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ABSTRACT 

It is widely accepted that there is a gap between design and real world operational energy 

consumption. The behaviour of occupants is often cited as an important factor influencing 

building energy performance. However, its consideration, both during design and operation, 

is overly simplistic, often assuming a direct link between attitudes and behaviour. Alternative 

models of decision making from psychology highlight a range of additional influential factors 

and emphasise that occupants do not always act in a rational manner. Developing a better 

understanding of occupant decision making could help inform office energy conservation 

campaigns as well as models of behaviour employed during the design process. 

 

This paper assesses the contribution of various behavioural constructs on small power 

consumption in offices. The method is based upon the Theory of Planned Behaviour (TPB) 

which assumes that intention is driven by three factors: attitude, subjective norms, and 

perceived behavioural control, but we also consider a fourth construct: habit measured 

through the Self-Report Habit Index (SRHI). A questionnaire was issued to 81 participants in 

two UK offices. Questionnaire results for each behavioural construct were correlated against 

each participant’s individual workstation electricity consumption. 

 

The intentional processes proposed by TPB could not account for the observed differences in 

occupants’ interactions with small power appliances. Instead, occupants were interacting 

with small power “automatically”, with habit accounting for 11% of the variation in 

workstation energy consumption. The implications for occupant behaviour models and 

employee engagement campaigns are discussed. 
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1. INTRODUCTION 

According to calculations based on UK energy consumption statistics, in 2013 the operation 

of non-domestic buildings was responsible for around 12% of total UK CO2 emissions with 

commercial offices alone representing about 1.1% (DECC, 2014). To promote large scale 

reduction of emissions in this sector, the UK Government has tended to rely on legislative 

tools. For instance, successive revisions of Part L since 2002 have seen the introduction of 

gradually stricter targets for CO2 emissions abatement (DCLG, 2013). Whilst this has led to 

greater demand for energy efficient commercial properties, evidence from post-occupancy 

evaluations (POE) routinely show that this low carbon design intent only rarely results in low 

carbon  in operation. For example, data from CarbonBuzz indicate that office buildings can 

consume as much as 1.8 times more energy than indicated by the initial design calculations 

(Ruyssevelt & Robertson, 2013). 

 

The failure of this legislative approach to deliver the anticipated energy reductions is partly 

due to its one-dimensional nature. Carbon emissions abatement is primarily sought through 

the promotion of “technological” solutions such as improved building fabric efficiency, 

increased efficiency of building services, and incorporation of low/ zero carbon technologies 

(Azar & Menassa, 2012). This focus on technology addresses only part of the problem as it 

does not adequately account for the behaviour of the occupants which is regularly cited as a 

key determinant of actual in-use building energy performance (Yu, et al. 2011; Fabi, et al. 

2012; Hong & Lin, 2012, Hong et al., 2015) and can considerably reduce the effectiveness of 

some technological interventions intended to reduce CO2 emissions (Lo et al., 2012). Post-

occupancy investigations routinely reveal examples of occupants using technological 

systems contrary to the building’s original design intent. For example, Passive Infra-Red 

(PIR) sensors to automatically switch off lighting do not necessarily attain the anticipated 

energy savings because occupants can modify their behaviour as a direct result of their 

implementation (Pigg et al., 1996), unanticipated small power loads are introduced 

(Menezes, et al. 2012b), and carefully designed heating, ventilation, and air-conditioning 

(HVAC) strategies are compromised (Page, et al. 2008). The designers of any technological 

system often assume that the intended end-users will possess the same conceptual model 

of how the system operates as they do, neglecting the fact that the end-users were not 

privy to the original design decisions. When the end user’s conceptual model of operation 

differs from that of the designer there is a “communication gap” (Norman, 2013). In the 

case of building systems and controls there is often little or no direct communication 

between the designer and the end-user (either the facilities manager or occupants) to 

indicate appropriate use. Consequently, the occupants in particular are left to infer the 

operation, and the design intent, of any technological system installed. This oversight 

directly contributes to instances of users operating building systems “inappropriately” (i.e. 



contrary to the design intent) and inefficiently, significantly contributing to the observed 

difference between anticipated and actual energy levels.  

 

In an effort to predict the energy impact of occupant behaviour numerous models have 

been developed (e.g. Newsham, 1994; Love, 1998; Nicol, 2001; Reinhardt, 2004; Herkel et 

al., 2008; Yun & Steemers, 2008). In general these have taken a fairly superficial approach to 

modelling behaviour, assuming that action is triggered primarily by physical changes in 

environmental variables such as external temperature or illuminance level. To account for 

the high level of variability of occupant behaviour observed during field studies many 

models also propose categorising building occupants into different “user types” which 

regularly include explicit or implicit reference to the occupant’s environmental attitudes 

(Reinhardt, 2004; Bourgeois, 2005; Fabi et al., 2012; Hong & Lin, 2012; Turner & Hong, 

2013). However, from a psychological viewpoint this representation of attitude alone as 

determining behaviour is demonstrably insufficient. Indeed, the fallacy that a given 

individual’s behaviour is determined by their attitude is known within social psychology as 

the “fundamental attribution error” (Ross, 1977) and it is noteworthy that this attribution is 

far more frequently applied to others than to one’s own behaviour – for which situational 

variables are more frequently cited (Storms, 1973). Similarly, there is a documented 

“intention-behaviour gap” (reviewed by Sheeran, 2002) whereby positive intention to act 

does not perfectly predict future action.  

