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Abstract
Possible future changes of clustering and return periods (RPs) of European storm series with
high potential losses are quantified. Historical storm series are identified using 40 winters of
reanalysis. Time series of top events (1, 2 or 5 year return levels (RLs)) are used to assess RPs of
storm series both empirically and theoretically. Additionally, 800 winters of general circulation
model simulations for present (1960–2000) and future (2060–2100) climate conditions are
investigated. Clustering is identified for most countries, and estimated RPs are similar for
reanalysis and present day simulations. Future changes of RPs are estimated for fixed RLs and
fixed loss index thresholds. For the former, shorter RPs are found for Western Europe, but
changes are small and spatially heterogeneous. For the latter, which combines the effects of
clustering and event ranking shifts, shorter RPs are found everywhere except for Mediterranean
countries. These changes are generally not statistically significant between recent and future
climate. However, the RPs for the fixed loss index approach are mostly beyond the range of pre-
industrial natural climate variability. This is not true for fixed RLs. The quantification of losses
associated with storm series permits a more adequate windstorm risk assessment in a changing
climate.

S Online supplementary data available from stacks.iop.org/ERL/9/124016/mmedia

Keywords: European windstorms, storm series, climate change, storm losses, overdispersion,
return periods, clustering

1. Introduction

Extreme windstorms are the most important natural hazards
affecting Western Europe (Lamb 1991, Schwierz et al 2010).
In situations when a recurrent extension of an intensified eddy
driven jet towards Western Europe lasts for at least one week,
multiple extreme cyclones may follow a similar path within a
relatively short time period (e.g. early 1990). Such clustering

of cyclones over the North Atlantic and Western Europe has
been identified in reanalysis data (Mailier et al 2006, Pinto
et al 2013). In particular, extreme cyclones cluster more than
non-extreme cyclones (Vitolo et al 2009, Pinto et al 2013).
Windstorm clusters often have large socio-economic impacts
and may cause high cumulative losses, like in 1990 with
about 8.5bn € (DeutscheRück 2005). Another recent example
is the windstorm series in winter 2013/2014, which mainly
affected the British Isles. Due to the Solvency II requirements
(Solvency Capital Requirements, QIS5), insurance companies
need to improve the assessment of frequencies and return
periods (RPs) of storm series and their ‘aggregate loss
exceeding probability’ under present and future climate
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conditions. Karremann et al (2014) evaluated different
methods to estimate RPs of windstorm series for Germany
and identified the negative binominal distribution as the best
approach.

Estimates of loss potentials for both recent climate and
future climate projections are mostly restricted to annual
losses (e.g. Pinto et al 2007, Donat et al 2011), and seldomly
deal with single extreme events (e.g. Haylock 2011, Pinto
et al 2012). Possible future changes of losses strongly depend
on the model and the analysed periods (see Feser et al 2014
for a review on storminess affecting Europe). However, some
studies identified shorter RPs for windstorms affecting Wes-
tern/Central Europe in future decades (e.g. Della-Marta and
Pinto 2009, Pinto et al 2012). With respect to storm series,
results by Pinto et al (2013) point to a possible decrease of
cyclone clustering over parts of Western Europe during the
current century. In this study, RPs for multiple event losses
associated with storm series under present and future climate
conditions are analysed for several European regions. Fol-
lowing Karremann et al (2014), RPs from NCEP reanalysis
and general circulation model (GCM) data are estimated
theoretically and empirically. Methods and datasets are
described in section 2, followed by results in section 3. A
summary and discussion is given in sections 4 and 5.

