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Abstract

More and more households are purchasing electric vehicles (EVs), and this will
continue as we move towards a low carbon future. There are various projections
as to the rate of EV uptake, but all predict an increase over the next ten years.
Charging these EVs will produce one of the biggest loads on the low voltage
network. To manage the network, we must not only take into account the
number of EVs taken up, but where on the network they are charging, and at
what time. To simulate the impact on the network from high, medium and
low EV uptake (as outlined by the UK government), we present an agent-based
model. We initialise the model to assign an EV to a household based on either
random distribution or social influences - that is, a neighbour of an EV owner
is more likely to also purchase an EV. Additionally, we examine the effect of
peak behaviour on the network when charging is at day-time, night-time, or
a mix of both. The model is implemented on a neighbourhood in south-east
England using smart meter data (half hourly electricity readings) and real life
charging patterns from an EV trial. Our results indicate that social influence
can increase the peak demand on a local level (street or feeder), meaning that
medium EV uptake can create higher peak demand than currently expected.

Keywords: Low Carbon Technologies, Long Term Forecasts, Agent Based
Modelling, Low Voltage Networks

1. Introduction

Long term forecasting of future peak load demand is vital for the efficient
and secure operation of power systems. In order to implement the use of more
sustainable energy generation and to continue providing quality service to their
customers, distributed networks operators (DNOs), and other organisations in-
volved in the energy sector, employ decision support mechanisms. The expected
increased uptake of low carbon technologies (LCTSs), such as electric vehicles
(EVs), photovoltaics, combined heat and power and heat pumps will subse-
quently lead to new demands and possibly increased strain on the network.
Long term forecasts predicting load demand several years into the future ([1]
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considered up to 8 to 15 years) provide valuable decision support for developing
future generation and distribution planning.

One of the aims of our work is to understand the long-term impact of EVs
on low voltage (LV) networks, more precisely on the LV peak load. Not only
may LCT, in particular EVs, uptake rates vary but it is likely that uptake will
be clustered on the same LV networks due to similar demographics (similar
people live down similar streets), and social influence factors such as “keeping
up with the Joneses”. In order to model long term individual loads influenced
by EVs under different uptake scenarios, we adopt an agent based modelling
approach. Use of agent based modelling for load forecasting purposes is a rela-
tively novel approach, but it is increasingly popular in this field. Agent based
modeling approach has previously been adopted for implementing large-scale
simulation tools for electricity wholesale markets and power system analysis
such as electricity market complex adaptive system (EMCAS) [2], [3] and agent-
based modeling of electricity systems (AMES) [4] software. The most commonly
adopted definition of an agent by Wooldridge and Jennings [5] specifies a set
of properties that must characterize an entity to effectively define it an agent
such as autonomy (a certain degree of control over its own state), social abil-
ity (the capability to communicate and collaborate on a task), reactivity (the
possibility to perceive the context in which they operate and react to it ap-
propriately) and pro-activeness (the possibility to take the initiative, starting
some activity according to internal goals). In [6] and [7] the authors define an
agent-based simulation as “a collection of heterogeneous, intelligent and inter-
acting agents, which operate and exist in an environment, which in turn is made
up of agents”. Agents are usually adaptive and goal-oriented [8]. To generate
forecasts, we use data from smart meters collected as part of the Thames Valley
Vision (TVV) project’. Our results from three real subnetworks demonstrate
that the combination of agent-based modelling, LV simulation and the real data
collected comprises a useful methodological approach to forecasting long term
electric load demand, taking into account the factors such as temporal and spa-
tial characteristics of adoption of renewables (e.g. EV). The result is a flexible
computational environment that enables simulating and comparing various fu-
ture energy scenarios. This model is sustainable as it allows new features to be
added when household data becomes available. Additionally, the model can be
scaled up to the substation level when the data set is large.

2. Previous work

Modelling complex systems, especially ones that include human behaviour
such as energy demand and generation, raise significant challenges based on the
complex interactions between different parts of the system, lack of knowledge
of governing mechanisms and the limited predictability of human behaviour.
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Overall, two approaches dominate: a top-down approach that captures global
characteristics of a system and aims to find analytic solutions often assuming the
homogeneity of individuals by ignoring the local, individual level and a bottom-
up approach that explicitly models global as well as local characteristics of a
system. There are two major model categories based on top-down approach
and used for electricity markets : Input-Output (I/O) models and Computable
General Equilibrium Models (CGE) [9]. As classified by Ventosa et al. [10]
optimisation models, equilibrium models and simulation models are the most
significant models based on bottom-up approach. Further we discuss in detail
one of the main types of simulation models - agent based models.

