
Joint multiple dictionary learning for tensor
sparse coding
Conference or Workshop Item

Accepted Version

Fu, Y., Gao, J., Sun, Y. and Hong, X. (2014) Joint multiple
dictionary learning for tensor sparse coding. In: 2014
International Joint Conference on Neural Networks (IJCNN),
July 611, 2014., Beijing, China. Available at
http://centaur.reading.ac.uk/39732/

It is advisable to refer to the publisher’s version if you intend to cite from the
work.
Published version at: http://dx.doi.org/10.1109/IJCNN.2014.6889490

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur

Reading’s research outputs online

Joint Multiple Dictionary Learning for Tensor Sparse Coding

Yifan Fu, Junbin Gao, Yanfeng Sun and Xia Hong

Abstract— Traditional dictionary learning algorithms are
used for finding a sparse representation on high dimensional
data by transforming samples into a one-dimensional (1D)
vector. This 1D model loses the inherent spatial structure
property of data. An alternative solution is to employ Tensor De-
composition for dictionary learning on their original structural
form —a tensor— by learning multiple dictionaries along each
mode and the corresponding sparse representation in respect
to the Kronecker product of these dictionaries. To learn tensor
dictionaries along each mode, all the existing methods update
each dictionary iteratively in an alternating manner. Because
atoms from each mode dictionary jointly make contributions to
the sparsity of tensor, existing works ignore atoms correlations
between different mode dictionaries by treating each mode
dictionary independently. In this paper, we propose a joint
multiple dictionary learning method for tensor sparse coding,
which explores atom correlations for sparse representation and
updates multiple atoms from each mode dictionary simulta-
neously. In this algorithm, the Frequent-Pattern Tree (FP-tree)
mining algorithm is employed to exploit frequent atom patterns
in the sparse representation. Inspired by the idea of K-SVD, we
develop a new dictionary update method that jointly updates
elements in each pattern. Experimental results demonstrate
our method outperforms other tensor based dictionary learning
algorithms.

I. INTRODUCTION

SPARSE CODING (SC) has been widely applied in
numerous signal processing tasks, such as imaging de-

noising [13], texture synthesis [15] and image classification
[18]. Sparse modeling aims at learning a dictionary so that
each sample can be represented by a few atoms of the learned
dictionary. Several algorithms have been developed for this
task, e.g. the K-SVD [1] and the method of optimal directions
(MOD) [6]. However, when dealing with multi-dimensional
signals , all the previous sparse models reshape each input
signal into a 1D vector. This kind of reshaping breaks the
local correlation inherent inside the signal. Thus, it becomes
highly desirable to develop algorithms which are able to fully
make use of the local correlation inside high-dimensional
data, such as tensor data.

Tensor decomposition [12] (TD) has attracted attention
for processing multi-dimensional data. PARAFAC [12] and
TUCKER [12] decompositions are two classical algorithms.
PARAFAC decomposes a tensor as a sum of k rank-1 tensor
while TUCKER factorizes a tensor into a set of matrices

Yifan Fu and Junbin Gao are with School of Computing and mathematics,
Charles Sturt University, Bathurst, NSW 2795, Australia. (email: {yfu,
jbgao}@csu.edu.au).

Yanfeng Sun is with Beijing Municipal Key Lab of Multimedia and
Intelligent Software Technology, Beijing University of Technology, Beijing
100124, China. (email: yfsun@bjut.edu.cn).

Xia Hong is with School of Systems Engineering, University of Reading,
Reading, RG6 6AY, UK. (email: x.hong@reading.ac.uk).

This work is supported by the Australian Research Council (ARC)
through Discovery Project Grant DP130100364.

and one small core tensor. However, these methods do not
explicitly enforce sparsity constraint in the low dimensional
representation.

Recently, researchers resort to combining SC with TD
by introducing additional constraints to the models with
the aim of learning sparse representations of tensors. Both
non-negativity and sparsity have been used in two classical
decompositions to accomplish the goal. Both non-negative
versions of PARAFAC and TUCKER decompositions with
multiplicative updates have been proposed in [9], [2] and
[11], [10]. In TUCKER model, the sparsity over the core
tensor is achieved by smoothing matrices along each mode
[10], l1 norm penalization [14] or a tensor dictionary learning
algorithm [19].

In the case of dictionary learning models, which is the
focus of our discussion in this paper, Caiafa and Cichocki
[4] open the discussion of sparse representation of tensor
data using Kronecker bases in which the size of the core
tensor is much higher than the input tensor. Two models are
proposed in this paper: (1) Kronecker- Orthogonal Matching
Pursuit (OMP) algorithm for multiway sparsity in which the
sparse non-zero coefficients could be distributed randomly
in the core tensor; (2) N-way Block OMP (N-BOMP) for
multiway block sparsity in which the non-zero entries of the
core tensor form blockwise structure. The similar ideas are
used in 2 dimensional dictionaries for image processing [17].
In [19], a tensor dictionary model based on sparse TUCKER
decomposition is proposed, in which sparse constraint over
the core tensor is achieved by N-OMP, and the n-mode
dictionary is learnt in an alternative minimization manner
using gradient descent.

