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Abstract 

Platelets are involved in the maintenance of haemostasis but their inappropriate activation leads to 
thrombosis, a principal trigger for heart attack and ischemic stroke. Although platelets circulate in 
isolation, upon activation they accumulate or aggregate together to form a thrombus, where they 
function in a coordinated manner to prevent loss of blood and control wound repair. Recent reports 
indicate that the stability and functions of a thrombus are maintained through sustained, contact 
dependent signalling between platelets. Given the role of gap junctions in the coordination of tissue 
responses, it was hypothesized that gap junctions may be present within a thrombus and mediate 
intercellular communication between platelets. Therefore studies were performed to explore the 
presence and functions of connexins in platelets. In this brief review, the roles of hemichannels and 
gap junctions in the control of thrombosis and haemostasis and the future directions for this research 
will be discussed.    
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Introduction 

Platelets are small circulating blood cells that play paramount roles in the formation of a blood clot 
upon injury in order to prevent bleeding [1]. However, the inappropriate activation of platelets in the 
arterial circulation under pathological conditions such as the rupture of atherosclerotic lesions leads to 
the formation of blood clots within blood vessels which restrict blood flow to downstream organs 
(such as heart and brain). The occlusion of coronary arteries leads to myocardial infarction and 
thrombosis in the cerebral vasculature, to ischemic stroke [1, 2]. While targeting platelets as an 
antithrombotic strategy is proven to reduce the risk of thrombosis, currently available anti-platelet 
approaches are unrefined, ineffective in certain patients and cause serious side effects such as 
bleeding [3]. A key focus of research to understand the mechanisms of platelet function is therefore 
aimed at the development of more effective and safer anti-platelet approaches to prevent or treat 
thrombosis. A number of well-orchestrated signalling events control the activation of circulating 
platelets to form multicellular platelet aggregates (thrombus) [1]. Activation of platelets leads to 
fibrinogen binding to integrin αIIbβ3 on the surface of platelets, which bridges these cells together 
and maintains sustained contact-dependent signalling between them [1, 4, 5]. Other surface receptors 
such as Eph kinases and their ligands, ephrins have been reported to play major roles in the regulation 
of contact-dependent signalling between platelets within a thrombus, and thereby contributing to 
thrombus growth, stability and potentially resolution [6-10].   

Connexins are a family of transmembrane proteins that are expressed widely with over 20 connexins 
identified in various mammalian cells [11, 12]. They are usually named according to native molecular 
mass, for example connexin 37 (Cx37) has a molecular mass of 37kDa [13]. Six connexin monomers 
oligomerise to form a cylinder-like structure called a connexon or hemichannel (Figure 1). Following 
the formation of hemichannels in the endoplasmic reticulum, they are transported to the plasma 
membrane through a vesicular transport system where they act as a conduit to transfer signalling 
molecules between the cytoplasm and extracellular regions [14]. The association of cells which 
contain connexins leads to docking of opposing hemichannels to form tightly controlled pore 
structures, namely gap junctions (Figure 1). Gap junctions have a pore size of 2-3nm and enable the 
direct exchange of signalling molecules of up to approximately 1kDa between the cytoplasm of 
adjacent cells [11]. The signalling molecules that are transported through these channels vary based 
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on the properties of specific connexins and the external signalling events that control their function 
[11, 15]. Several gap junctions assemble together to form gap junction plaques at the interface 
between two cells. As the gap junction plaques between cells are tightly regulated to avoid any 
leakage during molecular transport, they may also play roles in maintaining cellular adhesions [11].  

A key role of gap junctions is to enable rapid and coordinated responses between specialised cells 
within a tissue. Although the functions of hemichannels and gap junctions are well studied in tissues 
where sustained cell-cell interactions occur, such as cardiac myocytes [16], arterial endothelial cells 
[17], oocytes [18], neuronal [19] and bone marrow stromal cells [20, 21], the concept of their roles in 
circulating cells is relatively recent. Studies in this area were initiated by ground breaking research 
that revealed the roles for hemichannels and gap junctions in circulating leukocytes such as 
monocytes and T-cells [22-25]. While platelets circulate in isolation under normal conditions, as 
described, upon activation they come into close proximity to form a thrombus within which prolonged 
platelet-platelet contact occurs [7]. Therefore the hypothesis that platelets may possess connexins and 
form gap junctions to maintain sustained interactions and signalling between platelets within thrombi 
was tested.   

