaviruses, as in other positive-strand RNA viruses, is 
closely tied to the formation of membrane-bound replicative organelles 
(DMOs) 

2. The proteins responsible for rearranging cellular membranes to form the 
organelles are conserved not just among the Coronaviridae family members, 
but across the order Nidovirales. 

3. Here, we collect and interpret the recent experimental evidence about the role 
and importance of membrane-bound organelles in coronavirus replication. 
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 24 
Abstract 25 
The replication of coronaviruses, as in other positive-strand RNA viruses, is 26 
closely tied to the formation of membrane-bound replicative organelles inside 27 
infected cells.  The proteins responsible for rearranging cellular membranes to 28 
form the organelles are conserved not just among the Coronaviridae family 29 
members, but across the order Nidovirales. Taken together, these 30 
observations suggest that the coronavirus replicative organelle plays an 31 
important role in viral replication, perhaps facilitating the production or 32 
protection of viral RNA.  However, the exact nature of this role, and the 33 
specific contexts under which it is important have not been fully elucidated. 34 
Here, we collect and interpret the recent experimental evidence about the role 35 
and importance of membrane-bound organelles in coronavirus replication. 36 
 37 
Paired membranes associated with viral RNA 38 
All positive-stranded RNA viruses (+RNA) that infect eukaryotes are believed 39 
to form membrane-bound replicative organelles, though this remains to be 40 
formally tested for several families of viruses (1).  One of the most widespread 41 
membrane modifications caused by +RNA viruses results in the formation of 42 
paired membranes, i.e. two closely apposed lipid bilayers.  A growing body of 43 
evidence, presented in Table 1 indicates that the paired membrane structures 44 
are induced by the expression of viral proteins – most typically by parts of the 45 
viral replicase. Table 1 lists the virus lineages for which there is evidence that 46 
some form of virus-induced paired-membrane structure is associated with 47 
viral replication.  The wide distribution of membrane pairing in +RNA viruses 48 
suggests that this is an effective strategy for successfully producing new 49 
viruses, and that membrane pairing may somehow increase the competitive 50 
fitness of these viruses. 51 
 52 
While we can speculate that +RNA viruses may gain a fitness advantage by 53 
replicating on the membranes of dedicated viral organelles, this has been 54 
difficult to test experimentally.  However, there are several lines of 55 
experimental and genetic evidence that suggest that RNA synthesis is tied to 56 
the formation of replicative organelles.  Viral RNA accumulates in the 57 