However, all existing dictionary learning algorithms up-
date each mode dictionary by fixing all the other mode
dictionaries iteratively in an alternating manner. The main
issue is that the atoms from each mode dictionary jointly
make contributions to the presentation of tensors, while cur-
rent dictionary learning solutions ignore atoms correlations
between different mode dictionaries. To this end, we propose
a joint multiple dictionary learning method for tensor sparse
coding (TSC-JMDL), which explores atom correlations for
sparse representation and updates multiple atoms from each
mode dictionary simultaneously. Our main contributions are
as follows:
• Unlike pervious tensor dictionary learning algorithms

update all the non-zero atom entries for each mode,
our model employs FP-tree to find the frequent atom
patterns formed by a sequence of non-zero atom entries
in the sparse core tensor, and updates only frequent pat-
terns by a tensor extended version of K-SVD algorithm.

• Existing tensor dictionary learning models update each

mode dictionary independently, without considering
atom correlations for sparse representation. In contrast,
our model jointly updates all the elements in a frequent
atom pattern simultaneously.

II. NOTATIONS AND PROBLEM FORMULATION

A. Definition and Notations

A tensor is a multidimensional array. The order of a tensor
is the number of dimensions, also known as ways or modes.
For example, Y ∈ RI1×I2···×IN is an N -way tensor, where
In(1 ≤ n ≤ N) are the dimensions of each mode. The
element indexed by (i1, i2, . . . , iN) in an N -way tensor is
denoted by yi1,i2,...,iN . In particular, a vector (1-way tensor)
is denoted by a boldface lower-case letter, i.e. y ∈ RI and a
matrix (2-way tensor) is denoted by a bold uppercase letter,
i.e. Y ∈ RI×M . The i-th entry of a vector y is denoted as
yi, and the element at (i, j) of a matrix Y is denoted as yij .
Thereafter, we will introduce some tensor fundamentals and
definitions.

Definition 1 (Tensor Matricization): Matricizaion is the
operation of rearranging the entries of a tensor so that it
can be represented as a matrix. Let X ∈ RI1×...×IN be a
tensor of order-N , the mode-n matricization of X reorders
the mode-n vectors to be columns of the resulting matrix,
denoted by X(n) ∈ RIn×(In+1In+2...INI1I2...In−1).

Definition 2 (Rank-One Tensor): An N -way tensor X ∈
RI1×...×IN is rank one if it can be equal to the outer product
of N vectors:

X = a(1) ◦ a(2) ◦ . . . ◦ a(N). (1)
Elementwise, we have

xi1i2...iN = a
(1)
i1
a
(2)
i2
. . . a

(N)
iN

for all 1 ≤ in ≤ In. (2)

Definition 3 (Kronecker Product): The Kronecker prod-
uct of matrices A ∈ RI×J and B ∈ RP×L, denoted by
A⊗ B, is a matrix of size (IP)× (JL) defined by

A⊗ B =

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 (3)

Definition 4 (The n-mode Product): The n-mode product
of a tensor X ∈ RI1×...×IN by a matrix U ∈ RJ×In , denoted
as X ×n U, is a tensor with entries:

(X ×n U)i1,...,in−1,j,in+1,...,iN =

In∑
in=1

xi1i2...iNujin (4)

The n-mode product is also denoted by each mode-n vector
multiplied by the matrix U. Thus, it can be expressed in
terms of tensor matricization as well:

Y = X ×n U ⇔ Y(n) = UX(n) (5)

Definition 5 (Tucker Decomposition): Given an order-N
tensor Y , its Tucker decomposition is an approximated tensor
defined by,

Ŷ ≡ JX ;U1, ...,UN K = X ×1 U1 ×2 . . .×N UN

=

M1∑
i1=1

M2∑
i2=1

. . .

MN∑
iN=1

xi1i2...iNui1 ◦ ui2 . . . ◦ uiN (6)

where X ∈ RM1×M2×... MN is called a core tensor, Ui ∈
RIi×Mi(1 ≤ i ≤ N) are the factor matrices and the symbol
◦ represents the vector outer product.

Definition 6 (CP Decomposition): Given an N -way ten-
sor X ∈ RI1×I2...×IN , the CP tensor decomposition fac-
torizes a tensor into a sum of component rank-one tensors,
which is defined as

X̂ ≡
M∑
i=1

u(1)
i ◦ u(2)

i · · · ◦ u(N)
i (7)

where M is a positive integer and u(j)
i ∈ RIj for i =

1, . . . ,M.
Definition 7 (Multiway block-sparsity): A tensor Y ∈

RI1×...×IN is (S1, S2, . . . , SN)-block sparse with respect
to the factors Un ∈ RIn×Mn(n = 1, 2, . . . , N) if it
admits a TUCKER representation based only on few Sn

selected columns of each factor (Sn ≤ Mn), i.e. if in =
[i1n, i

2
n, . . . , i

Sn
n] denotes a substet of indices for mode n(n =

1, 2, . . . , N), then

Y = X ×1 U1 ×2 . . .×N UN (8)

with xi1i2···iN = 0 ∀(i1i2 · · · iN) 6∈ i1 × i2 × · · · × iN

B. Problem Formulation

Given a set of M N -order tensors, denoted by Y =
{Y1,Y2, . . . ,YM}, we aim to find sparse representation for
each N -order tensor Ym(1 ≤ m ≤ M) with regards
to the Kronecker product of multiple dictionaries Un for
1 ≤ n ≤ N . Each Un is a dictionary along a particular
direction of structure. To learn multiple dictionaries, we
consider TUCKER decomposition on Ym. Thus the problem
of multiple dictionary learning is formulated as

min
Xmsparse,Un

M∑
m=1

‖Ym −Xm ×1 U1 ×2 U2 · · · ×N UN‖ (9)

where Xm is the sparse representation tensor for Ym, and the
factor matrix Un is the dictionary at mode-n. In this paper,
we suppose Xm is multiple block sparse as described in [4].