 

This paper attempts to apply insights from psychology to assess occupant interactions with 

small power appliances and resulting energy consumption. It reports on an investigation to 

assess the relative importance of four behavioural predictors (highlighted as important 

factors in the decision making process by psycho-social models of behaviour) on average 

daily workstation electricity consumption in two open plan office buildings in the UK, one in 

Bristol and one in London. The assessment method is through an online questionnaire, the 

development and implementation of which are described in detail. The implications of the 

results for both the modelling of occupant behaviour during the design of new buildings and 

for influencing occupant behaviour in existing buildings are discussed. 

2. OCCUPANT BEHAVIOUR MODELS 

Although building simulation software programmes for modelling thermal and building 

service performance are now relatively mature (Haldi & Robinson, 2009) the interaction of 

occupants with the building’s systems and controls, which can arguably have an even 

greater influence than thermal processes, is considered only simplistically (Hoes et al., 

2009). For example, current energy modelling during the design stage makes the rather 

crude assumption that certain systems are consistently in operation during default 

occupancy profiles (Hoes et al., 2009; Menezes et al., 2012a). While this is currently is 

acceptable engineering practice, in reality occupant interactions with building systems and 



controls are much more dynamic and, consequently, occupant behaviour is the most 

significant cause of uncertainty in the prediction of building energy use (Hong & Lin, 2012). 

 

In an effort to improve this situation, various models capable of predicting occurrences of 

occupant related energy use have been developed which are compatible with existing 

building simulation tools (e.g. Newsham, 1994; Love, 1998; Nicol, 2001; Reinhardt, 2004; 

Herkel et al., 2008; Yun & Steemers, 2008). While these models have advanced the 

understanding of occupant interactions with the built environment, to date none have 

achieved any traction within the construction industry. One reason for this, as Turner and 

Hong (2013) highlight, is that these models have been developed by different research 

groups focusing on different variables and employ a wide range of data collection and 

analysis techniques. Consequently, the resulting models are difficult to compare to one 

another.  

 

This variability amongst built environment models of occupant behaviour also reflects the 

high variability of behaviour observed amongst occupants in field studies. To address this, 

there have been many attempts to distinguish between different types of occupants. For 

example, Reinhardt (2004) developed a sophisticated and influential lighting algorithm, 

“Lightswitch-2002”, to predict the probability of occupants switching lights on and off when 

arriving and leaving cellular offices. Building on Love’s (1998) initial reference to different 

levels of use between occupants, Reinhardt conceived of four different “user types” based 

on whether the occupant’s use of artificial lighting was dependent or independent of 

daylight. Bourgeois (2005) created an expansive model for predicting interaction with both 

windows and lighting based on Nicol (2001) and Reinhardt’s (2004) earlier work. This further 

developed Reinhardt’s distinction between different user types with Bourgeois proposing 

that occupants can be represented as “active” (i.e. use these systems a lot) or “passive” (i.e. 

never use these systems). More recently, Hong and Lin (2012) categorised occupants in 

private offices into three different work styles: “austerity” – occupants are proactive in 

saving energy, “standard” – represents the average energy use of the majority of occupants, 

and “wasteful” – occupants have no motivation to save energy. When these categories were 

used as inputs during an energy modelling exercise, the results showed corresponding 

increases or decreases in energy consumption. Leading on from this, Turner and Hong 

(2013) stated that an occupant’s energy attitude is an important driver for any behaviours 

which result in energy consumption. They suggested that occupants can be usefully 

categorised as “energy frugal”, “energy indifferent”, or “energy profligate”. Fabi et al. (2012) 

also claimed that it is possible to differentiate between users’ behaviours typologies 

depending on how they interact with a building. For instance, from an energy perspective 

occupants could be classified as “energy saving users” or “energy wasting users”. In later 

related work, Fabi et al. (2014) also drew a distinction between “active” and “passive” 

situations for occupant interaction with lighting controls and they proposed different 

models to account for these different situations. 



 

These models then have attempted to broadly categorise occupants in a way that seems to 

implicitly assume stability of user-type as a physical parameter across time, building type, 

and system. Models can also be viewed either as purely behaviouristic, within which 

parameters are merely a mechanism to generate energy use data and the actual 

psychological drivers of those models are unimportant or the parameters may be intended 

to reflect some underlying psychological reality about the occupants in question. In the 

former case, the identification of user categories with psychological states is incidental. In 

the latter (e.g., Turner & Hong, 2013), the identification of occupant types with particular 

aspects of occupant psychology – in particular with attitude – is worthy of further 

consideration. Arguably,  the incorporation of psycho-social determinants within built 

environment behavioural models is a step forward as it allows for particular aspects of 

psychology which could potentially drive energy use to be identified and targeted using 

appropriately designed interventions. For example, from a psychological perspective this 

representation of attitude alone as determining behaviour is unsatisfactory as it neglects 

well-established research which indicates that even stable personality traits (such as the 

“big five” personality types, McCrae & John, 1992) are relatively poor predictors of 

behaviour when compared to a more detailed assessment (Paunonen & Ashton, 2001). 

Additionally, alternative psycho-social models of decision making indicate that, in addition 

to attitudes, other factors are important in forming behaviour – in particular habit is a 

crucial determinant in energy-related behaviours (Triandis, 1977; Chatterton, 2010; Darnton 

et al., 2011). A question that this paper attempts to answer is whether it is possible to break 

down individual differences in energy consumption within buildings into their component 

parts and whether, on doing so, there is a role played by habit in contributing to variations 

in energy use. Identifying such a behavioural predictor for energy use is orthogonal to the 

aims of traditional energy-use models because, here, we are not aiming to account for, or 

predict, the behavioural component of the total energy use of a building. Rather, the aim is 

to identify the psychological basis for individual differences in energy use within a building 

since only by doing so can individual barriers to reducing energy use be identified and 

appropriate interventions designed. 

