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On the validity of single-parcel energetics to
assess the importance of internal energy and

compressibility effects in stratified fluids

By R É M I T A I L L E U X1†
1Dept. of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading, RG6 6BB

(Received ?? and in revised form ??)

It is often assumed on the basis of single-parcel energetics that compressible effects and
conversions with internal energy are negligible whenever typical displacements of fluid
parcels are small relative to the scale height of the fluid (defined as the ratio of the
squared speed of sound over gravitational acceleration). This paper shows that the above
approach is flawed, however, and that a correct assessment of compressible effects and
internal energy conversions requires considering the energetics of at least two parcels, or
more generally, of mass conserving parcel re-arrangements. As a consequence, it is shown
that it is the adiabatic lapse rate and its derivative with respect to pressure, rather
than the scale height, which controls the relative importance of compressible effects
and internal energy conversions when considering the global energy budget of a stratified
fluid. Only when mass conservation is properly accounted for is it possible to explain why
available internal energy can account for up to 40 percent of the total available potential
energy in the oceans. This is considerably larger than the prediction of single-parcel
energetics, according to which this number should be no more than about 2 percent.

1. Introduction

In the study of the energetics of stratified fluids, one of the criterion commonly assumed
to control the importance of compressible effects and internal energy conversions relative
to conversions with gravitational potential energy is the ratio δz/Hs, where δz is a typical
vertical displacement and Hs = c2s/g is the scale height of the fluid, where cs is the speed
of sound and g the acceleration of gravity, e.g., see discussion leading to Eq. (3.6.18) of
Batchelor (1967). Moreover, Batchelor (1967) suggests that the criterion δz/Hs � 1
is one of out three that needs to be satisfied for a fluid to be regarded as “if it were
incompressible”. Physically, this ratio can be viewed as measuring the relative change in
internal energy ∆IE over gravitational potential energy ∆GPE experienced by a fluid
parcel in a hydrostatic vertical displacement δz = z2 − z1. Indeed, if dm = ρdV denotes
the mass of the fluid parcel considered, ∆GPE and ∆IE are given by

∆GPE = dmg(z2 − z1), (1.1)

∆IE = −dm

∫ p2

p1

p
∂υ

∂p

∣∣∣∣
adiabatic

dp = dm
p

ρ2c2s
(p2 − p1) ≈ dm

g2z(z2 − z1)

c2s
, (1.2)

† Present address: Dept. of Meteorology, University of Reading, Earley Gate, Reading, RG6
6BB, United Kingdom
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Figure 1. (Left panel) Adiabatic lapse rate in 10−8K/Pa for seawater, assuming Absolute
Salinity SA = 35g/kg. (Right panel) The second derivative −∂2u/∂p∂η = p∂Γ/∂p

(×109), as a function of pressure and temperature for seawater, assuming Absolute Salinity
SA = 35 g/kg, in SI units.

which implies, as stated

∆IE

∆GPE
=

z

Hs
, (1.3)

where υ = 1/ρ is the specific volume. To obtain the expression (1.2) for ∆IE, we defined
z as the mean height/depth of the parcel considered, and used Boussinesq scaling to make
the approximations ρ ≈ ρ0, p ≈ −ρ0gz and p2 − p1 ≈ −ρ0g(z2 − z1). In the atmosphere,
the formula for the speed of sound is cs =

√
γRT ≈ 335 m.s−1, which leads to Hs ≈ 12 km

(based on using γ = cp/cv = 1006/719 = 1.4, R = 287Jkg−1K−1, T ≈ 280K, where cp is
the specific heat capacity at constant pressure, cv the specific capacity at constant volume,
R the perfect gas constant, and T the in-situ temperature in Kelvins). As the latter
value is comparable to the height of the troposphere, compressibility effects and internal
energy are generally thought be important in discussions of atmospheric energetics. In
the ocean, however, the speed of sound cs is O(1500 m.s−1); the associated scale height is
Hs = O(225 km), which is considerably larger than even the deepest parts of the ocean.
Since typical ocean depths rarely exceed 5000 m, the ratio (1.3) should rarely exceed 2%,
suggesting that in contrast to the atmosphere, compressible effects and internal energy
conversions should be unimportant in discussions of ocean energetics.