3 
 

coronavirus organelles, suggesting that the organelles may be a site of RNA 58 
synthesis (2-5).  Furthermore, viral organelles are not formed when RNA 59 
synthesis is stopped (6, 7).  While it is clear that RNA synthesis is linked with 60 
the organelles, it has proved difficult to directly test whether or to what extent 61 
the process of organelle formation is necessary for the process of RNA 62 
synthesis, because of the practical difficulty in separating the two processes in 63 
an experimental setting. 64 
 65 
Structure of the organelles 66 
Electron tomography studies have revealed that the replicative organelles of 67 
different nidoviruses are drawn from a repertoire of paired-membrane 68 
structures, including (paired) convoluted membranes, pouch-like double-69 
membrane spherules, long paired membranes and double-membrane 70 
vesicles (2, 5, 8), though studies of the more recently discovered 71 
mesoniviruses and roniviruses remain poorly characterized (9, 10).  A catalog 72 
of the virus-induced membrane structures that have been observed for each 73 
coronavirus is shown at right in Figure 1.  74 
 75 
The common element in nidovirus-like membrane rearrangement is that the 76 
membranes are paired, usually maintaining a consistent-sized gap between 77 
the two membranes (reviewed here (11)). Since protein-induced membrane 78 
pairing appears to be a consistent feature associated with nidovirus 79 
replication, and in the absence of data carefully dissecting the relationship 80 
between the shape and function of these different paired membrane 81 
structures, it makes sense to refer to the resulting structures collectively as 82 
double-membrane organelles (DMO).   83 
 84 
Despite a relative wealth of structural data, it has proved difficult to test 85 
hypotheses about the role of DMOs in viral replication and fitness directly 86 
because DMO formation is linked so closely to replication and expression of 87 
replicase proteins.  Here, we will discuss the implications of two recent studies 88 
that address questions about the role of DMOs in nidovirus replication (12), 89 
and characterize the effects of a new DMO-blocking drug against a variety of 90 
coronaviruses (13).  91 
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 92 
Viral proteins involved in organelle formation 93 
Further evidence of the probable importance of nidovirus replicative 94 
organelles for viral RNA replication comes in the form of genetic conservation.  95 
Nidoviruses, and most particularly coronaviruses, are highly genetically 96 
variable and contain several genus-specific or even species-specific genes 97 
(14).  However, there are two clusters of genes that are conserved in all 98 
known nidoviruses (11, 14).  The first is a highly conserved cluster of genes 99 
homologous to the Severe Acute Respiratory Syndrome Coronavirus (SARS-100 
CoV) nsp3-6 (Figure 1).  Expression of the membrane-anchored proteins 101 
nsp3, nsp4 and nsp6 is sufficient to induce the formation of SARS-like paired-102 
membrane replicative organelles (15).  The second conserved gene cluster 103 
encodes the viral RNA polymerase and superfamily 1 helicase (16).  The 104 
conservation of membrane-pairing genes in the context of an otherwise 105 
hypervariable group of viruses is a strong argument in favour of the 106 
importance of at least the membrane-pairing genes for RNA synthesis  107 
 108 
The proteins that form SARS-CoV replicative organelles have several features 109 
in common with distant homologs found throughout the Nidovirales. We will 110 
refer to the transmembrane proteins homologous to SARS-CoV nsp3, nsp4 111 
and nsp6 a as TM1, TM2, and TM3, respectively. The relative genomic 112 
positions and functions attributed to TM1-3 in nidoviruses are shown in Figure 113 
1. 114 
 115 
Of the three proteins involved in SARS-CoV replicative organelle formation, 116 
the least conserved is TM1, which has a multidomain architecture (17).  Many 117 
nidovirus and all coronavirus TM1 proteins contain one or more ubiquitin-like 118 
domains which may help to anchor the viral RNA to the membranes where 119 
replication takes place (18). Potentially RNA-binding macrodomains (19-25), 120 
papain-like proteinases (26-28), other RNA binding domains (29) and a well 121 
conserved but poorly understood region known only as the Y domain (17) are 122 
also commonly but not ubiquitously found in nidovirus TM1 proteins.  All 123 