2.1. Agent Based Models in Energy

Agent based modelling (ABM) is a bottom-up approach which uses a com-
puter simulation to track the model through time and/or space. In Hellbing
and Ballietti [11] principles are given for creating agent based models. Start-
ing from the evidence that one wants to explain by the model, one should first
decide on the “big picture”, data or observations that need to be reproduced
by the model. Also the purpose of the model/simulation should be stated - are
we after an insight, an extrapolation or a prediction? What are the agents?
Sometimes we don’t need to model every single individual - groups of people
may represent one agent. When we decide on our agents, one needs to formulate
hypotheses about mechanisms that lead to system behaviour that need to be
reproduced or explained. One should refrain from model assumptions of the be-
haviours which need to be reproduced or explained, i.e. the rules that are in the
model should be simpler than the mechanism that we wish to explain. Finally,
the validation of the model on different levels should be executed unselectively
stating which features were reproduced and which were not. ABM provides
more realistic ways to implement learning effects in repeated interactions [10].
The outputs of ABM may not be optimal but they are the results of the emer-
gent interactions between agents. Agent based models can show “what could
be” under different scenarios across uncertain futures whereas optimisation and
equilibrium models show “what should be” [12], [13]. Within the last ten years
ABM has been widely adopted for electricity market research. Two of the most
prominent ABMs in this sector are EMCAS [2], [3] and AMES [4]. Veneman
et al. consider EMCAS the mostly viable ABM due to the validation efforts
performed on the model. In particular EMCAS has been used in the analysis
of plug-in-hybrids and their effects on the transmission grid [14].

Also ABMs can be used for exploring different scenarios of long term indi-
vidual energy load. The main advantages are that a model can comprise many
heterogeneous components that could interact between themselves and nonlin-
ear dynamics could be captured [15]. Additionally, ABM structure would allow
for inclusion of many different scenarios into the same model. A detailed reviews
of current offer of ABM models that can be used to analyse the integration of
distributed generation in energy systems are given in [16] and [12]. Weidlich et
al. in their critical survey of agent based wholesale electricity market models



acknowledge ABM approach and simulation of the electricity market to be ef-
fective. The authors also identify current ABM methodology problems in agent
learning behavior, market dynamics and complexity, calibration and validation
as well as model description and publication that need to be considered for the
further development in this sector. We foresee the model validation as a main
challenge due to the long-term time scale but this is not a problem exclusive to
ABMs. Acknowledging that there is a compromise between model tractability
and the simplicity of agents’ behaviour and interaction rules we try to keep the
model as simple as possible.

2.2. Electrical Vehicles impact on distribution networks

Electric vehicles (EVs) are the promising future direction in the automotive
industry’s development to replace a significant amount of gasoline vehicles to
provide energy-saving, CO2 free and environmentally friendly cars [17], [18]. A
range of models have been developed in the energy sector for forecasting and
for looking into the integration of renewable technologies in energy systems.
Connolly et al. [19] provides a review of over 30 different models (including
EMCAS [2] ABM mentioned in the preceding subsection) that can be used to
analyze the integration of renewable energy sources.

Studies of the potential impact of EVs on the distribution network level have
been conducted starting from as early as the 1980s [20], [21]. More recent studies
focus on EV impacts on efficiency and performance of distributed networks, as
well as EV charging control problems by investigating different scenarios such
as unrestricted charging, peak and off-peak charging, diversified charging, and
charging at varying power levels [22], [23], [24], [25], [26]. The study in Clement-
Nyns et al. [27] obtained results with the quadratic programming technique
showing that coordinated charging of plug-in hybrid electric vehicles can lower
power losses and voltage deviations by flattening out peak power.

Recent trends show increased interest in the use of vehicles as distribution
storage units [28], [29].Despite these potential benefits, as EVs begin to pen-
etrate the vehicle market they can potentially lead to undesirable impacts on
distribution networks due to the increased demand from EV charging patterns.
With charge rates expected to increase in the next generation of models they
would be among the largest loads in distribution networks with the potential to
increase peak demand, provoke large voltage drops and have a negative effect on
networks overall performance [30], [18]. A few case studies were conducted over
the last decade that conclude uncontrolled EV charging could lead to significant
increases in peak demand, power losses and voltage problems [31], [23]. Galus
et al. [24] in their study introduce a method, which integrates ABM simulations
for analysing the impacts of wide-scale Plug-In Hybrid Electric Vehicle (PHEV)
integration in the electricity grid of Zurich. In [24] the authors find that uncon-
trolled vehicle recharging can lead to overloads on multiple voltage levels, and
that uncontrolled charging increases the overall system peak load and changes
the system load curve.