2. Data and methods

Reanalysis data from the National Centre for Environmental
Prediction/National Centre for Atmospheric Research (here-
after NCEP) with a horizontal resolution of 1.875° (about
140 × 210 km grid spacing at mid-latitudes; Kistler et al 2001)
are analysed. For each calendar winter day (October–March)
from 1973/1974 to 2012/2013, the largest of the four
instantaneous 6 hourly 10 m wind speed is taken as the daily
maximum. Twenty transient simulations performed with the
coupled ECHAM5/MPI-OM1 GCM (Jungclaus et al 2006),
also with a horizontal resolution of 1.875°, are considered:
three realizations of MPI (Roeckner et al 2006) and 17 from
the ESSENCE project (Sterl et al 2008). Maximum winds for
6 h periods (wimax) are used to determine the daily maximum
wind. Pinto et al (2007) showed that results of the storm loss
model (see below) are equivalent when using instantaneous
wind speeds or wimax as input variables. For recent and
future climate conditions, the periods of 1960–2000 and
2060–2100 are used, corresponding to the 20C and A1B
scenarios. We assume that all ensemble-members are equally
probable. The choice of a large ensemble for a single GCM
model is motivated by the focus on statistical robustness of
the results rather than on inter-model dependency or sensi-
tivity (Taylor et al 2012). To quantify natural inter-decadal
climate variability, a 505 year long pre-industrial run (PRE)
of ECHAM5 with constant forcing (year 1860) is also
analysed.

A modified version of the storm loss model by Klawa
and Ulbrich (2003) is used to estimate cumulative losses of
storm series. The potential damage is proportional to the cube
of the daily maximum (gust) wind speed (Palutikof and

Skellern 1991, Klawa and Ulbrich 2003). Losses are primarily
caused by wind gusts, when a certain local threshold is
exceeded. For Western and Central Europe, the 98th per-
centile (supplementary H) is assumed to be a reasonable
critical threshold, implying that buildings were constructed
according to the local climatological wind conditions (Klawa
and Ulbrich 2003). The 98th wind gust percentile over this
area corresponds to about 20–21 m s−1 (8 Bft). Such wind
gust values imply wind speeds between 8 m s−1 and 11 m s−1,
depending on the given gust factor (relationship between
wind gust and wind speed, e.g. Wieringa 1973, Born
et al 2012). A careful analysis indicated that 9 m s−1 wind
speed is an adequate minimum threshold for regions where
the 98th percentile values are too low (parts of Scandinavia,
the Mediterranean and South–Eastern Europe) and thus not
reasonable for loss occurrence. The resulting potential
damage is weighted with population density and aggregated
to potential losses (LI). Further details can be found in Pinto
et al (2012) and Karremann et al (2014). Population density
of the year 2000 (0.25° × 0.25°) is used as proxy for insurance
data, possible population density changes in Europe are
neglected. The dataset is provided by the Centre for Inter-
national Earth Science Information Network of the Columbia
University and the ‘Centro International de Agricultura Tro-
pical’. LIs are estimated for single events for European
countries/regions. Resulting event sets are ranked according
to LI values, and 1, 2 and 5 year return levels (RLs)
(abbreviated as 1yrl, 2yrl, and 5yrl) are generated (40, 20 and
8 events with highest LI in 40 winters, respectively). Time
series are obtained by allocating the events corresponding to
individual winters, enabling the estimation of empirical RPs
for storm series with different RLs.

The probability for the incidence of multiple events per
winter can be estimated theoretically with the negative
binomial distribution, which is a standard distribution to
analyse insurance risks. Estimated RPs using this theoretical
distribution show the best agreement with empirically esti-
mated RPs of windstorm series (see supplementary E, F,
Karremann et al 2014). Theoretical RPs of multiple events per
winter for given RLs are defined as the inverse of the prob-
ability of their occurrence. The clustering of events is deter-
mined by the dispersion statistics (ψ). More details can be
found in supplementary B and in Karremann et al (2014) (see
their section 3). The methodology is applied to 21 European
countries/regions (supplementary A). Core Europe is defined
as France, Belgium, Germany, The Netherlands, Denmark,
Ireland and United Kingdom. Empirical RPs and theoretical
RPs are estimated for both recent and future climate
conditions.