 

2.1. Small power consumption 

Within office buildings, small power appliances typically account for around 20% of total 

energy consumption (BRECSU, 2000). Interestingly, inappropriate use of small power 

appliances by occupants (i.e. leaving appliances on when not required) receives little 

attention in behavioural models which tend to focus on as window opening and lighting use 

(with the notable exception of Nicol (2001)). This is perhaps because, in the UK, unregulated 

loads (i.e. loads not taken into account during energy modelling for compliance with Part L 

of the Building Regulations) prove difficult for design teams to accurately anticipate as they 

have little influence over how a completed building will be fitted out and used (UKGBC, 

2014). Nonetheless, small power appliance use is one of the main ways that occupants can 



adversely affect actual energy consumption in every office building regardless of ventilation 

or lighting strategy. For example, during energy audits of six office buildings in Southern 

Africa, Masoso and Grobler
 
(2010) discovered that more energy was used outside of 

working hours (56%) than during working hours (44%), partly as a result of occupants 

leaving small power appliances on at the end of the day. Similarly, in two UK offices, Mulville 

et al. (2014) found that up to 23% of total electricity use was consumed outside of standard 

working hours. Concentrating only on electricity consumption for computers, Menezes 

(2013) carried out an in-depth study across two office buildings in the UK. She discovered 

that electricity consumption for computers was not only significantly influenced by the 

computer specification (i.e. laptops were more likely to be turned off at the end of the day 

than desktops) but also by the job role of the occupant. Employees in higher grade positions 

used their computers less frequently to fulfil their work requirements. Evidence from 

studies such as these serves to highlight the high potential for workstation electricity 

conservation in typical office buildings. 

 

In an attempt to motivate conservation around small power appliances, many offices 

implement occupant engagement campaigns designed to raise awareness and alter 

attitudes. Almost ubiquitously, these involve the provision of information to employees 

through emails, posters, and training about the pro-environmental benefits of altering their 

behaviour (Carbon Trust, 2013). This type of engagement is clearly predicated on the same 

assumption prevalent in built environmental models of occupant behaviour - that there is a 

direct link between pro-environmental attitudes and observable pro-environmental 

behaviour. These types of interventions are based on the “information deficit” model 

(Kollmuss & Agyeman, 2002) which assumes that people will act rationally on information 

provided to them and modify their behaviour to achieve the optimal outcome. However, the 

widespread failure of many previous information intensive mass-media campaigns (e.g. “Act 

on CO2”) to generate the anticipated savings (Owens & Driffil, 2008) has called into question 

this approach. There is growing evidence, particularly from the field of behavioural 

economics, that shows whilst presenting people with information may change attitudes and 

deliberate behaviour, it often has little appreciable effect on behaviours which are 

automatic and habitual (Ariely, 2009); a situation which is analogous to the intention-

behaviour gap previously discussed (Sheeran, 2002). 

 

3. PSYCHOLOGICAL MODELS OF DECISION-MAKING AND ACTION 

3.1. Dual process models of cognition 

Dual process models of cognition can help to explain the inability of the pro-environmental 

attitudes of an occupant to reliably predict their actual behaviour. Essentially, dual process 

models posit that human decision making is governed by two separate systems; System 1 

which is automatic, fast and responds directly to the surrounding environment, and System 

2 which is conscious and controlled but slow and requires a certain degree of effort to 



employ (Evans, 2008; Kahneman, 2011). Although a strict division into two distinct systems 

is an oversimplification, dual process models provide a useful framework by which to 

consider occupant behaviour.  “Errors” within either of these two systems could, within the 

context of the built environment, result in “inappropriate” actions culminating in 

unnecessary energy consumption. From this perspective it can be seen that information 

intensive campaigns are likely to fail because they focus disproportionately on conscious 

System 2 and do not adequately target behaviour stemming from the more automatic (and 

more easily deployed) System 1. Kahneman (2011) reviews repeated demonstrations of 

people defaulting to System 1 in many situations rather than expending the requisite effort 

to use the more considered and accurate System 2. Additionally, previous studies have 

shown that, because habits are triggered by associated contexts, they will often supersede 

deliberative intentions and dictate behaviour in those settings (Gardner et al., 2012) 

particularly where conscious attention is directed elsewhere (Norman & Shallice, 1986). 

Consequently, where habit and intention are in direct conflict the resulting action is often 

likely to proceed in line with habit rather than intention.  

 

3.2. Theory of planned behaviour 

Originally developed by Ajzen (1991) the Theory of Planned Behaviour (TPB) is one of the 

most widely applied models of intention to act (Armitage & Conner, 2001). Essentially, the 

TPB proposes that human action is determined by conscious intention which is formed 

through a combination of three behavioural constructs: attitude, subjective norms and 

perceived behavioural control (PBC). Quantifying these three “predictors” for an individual 

allows the likelihood that they will carry out a particular action to be estimated. 

Additionally, if these predictors can then be subsequently adjusted (i.e. through behavioural 

interventions) the possibility of the action being performed can be directly influenced. 

Although the validity of the TPB has been demonstrated across a range of behavioural 

domains (see Armitage & Conner (2001) for a review), applications of the TPB in the 

assessment of pro-environmental behaviours are rare. However, the TPB has been 

previously applied to energy consumption in the domestic sector. Gill et al. (2010) created a 

questionnaire following Francis et al.’s (2004) framework which quantified energy efficient 

behaviour in terms of the three TPB behavioural constructs. The questionnaire was 

implemented at a low carbon village in the UK and the TPB scores for each participant were 

correlated with their household’s monthly energy consumption. The results of this showed 

that deliberate energy efficient behaviours accounted for around 51% and 37% of the 

variance in heat and electricity use respectively between the homes. Although a compelling 

finding, the sample size of only 15 households limits the reliability of this result and the 

potential to generalise this to other buildings. 