putative TM1 proteins are predicted to contain one or more transmembrane 124 
domains, as shown in Figure 1.  The C-terminal region of TM1, from the first 125 
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transmembrane region to the end of the Y domain induces membrane 126 
proliferation, which in some ways resembles an autophagy response (30). 127 
 128 
TM2 and TM3 are recognizable because they contain four or more predicted 129 
transmembrane regions, and are encoded immediately before and after the 130 
viral main protease (Mpro).  Bioinformatics generally predicts an even number 131 
of transmembrane spans in these proteins, which would be necessary to 132 
localize Mpro on the same side of the membrane as all of its predicted 133 
upstream and downstream cleavage sites.  However there are additional 134 
hydrophobic regions that are strongly predicted to span the membrane, but 135 
which do not for several viruses, including most coronaviruses (31-33).   136 
 137 
TM2 contains two potential conserved domains located between the first and 138 
second transmembrane domains in coronavirus, and after the final 139 
transmembrane domain in most nidoviruses.  Mutations in the first non-140 
hydrophobic domain of TM2, which is the largest part of the coronavirus 141 
replicase to localize on the luminal face of the membrane, have been 142 
demonstrated to disrupt RNA replication and may cause defects in membrane 143 
pairing (34).  Deletion of the latter conserved domain of TM2, which has been 144 
structurally solved (35, 36), was surprisingly well tolerated (35, 37).  TM2 145 
localizes to membranes, but does not induce any recognizable change to 146 
intracellular membranes in the absence of other viral proteins (30).  However, 147 
co-expression of TM2 with full-length TM1 results in extensive pairing of 148 
perinuclear membranes in both coronavirus (30) and arterivirus (38, 39). 149 
Additionally, it has recently been shown that co-expression of a fragment of 150 
MHV TM1 including the transmembrane region and the C-terminus with TM2 151 
induced ER membrane zippering and curvature similar to the phenotype 152 
observed after SARS-CoV TM1 and TM2 co-expression (40).  In that report 153 
TM1 and TM2 were demonstrated to interact via protein loops on the luminal 154 
face of the membrane.   155 
 156 
The maze-like paired-membrane structures that resulted from coexpression of 157 
SARS-CoV TM1 and TM2 have not ever been reported in coronavirus-158 
infected cells, suggesting that this should be interpreted as a conditional, or 159 
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perhaps partial phenotype, that is not observed when the full viral replicase 160 
polyprotein is expressed. This suggests that membrane pairing is caused by 161 
heterotypic interactions between TM1 and TM2 on opposing membranes, but 162 
that the final architecture of the paired membranes is dependent on additional 163 
viral proteins.     164 
 165 
TM3 largely consists of transmembrane regions, without the hallmarks of 166 
amino acid conservation or predicted structural conservation that would be 167 
expected for an enzyme.  Overexpression of TM3 alone disturbs intracellular 168 
membrane trafficking (41, 42), resulting in an accumulation of single-169 
membrane vesicles around the microtubule organization complex (30).  170 
However, quantitative electron microscopy revealed that expression of TM2 171 
with TM3 prevents the membrane disruption seen with TM3 expression alone 172 
(30).  When SARS-CoV TM1, TM2 and TM3 are coexpressed, membrane-173 
containing bodies which resembled authentic SARS-CoV replicative 174 
organelles were formed.  However, in each of the cell sections where DMV-175 
like membranes were observed, the membrane proliferation phenotype of 176 
TM1, the paired membrane phenotype of TM1+TM2 and the single membrane 177 
vesicle accumulation from TM3 were each visible, suggesting that these 178 
proteins do not always colocalize efficiently when expressed from plasmids in 179 
different parts of the cell instead of being expressed in the natural form as a 180 
polyprotein (BWN, personal communication).  This suggests that while TM3 is 181 
not necessary for membrane pairing, TM3 may be necessary to induce the 182 
formation of the double-membrane vesicles (DMVs) that are characteristic of 183 
coronavirus replicative organelles.  184 
  185 
Interactions among DMV-making proteins 186 