3. Results

3.1. Clustering and related RPs for NCEP

Time series of windstorm related losses exceeding certain
RLs are derived from NCEP data for 21 countries/regions of
Europe (40 winters). For Core Europe, the most prominent
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storm series occurred in winter 1989/1990 (hereafter 1990),
with four 1yrl/2yrl events, and two 5yrl events (figure 1(a)).
This windstorm series affected almost all individual countries
within Core Europe (except Denmark), with at least four 1yrl
events (figures 1(b)–(h)), and a maximum of seven 1yrl
events for Belgium (figure 1(h)). Other prominent winters are
1984, which mainly affected Denmark and Belgium
(figures 1(e), (h)), and 2007, when four storms (2yrl) hit
Ireland (figure 1(f)). These and other windstorm series also
affected regions outside of Core Europe, e.g. Sweden was hit
by four 1yrl events in 2007 and three 2yrl events in 2000,
Finland by three 2yrl events in 2002, and Portugal by two 5yrl
events in 2010 (cf supplementary C).

Considering the five most prominent windstorm series
(winters 1984, 1990, 2000, 2002, 2007), the maximum event
numbers are typically four 1yrl events, three 2yrl events and
two 5yrl events (cf figure 1; supplementary C). Further,
several Core Europe countries were hit by three 1yrl events
and two 2yrl events. Therefore, focus is given hereafter to
such windstorm series (3 or more (3+) 1yrl events, 2+ 2yrl
events, 2+ 5yrl events). Time series per winter (figure 1,
supplementary C) provide the basis for the estimation of
empirical RPs at different RLs and for the assessment of
clustering. The empirical RPs are compared to theoretical
estimated RPs. The coherence between the top 40 event lists
(1yrl) for Core Europe and individual countries/regions are
analysed to verify whether the same events hit multiple
countries and whether results for different regions are corre-
lated (supplementary D). Many of the top events for indivi-
dual Core Europe countries are included in the top 40 for
Core Europe (figure 2, colours). Best agreement is found for
Germany, where 26 of the 40 1yrl events (65%) agree with
Core Europe (figure 2(a)). Good accordance is also found for
The Netherlands (57.5%) and United Kingdom (55%), while
less coherence is found for Belgium (47.5%), France (37.5%),
Denmark and Ireland (both 30%, figure 2(a)). For higher RLs
results are less tight: Germany and The Netherlands feature
more than 50% accordance with Core Europe for all three
RLs. For the United Kingdom, a decreasing concurrence with
increasing RL is found (figures 2(a)–(c)). These results reflect
the typical tracks of strong cyclones affecting Core Europe,
which often first hit the United Kingdom and then cross the
North Sea either towards Germany or Scandinavia (e.g.
Hanley and Caballero 2012).

The empirical RPs for Core Europe and individual
countries based on NCEP are indicated as upper numbers in
figure 2. Figures 2(a)–(c) includes the values for an exact
number of events (e.g. 3 events per winter), and figures 2(d)–
(f) values are for accumulated probabilities (e.g. 3+ events per
winter). Differences of the estimates for the RPs between the
two rows are as expected: RPs for accumulated events (e.g.
3+) are shorter than for an exact number of events, as the
probability of the accumulated events is higher (cf also sup-
plementary E for Core Europe).

A detailed overview for storm series affecting Core
Europe as derived for NCEP is given in table 1 for accu-
mulated likelihoods. For example, a storm series with 4+ 1yrl
events occurred twice in 40 years (table 1; numN= 2), while