  

3.3. Theory of interpersonal behaviour 

The TPB has been useful in explaining a range of behaviours but its capacity to describe 

energy related behaviours may be limited as it only addresses intentional (i.e. System 2) 



behaviour. Much behaviour with the largest environmental impact could be considered 

habitual (i.e. System 1), such as recycling, travel choice, or switching off appliances when 

not required (Darnton, et al., 2011). To account for this deficiency, an alternative model, the 

Theory of Interpersonal Behaviour (TIB), is considered. The TIB has risen to prominence over 

the last decade and has recently been recommended by several researchers specifically for 

the analysis of pro-environmental behaviour where habits are clearly an important 

consideration (Chatterton, 2011; Darnton, et al., 2011). The TPB and TIB are broadly similar 

in structure. For instance, both (in general terms) take into account attitudes, subjective 

norms, and perceived behavioural control (although TIB refers to this as “facilitating 

conditions”). The main distinction between the two lies in the relative importance 

attributed to conscious intent (i.e., System 2). While the TPB presents behaviour as under 

the individual’s conscious control, the TIB proposes that the level of conscious control 

decreases as the behaviour becomes more habitual (Bamberg & Schmidt, 2003). Put simply, 

the TIB suggests that the construct of habit needs to be considered as an additional and 

separate predictor of behaviour which effectively bypasses conscious intention. From this 

perspective, the configuration of the TIB means it can be considered the social psychology 

archetype of the dual process models of cognition (Darnton, et al., 2011). To allow 

comparison with earlier work (Menezes et al., 2012b), the approach that we have taken in 

this study is to consider the three predictors of TPB, but to also include habit as a fourth 

separate predictor. Figure 1 illustrates this notion.  

 

 

Figure  1:  The Theory of Planned Behaviour, adapted from Ajzen (1991) with the inclusion of the 

behavioural construct “habit”. 

 

3.4. Habit 



Most of the time automatic behaviour stemming from System 1 is beneficial as it ensures 

that our daily behaviour runs smoothly and consistently with little conscious effort (e.g., 

gears can be changed more or less automatically when driving, freeing conscious awareness 

to scan the road for potential hazards ahead). However, such habitual behaviour may give 

rise to “errors” which, with regards to occupant interactions with building systems and 

controls, can result in unintended energy consumption. Habits are notoriously difficult to 

alter and people tend to repeat behaviours even if they consequently achieve sub-optimal 

outcomes. Huebner et al. (2013) used semi-structured interviews in 41 UK households and 

identified habits (defined as people “being used to behave in a certain way”) as the most 

significant barrier to changing behaviour. This is likely to be similarly true in a non-domestic 

setting where Mulville et al.’s (2014) study of individual workstation electricity consumption 

highlighted the importance of considering habitual behaviour if energy conservation is to be 

successfully motivated. 

 

To be able to alter habits it is first necessary to be able to adequately measure them. In the 

original version of the TIB proposed by Triandis (1977), habit was defined simply as the 

frequency of past behaviour. This definition has been widely criticised (Chatterton, 2011; 

Darnton et al., 2011) and it is now generally accepted that a specific behaviour will require 

not just frequency of past behaviour but also automaticity, if it is to become habitualised. 

Automaticity can be defined as the absence of deliberation or conscious thought (Darnton 

et al., 2011) and as such can be directly contrasted against consciously controlled mental 

processes (Norman & Shallice, 1986). As pointed out by Evans (2008), from this perspective 

automaticity is analogous to System 1 decision making. This more sophisticated definition of 

habit as automaticity may be quantified. Verplanken and Orbell (2003) developed the Self-

Report Habit Index (SRHI), comprising of 12 short questions, as a way of calculating the 

extent to which a particular behaviour is habitual for an individual although, as Gardner et 

al. (2012) point out, of the SRHI’s 12 questions, only seven actually measure automaticity. 

Gardener el al. (2012) argue that of the remaining five, one measures frequency, one 

measures identity, and the remaining three are essentially irrelevant.  

 

As far as we are aware, no previous studies have attempted to apply elements of the TPB 

and the TIB concurrently to account for behaviours resulting in inadvertent energy 

consumption within the built environment. However, in one particularly relevant study, 

Bamberg and Schmidt (2003) attempted to compare the predictive power of the TPB to the 

TIB by applying them both to the car use of 608 students travelling to a university campus in 

Giessen, Germany. They discovered that the TIB was more predictive of behavioural 

outcomes than the TPB and concluded that this was mainly due to the model’s emphasis on 

habit. In this study therefore, we examine the extent to which differences in small-power 

use can be accounted for by System 2, controlled processes which may be corrected by 

appeals to change attitudes and intentions, or by System 1, automatic and habitual 



processes which – being largely outside of conscious control – will require a different set of 

interventions. 

4. PROCEDURE 

In a previous study, Menezes et al. (2012b) applied the TPB to assess the relationship 

between the action of switching lighting and appliances off when not in-use to the 

combined electricity use for small power and lighting in a multi-tenanted office building in 

London, UK. Median scores for each of the TPB’s three predictors for participants in each 

sub-metered zone were correlated against monthly electricity consumption. Analysis of the 

results found that the only predictor which showed a significant correlation with monthly 

electricity consumption was PBC. The conclusion drawn was that, in the investigated office 

building, around 17% of the variation in monthly electricity consumption could be directly 

attributed to the behaviour of the occupants; seemingly the more control occupants 

perceived that they had over lighting and small power appliances the less electricity they 

consumed. Although an intriguing finding, this study had several notable shortcomings. 

Firstly, due to an inability to adequately ascribe energy consumption to different individuals, 

questionnaire scores for the TPB were necessarily averaged across each sub-metered zone. 