De Hoog et al. [30] focus on exploring the impact of electric vehicles on
voltage stability, and the results show that location and phase allocations of the



EVs in network have a very significant impact on network stability. However
not only locations of the EVs can have an impact on network stability but also
electricity tariffs. Salah et al. [25] in their work using ABM methodology give
estimates of the impact of EV charging behavior on the transformer substations.
Furthermore they come to a conclusion that under flat electricity tariffs and high
EV penetration levels around a number of substations will be overloaded, thus
further EV charging coordination is required.

In [18] the authors showed that based on their simulation results, uncoordi-
nated charging of EVs increases peaks and active power loss on the power grid,
which is caused by the charging load of EVs. So the EVs charging or discharg-
ing control must be introduced with the increasing number of EVs. Considering
the constraints of powergrid operation and battery function, the authors pro-
posed an optimal power flow based EV charging and discharging strategy to
improve the performance in distribution networks. Another study on control-
ling EVs charging and discharging was conducted by Dusparic et al [32]. The
authors propose a multi-agent reinforcement learning approach that uses load
forecasting for residential demand response. EVs are controlled by reinforce-
ment learning agents and given necessary data to evaluate how they can be
influenced to charge the battery and keep transformer load under a designated
maximum load by shifting their charging from high load to low load periods.
The results of simulations in [32] show that agents learn to shift neighbourhood
demand to the off-peak periods based on providing current load information
and load prediction for the next 24 hours.

2.8. Social influence

The rate of diffusion of new products and services being adopted through
the different strata of society is a big topic in marketing research, but it is also
relevant in other fields such as network analysis, epidemiology and sociology.
[33]. Ryan and Gross’s study from 1943 [34], investigating the adoption of hybrid
seed corn in Towa farms, is among the earliest results showing that social factors
play a bigger role than economic ones in the adoption of new technologies. One
of the classical models is Bass’s s-curve model [35], the growth model assuming
that the probability of an adoption in any moment is linearly dependent on
the number of previous adoptions. This results in adoptions having exponential
growth to a peak followed by exponential decay.

In a recent review, [36] the authors affirmed that modelling diffusion pro-
cesses became increasingly complex. This was the result of several forces at work
- incorporating spatial diffusion; challenging the monotonicity assumption of the
uptake curve and focusing on turning points and irregularities in the uptake;
considering partially connected and small-world networks between individuals
instead of the assumption of full connectivity, or ignoring existing networks’
structure; using individual level modelling instead of aggregated models, and
so on. While we see the importance of taking into account all the different
aspects of social influence, there is not always data available for the calibration
of models, and also the models might become intractable.



Another widely used classical model is a threshold model [37]. In the thresh-
old model, individuals are connected through an observed social network (it can
have an arbitrary structure). Each individual is assigned a personal threshold
and will adopt an innovation in time ¢ only if enough (i.e. more than the indi-
vidual’s threshold) of her/his neighbours already adopted previously. Different
models, the so-called cascade models [38], assign probabilities to links between
vertices - each active vertex v could activate its neighbour w with probability
Pu.w- In [39] it was shown that generalised versions of those two types of models,
threshold and cascade, are equivalent. In our work we used a revision of cascade
model with fitness function.

Being able to predict which customers are more likely to adopt an EV in
the future can help DNOs to identify potential network areas that would be
affected the most. A number of studies were conducted in USA aiming to analyse
the characteristics based on both EV owners and non-EV owners demographic
survey data. Initial findings suggest that, apart from social influence factors such
as “keeping up with the Joneses”, higher income and presence of photovoltaics
(PV) can have an impact on who purchases (e.g. based on demographic data
in USA around 41% of PV owners have an EV) [40], [41].

2.83.1. Our contribution

We developed an agent-based simulation to explore the influence of elec-
trical vehicles on the low voltage network. Our primary concern was 10 year
forecast of individual electrical load, and patterns of individual behaviour that
contribute to shifts of peaks or to the creation of local networks with new peaks.
We used for our simulations three UK governmental scenarios for the uptake
of low carbon technologies in UK in the next decades, and the real data of in-
dividual household’s half-hourly load, and of daily charging patterns obtained
from an electrical vehicles trial. We used a slightly modified cascade model to
model social influence of neighbours to the adoption of a EV which resulted in
a clustered neighbourhoods uptake. We compared how random and clustered
uptake differ under three scenarios on three real-life local neighbourhood subur-
ban networks. Our main findings show that the peak demands for the clustered
distributions in comparison with the results for random distributions are higher
for high and medium uptakes. This is due to people influencing each other in
clustered distribution mode, and it is related to the ratio of uptake versus the
influence factor. For the first four years our results show similar peaks and mid-
day peak times on Christmas day for both random and clustered distributions,
which leads us to the conclusion that demand for these years is driven by general
behaviour and not by EV charging behaviour. We also explored altering house-
hold EV charging behaviour in the next 10 years on a half-hourly basis, and our
results show that for ordinary days peak loads and peak times are dependant
on EV charging patterns as expected. However on special days such as Christ-
mas day our results for randomising EV charging patterns show that peak loads
and corresponding times are mainly influenced by the base load consumption
(electricity usage before EV charging). These findings can be useful for DNOs
long-term planning and maintenance.