Naturally, we can regard Y an (N + 1)-order tensor by
stacking all the given tensors along the (N + 1)-mode.
Similarly X denotes the (N + 1)-order tensor consisting
of {X1,X2, . . . ,XM}. Then model (9) can be equivalently
written as

min
Xmsparse,Un

‖Y −X ×1U1×2U2 · · ·×N UN ×N+1 I‖ (10)

where I is the identity matrix of order M .

III. JOINT MULTIPLE DICTIONARY LEARNING MODEL
FOR TENSOR SPARSE CODING

Similar to standard dictionary learning algorithms, the
proposed tensor dictionary learning algorithm is a two-stage
iterative process: sparse coding and dictionary update. In this
paper, we employ an iterative algorithm called the Block
Coordinate Descent (BCD) [3] to solve the optimization
problem (10) by fixing all the other model variables to solve
one variable at a time alternatively. Firstly, the dictionaries
Un are fixed , the sparse coefficients Xm can be obtained by
solving M independent sparse representation subproblems.
That is, for each m = 1, . . . ,M , Xm is obtained by
minimizing

min
Xmsparse

‖Ym −Xm ×1 U1 ×2 U2 · · · ×N UN‖ (11)

with the N-BOMP algorithm.
Then in the second stage, given the sparse representations

Xm, the dictionaries (factors) corresponding to each mode
are updated jointly using an atom pattern based dictionary
update strategy, by solving the following problem

min
Un

‖Y − X ×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖ (12)

where 1 ≤ n ≤ N .

A. N-BOMP Algorithm

OMP iteratively refines a sparse representation by suc-
cessively identifying one component at a time that yields
the greatest improvement in quality until a desired sparsity
level is reached or the approximation error is below a pre-
defined threshold. A tensor extended version of OMP for
multiway block-sparsity is motivated by the fact that, in the
real world, the non-zero coefficients are likely to be grouped
in blocks rather than evenly distributed. Accordingly, N-
BOMP is proposed to find a (S1, S2, . . . , SN)-block sparse
representation of an N -mode tensor with respect to the
factors Un ∈ RIn×Mn(n = 1, 2, . . . , N). If we denote
by Bn ∈ RIn×Sn the submatrices formed by the columns
indicated by indices in of the mode-n dictionary, i.e. Bn =
Un(:, in), then the approximation of the tensor can be written
in the equivalent vector version of Eq. (8) in terms of
Kronecker products of dictionaries, that is

ŷ = (BN ⊗BN−1 ⊗ · · · ⊗B1)x (13)

where ŷ ∈ RI1I2...IN is the vectorized version of original
tensor X by stacking all the columns of mode-1 tensor Y(1)
in a single vector, and x ∈ RS1S2...SN is the vectorized
version of the N -mode tensor consisting only of non-zero
entries. Here we assume that the size of the core tensor X
is not less than the size of Y (Mn ≥ In), because sparse
coding model is formulated with overcomplete dictionaries.
The N-BOMP algorithm is given in Algorithm 1.

Remark 1: N-BOMP not only optimizes the memory
usage but also requires much less iterations (Kmax against
S = S1S2 · · ·SN in the classical OMP/Kronecker-OMP
algorithm), where S is the number of non-zero entries

Algorithm 1 Solving Problem (11) by N-BOMP

Require: data tensor Ym ∈ RI1×I2×···×IN , mode-n
dictionaries{Ui}(1 ≤ i ≤ N) with Ui ∈ RIi×Mi ,
the maximum number of non-zero entries Kmax, error
threshold ε

Ensure: Sparse representation Ym = Xm ×1 U1 ×2 . . .×N

UN with xi1i2···iN = 0 ∀(i1, i2, . . . , iN) 6∈ i1×i2×· · ·×
iN (with non-zero entries given by Xm(i1, i2, . . . , iN) =
A)

1: in = [∅](n = 1, 2, . . . , N), R = Ym, Xm = 0, k = 1;
2: while |i1||i2| · · · |iN | ≤ Kmax and ‖R‖F > ε do
3: [ik1i

k
2 · · · ikN] = argmax[i1i2···iN] |R ×1 UT

1 (:, i1) ×2

· · · ×N UT
N (:, iN)|;

4: in = in ∪ [ikn] (n = 1, 2, . . . , N), Bn = Un(:, in);
5: a = argminw‖(BN ⊗BN−1 ⊗ · · · ⊗B1)w − y‖22;
6: R = Ym −A×1 B1 ×2 B2 · · · ×N BN ;
7: k = k + 1;
8: end while
9: return {i1, i2, . . . , iN},A;

within the core tensor X . Besides, the N-BOMP algrithm
complexity in terms of the number of entries I1I2 · · · IN , is
sublinear compared to a linear dependence of the standard
OMP and the Kronecker-OMP algorithms.