As well as drastically reducing the sample size (and therefore the sensitivity and reliability of 

the study) the TPB is typically applied to individuals and has not been previously studied 

using groups. Secondly, due to the arrangement of sub-metering in the surveyed office 

building, actions regarding lighting and small power had to be considered together in the 

same questionnaire. Feedback from some participants indicated that, in a number of 

questions, they would have supplied different answers if lighting and small power were 

considered separately. Thirdly, and perhaps most significantly, the TPB only considers 

planned behaviour. Therefore the study only assessed System 2 decision making and is 

unable to account for the (potentially larger) contribution to inadvertent energy use in the 

built environment through automatic and habitual System 1. 

 

The study described in this paper builds on the previous study by addressing these three 

limitations. It achieves this by using a direct measure of electricity consumption for each 

participant’s workstation. This allows the participant’s scores for each behavioural construct 

to be correlated with an individual measure of energy consumption, simultaneously shifting 

the focus of the study to only small power appliances, not small power appliances and 

lighting in combination. Obviating the need to average scores for the behavioural predictors 

across sub-metered zones allows for an increased sample size and hence a more statistically 

powerful study and conceptually clearer design. To additionally account for the contribution 

to behaviour through automatic System 1 a fourth predictor is considered, habit which is 

measured through the SRHI. Our hypothesis is that, due to the probable habitual nature of 

workstation electricity consumption, the construct of habit should provide a stronger 

correlation than the other predictors.  

 



4.1. Participants 

The study was undertaken at two separate UK open plan office buildings: Building 1 in 

Bristol and Building 2 in London, which provide work place facilities for around 100 and 200 

occupants respectively. Employees at both buildings work for different built environment 

engineering consultancies. There is one notable difference between the two; Building 1 is 

fully air-conditioned, while Building 2 is naturally ventilated. Generally, the work carried out 

in both buildings is desk-based and there is no local control over lighting or HVAC systems 

(apart from manually openable windows in Building 2). There are also no management 

systems in place to automatically power down small power appliances at the end of the day. 

These two buildings were chosen because the authors had ready access to them, they 

represented similar sample populations, and the majority of the employees had their own 

designated desks which would allow workstation electricity consumption to be monitored 

and attributed to each participant.  

 

4.2. Assessing behavioural constructs 

The method of producing the questionnaire to quantify the behavioural predictors for each 

individual is outlined in Figure 2. The questionnaire used for this study was in essence the 

same as the one developed and implemented for the previous study (Menezes, et al., 

2012b) using the framework proposed by Francis et al. (2004). However the behaviour 

under investigation was adjusted to “switching off small power appliances when not in use”.  

 



 

Figure 2: Flow chart detailing method of creating surveys based on TPB and habit adapted from 

Menezes et al. (2012b) for this study. 

 

During development of the questionnaire an elicitation survey was issued to around 30 

people outside of the population to be surveyed to establish the dominant behavioural 

factors motivating decisions regarding the target behaviour (see Figure 2). The elicitation 

survey comprised of six open ended questions. Respondents were asked to give three 

responses for each question which were taken as representing their significant beliefs 

regarding each predictor. Specifically, the questions related to the respondent’s beliefs at 

their workplace around the advantages and disadvantages of switching off appliances when 



they are not in use (attitudes), individuals or groups who would approve or disapprove of 

them switching off appliances when not in use (subjective norms), and the factors which 

make it easier or more difficult for them to switch off appliances when not in use (perceived 

behavioural control). The results of the elicitation survey were thematically analysed and 

the most frequent themes were phrased into question couplets to obtain both direct and 

indirect (belief-based) measure of each predictor. For example, “If I switch off office 

appliances when they are not in use I will be helping my company to save money.” (direct) 

and “Helping my company to save money is...” (indirect).  

 

This produced a questionnaire with six groups of five questions (two groups for each of the 

three constructs: attitude, subjective norms and perceived behavioural control). Scoring 

scales were established for each group of questions using a 5-point scale. The direction of 

the scale was bi-polar (-2 to +2) for the direct measures and uni-polar (+1 to +5) for the 

indirect measures. Final scores for each predictor were scored according to Francis et al.’s 

(2004) method which, for each question couplet, involves multiplying the direct measure 

with the indirect measure using the following equations: 

 

Attitude score:  

∑
=

=
×

5
1
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i
i

 

 

Subjective norms score:  

∑
=

=
×

5
1 ii )(direct) comply to motivation (indirect)belief  (normative 

i
i

 

 

Perceived behavioural control score: 
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=
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For example, if the participant answered “strongly agree” for the direct measure and 

“strongly agree” for the indirect measure for one of the 5 question couplets for attitude 

then the score would be 2 (direct) x 5 (indirect) = 10. Alternatively, if the participant 

answered “strongly disagree” for the direct measure but “strongly agree” for the indirect 

measure for one of the 5 question couplets for attitude then the score would be -2 (direct) x 

5 (indirect) = -10. Therefore for each of the three predictors (attitudes, subjective norms, 

and PBC) each participants score could range from -50 to 50.  

 

In line with the research findings of Gardner et al. (2012), seven questions from the original 

12 Self-Report Habit Index (SRHI) were chosen based on their reference to “automaticity”. 

These seven questions were scored using a 5-point bi-polar scale ranging from “strongly 

agree” to “strongly disagree”. The scores for each of these questions were added together 

to provide a range of scores for the construct of habit from +14 to -14. 



 

Questionnaires for both offices were administered online to all employees. Building 1 

achieved 64 responses and Building 2 achieved 44 responses. Additional questions were 

included to determine how many days on average each participant worked in the offices 

and whether they “hot-desked” or not. Responses to these questions were used as a basis 

to select the participants most suitable for the monitoring of workstation electricity 

consumption with preference given to those who had their own desk and were in the office 

most often. 