four 2yrl events and two 5yrl events per winter appeared once
(table 1; numN= 1). Positive ψ-values (table 1, tRPN column)
of 0.19 (1yrl), 0.04 (2yrl), and 0.1 (5yrl) indicate statistically
significant serial clustering at the 95% confidence level
(Pearson’s Chi-square test; cf details in supplementary I) for
each RL. Independent from the RL, estimated RPs are similar
for empirically (eRPN) and theoretically (tRPN) estimates
when considering few events per winter (cp. eRPN with tRPN
columns). If e.g. all years have either zero or one occurrence,
no overdispersion is found, and thus theoretical RPs cannot be
estimated (‘-‘ in table 1). The uncertainty estimates for tRPN
are calculated with the Gaussian error propagation based on
the standard error. Differences between eRPN and tRPN for a
large number of events per winter can be explained by the
length of the investigated time series: for eRPN, the possible
maximum estimate is 40 years, as the dataset consists only of
40 winters, while for tRPN, the theoretical fit may estimate
RPs which are nominally larger than the length of the dataset.

3.2. Clustering and related RPs for GCM data under recent
climate conditions

GCM data is now considered to enhance the RP estimates for
the storm series. With 20 ensemble members, more robust
statistics can be obtained from these GCM simulations than
from the NCEP data. As expected, the maximum number of
events per winter is larger in the GCM dataset, with up to six
events per winter for 1yrl (e.g. table 1). This was expected, as
the GCM dataset consists of 800 winters and not only 40
winters, and thus may include rarer storm series. Moreover,
GCMs tend to overestimate both the westerly flow over the
North Atlantic (e.g. Sillmann and Croci-Maspoli 2009) and
the clustering of cyclones over the Eastern North Atlantic
(Pinto et al 2013). A correction of the GCM bias on clustering
is possible and was attempted in Karremann et al (2014)
using weather type frequencies, but only a small influence on
the estimated RPs was found. Hence, biases are neglected and
the uncorrected GCM data are used for further analysis.

Comparing the empirical results based on GCM data
(eRP20C) and NCEP data (eRPN) for Core Europe, some dis-
crepancies are found, particularly for higher numbers of events
(see table 1, eRPN versus eRP20C). As for NCEP, significant
overdispersion is identified for the GCM for all RLs. Both
NCEP and GCM show similar ψ-values for 1yrl (ψ=0.19
versus ψ=0.24, respectively) and 2yrl events (ψ=0.04 versus
ψ20C = 0.09, respectively), but less agreement for 5yrl (ψ=0.1
versus ψ= 0.02; table 1). For accumulated probabilities (num-
bers in figures 2(d)–(f), differences in RPs between NCEP and
GCM for individual countries are typically smaller than for
exact number of events (figures 2(a)–(c)). As the accumulated
probabilities are of higher interest for the insurance industry, in
the following focus is given only to accumulated results.
Although the input data slightly differs (wind and wimax, see
section 2), the theoretical RPs for NCEP and GCM are also
mostly similar (cf table 1, supplementary E). This result is in
line with previous studies comparing results of the storm loss
model (Pinto et al 2007), which found only small differences
for NCEP and GCM. The empirical RPs outside Core Europe
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Figure 1. Identified number of events per winter for the NCEP data of the period 1973/1974–2012/2013. Colours denote the different return level:
light grey 1yrl, dark grey 2yrl and black 5yrl. The indicated years correspond to the second year, for example 1990 indicates the winter 1989/
1990. The regions are (a) Core Europe (b) France (c) Germany (d) United Kingdom (e) Denmark (f) Ireland (g) The Netherlands and (h) Belgium.
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show also good agreements between NCEP and GCM for
almost all countries (figures 2(d)–(f)). The spread between both
datasets increases for 2yrl with a rising number of events per
winter (supplementary E).

The main advantage of considering the larger GCM data
is in fact the reduction of the range of confidence intervals and
the possibility to estimate longer RPs (table 1, right columns;
Karremann et al 2014). As for NCEP data (section 3.1),
substantial differences between the empirical and theoretical
estimates are sometimes found for rarer storm series (e.g. 2yrl,
4+ events). This indicates that using the negative binominal
distribution may not be in these cases the best fit to the
empirical data. Nevertheless, possible future changes of RPs
of storm series are analysed both theoretically and empirically
in the next section. The advantage of estimations based on the
empirical data is that all winters with multiple independent
intense loss events are considered and not only winters with
serial clustering events.