Although internal energy is now recognised to be essential to close the ocean energy
budget, e.g., Young (2010); Tailleux (2012); Eden et al. (2014), its exact role and im-
portance still remains unclear as is apparent in all recent reviews of ocean energetics, e.g.,
Wunsch & Ferrari (2004), Kuhlbrodt & al. (2007). The main difficulty appears to be the
lack of rigorous approach to quantify the thermodynamic work of expansion/contraction,
e.g., Tailleux (2010). The main aim of this paper is to show that single-parcel energetics
is not a solution to that end, for it is inconsistent with at least three counter-arguments
detailed below. Understanding the limitations of single-parcel energetics is important, for
parcel-based arguments pervade the atmospheric and oceanic literature, e.g., Thorpe et
al. (1989); Gade & Gustafsson (2004); McDougall (1987), while also being potentially
very misleading when applied to liquids such as water or seawater.

Our first counter-argument suggests that it is the adiabatic lapse rate (dT/dp)ad =
Γ = αT/(ρcp), rather than the speed of sound cs or scale height, which is the most
useful fundamental quantity for correctly assessing compressibility effects. Here α is the
isobaric thermal expansion coefficient, T is the absolute temperature in Kelvins, ρ is the
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density, and cp is the specific heat capacity at constant pressure. Indeed, it is Γ, rather
than cs, which controls adiabatic temperature changes due to compression/expansion.
The adiabatic lapse rate for seawater is illustrated in Fig. 1 (left panel) as a function of
temperature and pressure. This figure shows that Γ primarily depends on temperature,
and that its value typically lies between 10−8K/Pa and 3.10−8K/Pa. We can therefore
estimate that a fluid parcel being displaced from the ocean surface to the ocean bottom
(assumed to lie at about 6000 m ≈ 6000 dbar) would experience a temperature increase
due to adiabatic compression of the order ∆T ≈ Γ∆p = O(1◦C), based on using ∆p ≈
6.107 Pa (= O(6000 m)) and Γ = 2.10−8K/Pa. While such a temperature difference is
relatively small compared to vertical temperature contrasts O(15− 30◦) characteristic of
equatorial and mid-latitude regions, it is comparable to the vertical temperature contrast
characteristic of polar regions, so that the ratio of ∆T over the vertical temperature
contrast can occasionally be much larger than the value of 2% characterising the ratio
δz/Hs discussed above.

Our second counter-argument relies on an important result established by Huang
(2005), which suggests that the available internal energy (AIE) is negative and about
40% of the total available potential energy (APE) in the ocean. While the negative char-
acter of AIE has long been understood and rationalised, e.g., Reid et al. (1981), the
result that it could represent such a large fraction of the total APE is counter-intuitive
and incompatible with our current understanding of ocean energetics as discussed by
Oort et al. (1989) for instance. Indeed, the APE is by definition the difference between
the potential energy of the actual state and that of a reference state minimising potential
energy in an adiabatic (and iso-haline) re-arrangement of the fluid parcels. It follows that
the relative change in internal over gravitational potential energy of a fluid parcel moved
adiabatically from its actual position to its reference position should be governed by the
single-parcel energetics argument discussed above, so that it would be natural to expect
the ratio AIE/APE to be O(2%) as for the ratio ∆IE/∆GPE of a single parcel.

Our last counter-argument relies on the recent results on the energetics of turbulent
stratified mixing by Tailleux (2009) and Tailleux (2013) obtained from the rigorous anal-
ysis of the energetics of the fully compressible Navier-Stokes equations, which suggest
that internal energy and compressibility effects in turbulent stratified fluids (especially
liquids) are more important than previously assumed. Specifically, the change in back-
ground potential energy accompanying turbulent stratified mixing is found to occur at
the expense of internal energy, rather than at the expense of the mechanical source of
energy driving the mixing; moreover, the conversion between IE and background GPE
is found to be a reversible one. As to the dissipation of APE by turbulent molecular
diffusion, it is found to be fundamentally associated with the irreversible work of the
divergent part of the velocity field against the pressure gradient, and to convert APE
irreversibly into internal energy in the same way that viscous dissipation irreversibly
converts kinetic energy into internal energy.