 

4.3. Workstation electricity consumption  

Workstations of consenting participants were fitted with wireless plug energy monitors. The 

plug monitors were tested in isolation and were discovered to have an installed load of less 

than 1W. A standard six-way plug adaptor was fitted directly into each of the plug energy 

monitors and all of the participant’s workstation appliances were connected into this 

adaptor. The adaptor was then hidden in the desk tray at the rear of the desk. At Building 1, 

48 workstations were fitted with monitors. At Building 2, 37 workstations were fitted with 

monitors. 

 

The plug energy monitors were connected wirelessly through ZigBee to a data logger 

(controller unit) located at a central point in the offices. The plug energy monitors 

continuously relayed 6-minute electricity consumption data back to the controller unit 

which stored the data.  

 

Workstation electricity consumption in each building was monitored for a period of four 

weeks including non-working days. Building 1 was monitored over April 2014 and Building 2 

was monitored over July 2014. At the end of the four week study periods, analysis of the 

workstation electricity data revealed that at Building 1 one plug monitor recorded no data, 

two recorded spurious readings (e.g. negative) for an undetermined reason, and one 

participant moved about the office to several different locations. For these reasons the 

results for these four participants were excluded from final analysis leaving a sample of 44 

participants. At Building 2 no problems with data collection were encountered and no 

participants needed to be excluded from analysis leaving a sample of 37. Therefore the 

combined sample size was 81. 

 

To enable comparison between participants in the two offices, the average daily 

workstation electricity consumption was calculated by only considering days when each 

participant had been present at their respective office and had used their workstation. 

Whether or not the participant had been at the office was determined by manual 

examination of each workstation’s 6-minute consumption profile for each day. Participant’s 

workstation electricity consumption was normalised by considering the 6-minute profile 

data obtained through the plug energy monitors. The most frequently recorded power 

demand over the four weeks was calculated and used as the basis of the normalisation. The 



rationale behind this was that different participant job roles required a different 

configuration of appliances. For instance, the job roles for certain participants involved 

building simulation modelling requiring powerful PCs while other participants used laptops.  

As this study was carried out in a real world environment we were not able to ensure that 

every participant had the same equipment at their desk. However, as shown in Table 1, the 

range of equipment did not vary markedly. Differences in available equipment will, of 

course, add to that individual variability in energy consumption which is not captured by 

psychological constructs and therefore the percentage of the total variation accounted for 

by such factors should be considered in this context. Any observation of variation accounted 

for by psychological factors will be against the background of variation in individual energy 

use already accounted for by other factors, including variation due to the appliances 

available. 

 

Table 1: Type and number of small power appliances at workstation in the two buildings. 

 Screens  Desktop Desk appliances 

 One Two Laptop Small Large Fans Lamps Phone 

charger 

Camera 

charger 

Building 1 4 37 33 7 8 5 0 5 2 

Building 2 7 30 29 8 0 4 1 1 0 

 

Perhaps because of differences in workstation configuration, electricity consumption also 

varied greatly between workstations in the two buildings. Building 1 showed average daily 

workstation consumption of 500Wh (Figure 3). Building 2 showed average daily workstation 

consumption 750Wh (Figure 4). Higher individual consumption over 1,000Wh usually 

indicates a participant with a large desktop PC used for running modelling software.  The 

BCO (2009) Guide to Specification suggests that a typical workstation load will be around 

150 W. This equates to an average daily workstation consumption of 1,350Wh (assuming a 

standard working day of 9 hours) and is clearly much greater than the average consumption 

monitored during this study. This lends support to the view that workstation small power 

loads are being overestimated during the design process (Menezes, 2013). Recently the BCO 

(2014) have completed a separate workstation monitoring study involving multiple offices in 

the UK. The results showed a wide range of workstation consumption between 270Wh to 

4,050Wh (assuming a workstation density of 1 per 10m
2
 and a standard working day of 9 

hours) but the report emphasises that the majority of occupants had a consumption of less 

than their previous estimation of 1,350Wh with the average closer to 900Wh. While this 

updated figure is still greater than the average consumption in either of the offices 

monitored during this study it may be that the workstation equipment specified in them is 

more energy efficient than is typical in the majority of UK offices.   



 

 

Figure 3: Average daily electricity consumption for each participant at Building 1. 

 

 

Figure 4: Average daily electricity consumption for each participant at Building 2. 

5. RESULTS 

During analysis attempts were made to identify the workstation consumption overnight 

(e.g. between 00:00 and 06:00), however, no data were available on when participants 

might have been at their workstations during this period and ethical approval was not 

available to obtain such data because of concerns that the information could be used for 

surveillance and inappropriately used to assess work performance. The consumption for the 

majority of participants was, however, very low during this period. A multiple linear 

regression analysis was therefore undertaken to predict the average daily (24-hour) 

workstation electricity consumption based on the four behavioural constructs for the 

combined sample for both buildings. The constructs were entered into a stepwise multiple 

linear regression analysis in the order: behavioural attitude, PBC, subjective norms, and 

habit. This showed that behavioural attitude alone did not account for a significant 

proportion of the variation in workstation electricity consumption across the two offices, 



with R
2
 = 0.002, F(1, 79) = 0.13, p = 0.72. PBC was then added to the regression model, but 

this did not significantly add to the predictive value, with R
2
 change = 0.001, F(1, 78)= 0.119, 

p = 0.89. Next subjective norms was added to the regression model, again this did not 

significantly increase the predictive value, with R
2
 change = 0.007, F(1, 77)= 0.57, p = 0.85. 