The formation of large intracellular structures such as the maze-like 187 
TM1+TM2 bodies and DMV-like TM1+TM2+TM3 bodies suggests that nsp3, 188 
nsp4 and nsp6 may interact both homotypically and heterotypically.  SARS-189 
CoV nsp3-nsp3 interactions have been detected in cells by yeast two-190 
hybridization (43) and GST pulldown (44), and in purified protein by 191 
perfluorooctanoic acid polyacrylamide gel electrophoresis (17).  While SARS-192 
CoV nsp4-nsp4 interactions were not found in yeast-two hybrid or mammalian 193 
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two-hybrid screens (43, 45) studies with another coronavirus did detect nsp4-194 
nsp4 interactions by Venus reporter fluorescence (46).  To date, homotypic 195 
interactions have not been demonstrated for nsp6 despite several attempts 196 
(43-45).   197 
 198 
Heterotypic interactions between coronavirus TM1-3 proteins have been 199 
demonstrated biochemically:  a TM1-TM2 interaction was detected by 200 
mammalian two-hybridization (43) and weakly detected by Venus reporter 201 
fluorescence (46).  A TM2-3 interaction has been demonstrated by Venus 202 
reporter fluorescence (46), though it did not appear in other hybridization 203 
studies. A one-way interaction between the amino-terminal 192 amino acid 204 
domain of TM1 and TM3 detected by yeast two-hybridization (44) has also 205 
been reported.  However, the apparent independence of TM1 and TM3 206 
phenotypes after coexpression, coupled with the abrupt change in both 207 
phenotypes in the presence of TM2 suggests that interactions between these 208 
proteins may be largely mediated by TM2 (30). 209 
 210 
Virus-host interactions 211 
Molecular interactions between host and viral factors are observed in virtually 212 
every step of the viral life cycle. Viruses rely on and manipulate established 213 
cellular pathways to accommodate their needs during replication and to 214 
counteract host innate immune signalling. Replication of coronaviruses is no 215 
exception; while some host factors have been described in the context of viral 216 
RNA replication and transcription (47), few studies have looked closely at the 217 
complex interplay of host pathways in the establishment of virus-induced 218 
membrane-bound replication complexes.  219 
 220 
To date, the precise origin of DMO membranes remains elusive. DMO 221 
membranes were initially suggested to derive from the early secretory 222 
pathway, although the absence of conventional ER, ERGIC and Golgi protein 223 
markers on viral replicative membranes argues against this hypothesis (48, 224 
49). Since DMVs are reminiscent of the double-membranes of 225 
autophagosomes, several lines of controversial evidence hypothesized a 226 
diversion of Atg (autophagy-related) proteins and autophagosome function 227 
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during coronavirus replication, as it is the case for other +RNA viruses (50-228 
54). The involvement of autophagy was recently investigated in the context of 229 
the avian CoV Infectious Bronchitis Virus (IBV) infections (41). The authors 230 
conclude that the presence of exogenous, individually expressed IBV nsp6, 231 
which localizes to the ER, induces the formation of autophagosomes in 232 
contrast to other IBV replicase proteins. Additionally, although 233 
autophagosomes induced by IBV nsp6 or IBV infection appeared smaller than 234 
conventional autophagosomes observed after starvation of cells, they were 235 
similar in size to DMVs (42). However, the data reported here do not appear 236 
to support the assumption that there is a functional link between IBV nsp6 and 237 
autophagosomes, and a role of the autophagy in the formation of IBV 238 
replicative structures can hereby not be demonstrated. Moreover, neither 239 
induction nor inhibition of autophagy seems to affect IBV replication (55).  240 
 241 
New evidence concerning the source of membranes for CoV-induced DMOs 242 
was proposed, in which Mouse Hepatitis Virus (MHV) probably co-opts a 243 
cellular degradation pathway of ER-associated degradation (ERAD) 244 
regulators, known as the ERAD tuning pathway (56). The ERAD pathway is 245 
responsible for the turnover of folding-defective polypeptides in the ER and is 246 
modulated by stress-inducible positive regulators of ERAD-mediated protein 247 
disposal such as EDEM1 (ER degradation-enhancing alpha mannosidase-like 248 
1) and OS-9 (osteosarcoma amplified 9). The latter assist in transporting 249 