3.3. Future changes of clustering and related RPs

Possible changes of clustering and associated RPs in a
changing climate are determined by comparing the two

periods 2060–2100 and 1960–2000. Results for Core Europe
are presented in table 1. 1yrl, 2yrl, and 5yrl (800, 400 and 160
events in 800 winters GCM data, respectively) are compared
theoretically (tRP20C versus tRPRL with a fixed RL in
2060–2100). While the ψ-values for 2yrl and 5yrl increase, a
slight decrease is found for 1yrl events. This indicates an
increase of clustering for strong events in a future climate,
while weaker events may cluster less. Additionally to this
perspective with a fixed RL (tRPRL), future changes relative
to a fixed 20C LI threshold (tRPLI) are also considered. The
former approach RPRL enables the identification of shifts
towards more/less clustering of the top 160, 400 or 800 events
(i.e., top events more/less concentrated in single years, as total
number is fixed). The latter approach tRPLI detects the
combined effect of clustering and possible shifts in rankings
of intense losses under future climate conditions (see Pinto
et al 2012). In fact, Pinto et al (2012) identified a significant
positive change in the rankings of storms for most European
countries in the A1B scenario (cf their figures 4, 7(b)). Such a
perspective is quite important e.g. for insurance companies.
For example, a 5yrl corresponds per definition to 160 events
in 800 years in GCM data for 20C, while for a fixed 20C LI

Figure 2. Analysed regions for different return levels and number of events. Colours denote the percentage of events with different return
levels that hit Core Europe and the respective region (in %). Yellow: <10%; orange: 10–30%; red: 30–50%; dark red: >50%. Numbers denote
the empirical RPs based on NCEP (upper number) and GCM (lower number). The return level and number of events are (a) for 1yrl with
three events (b) for 2yrl considering two events (c) for 5yrl and two events (d) for 1yrl with three or more events (3+; accumulated) (e) 2yrl
considering two or more events (2+; accumulated) (f) 5yrl considering two or more events (2+; accumulated).
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Table 1. Estimates for accumulated probabilities for Core Europe for 1, 2 and 5 year return levels for NCEP (index N), GCM data considering a fixed return level (index RL) and a fixed 20C LI
threshold (index LI). The RPs are assessed empirically (eRP) and theoretically (tRP) with uncertainty estimates using the Gaussian error propagation. Additionally the ψ-values are listed. For
NCEP 40 winters are considered, for GCM 800 winters, respectively. tRPs estimates longer than 500 years are abbreviated as 500+. Bold and italic: significant shorter estimates compared to the
natural climate variability.

Number of events numN num20C numRL numLI eRPN eRP20C eRPRL eRPLI tRPN tRP20C tRPRL tRPLI

1yrl — — — — — — — — — ψ = 0.19 ψ = 0.24 ψ = 0.20 ψ= 0.31
Events per winter 1+ 24 475 479 581 1.67 1.68 1.67 1.38 1.66 ± 0.12 1.69 ± 0.11 1.64 ± 0.10 1.39± 0.62

2+ 11 219 212 333 3.6 3.7 3.8 2.4 3.8 ± 0.7 3.8 ± 0.6 3.8 ± 0.5 2.5± 1
3+ 3 76 75 145 13 11 11 6 11 ± 3 10 ± 2 11 ± 3 5± 5
4+ 2 21 25 60 20 38 32 13 34 ± 15 31 ± 10 38 ± 12 12± 12
5+ — 6 9 25 — 133 89 32 119 ± 69 100 ± 41 146 ± 61 31± 31
6+ — 3 — 8 — 267 — 100 455 ± 322 346 ± 172 500+ 83± 83
7+ — — — 2 — — — 400 500+ 500+ 500+ 236 ± 236
8+ — — — 1 — — — 800 500+ 500+ 500+ 500+
9+ — — — 1 — — — 800 500+ 500+ 500+ 500+