B. Joint multiple dictionary update algorithm

Once the sparse core tensors Xm (1 ≤ m ≤ M) are
obtained, the tensor dictionaries are computed by solving
the problem (12). Because non-zero atoms entries from each
mode dictionary jointly make contributions to the presenta-
tion of tensors, we propose a joint multiple dictionary update
algorithm based on the frequent atom patterns for sparse
tensor representation.

1) Mining Frequent Atom Patterns in Sparse Representa-
tion: Each non-zero entry of the sparse tensor Xm(1 ≤ m ≤
M) is mapped into an integer using a function φ, which is
formulated as

φ(i1i2 . . . iN) = (i1 − 1)I2I3 . . . IN

+ (i2 − 1)I3I4 . . . IN

+ · · ·+ iN

(14)

Then the sparse representation of the N -mode tensor
Xm(1 ≤ m ≤M) is denoted by an integer set ti consisting
of indices of the non-zero entries of Xm.

In order to uncover the atom correlations for sparse repre-
sentation with a low time cost, we adopt FP-tree [8] to find
the frequent patterns from M integer sets. The time efficiency
of FP-Tree is achieved with three techniques: (1) FP-Tree
avoids costly repeated data base scans by compressing a
large database into a condensed smaller data structure; (2)
a pattern-fragment growth method is employed to avoid the
costly generation of a large number of candidate sets; and
(3) it dramatically reduces the search space by decomposing
the mining task into a set of smaller tasks for mining
confined patterns in conditional database. Given a database

T = {t1, t2, . . . , tM} and a minimum support threshold ξ,
FP-Tree mines frequent patterns (i.e. the support of patterns
is not less than ξ) by creating conditional (sub)pattern-bases
(i.e., the subpattern-base under the condition of a frequent
item’s existence). Taking Figure 1 as an example, let the
sparse representation database T be the first two columns
of Fig. 1(a), and the minimum support threshold be 3 (i.e.,
ξ = 3). Firstly, a scan of T derives a list of frequent items
in Fig. 1(b), (the number after “:” indicates the support), in
which items are in frequency-descending order. Since each
path of a tree will follow this order, the frequent atoms
in each sparse representation are listed in the ordering in
the rightmost column of Fig. 1(a). Secondly, the FP-Tree
is constructed by scanning the database T again, together
with the associated node-links pointing to the nodes with the
same atom in the tree, as shown in Fig. 1(b). Finally, the
frequent patterns related to each frequent atom are mined by
traversing the FP-Tree once following corresponding node-
links. The conditional pattern-base and conditional FP-Trees
are generated during this process, as shown in Fig. 1(c).
Hence, the frequent patterns related to a specific frequent
atom are summarized in the second column of Fig. 1(c).

(a) An Atom database

SID Atom Set (Ordered) frequent Atoms

100 {6,1,3,4,7,9,13,16} {6,3,1,13,16}

101 {1,2,3,6,12,13,15} {6,3,1,,13}

102 {2,6,8,10,15} {6,2}

103 {2,3,11,19,16} {3,2,16}

104 {1,6,3,5,12,16,13,14} {6,3,1,13,16}

(b) The FP-Tree

 (c) Mining frequent patterns by creating conditional (sub)pattern-bases

Atom Conditional pattern-base Conditional FP-Tree

16 {(6,3,1,13:2),(3,2:1)} {(3:3)}|16

13 {(6,3,1:2), (6,3,1,2:1)} {(6:3,3:3, 1:3)}|13

2 {(6,3,1:1),(6:1),(3:1)} {}

1 {(6,3:3)} {(6:3, 3:3)}|1

3 {(6:3)} {(6:3)}|3

6 {} {}

Header Table

Atom frequency head

6 4

3 4

1 3

2 3

13 3

16 3 16:2

16:1

2:1 2:1

6:4

1:3

{}

3:1

3:3

13:2 2:1

13:1

Fig. 1: A toy database illustrates the FP-Tree frequent pattern
mining process

2) Frequent Pattern based Dictionary Update: After find-
ing frequent patterns related to each frequent atom, i.e., the
conditional FP-Tree regarding a specific atom, we succes-
sively update all frequent patterns by jointly updating all the
elements in each frequent pattern at a time. First of all, a
map function ϕ is used to convert an integer into an N -
dimensional vector, which is denoted by

ϕ(b) = i1i2 . . . iN (15)

where
m1 =

b

I2I3 . . . IN
i1 = m1 + 1

(16)

in+1 =
mod(mn)

In+2 . . . IN
+ 1(1 ≤ n ≤ N − 2) (17)

iN = mod(
mod(mN−1)

IN
) (18)

Using Eq. (16)-(18), each element in the frequent pattern is
converted into a position (i1, i2, . . . , iN) of a sparse tensor
Xm(1 ≤ m ≤M). Then we define ωk as the group of indices
of sparse tensors Xm that use all the elements in the frequent
pattern pk. Thus

ωk = {m|1 ≤ m ≤M,Xm
pk
6= 0} (19)

where pk = {uk1
1 u

k1
2 · · ·u

k1

N , . . . , u
kn
1 ukn

2 · · ·u
kn

N }, and
u
kj

1 u
kj

2 · · ·u
kj

N (1 ≤ j ≤ n) is the mapped position of sparse
tensor in the frequent pattern pk.