Connexins in platelets        

Since platelets are derived from megakaryocytes in the bone marrow, we sought to analyse the 
transcript levels for various connexins in these cells. The analysis revealed the presence of multiple 
connexins in megakaryocytes with notable levels of Cx37, Cx40 and Cx62 [26]. Although Cx37 and 
Cx40 have been well characterised in other cell types, Cx62 is a relatively newly identified family 
member and much remains unknown about this protein. The expression (at the protein level) of 
multiple connexins (Cx37, Cx40, Cx43 and Cx32) in platelets was subsequently confirmed using a 
number of methods [26, 27]. The presence of connexins in megakaryocytes and their roles in 
mediating the interactions with stromal cells and platelet production have also been previously 
reported [20, 28-30].     

Gap junctions between platelets 

To explore whether platelet connexins form gap junctions, the interactions of platelets within thrombi 
were analysed by transmission electron microscopy. Gap junction-like structures at the regions where 
cells interact were evident (Figure 2) [26]. To further confirm the presence of gap junctions by 
functional analysis, fluorescence recovery after photo bleaching analysis (FRAP) was performed in 
thrombi. FRAP is a microscopy-assisted technique which enables the tracking of fluorescent dyes that 
are permeable through gap junctions between cells. The recovery of fluorescence following bleaching 
within a cell or a region of tissue can be quantified by acquiring images at a high speed. The 
migration of a fluorescent dye, calcein-AM was studied after photo bleaching within thrombi that 
were formed under flow using human blood on a collagen-coated surface. Direct intercellular 
communication between platelets was detected by FRAP and this phenomenon was inhibited by broad 
spectrum gap junction blockers such as carbenoxolone and 18β-glycyrrhetinic acid, and Cx37 and 
Cx43 selective mimetic peptide, 37,43Gap27 [26]. Angelillo-Scherrer et al. [27] used an alternative 
approach to demonstrate intercellular communication where neuro biotin was microinjected into 
platelets within aggregates and was shown to migrate into other cells. These experiments provided 
strong evidence to demonstrate the gap junction mediated intercellular communication (GJIC) within 
platelets.  

Role of hemichannels during the activation of platelets 

Upon injury, sub-endothelial collagen is exposed and platelets are recruited to the damaged site where 
they bind to collagen and form a monolayer of cells. Subsequently they become activated and release 
their granule contents such as ADP and simultaneously synthesise and release thromboxane A2. These 
molecules together with thrombin, which is produced on the surface of platelets, activate more 
platelets and recruit them to form a growing thrombus [1]. Therefore initial experiments were 
performed to explore the roles for connexins in platelet activation.      

Fibrinogen binding to integrin αIIbβ3 and P-selectin exposure (a marker for α-granule secretion) were 
measured using flow cytometry by gating individual platelets. The addition of gap junction blockers 
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such as carbenoxolone and 18β-glycyrrhetinic acid and connexin mimetic peptides such as 37,43Gap27 
and 40Gap27 (which targets Cx40) reduced substantially the levels of fibrinogen binding and P-
selectin exposure in human platelets upon activation with agonists and, similar results were obtained 
using platelets isolated from Cx37 and Cx40 deficient mice [26, 31]. Moreover, calcium mobilisation 
measured in platelets under the conditions which disfavour aggregation was also reduced by these 
inhibitors [26]. These results revealed the importance of connexin hemichannels on platelets during 
initial activation prior to establishing platelet-platelet contact.  

Role of gap junctions within thrombi 

To assess the potential role of gap junctions within thrombi, thrombus formation assays were 
performed in microfluidic flow cells under arterial flow conditions. Thrombi were allowed to form 
over a period of time in flow chambers using fluorescently labelled human blood and their growth, 
size and stability were monitored by microscopy. The addition of connexin inhibitors reduced 
substantially thrombus formation under flow conditions indicating that gap junctions are important for 
this process [26].  

Following fibrin clot formation, a consequence of the activation of coagulation pathways, clot 
retraction occurs to facilitate wound repair. This event is controlled by platelet outside-in signalling 
transduced by integrin αIIbβ3 [5]. For this event to occur, the platelets must contract in a coordinated 
manner towards the centre of the clot. This phenomenon can be readily observed in vitro. To 
understand the importance of gap junctions during this process, clot retraction assays were performed 
using platelet-rich plasma from human (in the presence and absence of gap junction blockers and 
connexin mimetic peptides) and Cx37 or Cx40 deficient mice. In the absence of connexin function, 
the clot retraction was reduced substantially which strongly supports the notion that gap junctions are 
involved in the control of clot retraction process [26, 31].  

Connexins in the control of thrombosis and haemostasis  

Since the thrombus formation measured under in vitro conditions using human blood was inhibited 
substantially by gap junction blockers, the effect of connexin mimetic peptide (37,43Gap27) in 
thrombosis in vivo was explored. Following infusion of 37,43Gap27 mimetic peptide along with a 
fluorescently conjugated platelet labelling antibody (anti-GPIb), thrombus formation was induced in 
cremaster arterioles of anaesthetised mice by laser injury and the thrombus growth, size and stability 
were monitored by an intravital microscopy. The resulting data demonstrated the ability of 37,43Gap27 
to reduce thrombosis suggesting that gap junctions perform important roles in the regulation of 
thrombus formation and stability (Figure 3) [26]. 