misfolded proteins into the cytosol for subsequent degradation by the 250 
proteasomal system.  Under physiological conditions, however, low 251 
concentrations of EDEM1 and OS-9 are maintained in the ER lumen in order 252 
to avoid premature degradation of proteins that are undergoing folding 253 
programs (57). In this case, EDEM1 and OS-9 are selectively confined by 254 
interacting with the transmembrane-anchored cargo receptor SEL1L 255 
(suppressor of lin-12-like protein 1) and later released from the ER lumen in 256 
small short-lived vesicles, called EDEMosomes, which rapidly fuse with the 257 
endolysosomal compartments (58). This steady-state disposal of EDEM1 and 258 
OS-9 is known as ERAD tuning pathway. While not relying on the coat protein 259 
complex II (COPII) or Atg7, it critically depends on the non-lipidated form of 260 
LC3 (LC3-I), which is recruited to EDEMosomes. However, the specific 261 
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autophagosomal marker GFP-LC3 does not associate with EDEMosomes, 262 
which are therefore distinct structures (59).  263 
 264 
The coronavirus MHV is hypothesized to divert the ERAD tuning machinery 265 
for the generation of DMOs. Similarly to EDEMosomes, colocalization of 266 
EDEM1, OS-9, SEL1L, LC3-I and double-stranded (ds) RNA is observed 267 
upon MHV infection. Moreover, replication of MHV, which does not require an 268 
intact autophagy pathway, is impaired upon knockdown of LC3 or SEL1L (58). 269 
DMVs furthermore lack conventional ER markers and do not associate with 270 
GFP-LC3 (56). Altogether, the evidence from this study strongly suggests that 271 
MHV exploits the ERAD-tuning machinery to establish its replicative 272 
structures.  273 
 274 
In order to learn whether this mechanism might be common to other 275 
nidoviruses, other viruses that use a similar replication strategy to MHV were 276 
examined. One of these, the arterivirus Equine Arteritis Virus (EAV) has been 277 
shown to require the same subset of ERAD tuning factors as MHV to ensure 278 
replication (60). Recently, investigations of the even more distantly-related 279 
Japanese Encephalitis Virus (JEV), which belongs to the Flaviviridae family, 280 
revealed that it may usurp the same components of the ERAD-tuning pathway 281 
as well (61). Consistent with this hypothesis, both viruses were shown to 282 
replicate independently of a functional autophagy pathway. The non-lipidated 283 
LC3 marker protein, which is essential for the replication of EAV and JEV, 284 
associated with their replication complexes together with EDEM1 whereas 285 
GFP-LC3 did not label these structures. These observations parallel the ones 286 
seen for MHV but raise further questions whether this feature is even more 287 
widespread amongst +RNA viruses.  288 
 289 
Despite the resemblance of MHV, EAV and JEV in the requirement of host 290 
factors for efficient replication, diversion of the ERAD tuning pathway cannot 291 
be considered as a generic way of inducing replicative membranes by these 292 
viral families. Probable variations within families have to be kept in mind as 293 
exemplified by the comparison of DMOs from two different coronavirus genus 294 
members. Indeed, IBV’s recently described spherules derived from paired ER 295 
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membranes significantly differ from the DMO structures observed upon alpha- 296 
and beta-coronaviruses infections (8, 62) and their generation might require a 297 
different set of factors. Furthermore, the morphology of DMOs induced by 298 
flaviviruses such as Hepatitis C Virus, Dengue virus or West Nile Virus is 299 
highly heterogeneous and the identification of a common, conserved 300 
membrane diversion strategy seems unlikely (63). However, it is possible that 301 
the diversion of one pathway could lead to the generation of the different 302 
arrangements of membrane that we collectively refer to as the DMO. 303 
 304 
Importantly, it has been shown that, in contrast to what is observed during 305 
EAV infection, endogenous LC3 does not colocalize with membrane puncta 306 
induced by expression of EAV nsp2 and nsp3, and the membrane 307 
modifications induced by the latter are not affected by LC3 knockdown (60). 308 
Similarly, LC3 and EDEM1 were not recruited to rearranged membranes 309 
induced by co-expression of MHV TM1 and TM2 (40). While this still has to be 310 