We now turn to the second stage of updating the dictio-
naries together with the non-zero coefficients. Assume both
X and Ui(1 ≤ i ≤ N), and we put in question only
the dictionary atoms in each frequent pattern pk, and the
coefficients in X that corresponding to it. Let Xpk

and Ypk

be an (N+1)-order tensor formed by stacking the subset ωk

of N -mode tensors Ym and Xm along the (N + 1) mode,
respectively; X̃pk

and Ỹpk
be the (N+1)-order tensor formed

by N -mode tensors Ym and Xm not in the subset ωk .
Then the penalty term of the objective function (12) can be
rewritten as

‖Y − X ×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖2F
=‖Y − X̃pk

×1 U1 ×2 U2 · · · ×N UN ×N+1 I

−Xpk
×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖2F

=‖Epk
−Xpk

×1 U1 ×2 U2 · · · ×N UN ×N+1 I‖2F

(20)

where Epk
stands for the error for all the |ωk| examples when

the dictionary atoms in the frequent pattern pk are removed.
We obtain ERpk

by choosing only the (N + 1)-order indices
in ωk, as shown in Eq.(21).

ERpk
= Y(:,:,...,:,ωpk

)−X(i1,i2,··· ,iN ,ωpk
)×1U1 · · ·×NUN×N+1I

(21)
where (i1, i2, · · · , iN) 6∈ pk. We conduct a rank
(|pk|, |pk|, . . . , |pk|) CP decomposition for ERpk

, in which the
CP factors for mode 1, 2, . . . , N of the j-th rank one tensor
are regarded as the updated dictionary atoms of the j-th
element in the frequent pattern pk. The general process of
joint multiple dictionary update algorithm is illustrated in
Algorithm 2.

C. The complete Algorithm

After iteratively solving subproblem (11) and (12) until the
maximum iterations are achieved or the iteration converges
to stop, we finally obtain multiple overcomplete dictionaries
along each mode of input tensors Ym(1 ≤ m ≤ M) and
corresponding sparse tensor representations Xm(1 ≤ m ≤

Algorithm 2 Solving Problem (12) by Joint Multiple Dic-
tionary Update Algorithm

Require: data tensor Y ∈ RI1×I2×···×IN×M , sparse repre-
sentation X ∈ RM1×M2×···×MN×M for 1 ≤ i ≤ M , a
minimum support threshold ξ

Ensure: Dictionaries from each mode Y = X ×1 U1 ×2

. . .×N UN)
1: Initialize a non-zero entry database T = {}
2: for i = 1 to M do
3: An integer set for the i-th slice of X : nXm

←
non-zero entries in Xm;

4: ti ← {}
5: for j = 1 to |nXm | do
6: ti ← ti ∪ φ(nXm(j));
7: end for
8: T← T ∪ ti;
9: end for

10: a frequent pattern list P = {p1, p2, . . . , pu} ←
Apply the FP-Tree algorithm to T;

11: for k = 1 to u do
12: for j = 1 to |pk| do
13: u

kj

1 u
kj

2 · · ·u
kj

N ← ϕ(pk(j));
14: pk(j)← u

kj

1 u
kj

2 · · ·u
kj

N

15: end for
16: ωk ← {i|1 ≤ i ≤M,X i

pk
6= 0};

17: Calculate the representation error tensor ERpk
with Eq.(21);

18: Do CP decomposition to the error tensor by a rank
(|pk|, |pk|, . . . , |pk|) approximation:
ERpk
←

∑pk

i=1 a
i(1)
pk ◦ · · · ◦ a

i(N)
pk

19: for j = 1 to |pk| do
20: Update the dictionary atoms in the j-th element in

pk: ukj

i = a
j(i)
pk

21: end for
22: end for
23: return {U1,U2, . . . ,UN};

M). Algorithm 3 outlines the whole process of joint multiple
dictionary learning algorithm for tensor sparse coding.

IV. EXPERIMENTAL RESULTS

In this section, we present a set of experimental results on
both synthetic and real data sets with multi dimensional infor-
mation. The intension of these experiments is to demonstrate
our new method TSC-JMDL’s superiority over the state-of
art dictionary learning methods in computation complexity,
memory usage, and image denoising.

A. Baseline Methods

As our proposed method is closely related to tensor dictio-
nary models based on sparse TUCKER decomposition, we
implement two multiple based dictionary learning algorithms
for tensor sparse representation as baseline methods. All use
the N-BOMP algorithm for sparse representation learning.
However, they make use of two different dictionary update
methods. These two baselines are listed as follows:

Algorithm 3 Joint multiple dictionary learning for tensor
sparse coding

Require: data tensors Ym ∈ RI1×I2×···×IN (1 ≤ m ≤ M),
the maximum number of non-zero entries Kmax, error
threshold ε, a minimum support threshold ξ

Ensure: Sparse representation corresponding the learnt mul-
tiple dictionaries along each structure mode Ym =
Xm ×1 U1 ×2 . . .×N UN (1 ≤ m ≤M))