In view of the above evidence, it seems urgent to revisit the validity of single-parcel
energetics argument for predicting the relative magnitude of compressible effects and
conversions with internal energy in (turbulent) stratified fluids. In this note, we demon-
strate that its key flaw is to overlook the fact that for any fluid parcel experiencing a
vertical displacement, one (or more) parcel will have to move in the opposite direction
to satisfy the requirement of mass conservation. As discussed in Tailleux & Grandpeix
(2004) in the context of moist atmospheric energetics, accounting for mass conservation
can lead to a significant reduction of conditional instability estimates for an atmospheric
sounding when compared to parcel-based CAPE (Convective Available Potential Energy)
estimates. Thus, for a parcel moving up whose GPE increases, there must be a parcel
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moving down whose GPE decreases, so that the net change in GPE for the two-parcel
system is actually much smaller than the GPE change attached to a single parcel. Obvi-
ously, the same is true for the IE changes, so that the key question is to what extent the
ratio ∆IE/∆GPE predicted by two-parcel energetics differ from the ratio ∆IE/∆GPE
predicted by single-parcel energetics? As shown in this note, the difference may occasion-
ally turn out to be quite considerable, although it strongly depends on the equation of
state of the fluid considered. Section 2 establishes that inferences about the relative im-
portance of internal and gravitational potential energy for global energetics must involve
at least two fluid parcels in order to account for mass conservation properly. Section 3
revisits the role of internal energy and compressibility effects for the oceanic and atmo-
spheric cases in the light of the results of section 2. Section 4 summarises and discusses
the results.

2. The importance of mass conservation for global energetics

As stated above, upward motion is in general compensated by compensating down-
ward motion to ensure mass conservation. At least two parcels are therefore needed to
investigate the effect of mass conservation on global energetics. To that end, the simplest
approach is probably to consider the energetics of two parcels swapping position. Since
a well known result of algebra and combinatorics is that any permutation is the product
of pairwise permutations, we can expect two-parcel energetics to also shed light on the
global energetics of more complex parcel rearrangements.

To compute the changes in gravitational potential and internal energy attached to
each parcel requires the knowledge of height or depth for the former, and of temperature
and pressure for the latter. Assuming the pressure field to be hydrostatic is therefore
essential to link height or depth with pressure; as it turns out, the assumption also makes
it possible to link gravitational potential energy changes to those of the thermodynamic
quantity pυ, where p is the hydrostatic pressure, and υ = 1/ρ is the specific volume. This
proves particularly useful, as pυ = h − u, i.e., it is equal to the difference between the
specific enthalpy h and internal energy u. This makes it possible to regard enthalpy as the
effective potential energy, and pυ = h− u as the effective gravitational potential energy,
which considerably facilitates the discussion of the energetics of two parcels swapping
position, as discussed below.

2.1. Quasi-thermodynamic character of gravitational potential energy

We first outline the classical proof linking gravitational potential energy to Pυ. Motivated
by the oceanic case, let us consider a fluid bounded above by a free surface and below by
an uneven bottom respectively defined by the equations z = ζ(x, y, t) and z = −H(x, y)
respectively. Let us also assume that at the surface, the atmospheric pressure is p =
pa independent of position, and let us denote the bottom pressure by p = pb(x, y, t).
Assuming furthermore the pressure to be hydrostatic allows one to express GPE as

GPE =

∫
V

ρgz dV = −
∫
S

[zp]
ζ
−H dxdy+

∫
V

pυ dm = −
∫
S

[ζpa +Hpb] dx dy+

∫
V

pυ dm

= −paVtotal −
∫
S

H(pb − pa) dxdy +

∫
V

pυ dm = −paVtot −MtotgH +

∫
V

pυ dm
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as discussed by Oliver & Tailleux (2013) and Huang (2005), where Vtot and Mtot denote
the total volume and total mass of the fluid respectively,

Vtot =

∫
S

(ζ +H) dxdy, Mtot =
1

g

∫
V

(pb − pa) dxdy (2.1)

It follows that

∆GPE = −pa∆Vtot −Mtotg∆H +

∫
V

∆(pυ) dm ≈
∫
V

∆[(p− pa)υ] dm (2.2)

Although the term Mtotg∆H vanishes and is therefore unimportant for a flat-bottom
ocean (of constant mass), it may be significant in the actual (non-flat) ocean, as discussed
by Huang (2005). This effect, however, is unrelated to that discussed in this paper, and
is therefore not further considered. As a result, the sum of gravitational potential energy
and internal energy reads:

PE =

∫
V

hdm− paVtot −MtotgH (2.3)

where h is the specific enthalpy.