proven in the context of CoV TM1, TM2 and TM3 expression, it raises the 311 
questions whether LC3 participates to the biological function of DMVs rather 312 
than its generation. A novel hypothesis has been recently suggested for 313 
Poliovirus, according to which the virus might not only co-opt a host pathway, 314 
but also divert the functional network of individual proteins (64). Host factors 315 
could therefore have a proviral function during infection, distinct from the 316 
function for which they have been initially described. Accordingly, this is 317 
reminiscent with novel functions attributed to LC3 during cellular homeostasis, 318 
cytoprotection against invading pathogens or during Chlamydia trachomatis’ 319 
intracellular life cycle (65). 320 
 321 
Natural variation in DMV structure 322 
The DMOs of the model coronavirus MHV take the form of perinuclear DMVs 323 
which appear either singly, or grouped around and interconnected with a 324 
region of paired, convoluted membrane (CM;).  A recent study examined DMV 325 
formation by wild-type MHV-inf-1 (wt) and five temperature-sensitive (ts) MHV 326 
mutants, each of which differed from wt by a single amino acid substitution. 327 
The panel of ts viruses chosen contained mutations in an interdomain linker of 328 
nsp3 (TM1), Mpro, the viral RNA polymerase, cap N-methyltransferase and 329 
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cap O-methyltransferase, respectively (6, 12, 66). With the exception of the 330 
polymerase mutant, which was attenuated tenfold, these viruses produced the 331 
same amount of infectious progeny as wt (12). 332 
 333 
All of the mutants produced significantly smaller DMVs than wt virus, varying 334 
from almost wt size to 17% smaller (Table 2).  In two of the mutants that 335 
produced normal amounts of infectious progeny, not only were the DMVs 336 
smaller, there were only about half as many DMVs per visibly infected cell 337 
compared to wt (Table 2). Examination of the size and number of intracellular 338 
virus particles from the same samples did not reveal corresponding changes, 339 
suggesting that the observed DMV phenotypes were not an artifact of sample 340 
preparation.  The number of CMs remained in a constant ratio to the number 341 
of DMVs present, suggesting that the mutations affected production of the 342 
entire DMO.  343 
 344 
Induced variation in DMVs 345 
The DMOs of human coronavirus 229E (HCoV-229E) include DMVs similar to 346 
those observed after MHV infection (13).  In testing a new antiviral called K22, 347 
it was observed that infectivity, viral RNA, and DMV formation were all 348 
blocked by treatment with 4 µM K22.  A time of addition study revealed that 349 
K22 did not block viral entry, and had the greatest antiviral effects after virus 350 
entry during the first few hours of infection, leading to the interpretation that 351 
K22 inhibits a cellular or viral component involved in a post-entry, early stage 352 
of viral replication.  353 
 354 
After serial passage of the virus in the presence of K22, resistant mutants 355 
were selected.  Surprisingly, two independently isolated resistance mutations 356 
mapped to opposite ends of transmembrane helices in TM3 (nsp6) at 357 
positions H121L and M159V.  The resistant viruses released similar amounts 358 
of new progeny compared to wt, but produced only about half as many DMVs 359 
per infected cell. In addition, the DMVs induced by resistance mutants 360 
appeared structurally impaired. Similarly to MHV nsp4 mutants) K22 escape 361 
mutants induced DMV with partially collapsed inner membranes, even when 362 
K22 was not present. Moreover, the specific infectivity of those newly 363 
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released virions was about ten-fold lower for TM3 mutants than for wt.  This 364 
suggested that the mutations in nsp6 conferred resistance to K22 at a cost of 365 
impairing an early intracellular step in the establishment of infection.    366 
 367 
Fitness consequences 368 
From these experiments it was clear that HCoV-229E viruses with K22 369 
resistance mutations in TM3 incurred a steep fitness cost, in the form of 370 
decreased specific infectivity.  There were also indications of a similar 371 
decrease in efficiency in the MHV nsp3 mutant Brts31, which produced 372 
significantly more intracellular RNA than wt, but without a corresponding 373 
increase in infectious progeny.   374 