3. Long-term forecast model

As our main concern is an individual electrical load, we consider a household
to be an agent - the irreducible part of a system. We would like to be able
to predict an agent behaviour in future 8-10 years on half-hourly basis, and
to aggregate agents behaviours on street/feeder and substation/neighbourhood
levels. Calibrating a model with data, assigning simple constraints/rules to
households, and using a computer simulation, we track the model through a
number of future years.

The agent based model we implemented comprises of ‘household’ agents with
fixed coordinates corresponding to the map of the substation (see Fig.1) pro-
vided by SSEPD (Scottish and Southern Energy Power Distribution). Currently
our agent based model is static i.e. the agents do not change location and do not
interact but do observe each other. The model changes with every time step (1
year) and records the change of load demand for every agent. The distribution
of electrical vehicles between agents is implemented to be random or clustered.
In a clustered distribution, the agents influence each other through observing
neighbours’ previous behaviour. The strength of this influence can be varied by
the user.

Radcliffe Way

Figure 1: Radcliffe substation map

The uptake of EVs is modelled according to four future energy scenarios (De-
partment of Energy and Climate Change (DECC) works-stream 3) [42] which
propose different rates of adoption for different global future trends (see Table



1). EVs are distributed between agents and the change of load demand for
every agent is recorded. In our model the experiments are implemented for 3
scenarios (DECC works-stream scenarios 1, 3 and 4 on slow and fast-charged
EVs uptake).

DECC Scenario No EVs Uptake
Medium - High abatement in low carbon heat 1 48%
Medium - High abatement in transport and bio-energy 2 48%
High - Focus on high electrification 3 67%
Low - Purchase of international Energy 4 31%

Table 1: DECC work stream scenarios on slow and fast-charged EVs uptake

The scenarios are devised for several types of low carbon technologies, but
as we are concentrating on EVs only, we use low, medium and high scenario,
omitting scenario [2] from 1 since it is identical to scenario [3] for EVs. Figure
2 plots the total number of EVs for the households (total of 75) included on
the substation diagram per year in high, medium and low EV uptake scenarios
correspondingly.

Count of EVs per Year
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Figure 2: Total number of EVs for 75 households

The more detailed description of the long term forecasting ABM, including
the rules and constraints set, is given below. Figure 3 illustrates the setup
of agent Household. The agent Household is initialised with a real-life load
profile. If it obtains EV, its charging will be added to its profile. The list of its
neighbours is obtained from a low voltage substation diagram.



Half-hourly electric load
for 5 selected days
(randomly assigned)

Half-hourly sampled EV
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Figure 3: Initialisation of agent Household

When a particular scenario (high, medium of low uptake of EVs) is chosen,
this defines the number of EVs that will be distributed in the neighbourhood
each year. If Random Distribution is then chosen, EVs will be distributed uni-
formly at random to the eligible households, i.e. ones that have enough parking
space and that do not own already 2 vehicles; if Clustered distribution is cho-
sen, EVs will be distributed to the eligible households using so called Roulette
Wheel or fitness proportionate selection method where fitness will depend on
the number of neighbours already owning EV (see Figure 4).

o Listof #EVs to be
distributed in
each year

Random | . Assign uniformly at

random all #EVs to

eligible Households

o List of #EVs to be
distributed in
each year

* Assign with different
probabilities all #EVs
to eligible

Clustered| Households

e Listof #EVs to be
distributed in
each year

Figure 4: Distribution of EVs for 3 scenarios

As we are modelling the south-east of England suburban areas, and our
households are domestic, we imposed a limit of two EVs per household. We
have chosen 5 random days for our experiments, two in the middle of summer,
two in the middle of winter and one Bank Holiday (Monday, August 9, 2013;
Wednesday, August 14, 2013; Wednesday, December 25, 2013; Tuesday, January
7, 2014; Saturday, January 18, 2014) in order to have a good representation
across the heavy and light demand seasons respectively. We are looking at
extremes since troughs and peaks are among DNOs’ main concerns. We take
into consideration slow and fast-charged EVs as we have national level predictors
and real data charging patterns for cars with chargers up to 7Tkw.