1: Initialize dictionaries along each mode Uj(1 ≤ j ≤ N);
2: while reach maximum iteration times or converge to stop

do
3: Get the sparse representation tensors Xm(1 ≤ m ≤

M) by using N-BOMP;
4: Update dictionaries Uj(1 ≤ j ≤ N) by using TSC-

JMDL;
5: end while
6: return Sparse representation Xm(1 ≤ m ≤ M) and

Dictionaries for each mode Uj(1 ≤ j ≤ N)

• Tensor MOD Approach (TMOD): the original MOD
algorithm is presented in [6] for dictionary learning
on signal vectors. We apply this algorithm to tensor
based multiple dictionary learning, which alternatively
updates Un by fixing U1, . . . ,Un−1, Un+1,. . . , UN to
minimizing (12)

• Tensor K-SVD Approach (TKSVD): Due to the atoms
from each mode dictionary jointly make contributions
to the tensor sparse representation, the K-SVD algo-
rithm is unable to directly applied to tensor based
dictionary learning by updating dictionary atom one by
one. Instead, we check the coefficients xmi1,i2,...,iN at
each position (i1, i2, . . . , iN) of all the sparse tensors
Xm(1 ≤ m ≤M). For those xmi1,i2,...,iN 6= 0, we gather
the corresponding data tensor Xm to generate an (N +
1)-order tensor Xs, and conduct a rank-(1, 1, . . . , 1) CP
decomposition. The CP factors for modes 1, 2, . . . , N
are regarded as the updated dictionary atoms.

We also consider some other sparse representation models
proposed in [16], [5] and [17] to evaluate the performance
in image denoising.

B. Synthetic Datasets

In this section, we evaluate TSC-JMDL against TMOD
and TKSVD on the synthetic datasets. An (N+1)-order ten-
sor of size I1×I2 . . .×IN×100(In = 10 for n = 1, 2, . . . , N
is generated from the mode dictionaries of size In×Mn and
the sparse core tensor of size M1 × M2 . . . × Mn × 100
whose elements are obtained from Gaussian distributions,
where Mn = 2In. The sparse core tensor has a fixed mode
sparsity of Sn = 5.

1) Time Cost with High Order Tensorial Data: To show
TSC-JMDL’s time advantage of handling high order tensorial
data over other baseline methods, we create 6 higher order
tensors Xj(2 ≤ j ≤ 7) using above tensor construction
method. Fig. 2 reports the results on TMOD, TKSVD and our

new method TSC-JMDL. As the order of tensor increases,
the time cost of TSC-JMDL and TMOD are significantly
reduced compared with TKSVD. This is mainly because
TKSVD jointly updates atoms, one for each mode at a time,
the total number of these joint atoms is 20j−1, which makes
the dictionary update procedure particularly tedious. While
TMOD simply updates each mode dictionary separately, the
computation complexity of which is linear to the order of
tensor. TSC-JMDL only jointly updates the frequent atom
patterns in the sparse representation, which speeds up the
dictionary update process. As TSC-JMDL needs extra time
to find these frequent patterns, the time cost of TSC-JMDL
is a little expensive than TMOD. To sum up, our method
TSC-JMDL has a comparable time cost in the higher mode
of tensor.

0.2

2000.2

4000.2

6000.2

8000.2

10000.2

2 3 4 5 6 7

R
u

n
n

in
g

ti
m

e(
m

in
)

Order of Tensor

MOD KSVD TSC-JMDL

Fig. 2: Time comparison w.r.t. different orders of a tensor.

2) Data Denoising with Different Noise Parameters: We
investigate the performance of TSC-JMDL for data denoising
by comparing with TMOD and TKSVD. The test data
3−order tensor is generated using above the same tensor
construction method. The Gaussian noise is artificially added
with zero mean. Fig. 3 presents the comparison of peak
signal-to-noise ratios (PSNR) of the denoising results with
increasing the noise parameter σ from 5 to 100. It can
be found that joint multiple dictionary update algorithms
TKSVD and TSC-JMDL outperform independent dictionary
update algorithm TMOD, which suggests that considering
atoms correlations for sparse representation can boost perfor-
mance in denoising. Moreover, the performance of TKSVD
is marginally better than the proposed method TSC-JMDL.
This is mainly because TSC-JMDL updates merely frequent
atoms patterns rather than all the non-zero coefficients in the
sparse tensors. However, our new method TSC-JMDL can
achieve a comparable performance with much lower time
cost than TKSVD.

3) Memory Usage with respect to Dictionaries: Exem-
plified dictionaries used in a 3−order tensor (created using
above tensor generation method) is illustrated in Fig. 4. The
left two images presents the dictionaries U1 and U2 learnt
by our method TSC-JMDL, in which each column is the
atom along one direction of the data. The right image is
the Kronecker product U of above two dictionaries, which
fully represents the data spatial correlation. Note that the
size of dictionaries are quite different. The classical OMP

20

25

30

35

40

5 15 25 35 45 55 65 75 85 95

P
SN

R
(d

B
)

Noise Parameter σ

TMOD TKSVD TSC-JMDL

Fig. 3: The PSNR of denoising results with the variation of
σ.

requires a large dictionary of size 100 × 400, whereas N-
BOMP employed in our scheme needs only two dictionaries
of size 10 × 20. Though only 1/100 size of the Kronecker
dictionary is used, our model can achieve better performance
than the classical OMP algorithm. This is mainly because
our model simultaneously selects factors along each mode
on the original structured data, while 1D sparse model OMP
chooses the factors on the reshaped 1D vector.