 375 
To find out if the MHV mutants also incurred a fitness cost associated with 376 
producing smaller and fewer DMVs, competitive fitness assays were carried 377 
out.  To do this, equal infectivities of two viruses were added to the same flask 378 
at a temperature where both viruses could grow normally.  After 24h in direct 379 
competition, the amount of each virus was quantified either by sequencing to 380 
look for the ts mutation, or by phenotypically screening for ts and non-ts virus.  381 
None of the MHV mutants tested was significantly less fit than wt in 382 
continuous or primary fibroblasts, and two mutants were significantly fitter 383 
than wt under the assay conditions.  One of the viruses with increased fitness 384 
compared to wild-type was the N-methyltransferase mutant Brts105, which 385 
produced only half as many DMVs as wt.  These results demonstrated that at 386 
least under these experimental conditions, producing larger or more 387 
numerous DMVs did not confer a corresponding fitness advantage.       388 
 389 
Implications for coronavirus replication 390 
When interpreting these findings, it is important to consider that none of the 391 
HCoV-229E or MHV mutants tested to date has been able to replicate entirely 392 
without DMOs.  And while some of these tests were carried out in primary 393 
cells, work in animal models was not possible because of the lack of a small 394 
animal model for HCoV-229E, and because the mutations restricted the 395 
growth of MHV mutants at physiological temperatures.  These two studies do 396 
not disprove the fundamental connectedness between coronavirus RNA 397 
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replication and DMO formation, but together, they reveal an unexpected 398 
plasticity in the size and number of DMVs that are needed to carry out wild-399 
type amounts of RNA synthesis. 400 
 401 
For these reasons, along with the observation that RNA replication is 402 
detectable before the first appearance of organelles (67), we favour an 403 
interpretation in which the organelles are a late manifestation of accumulated 404 
viral proteins resulting from abundant RNA expression.  In this interpretation, 405 
DMOs could still play an obligate role in viral replication under specific 406 
conditions or in specific cell types, but the primary role for DMOs would be to 407 
increase the efficiency of either RNA production, delivery of newly 408 
synthesized RNA to sites where it could be translated or packaged, and/or 409 
shielding abundantly synthesized viral RNA from host cell innate immune 410 
sensing pathways. These studies also suggest that at least half of the DMVs 411 
present in infected cells may be in excess of what is strictly needed to sustain 412 
normal levels of RNA synthesis, given that both MHV and HCoV-229E 413 
mutants replicated normally despite producing only half the normal 414 
complement of DMVs.  415 
 416 
Before these studies, very little was known about the potential for natural and 417 
induced variation in intracellular membrane rearrangement.  The viruses 418 
described in these studies all produced normal amounts of progeny virus 419 
particles, and were all selected for analysis for reasons unrelated to DMO 420 
formation.  These represent only a handful of the available nidovirus replicase 421 
mutants that have been published.  From this work we can hypothesize that 422 
other MHV ts mutants, or K22-resistant HCoV-229E mutants with replicase 423 
defects would probably make either smaller or fewer DMVs, and a larger 424 
collection of such mutants will like be highly informative to further our 425 
understanding on the pivotal role(s) of DMOs in the coronavirus life cycle. 426 
Hopefully the unique insight provided by these results, together with the 427 
relative ease of analysis will make quantitative electron microscopy a routine 428 
part of the characterization of new virus mutants. In addition, the accumulated 429 
knowledge on the nature of coronavirus DMOs and the possibility to 430 
experimentally interfere with DMO formation by using small compound 431 
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inhibitors, such as K22, will allow us to dissect similarities and differences 432 
between viral DMOs and related cellular organelles. 433 
 434 
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Table 1.  Evidence paired membrane structures in +RNA virus infection.  441 
 442 