To further understand the role of connexins in the maintenance of haemostasis, tail bleeding was 
assessed in mice in the presence and absence of 37,43Gap27 and 40Gap27. Mice treated with these 
connexin mimetic peptides showed increased bleeding compared to controls indicating that connexin 
hemichannels and gap junctions are involved in the maintenance of haemostasis under physiological 
conditions [26, 31].      

Cx37 and Cx40 function independently from each other 

Connexins are able to form either homomeric or heteromeric hemichannels resulting in homotypic or 
heterotypic gap junctions. For example Cx26 and Cx32 together form heteromeric hemichannels and 
therefore, heterotypic gap junctions [32]. These different forms of hemichannels and gap junctions 
have differential conductance and regulation properties. Since the presence of multiple connexins was 
confirmed in platelets, the possibilities of them forming homomeric or heteromeric hemichannels 
were explored. Using the platelets from Cx37 or Cx40 deficient mice and selective mimetic peptide 
inhibitors for these connexins (37,43Gap27 and 40Gap27), Cx37 and Cx40 were found to function 
independently from each other [31]. There are, however, other connexin family members present in 
platelets. Therefore combinations within hemichannels and gap junctions cannot be excluded.  

Conclusions and future perspectives 

Initial research has provided compelling evidence for the roles of hemichannels and gap junctions in 
the regulation of thrombosis and haemostasis [26, 31]. Hemichannels are important during the initial 
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activation of circulating platelets and later, gap junctions may modulate thrombus formation and 
stability. Hemichannels and gap junctions may allow the rapid transport of several signalling 
molecules such as calcium, inositol 1,4,5-trisphosphate (IP3) and cyclic nucleotides between platelets 
across a thrombus. While the hemichannels may facilitate the transport of molecules between platelets 
and the external environment, gap junctions may regulate the sustained signalling within the thrombus 
and control clot retraction.  

As discussed, gap junctions are known to cluster as gap junction plaques on the surface of cells, 
maintaining cell-cell adhesion and synchronise the functions of adjacent cells [11]. Similarly, in 
platelets, gap junction plaques may be formed and contribute to cell-cell adhesion complementing the 
actions of additional adhesive receptors such as integrin αIIbβ3, Eph kinases and ephrins. The role of 
gap junctions in the regulation of platelet adhesion has yet to be explored.  

The regulation of connexin functions has been explored in several cell types such as heart [16] and 
brain [19]. The intracellular regions of connexins are known to interact with several cytoplasmic 
signalling proteins such as β catenin, Nov, protein kinases, caveolin and Dbn1 and cytoskeletal 
proteins such as tubulin to regulate channel properties [33]. Further work is required to dissect the 
mechanisms that regulate the roles of hemichannels and gap junctions in platelets, and the nature of 
signalling molecules that are transported through these channels. Given the additional roles for 
platelets in inflammatory responses [2, 34, 35], it is tempting to speculate that these structures in 
platelets may form a nexus of cellular interactions and signalling to control complex regulatory 
processes with a range of cell types.  
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Figure Legends 

Figure 1: Connexins, hemichannels and gap junctions. This image depicts the architecture of 
connexins with four transmembrane domains and extracellular and intracellular loop regions. Six 
connexin monomers oligomerise to form a hemichannel which facilitates the transport of signalling 
molecules between the cytoplasm and external environment. Upon docking, two hemichannels from 
adjacent cells form a gap junction to allow intercellular communication. 

Figure 2: Gap junctions between platelets. Presence of gap junction-like structures between platelets 
was explored by analysing agonist-induced platelet aggregates using transmission electron 
microscopy. The arrows indicate the gap junction-like structures. The inner subsets show the enlarged 
regions of gap junction-like structures. This image is from reference [26]. 

Figure 3: Connexin hemichannels and gap junctions regulate thrombosis. The effect of connexin 
mimetic peptide, 37,43Gap27 on thrombosis was analysed in mice using intravital microscopy. Platelets 
were labelled with an Alexa fluor 488 conjugated anti-GPIb antibody and thrombus formation was 
induced using an ablation laser in cremaster muscle arterioles. The images shown (A) are 
representative of thrombi obtained at different time intervals. The thrombus intensity was quantified 
to compare the effect of connexin inhibitor with the control (scrambled peptide) (p=<0.05) (B). This 
image is from reference [26].       
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Figure 1 
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Figure 2 
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Figure 3 

 