(a) Our Dictionaries (b) The Kronecker product

 Error= 1.1415e-012 Error=3.8181e-004

Fig. 4: Exemplified dictionaries in our 3-order tensor model.

C. Real Datasets

In this section, our proposed TSC-JMDL is used to solve
the image denoising problem. The test images include 5
widely used images [5], commonly known as “Lena”, “Pep-
pers”, “House”, “Barbara”, and “Boats”, which are resized
uniformly into 512 × 512. The white Gaussian noises are
added at different standard deviations σ. In all the tests,
image patch is of size 8× 8 pixels, and the two dictionaries
U1 and U2 are of size 8×16. Then U is generated by using
Kronecker product is of size 64× 256.

1) Image Denoising with Different Noise Variances:
We study the performance of our TSC-JMDL in image
denoising with those of 1D sparse coding models proposed
in [16] and [5] and one 2D synthesis sparse model proposed
in [17]. Table I shows the denoising results in terms of
PSNR. We observe that our method outperforms the 2D
synthesis sparse model [17] among all the data sets with
different variations. This fact demonstrates that considering
atom correlations for sparse representation can boost image

denoising performance. Note that the size of dictionaries are
different in generating the results. The methods in [16] and
[5] require the dictionaries of size 64 × 256, whereas our
method only needs two dictionaries of size 8× 16, which is
1/64 size of the dictionary used in the above two 1D sparse
coding models. However, our model TSC-JMDL can achieve
the best performance among all the four evaluated methods
as denoted by the bolded numbers.

TABLE I: Summary of the denoising PSNR results in [dB].
In each cell, the top row is the result of Portilla et al. [16],
the second row is the result of Elad et al. [5]. They all use the
dictionary of size 64× 256. The third row is the result of Qi
et al. [17], and the bottom row is the result of the proposed
method. They all use two dictionaries of size 8× 16.

σ \ PSNR 2 \ 42.11 5 \ 34.15 10 \ 28.13

Lena

42.23 38.49 35.61
43.58 38.6 35.47
43.58 38.55 35.37
47.01 42.12 39.96

Barbara
43.29 37.79 34.03
43.67 38.08 34.42
43.64 38.05 34.02
44.65 39.77 36.37

Peppers
43 37.31 33.77

43.33 37.78 34.28
43.37 37.93 34.26
46.57 41.98 37.02

House
44.07 38.65 35.35
44.47 39.37 35.98
44.38 39.14 35.59
48.98 45.31 41.07

Boats
42.09 36.97 33.58
43.14 38.08 33.64
43.11 37.16 33.56
43.42 38.01 34.39

2) Performance with the Same Size of Dictionaries: We
further study the performance of our method with the same
size of dictionaries used in other baseline methods. Table II
shows the denoising results of [17] and [5] using different
sizes of dictionaries which are equal to the size used in
our method. The noise parameter σ = 5, and the noise
image of PSNR= 34.15dB. Clearly, the larger the size of
dictionaries, the higher PSNR results all the methods achieve.
Besides, two dictionary sparse models (TSC-JMDL and 2D
synthesis sparse model [17]) significantly outperforms the
1D sparse model [5] when same size of dictionary is used.
Another interesting fact is that the denoising result of our
proposed method TSC-JMDL always performs better than
the 2D synthesis sparse model, which again demonstrates
that taking atom correlations into consideration can improve
denoising results.

A visual comparison is given in Fig. 5. It presents the
denoising results of Lena, Peppers and House generated by
1D sparse model [5], 2D synthesis sparse model [17] and our
proposal model TSC-JMDL with the dictionary of the same
sizes 64× 4 and 2× 8× 16 = 256, respectively. Obviously,
our method TSC-JMDL provides much clearer reconstructed
image than our two baseline methods.

TABLE II: Summary of the denoising PSNR results in [dB].
In each cell, the top row is the result of Elad et al. [5]. It
uses the dictionaries of size 64 × 4, 64 × 16 and 64 × 64
respectively. The middle row is the result of Qi et al. [17],
and the bottom row is the result of the proposed method.
They all use two dictionaries of size 8 × 16, 8 × 64 and
8× 256 respectively.

image \DictSize(pixels) 256 1024 4096

Lena
30.09 35.81 38.20
38.55 44.86 47.12
42.12 47.25 49.94

Barbara
24.40 30.14 37.74
38.05 41.36 46.76
39.77 43.02 49.96

Peppers
25.73 32.23 37.29
37.93 42.28 45.16
41.98 45.98 48.79

House
29.35 36.15 39.34
39.14 44.68 46.59
45.31 47.99 49.27

Boats
27.08 33.04 37.14
37.16 41.78 48.09
38.01 43.03 49.78

(a) Noisy Lena (b) 1D denoising result (c) 2D synthesis sparse model
(30.09dB) (38.55dB)

(d) our proposed method
(42.12dB)

(e) Noisy Peppers (f) 1D denoising result

(25.73dB)

(g) 2D synthesis sparse model
(37.93dB)

(h) our proposed method
(41.98dB)

(j) Noisy House (i) 1D denoising result

(29.35dB)

(j) 2D synthesis sparse model
(39.14dB)

(k) our proposed method

(45.31dB)

Fig. 5: The denoising results of Lena, Peppers and House by
1D sparse model [5], 2D synthesis sparse model [17] and
our proposal model TSC-JMDL using the dictionaries of size
64× 4 and 8× 16, respectively.