 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 

aAnimals (A) or Plants (P) 456 
bMembranes from the endoplasmic reticulum (ER), chloroplast (Cp), mitochondria (Mt), 457 
lysosome (Ly) or peroxisome (Px) 458 
cPaired membranes in the form of double-membrane vesicles (V), zippered ER (Z), open-459 
necked spherules (S), or convoluted membranes (C)  460 
dProteins implicated in membrane rearrangements 461 
eNot reported (nr) 462 
 463 
  464 

Order Family Hosta Originb Typec Proteinsd References 
Nidovirales Arteriviridae A ER V,Z nsp2, 3 (38, 39, 68-70) 
 Coronaviridae A ER V,Z,S,C nsp3+4+6 (2, 8, 30) 
 Mesoniviridae A ER V? nre (71) 
Picornavirales Picornaviridae A ER V 2BC, 3A (72-75) 
 Secoviridae P ER V?  nr (76)  
Tymovirales Betaflexiviridae P ER V nr (77, 78) 
 Tymoviridae P Cp, Mt V nr (79) 
Unclassified Astroviridae A ER V nsp1a (80, 81) 
 Bromoviridae P ER Z,S 1a+2apol (82-84) 
 Closteroviridae P nr V nr (85) 
 Flaviviridae A ER V,S,C NS4A+4B (86-91) 
 Nodaviridae A Mito S pA+RNA (92, 93) 
 Togaviridae A Ly, ER V,S? P123 (94-96) 
 Tombusviridae P Px S nr (97) 



16 
 

 465 
Table 2.  Differences in size and prevalence of MHV DMVs and intracellular virions (IV). 466 

    Prevalence Size (nm) 

Virus Condition
s ts Cells DMV P valuea IV P value DMV P valueb IV P value 

Wild-type DBT 33ºC 
5.5 hpi  

-- n=323 6% -- 7% -- 228 ± 45 -- 69 ± 8 -- 

Brts31 nsp3 n=753 2% 8×10-4 7% nsc 195 ± 38 2×10-6 69 ± 9 ns 

Wild-type 

                               
17Cl-1     
33ºC          
10 hpi 

-- n=161 40% -- 29% -- 228±36 -- 68±10 -- 

Brts31 nsp3 n=238 24% 4×10-4 25% ns 208±34 5×10-19 68±10 ns 
Albts16  nsp5 n=120 37% ns 19% ns 189±33 8×10-66 70±8 ns 
Wüts18 nsp16 n=140 36% ns 20% ns 211±35 2×10-15 67±12 ns 

Brts105 nsp14 n=230 22% 1×10-4 32% ns 220±36 2×10-4  69±10 ns 

Albts22d nsp12 n=320 13% 1×10-5 9% 1×10-5 204±43 2×10-13 68±11 ns 
aCalculated by two-tailed Fisher's exact test 467 
bCalculated by two-tailed Mann-Whitney test 468 
cNot significantly different from the appropriate wild-type control 469 
dAttenuated growth at 33°C compared to wild-type 470 
  471 
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Figure Legend 472 
 473 
Figure 1.  Conservation and functional organization of the carboxyl-terminal 474 
region of nidovirus polyprotein 1a.  Domains that are homologous at the 475 
amino acid level are shown at left in solid colors.  More distantly related 476 
potential homologs identified by genome position and comparison of predicted 477 
secondary structures are marked with stripes.  Positions of transmembrane 478 
regions (black bars) and hydrophobic non-transmembrane regions (striped 479 
bars) were predicted by TMHMM 2.0 (98) and amended to reflect known 480 
topologies (31-33) wherever possible. Clusters of conserved cysteine and 481 
histidine residues that may bind metal ions are marked with white ovals. A 482 
jagged line denotes the uncertain position of the amino terminus.  Regions 483 
that induce membrane pairing, proliferation or vesiculation in betacoronavirus 484 
SARS-CoV and arterivirus EAV are shown above and below the domain 485 
annotation, respectively, and all annotations come from the references listed 486 
for Table 1.  Double-membrane organelles observed (x) or uncertainly 487 
observed (?) in infected cells are marked at right. Virus names are 488 
abbreviated as follows: white bream virus (WBV), fathead minnow nidovirus 489 
(FHMNV), equine arteritis virus (EAV), lactate dehydrogenase elevating virus 490 
(LDV), porcine reproductive and respiratory syndrome virus (PRRSV), simian 491 
hemorrhagic fever virus (SHFV) and wobbly possum nidovirus (WPNV).  492 
 493 
  494 
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