When habit was introduced the predictive power of the linear regression model significantly 

increased and accounted for approximately 11% of the variation in monthly electricity 

consumption, with R
2
 change = 0.11, F(1, 76) = 9.27, p = 0.04.  

 

A linear regression analysis with habit as the only predictor of average daily workstation 

electricity consumption shows a significant relationship with R
2
 = 0.11, F(1, 79) = 9.49, p = 

0.03. Based on this (and despite the substantial variation in energy use across the buildings), 

habit alone explains around 11% of the variation between individuals’ workstation 

electricity consumption across both the buildings. Other, more conscious and deliberate 

considerations did not, however, account for significant variation in energy use. Figure 5 

shows the correlation between the average daily workstation electricity consumption for 

each participant for both buildings normalised for the installed load against each of the four 

behavioural constructs. 
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Figure 5: Correlations for each behavioural construct and normalised average daily workstation 

electricity consumption for both Building 1 and Building 2. 

 

Additionally multiple linear regression analyses for the individual buildings were 

undertaken. This was to determine whether individual variation in energy consumption 

within a building might be masked by greater differences in variation between the buildings 

and, in particular, whether individual differences in psychological constructs might drive 

individual differences in energy consumption to a greater or lesser degree in each of the 

buildings. For Building 1 this revealed that behavioural attitude individually did not account 

for a significant proportion of the variation in workstation electricity consumption, with R
2
 = 

0.02, F(1, 42) = 0.085, p = 0.77. There was no statistically significant correlation between 

behavioural attitude scores and average daily workstation consumption. PBC was then 

added to the regression model, but this did not significantly add to the predictive value, 

with R
2
 change = 0.01, F(1, 41)= 0.046, p = 0.94. Next subjective norms was added to the 

regression model, again this did not significantly increase the predictive value, with R
2
 

change = 0.04, F(1, 40)= 0.090, p = 0.97. Finally, when habit was introduced the predictive 

power of the linear regression model increased to account for approximately 19% of the 

variation in workstation electricity consumption although this just missed significance, with 

R
2
 change = 0.19, F(1, 39) = 9.28, p = 0.05.  

 

Taken individually, none of the predictors showed a significant relationship with average 

daily workstation electricity consumption, however adding habit as the last element in the 

stepwise regression resulted in a p-value of .05 which is the cut-off point for conventional 

statistical significance and this value was obtained when any variance shared by habit with 

constructs entered earlier was already excluded from consideration. Accordingly, a linear 

regression analysis with habit as the only predictor of average daily workstation electricity 

consumption was calculated and this showed a significant relationship, with R
2
 = 0.18, F(1, 

42) = 9.02, p = 0.04. Based on this, it seems that habit reliably explains around 18% of the 

variation between each individual’s workstation electricity consumption in Building 1.  

 

In Building 2 the multiple linear regression analysis again showed that behavioural attitude 

alone did not significantly correlate with workstation electricity consumption, R
2
 = 0.02, F(1, 

35) = 0.059, p = 0.81. PBC was then added to the regression model, but again this did not 

significantly add to the predictive value, R
2
 change = 0.011, F(1, 34)= 0.218, p = 0.81. 

Subjective norms was added to the regression model next and again this did not significantly 

increase the predictive value, R
2
 change = 0.09, F(1, 33)= 1.26, p = 0.31. However, when 

lastly habit was added to the linear regression model the predictive power significantly 

increased to account for approximately 17% of the variation in workstation electricity 

consumption, with R
2
 change = 0.17, F(1, 32) = 2.97, p = 0.03. A linear regression analysis 

with habit as the only predictor of average daily workstation electricity consumption reveals 

a significant relationship with R
2
 = 0.18, F(1, 35) = 7.72, p = 0.01. Based on this, habit 



explains around 18% of the variation between each individual’s workstation electricity 

consumption in Building 2 as in Building 1.  

 

6. DISCUSSION 

Results from this study indicate that, of the four assessed behavioural predictors, only habit 

correlated significantly with average daily workstation consumption. This implies that 

turning off appliances not in use purely habitually or automatically resulted in reduced 

electricity consumption relative to those with less established habits. In contrast no 

relationship was discovered between workstation electricity consumption and the 

remaining three predictors which form the TPB: behavioural attitudes, subjective norms, 

and perceived behavioural control. For the combined sample of both offices, habit can 

explain around 11% of the observed variation between workstation electricity consumption. 

This is less than the around 18% of the variation in workstation electricity observed in each 

building individually but this reduced figure can easily be explained by the observation that 

energy use also varied across the buildings, and in a way not accounted for by the habits of 

the occupants. Given potential differences across the buildings which are to do with the 

buildings rather than the occupants per se, our results are therefore perfectly 

understandable and it is reassuring both that the individual estimates for proportion of 

variation in energy use explained by habit alone were consistent in each of the buildings 

individually, and that the combined sample from both buildings still showed substantial 

effects of habit even after such building-specific influences had been included.    

 

In contrast, none of the TPB constructs show a significant correlation with electricity 

consumption, this is contrary to the results of the previous study (Menezes et al., 2012b) 

where perceived behavioural control show a significant relationship to energy use. 

However, the previous study was carried out in a multi-tenanted office building where the 

occupants in different metered zones had varying levels of control over lighting and small 

power appliances. It is plausible that percieved behavioural control is an important factor 

when considering group interactions with building service systems in general, but not as 

important when considering small power consumption in an office where everyone 

effectively has (or perceives themselves to have) the same level of control over small power 

appliances. The results of the Menenzes et al. (2012b) study need to be interpreted 

cautiously in any case however, because of the relatively small sample size (N=27) which is 

low for an analysis of this type and may not be sufficiently representative of the general 

population. This is not a problem for the current study as the overall sample size across the 

two buildings is nearly three times the size of the Menezes et al. sample and, additionally, 

the same general patterns are observed in both buildings when examined independently. 