8.1. EV charging profiles

For EV charging profiles we use a data-set gathered by SSEPD as part of its
research into electric vehicles which contains 19 EVs’ charging profiles at half
hourly resolution from 2009 until 2010. We select from a sample of charging
patterns for each day of the week during one month in summer, one month
in winter and bank holidays. Figures ba and 5b graphically depicts this data
for weekdays in June-July 2010 period and Bank holidays in years 2009-2010
correspondingly through its quartiles. Since according to the trial’s data the

Box plot of EV charging profiles for weekdays, 18 June-18 July, 2010 Box plot of EV charging profiles for bank holidays 2009-2010
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(a) Weekdays, 18 June - 18 July, 2010 (b) Bank holidays 2009-2010

Figure 5: Box plots for EV charging profiles

customers were encouraged to charge overnight, we observe that almost all of
the data is concentrated around 12am.

3.2. Base load profiles

We use historical load consumption data from smart meters collected as
part of the Thames Valley Vision (TVV) project? in Bracknell area. This data
collected at half hourly resolution is sampled for 75 households for previously
chosen 5 days (Monday, August 9, 2013; Wednesday, August 14, 2013; Wednes-
day, December 25, 2013; Tuesday, January 7, 2014; Saturday, January 18, 2014).
Figures 6a and 6b graphically depicts this data for August 14, 2013 and Decem-
ber 25, 2013 correspondingly through its quartiles.

Further we generate average load profiles from base load data. In the Figure
6 we plot mean load consumption of base load data for Aug 14, 2013 and Dec 25,
2013 since these two days are referred to in further section to demonstrate our
main results. For August 14 (Figure 7a ) we observe peak demand 0.2781kwh
occurring at 7pm and maximum relative standard deviation is 1.1352. Similarly
for December 25 (Figure 7b ) we obtain mean peak demand 0.5469 kwh occurring
at 1pm and maximum relative standard deviation is 1.423. Similarly for Figure

2http://www.thamesvalleyvision.co.uk
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Box plot of base load data for Aug 14, 2013 Box plot of base load data for Dec 25, 2013
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Figure 6: Box plots for base load data for Aug 14 and Dec 25, 2013
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Figure 7: Mean base load consumption for Aug 14 and Dec 25, 2013

we observe peak demand 0.2781kwh occurring at 7pm and maximum relative
standard deviation is 1.1352.

3.3. Initialising Long Term Forecasting Model

The model is implemented in Java using open source Repast agent-based
simulation libraries [43], which enable separation between model specification,
model execution, model visualisation, and data storage. The following sequence
of steps describes how our long term forecasting simulation engine works.

11



Data: Number of Households, Base load profiles, EV charging profiles,
Diagram of local subnetwork, Number of EVs for each year under
3 scenarios
Result: HH updated profiles
Create list of neighbours N(H) for each household H from the diagram ;
Randomly assign load profiles to Households;
for Year =1:10 do
Read #EVs to be distributed in Year according to chosen scenario;
if Random then
Assign uniformly at random # EV to Households where number
of EVs < 2 and free parking space> 0
else
Clustered for Households H where number of EVs < 2 and free
parking space> 0 do
if H already have EV, fitness(H)++);
for all N in N(H) do
if N has EV then
| fitness(H)++
end
end
Assign using fitness proportionate selection #EV to
Households where number of EVs < 2 and free parking
space> 0
end

end
end
Algorithm 1: Simulation run

3.4. Creation and initialisation of household agent

In the model, we initialise all agent households (see Figure 3) of our sub-
station (see the map on Fig.1) with historical load consumption data sampled
for previously chosen 5 days (August 9, 2013; August 14, 2013; December 25,
2013; January 7, 2014; January 18, 2014) that represent a mix of summer and
winter weekend and weekdays and one Bank Holiday. We use the same sample
for all simulations, assigning randomly households to load profiles. We select
EV charging patterns from a sample of charging patterns for each day of the
week during one month in summer, one month in winter and bank holidays.
Other parameters needed for the initialisation are EV charging patterns, ini-
tial number of households, initial number of electric vehicles, distribution type
(clustered or random), and whether high, medium or low EV uptake (the uptake
curves are given as csv files stating the number of EVs to be distributed in a
neighbourhood in a year).

3.5. Running the simulation and output

At every time-step (1 year), a given number of EVs (decided by the given
scenario) is distributed between household agents such that parameters and

12



constraints of the model are satisfied; some of the properties of household agents
are updated; and the change of load demand for every agent is recorded (refer
to Algorithm 1 in subsection 3.3 for more detailed description). The output
is the updated half-hourly daily profile for each household for each year. If
a household acquired an EV, the corresponding EV charging pattern will be
added on a top of its base-load on each of 5 selected days. The output therefore
contains updated half hourly loads for all households on the five selected days.