2.2. Local form of gravitational potential energy in pressure coordinates

The thermodynamic character of gravitational potential energy in the hydrostatic ap-
proximation can also be established directly by forming the evolution equation for the
total energy for the hydrostatic primitive equations written in pressure coordinates, viz.,

DV

Dt
+∇pΦ = F, (2.4)

∂Φ

∂p
= −υ, (2.5)

∇p ·V +
∂ω

∂p
= 0, (2.6)

Dη

Dt
=
q̇

T
, (2.7)

where Φ = gz is the geopotential, η is the specific entropy, V = (U, V ) is the horizontal
velocity field, ω = Dp/Dt is the analogue of vertical velocity, so that the substantial
derivative becomes D/Dt = ∂/∂t + V · ∇p + ω∂/∂p, ∇p the isobaric gradient, q̇ is the
local rate of heating, and F a representation of horizontal forcing. Thus, multiplying (2.4)
by V and adding it to (2.5) by ω yields

D

Dt

V2

2
+ V · ∇pΦ + ω

∂Φ

∂p
= F ·V − ωυ. (2.8)

Now, using the fact that the differential of the specific enthalpy is dh = Tdη+υdp yields

Dh

Dt
= T

Dη

Dt
+ υ

Dp

Dt
= q̇ + ωυ, (2.9)

which allows one to rewrite the local energy equation as follows

D

Dt

(
V2

2
+ h

)
+∇p · (ΦV) +

∂(ωΦ)

∂p
= q̇ + F ·V, (2.10)
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or equivalently

∂

∂t

(
V2

2
+ h

)
+∇p · (BV) +

∂(Bω)

∂p
= q̇ + F ·V (2.11)

where B = V2/2+h+Φ is the Bernoulli head. Equation (2.11) states that V2/2+h can be
regarded as the total energy for the hydrostatic primitive equations, which implies that
for all practical purposes, h can be regarded as the effective potential energy and hence
pυ = h − u as the effective gravitational potential energy, in agreement with the above
integral arguments. A similar result holds for the Boussinesq seawater approximation,
e.g., Young (2010); Tailleux (2012); Eden et al. (2014), and is therefore consistent with
the duality between the Boussinesq and non-Boussinesq hydrostatic primitive equations
demonstrated by de Szoeke & Samelson (2002).

2.3. Two parcels energetics

The possibility to regard the thermodynamic quantity pυ as the effective quantity mea-
suring global changes in gravitational potential energy makes it possible to assess the
relative importance of internal energy and compressible effects by simply comparing any
net change in internal energy ∆u relative to any corresponding net change in enthalpy
∆h. To simplify the analysis of the problem, we consider the following idealisation. We
discretise the fluid into parcels of equal mass on a fixed grid, and assume that fluid mo-
tion can be regarded as a series of permutations of the parcels in their initial state. Since
any permutation can be expressed as the product of pairwise permutations involving only
two fluid parcels, it follows that the energetics of two parcels swapping positions should
form the building block of our understanding of the issue.

Let us first consider the net enthalpy change associated with the swap of two fluid
parcels. Each parcel i, with i ∈ {1, 2}, is initially characterised by its entropy ηi and
pressure pi. During the swap, each parcel retains its entropy but exchange pressure
values. As a result, the net change of enthalpy resulting from the swap is

∆hswap = h(η1, p2)− h(η1, p1) + h(η2, p1)− h(η2, p2)

=

∫ p2

p1

[υ(η1, p
′)− υ(η2, p

′] dp′ =

∫ p2

p1

∫ η1

η2

Γ(η′, p′) dη′dp′

=

∫ p2

p1

∫ η1

η2

∂2h

∂p∂η
(η′, p′) dη′dp′ = Γ̃(p2 − p1)(η1 − η2) (2.12)

where Γ = ∂υ/∂η = αT/(ρcp) is the adiabatic lapse rate previously introduced, while

Γ̃ = h̃pη is a suitably defined mean value of Γ that makes the above relation exact. The
above result was obtained by using the fact that dh = υdp and dυ = Γdη for isentropic
specific enthalpy and specific volume changes respectively, which is equivalent to say
that Γ = ∂2h/∂p∂η. By the mean value theorem, we know that Γ̃ must be bounded
by the minimum and maximum values taken by Γ over the entropy and pressure range
considered. Note that if the parcel swap is done from a fluid initially at rest and stably
stratified, the pressure and entropy distribution are such that dP/dz = −ρg < 0 and
dη/dz > 0. This implies (p2 − p1)/(η2 − η1) < 0 and hence ∆hswap > 0, in which case
∆hswap represents the available potential energy acquired by the fluid as the result of
the parcels swap.