 

The results of the study presented here could prove extremely useful for employee 

engagement campaigns. The building occupants may often be well-disposed towards energy 



conservation but are prone to inadvertent energy use from actions made in error, such as 

forgetting to switch off their computer at the end of the day. The standard method of 

conducting information intensive campaigns to encourage occupants to switch off 

appliances when not required may have little impact on actual behaviour, because they 

focus disproportionately on attitudes. We do not claim that there is no connection between 

attitudes and energy-use. As noted elsewhere, in our study, many factors may have 

militated against finding such a connection. However, these same factors (e.g., the 

homogeneity of the work-environment and tasks for most office workers and the 

subsequent impact upon workstation plug loads) should also have acted to reduce the 

correlation between habit and energy use which, nonetheless, remained significant. 

Attempts to promote energy conservation amongst occupants may therefore yield more 

effective results when focussed also on automatic habitual behaviour. Thorough 

longitudinal empirical research in this field is rare – partly as a result of the difficulty in 

empirically measuring habits. However, in one example, Lally et al. (2010) measured habit 

strength of groups using the SRHI. Their results suggested that the average time for a habit 

to “strongly” form is 69 days when the action is repeated once per day in a stable context. 

With regards to small power consumption in buildings, the most obvious first steps in 

encouraging behaviour to become automatic and habitual are to simplify the actions 

required, and to ensure that highly salient cues to action are present in the environment at 

the point at which the action is required (Norman, 2013; Tetlow et al., 2014). For example, 

in terms of small power consumption, a single unambiguous on/off switch located so that it 

is visible and easily reached at the point at which the device is no longer required is 

obviously more conducive to habitually conserving energy than one that is a less obvious, or 

less easily operated, at the time at which an occupant might wish to turn power off. The 

time and effort needed to restart the device must also be considered – any powered device 

which is easily turned off will not be turned off habitually if it cannot also be turned back on 

again when needed with a  minumum of inconvenience. These principles are well-

documented in the study of decision-making (Payne et al., 1993) and human-computer 

interaction (Payne et al., 2001) and can be applied to minimise excess energy use within the 

built environment also.  

 

In summary, while built environment models now acknowledge the influence of occupant 

psychology, they remain simplistic in their conception of the drivers of occupant behaviour 

and are not routinely used to influence the design of buildings. They tend to describe the 

building occupants as rational, independent individuals who formulate intention based on 

their response to external environmental variables and their internal attitudes, both of 

which may be too broadly construed with too much emphasis placed upon attitude and 

conscious intention. The findings presented here indicate that this interpretation of 

behaviour is likely to be insufficient. In this study as well as previous work (Menezes et al., 

2012b), the attitudes of office occupants displayed no clear relationship with energy 

consumption for small power use or lighting. Although the study reported here only 



examined small power consumption in offices it is likely that occupants interact with other 

building systems (such as lighting and windows) in a similar manner. It is reasonable to 

suppose that such behaviours as window opening/ closing could be characterized by some 

general rule or mode of operation (e.g., indoor thermal comfort) that does not apply to the 

plug-load equipment studied here. However, the suggestion that habit may play a part in 

such behaviours is not necessarily inconsistent with such a rule-based approach. Rather, the 

regression model simply aims to estimate the individual variation (perhaps in stochastically 

applying such a rule) that could be assigned to habitual or automatic behaviours. If, as 

seems likely, opening a window at the start of the day (and, crucially, remembering to close 

it at the end of the day) is moderated by habitual modes of action (e.g., “I always open the 

window first thing” or “I always forget to close the window when leaving the office”) then 

the extent to which this affects energy consumption is a matter for further empirical 

enquiry. Fabi et al. (2012) point out that such “psychological” aspects of occupant behaviour 

in these circumstances have not been investigated to the same degree as environmental 

variables  such that current models do not consider that wondow operation could be a joint 

function of habit/ routine and response to environmental conditions. To improve built 

environment models of behaviour a more sophisticated representation of the occupant’s 

internal drivers could be extremely beneficial and this may be obtained by methods similar 

to those outlined here.  

To our knowledge, although the SRHI is recommended as a useful tool for measuring 

habitual pro-environmental behaviour (Darnton et al., 2011), this is the first time it has been 

applied to occupant related energy consumption in office buildings. As such these results 

require verification across a range of offices and building specifications. It would also be of 

interest to apply this method to other specific occupant behaviours within the built 

environment such as window opening. 

 

7. CONCLUSIONS 

Current consideration of the psychology of building occupants in both behavioural models 

and occupant engagement campaigns to motivate energy conservation are predicated on 

the assumption of a direct link between pro-environmental attitudes and pro-environmental 

behaviour. Evidence suggests that this conception is overly simplistic as it does not account 

for other influential factors, particularly habitual behaviour. This study investigates these 

other influential factors by correlating behavioural construct scores with direct 

measurements of electricity consumption at occupant workstations. Measurements and 

surveys were carried out for 81 occupants in two open plan office buildings. The findings 

from this study showed that habit explains around 11% of the variation in individual’s 

workstation electricity consumption across the two office buildings. Automaticity of the 

action was identified as a significant influence on whether occupants turned off appliances 

when not in use. No correlation was found with their environmental attitudes, the influence 

of the actions of those around them, or whether they perceived it to be under their control.  



This finding has clear implications for behavioural models for the design of new buildings if 

such models aspire to identify the individual causes of energy use and, more particularly, for 

employee engagement campaigns for existing buildings. A shift of focus is indicated away 

from assumptions of a direct link between environmental attitudes and behaviour towards 

the occupant’s automatic and habitual behaviour. 
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