4. Results of Experiments

We performed multiple experiments (50, 150 and 1000 runs per experiment)
for medium, high and low EV uptake scenarios for both clustered and random
distributions. The results contain recorded electric load demand data for all
households at half hourly resolution for the 5 chosen days in a year. The number
in each period is kWh in the hour. First half hour corresponds to 12.00am-
12.30am time interval.

To compare between clustered and random distributions, we pick one street
on the map of the substation (see the map on Figure 1) and generate plots
analysing the aggregate data for these households obtained from the forecast.

4.1. Random vs Clustered Distribution

The distribution of EVs between agents in our long term forecasting engine is
implemented to be random or clustered. In random distribution any household
at any time is equally likely to get an EV. In clustered distribution we distribute
EVs in such a way that a household is more likely (i.e. has a higher probability)
to get an EV if the household itself, or one or more of its neighbours, have an
EV. The probabilities are updated at every time-step (corresponds to 1 year) of
simulation. We compare all three scenarios under random and clustered distri-
bution. The figures 8, 9 and results below compare the half hourly electricity
mean and relative standard deviation (RSD) of end-user demands respectively
for August 14, 2022 and December 25, 2022 correspondingly. These results are
aggregated for consumers in one street only (refer to Figure 1). Small difference
in peaks compared to clustered distribution can be ignored since these results
are generated for one street only. Figures 8a and 9a illustrate the mean load
consumption of our results for random distribution. In Figure 8a peak demands
for high, medium and low EV uptake scenarios are 1.2679 kwh, 1.0221 kwh and
0.7466 kwh respectively, all occurring in the 12am-12.30am time interval. In
Figure 9a peak demands for high, medium and low EV uptake scenarios are
1.3516 kwh, 1.1374 kwh and 0.8425 kwh respectively, all occurring in the 12am-
12.30am time interval. As expected, the highest peaks occur for the high EV
uptake, and peaks are lowest for the low EV uptake.

Similarly Figures 8b and 9b illustrate the mean load consumption of our
results for clustered distribution. In Figure 8b peak demands for high, medium
and low EV uptake scenarios are 1.3207 kwh, 1.1351 kwh and 0.6792 kwh re-
spectively, all occurring in the 12am-12.30am time interval.
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Figure 8: Mean load consumption for Aug 14, 2022
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Figure 9: Mean load consumption for Dec 25, 2022
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Figure 10: Peak demands for 3 scenarios on Aug 14 each year

In Figure 9b peak demands for high, medium and low EV uptake scenarios
are 1.4655 kwh, 1.218 kwh and 0.7637 kwh respectively, in the 12am-12.30am
time interval. As expected, the highest peaks occur for the high EV uptake,
and peaks are lowest for the low EV uptake.

Figure 10 illustrates the peak demands of mean daily load profiles, using
the random and clustered distribution for the three scenarios for August 14
each year. Similar peak demands for the three scenarios have been observed for
December 25 each year. In Figure 10a it is easy to see that up to year 2018
the peak demands are slightly higher for medium EV uptake scenario than for
high EV uptake scenario. This happens since these results are aggregated for
8 neighbouring household agents (one street only) and the difference between
EV uptakes for high and medium EV uptake scenarios during the first 4 years
is small. From 2018 the situation changes and and the peak demands are in the
expected order, where a high EV uptake means higher peak demand. Similar
peak demands for the three scenarios have been observed for December 25 each
year. In Figure 10b the peak demands of medium EV uptake scenario are in
between peak demands for high and low EV uptake scenarios.

Another observation we can make from the results of our experiments per-
formed for different years in 2014-2024 interval is that up to 2018 all the peaks
for December 25 (Christmas day) are the same both for random and clustered
distributions and occur at 2pm, which leads us to the conclusion that demand
for these years is driven by general behaviour and not by EV charging behaviour.
The midday peaks for December 25th shift to overnight ones after 2018 and the
peaks observed for clustered distribution are slightly higher than for random
distribution. The Figure 11 illustrates the results discussed above for December
25, years 2018 and 2020, random distribution.

4.2. Variation in results regarding the number of runs

To check how the spread of data changes with increasing number of runs
per experiment, we performed 50, 150, 500 and 1000 runs for scenarios with
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Figure 11: Peak demands for 3 scenarios on Dec 25, years 2018 and 2020,
Random Distribution

random and clustered distribution. The results are consistent with the results
we have obtained for 50 runs. Table 2 displays highest RSD values for random
distribution on Dec 25, 2022.