The next step is to compare ∆hswap with the corresponding internal energy change
∆uswap. Using the same approach, the latter is easily shown to be given by

∆uswap = u(η1, p2)− u(η1, p1) + u(η2, p1)− u(η2, p2)



The scale height argument on the importance of compressibility 7

1
0

10

10

10

2
0

20

20
3
0

3
0

30

4
0

4
0

5
0

5
0

6
0

Temperature (C)

P
re

s
s
u
re

 (
d
b
a
r)

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

Figure 2. Ratio of the available internal energy over total available potential energy (with
a minus sign) expressed as a percentage for seawater, assuming Absolute Salinity 35 g/kg, as
defined by (3.2).

=

∫ p2

p1

∫ η1

η2

∂u

∂p∂η
(η′, P ′) dη′dp′ ≈ ũpη(p2 − p1)(η1 − η2)

where ũpη represents a suitably defined mean value of the following quantity (whose form
is established in Appendix A)

∂2u

∂p∂η
= −p∂Γ

∂p
. (2.13)

As a result, the ratio ∆uswap/∆hswap is given by

∆uswap
∆hswap

=
ũpη

Γ̃
=
ũpη

h̃pη
. (2.14)

Eq. (2.14) is the main result of this paper, and shows that the ratio of internal energy
to enthalpy change is controlled by the cross partial derivatives of these two thermody-
namic state functions with respect to pressure and entropy. In contrast, single-parcel (sp)
energetics predicts that the ratio of the change in internal energy over that enthalpy of
a parcel of entropy η moving from pressure p1 to p2 is given by

∆usp
∆hsp

=
ũp

h̃p
=

p

ρc2s
≈ g|z|

c2s
, (2.15)

in agreement with the result presented in the introduction. This makes it clear, therefore,
the two ratios (2.14) and (2.15) obey radically different scaling, so that the key question
is under what circumstances can they significantly differ from each other. As may be
anticipated, the answer must depend significantly on the fluid considered and in particular
on the physical properties of its equation of state, as is illustrated in more details in the
next section for the particular cases of the atmosphere and ocean.

3. Application to the oceanic and atmospheric cases

3.1. Atmospheric case

The atmosphere appears to be a special case from the viewpoint of parcel energetics, in
the sense that inferences about the importance of compressibility effects and conversions
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with internal energy based on single-parcel energetics are unchanged by multi-parcel
energetics. This follows from that for a dry atmosphere, the internal energy and enthalpy
are both linear functions of in-situ temperature e = cvT and h = cpT respectively, which
implies that the ratio of the internal energy change over enthalpy change following a
fluid parcel is equal to du/dh = cv/cp = 1/γ and therefore constant and independent of
the thermodynamic process considered. Owing to the special form of internal energy and
enthalpy for the perfect gas, the above constant ratio also pertains to global changes, since
the total change in internal energy and enthalpy for a three-dimensional temperature
change δT = δT (x, y, z) is given by

∆u =

∫
V

cvδTdm, ∆h =

∫
V

cpδTdm, (3.1)

where δT = δT (x, y, z) is now a three-dimensional perturbation temperature field, and
the single-parcel result ∆u/∆h = cv/cp is recovered.

The same result can of course be recovered from the scale-height argument. To see
this, first recall that for a perfect gas, the speed of sound is given by c2s = γRT ,
where R = cp − cv is the gas constant for dry air, yielding Hs = γRT/g. Now, for
a hydrostatic displacement δz = −dP/(ρg) ≈ −dh/g = −cpdT/g, so that the ra-
tio δz/Hs = −cpdT/[γRT ] = cvdT/(RT ). Since T = θ(P/P0)κ, where θ is potential
temperature and κ = R/cp = (cp − cv)/cp, it follows that for adiabatic displacement
δT/T = κδP/P , as θ is conserved, so that δz/Hs ≈ (cv/cp)δP/P . The case of interest is
δP/P = O(1), in which case δz/Hs = O(cv/cp), as expected.