Exemplified dictionaries of Lena used in our method is
illustrated in Fig. 6. The 2D dictionaries U1, U2 denote
different dimensional features, and the Kronecker product
U fully represents the image spatial correlations along
each direction. Two dictionaries in our model are learnt by
exploring the structure information along each mode and
their correlations among all the possible modes, whereas
the Kronecker product U is generated depending on one
direction information on the reshaped image vector. Thus,
our model always has better image denosing results than 1D
sparse model.

(a) Our Dictionaries (b) The Kronecker product

Fig. 6: Exemplified dictionaries of Lena in our model TSC-
JMDL. Left two images show U1, U2, in which each column
is the atom of one directional signal of the image patch. The
right image is the Kronecker dictionary U in which each
square is an atom of size 8× 8.

V. CONCLUSION

In this paper, we propose a novel multiple dictionary
learning algorithm for tensor sparse coding. While other
existing tensor dictionary learning algorithms update each
mode dictionary by fixing all the other mode dictionaries
iteratively in an alternating manner, the proposed method
fully makes use of the atom correlations among all the
spatial modes inside a higher order tensorial data. Our model
TSC-JMDL employs the FP-tree mining algorithm to exploit
frequent atom patterns in the sparse representation, and then
simultaneously updates multiple atoms in the frequent pattern
using our joint dictionary update method. On the synthetic
datasets, we show that our model can achieve a comparable
performance with a lower computation gain and memory
usage. Moreover, we also demonstrate its effectiveness in
data denoising with different noise variances. On the real-
world datasets, our method shows promising results in image
denoising. Our model outperforms both tensor dictionary
learning methods and traditional 1D models, with different
noise parameters and similar memory cost. The image re-
construction results clearly show the ability of our algorithm
for maintaining the discerning features while retaining the
image reconstruction.

REFERENCES

[1] M. Aharon, M. Elad, and A. Brucktein. K-SVD: An algorithm for
desdesign overcomplete dictionaries for sparse representation. IEEE
Trans. on Signal Processing, 54(2):4311–4322, 2006.

[2] E. Benetos and C. Kotropoulos. Non-negative tensor factorization
applied to music genre classification. Audio, Speech, and Language
Processing, IEEE Transactions on, 18(8):1955–1967, 2010.

[3] M. Blondel, K. Seki, and K. Uehara. Block coordinate descent
algorithms for large-scale sparse multiclass classification. Machine
Learning, 93(1):31–52, 2013.

[4] C. F. Caiafa and A. Cichocki. Computing sparse representations of
multidimensional signals using kronecker bases. Neural Comput.,
25(1):186–220, January 2013.

[5] M. Elad, M.and AElad. Image denoising via sparse and redundant
representation over learned dictionaries. Image Processing, IEEE
Transactions on, 15:3736–3745, 2006.

[6] K. Engan, S. Aase, and J.H. Husoy. Method of optimal directions for
frame design. In IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), volume 1, pages 2443–2446, 1999.

[7] Y. Fang, J.J. Wu, and B.M. Huang. 2d sparse signal recovey via
2d orthogonal matching pursuit. Science China Information Sciences,
55:889–897, 2012.

[8] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns witwith
candidate generation: A frequent-pattern tree approach. Data Mining
and Knowledge Discovery, 8:53–87, 2004.

[9] T. Hazan, S. Polak, and A. Shashua. Sparse image coding using a
3d non-negative tensor factorization. In Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference on, volume 1, pages 50–57
Vol. 1, 2005.

[10] Y. Kim and S. Choi. Nonnegative tucker decomposition. In Computer
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference
on, pages 1–8, 2007.

[11] Y. Kim, A. Cichocki, and S. Choi. Nonnegative tucker decomposition
with alpha-divergence. In ICASSP, pages 1829–1832. IEEE, 2008.

[12] G. Kolda and B. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[13] S. Li. Non-negative sparse coding shrinkage for image denoising
using normal inverse gaussian density model. Image Vision Comput.,
26(8):1137–1147, August 2008.

[14] M. Mørup, L.K. Hansen, and S. M. Arnfred. Algorithms for sparse
nonnegative tucker decompositions. Neural Comput., 20(8):2112–
2131, August 2008.

[15] G. Peyré. Sparse Modeling of Textures. Journal of Mathematical
Imaging and Vision, 34(1):17–31, May 2009.

[16] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli. Image
denoising using scale mixtures of gaussian in the wavelet domain.
Image Processing, IEEE Transactions on, 12:1338–1351, 2003.

[17] N. Qi, Y. Shi, X. Sun, J. Wang, and B. Yin. Two dimensional
synthesis sparse model. In Multimedia and Expo (ICME), 2013 IEEE
International Conference on, pages 1–6, 2013.

[18] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid
matching using sparse coding for image classification. In in IEEE
Conference on Computer Vision and Pattern Recognition(CVPR),
2009.

[19] S. Zubair and W. Wang. Tensor dictionary learning with sparse
tucker decomposition. In Digital Signal Processing (DSP), 2013 18th
International Conference on, pages 1–6, 2013.