DECC Scenario 50 runs 150 runs 500 runs 1000 runs

Medium EV Uptake 1.4759 1.4574 1.4561 1.4561
High EV Uptake 1.4561 1.4561 1.4561 1.4561
Low EV Uptake 1.4762 1.4561 1.4561 1.4561

Table 2: The highest RSD values for 3 scenarios on Dec 25, 2022 (random
distribution).

Finally we investigated margins of error (the radii of confidence intervals) at a
95% of level of confidence for 50, 150, 500 and 1000 runs for scenarios in random
distribution mode. Table 3 shows the margins of error for random distribution
on Dec 25, 2022. We observe that the margins of error are getting smaller,
as expected, which shows that on average we get more precise estimates from
our sample for both the mean and standard deviation. Similar observations are
made for the clustered distribution. However, since we observe that variability of
data (relative standard deviation) does not decrease significantly with increased
number of runs per experiment, it can be concluded that 150 is a sufficient
number of runs per experiments.

DECC Scenario 50 runs 150 runs 500 runs 1000 runs

Medium EV Uptake 0.1576 0.091 0.0499 0.0353
High EV Uptake 0.1576 0.091 0.0499 0.0352
Low EV Uptake 0.1576 0.091 0.0499 0.0353

Table 3: Margins of error for 3 scenarios on Dec 25, 2022 (random distribution).
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5. Experiments with altering charging behaviour

The results presented in previous section were obtained by using daily charg-
ing patterns obtained from an EV trial and according to the trial’s data the
customers were encouraged to charge overnight. However it is interesting to
see how the change of daily EV charging behaviour affects peak loads and peak
times on the low voltage network. Thus we have run additional experiments (150
runs per experiment) for 8 previously selected neighbouring household agents
(one street only) altering the daily EV charging behaviour only, and comparing
the results with the results from the trial data.

5.1. EV charging behaviour: random charging pattern

In these experiments we assumed that daily EV charging behaviour is ran-
dom and cannot be predicted at any time. We have implemented this behaviour
by randomly distributing EV charging patterns obtained from the trial’s data
in 48 half hour interval (see subsection 3.1). That implies that in our long term
forecasting engine each household agent owning an EV adopts a random charg-
ing pattern. To make a comparison with our original results we analyse the
data in the context of half hour electricity and the mean load consumption for
the random distribution and the same days (August 14, 2022 and December 25,
2022) we used in section 4. Figure 12 illustrates the mean load consumption,
using the random distribution for the three scenarios for August 14 and Decem-
ber 25 2022. For August 14 (see Figure 12a) peak demands for high, medium
and low EV uptake are 0.3879 kwh, 0.3698 kwh and 0.3067 kwh respectively,
high and medium EV uptake peaks occurring in the 13th half hour (06.00am)
and low EV uptake peak occurring in the 38th half hour (06.30pm). In this
case we observe that peak loads are significantly smaller than when EVs were
charged at night time (see section 4). In our experiments with random charging
patterns we get morning and early evening hour peak loads instead of previously
discussed overnight ones.

Mean Load Consumption for Aug 14, 2022 Mean Load Consumption for Dec 25, 2022

—High EV Uptake ——High EV Uptake
9y = Medium EV Uptake 0.9 === Medium EV Uptake
Low EV Uptake Low EV Uptake

1 . . . 041 . .
12AM 4AM 9AM 2PM 7PM 12AM 12AM 4AM 9AM 2PM 7PM 12AM
Time Time

(a) Mean load consumption for Aug 14 (b) Mean load consumption for Dec 25

Figure 12: EV random charging pattern: mean load consumption
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In Figure 12b peak demands for high, medium and low EV uptake are 0.8729
kwh, 0.8046 kwh and 0.7932 kwh respectively, all occurring in the 29th half hour
(2.00pm). Here we see that unlike the case with overnight charging behaviour we
observe afternoon peak loads for high and medium EV uptake. Also peak loads
observed for random charging behaviour case are slightly smaller compared to
peaks loads for midnight charging behaviour. This observation may be due to
the fact that demand is driven by general behaviour and is not driven by EV
charging.

Similar observations with slightly higher peaks and plots have been generated
for the clustered distribution mode.