3.2. Oceanic case

As mentioned in the introduction, the scale height Hs = c2s/g = O(225 km) in the
ocean, which is much larger than the O(5000 m) mean ocean depth, so that according to
single-parcel energetics arguments, internal energy changes should account for no more
than 2% of total energy changes. This is to be contrasted with multi-parcel energetics
considerations, which predict that ∆uswap/∆hswap should scale as

− p
Γ

∂Γ

∂p

∣∣∣∣
η

= − p
Γ

(
Γ
∂Γ

∂T

∣∣∣∣
p

+
∂Γ

∂p

∣∣∣∣
T

)
, (3.2)

for an ocean with uniform salinity. This quantity was estimated using the Gibbs Sea
Water (GSW) software library (available at http://www.teos-10.org, see also IOC et
al. (2010); McDougall & Barker (2011)) using an Absolute Salinity value SA = 35 g/kg,
and illustrated in Fig. 1 (right panel) as a function of temperature and pressure. This
library naturally regards thermodynamic quantities as functions of (in-situ) temperature,
pressure, and Absolute Salinity. Eq. (3.2) shows how to evaluate the ‘adiabatic’ derivative
of Γ in terms of partial derivatives with respect to temperature and pressure. Fig. 2
shows that while minus the ratio (3.2) is very small for ‘shallow systems’ (associated
with low pressure values), this ratio dramatically increases as the pressure increases and
temperature decreases, to reach values as large as 50 or even 60 percent, which is in sharp
contrast with single-parcel energetics, and which clearly establishes that compressible
effects and conversions with internal energy are far from being negligible in systems as
deep as the oceans, in agreement with Huang (2005).

Extending the above result to an ocean stratified both in temperature and salinity is
relatively straightforward, but is not necessary for demonstrating the difficulties asso-
ciated with single-parcel energetics, which is the main focus of this paper. Provisional
results (Trevor McDougall, personal communication 2014) suggest that salinity gradients
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re-enforce the effect established here, and will be discussed in more details in a separate
oceanographic publication aimed at quantifying rigorously APE in the ocean.

4. Conclusion

We have demonstrated that single-parcel energetics considerations lead to incorrect
inferences about the relative importance of internal energy and compressible effects when
discussing the global energetics of stratified fluids. An exception is the perfect gas, but
in this case, the correct answer arguably occurs for the wrong reason. In this regard, it
appears worth pointing out that McDougall & Feistel (2003) found a similar difficulty
with the conventional explanation for the adiabatic lapse rate, which appears to give the
’correct’ answer only for a perfect gas but not for any other general fluid. In the most
general case, a correct assessment of the role of internal energy and compressible effects
can only be obtained from the consideration of mass-conserving parcel re-arrangements,
which need to involve two fluid parcels at the minimum. In contrast to single-parcel
energetics, which assess the importance of adiabatic internal energy changes based on
the smallness of the dimensionless parameter g∆z/c2s, multi-parcels energetics base such
an assessment on a dimensionless parameter involving the pressure p, the adiabatic lapse
rate Γ, and its adiabatic partial derivative with respect to pressure ∂Γ/∂p|η. Single-
and multi-parcel energetics therefore rely on completely different physics, which seems
to have been overlooked so far. This is an important result, for it provides a simple
rationalisation of why the available internal energy appears to be such a large fraction of
the total oceanic APE in Huang (2005) study, which had not been satisfactory explained
so far. Furthermore, two-parcel energetics confirms that Γ, rather than cs, is the most
fundamental quantity to assess the importance of compressibility effects, as per our first
counter-argument given in the introduction.

The author gratefully acknowledges the comments of two anonymous referees, as well as
detailed remarks and insights about how salinity affects the results by Trevor McDougall.

Appendix A. Thermodynamic relation

This appendix aims to establish the result

∂2u

∂p∂η
= −p∂Γ

∂p
, (A 1)

where Γ = αT/(ρcp) = ∂υ/∂η is the adiabatic lapse rate. We start with the differential
of internal energy du = Tdη − pdυ, and switch to (η, p) coordinates by regarding υ as a
function of specific entropy η and pressure p. The differential of internal energy becomes

du = Tdη − pdυ =

[
T − p∂υ

∂η

]
dη − p∂υ

∂p
dp, (A 2)

which establishes that the first derivatives of e with respect to η and p are given by

∂u

∂η

∣∣∣∣
p

= T − p ∂υ
∂η

∣∣∣∣
p

= T − pΓ, ∂u

∂p

∣∣∣∣
η

= −p ∂υ
∂p

∣∣∣∣
η

. (A 3)

Taking either the partial derivative of ∂u/∂η with respect to p or the partial derivative
of ∂u/∂p with respect to η yields in both cases:

∂2u

∂η∂p
=
∂T

∂p
− p∂Γ

∂p
− Γ = −p∂Γ

∂p
, (A 4)
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as required, since by definition Γ = ∂T/∂p for adiabatic transformations.
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