5.2. EV charging behaviour: equal distribution of nighttime and daytime charg-
g patterns

In our experiments we assume that on a selected street half of the household
agents owning EV(s) charge overnight and the other half charge daytime. This
was implemented by shifting EV charging patterns from the trial’s data (where
most of EV charging happens at midnight) by 24 positions in 48 half hours
interval and equally distributing EV charging patterns in the original and shifted
data between household agents. To make a comparison with our original results
we analyse the data in the context of half hour electricity and mean of end user
demands for the random distribution and the same days (August 14, 2022 and
December 25, 2022) we used in previous experiments.
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(a) Mean load consumption for Aug 14 (b) Mean load consumption for Dec 25

Figure 13: EV nighttime and daytime equal distribution charging pattern: mean
load consumption

Figure 13 illustrates the mean load consumption, using the equal distribution
of midnight and daytime charging patterns for the three scenarios for August
14 and December 25 2022. For August 14 (see Figure 13a) peak demands for
high, medium and low EV uptake are 0.7737 kwh, 0.5648 kwh and 0.4733 kwh.
Here we see that unlike the case with overnight charging behaviour the peak
loads for high and medium EV uptake are all achieved in 11.30am-12.00pm
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time interval. In this distribution of EVs we observe that peak loads are higher
than the ones presented for random charging behaviour (see subsection 5.1) but
lower than peak loads achieved with midnight charging behaviour (see section 4).
In our experiments with equal distribution of nighttime and daytime charging
patterns peak loads happen midday instead of the previously discussed morning
and overnight ones.

The results obtained for Christmas day are illustrated in Figure 13b and show
that peak demands for high, medium and low EV uptake are 1.1321 kwh, 0.955
kwh and 0.852 kwh respectively, all occurring in the 26th half hour (12.30pm).
However peak loads observed for equal distribution of nighttime and daytime
charging patterns case are slightly lower than the peaks for the overnight charg-
ing behaviour but higher than the ones achieved for random charging behaviour.

Similar observations with slightly higher peaks and plots have been generated
for the clustered distribution mode.

6. Conclusions

We used an agent-based simulation to forecast individual electrical load in
low-voltage network. Our model was implemented using Repast agent-based
simulation libraries. Using different scenarios for EV uptake as predicted by
UK department of climate change, and the real data obtained from distribution
network organisation of SSEPD, we aimed to assess the future EVs impact on
peak load on local networks. Simulations were run for different scenarios and
an average was reported. We also looked at variations regarding the number of
runs.

Our experiments with altering household behaviour show that for ordinary
days peak loads and peak times are very much dependent on EV charging pat-
terns. The results we obtained show that peak loads observed for equal dis-
tribution of nighttime and daytime charging patterns case are lower than the
peaks for the overnight charging behaviour but slightly higher than the ones
achieved for random charging behaviour. Thus having a variety of behaviours
will reduce the peaks as expected. However on special days such as Christmas
days our results for randomising EV charging patterns show that peak loads
and corresponding times are mainly influenced by the base load consumption
(electricity usage before EV charging).

We are aware of limits of our assumptions and data used for simulations:
charging patterns are obtained from the small pilot-study, our model of social
influence is relatively simple and ignores some intrinsic household characteristics
such as socio-demographic profile, working and commuting patterns and so on.
However, we think that there are also some obvious benefits of our model: it
is relatively easy to include new features into this model given that the appro-
priate data is collected, e.g. sociodemographics, ownership of other low carbon
technologies, geographic information systems data (GIS) etc. It is also easy to
replace current governmental scenarios with updated ones as they change in fu-
ture. Also our approach is scalable, as shown by running efficiently simulations
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on up to 30000 agents in 600 substations. Thus we believe simulations like ours
can be a useful exercise for DNOs and policy makers.

From our results we conclude that overnight peaks will occur (however this is
based on pilot study, where the customers were incentivised in the trial to charge
overnight). Our main results show that the peak demands for the clustered
distributions in comparison with the results for random distributions are higher
for high and medium uptakes. This is due to people influencing each other
in clustered distribution mode, and it is related to the ratio of uptake versus
the influence factor. Also our results show that for random distribution up
to year 2018 the peak demands on local (street or feeder) levels are higher
for medium EV uptake scenario than for the high uptake one. From 2018 the
situation changes and the peak demands are higher for the high than for medium
one. Thus, the impact on the local network could be felt faster than predicted
nationally by DECC scenarios. Also up to year 2018 for December 25th we
observe similar peaks and midday peak times for both random and clustered
distributions, which leads us to the conclusion that demand for these years is
driven by general behaviour and not by EV charging behaviour.

6.1. Future Work

While we randomly sampled from collected EV charging data, it would be of
interest to explore how the peak patterns change with random charging sched-
ules. A promising direction for the future work would be to collect other relevant
data, such as socio-demographic or attitudinal information from postcodes to
form more rules. While refining agents’ adoption of low carbon technologies
rules, this would create more realistic environment. Last but not least, depend-
ing on available data, we plan to add photovoltaic and heat pumps to the model.
While independent integration is straight-forward, it would be intriguing to see
how the different low-carbon technologies interplay with each other concerning
the total individual load.
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