2yrl — — — — — — — — — ψ = 0.04 ψ = 0.09 ψ = 0.21 ψ = 0.3

Events per winter 1+ 15 303 295 417 2.7 2.6 2.7 1.9 2.6 ± 0.7 2.9 ± 0.3 3.1 ± 0.2 2.0± 0.2
2+ 3 73 88 171 13 11 9 5 11 ± 7 9 ± 2 9 ± 1 5± 3
3+ 1 21 14 47 40 38 57 17 60 ± 60 29 ± 10 25 ± 5 14± 14
4+ 1 1 3 9 40 800 267 89 409 ± 409 95 ± 41 72 ± 17 45± 45
5+ — 1 — 3 — 800 — 267 500+ 310 ± 169 202 ± 60 149 ± 149
6+ — 1 — — — 800 — — 500+ 500+ 500+ 500+

5yrl — — — — — — — — — ψ = 0.10 ψ = 0.02 ψ = 0.04 ψ=−

Events per winter 1+ 7 144 143 250 5.7 5.6 5.6 3.2 5.8 ± 0.2 6 ± 0.9 6.1 ± 0.8 —

2+ 1 15 16 56 40 53 50 14 43 ± 3 37 ± 11 34 ± 9 —

3+ — 1 1 8 — 800 800 100 353 ± 37 229 ± 105 187 ± 75 —

4+ — — — 2 — — — 400 500+ 500+ 500+ —
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threshold a total of 316 events in 2060–2010 exceed the
present 20C RL for Core Europe.

For Core Europe, derived changes in tRPRL are small if
few events per winter are considered (table 1, tRP20C versus
tRPRL). For more prominent storm series, differences between
the two periods are larger (longer RPs for 1yrl, shorter RPs
for 2yrl and 5yrl). For individual Core European countries,
theoretical estimates of changes for fixed RLs (tRPRL) are
mostly coherent between RLs and number of events
(figures 3(a)–(c)). For 1yrl and 3+ events, shorter RPs are
estimated, except from Benelux and Ireland (figure 3(a)).
Further, decreasing RPs are found for the Mediterranean area,
Sweden, Lithuania, Latvia, AUTCHESVN and HUNSVK,
while longer RPs are identified for Norway, Finland, Estonia,
Poland and the Czech Republic. For 2yrl and 2+ events,
results are similar: For Core Europe, reduced clustering
(longer RPs) is found for Belgium, while for other countries
shorter RPs are identified (figure 3(b)). Differences between
the 1yrl and the 2yrl are identified only for Sweden and Italy
(shorter 1yrl RPs and longer 2yrl RPs; see figures 3(a), (b)).
At the 5yrl and 2+ events, theoretical estimations are not
possible for most countries. Significances between the esti-
mated RPs were computed with the Kolmogorov–Smirnov
test for the whole distributions (supplementary I), but all RP
changes are not statistically significant at the 95% confidence
level. For the different RLs, ψ-value changes (supplementary
F) are in line with RP changes.

The future changes of empirical RPs with a fixed RL
(eRPRL, figures 3(d)–(f)) are in most cases similar to those
obtained theoretically (figures 3(a)–(c)). However, distinc-
tions between empirical and theoretical RPs are found for
some countries. Such differences may occur as the theoretical
fit is performed for the whole spectrum of occurrences at a
certain RL, while the empirical method only considers a
certain number of events per winter. Moreover, estimates for
eRPRL are always possible, unlike tRPRL (cf figures 3(c), (f)).
Opposite tendencies at the 1yrl are found for Sweden, Fin-
land, Estonia, AUTCHESVN, HUNSVK and The Nether-
lands (cf figures 3(a), (d)). For the 2yrl, differences only
remain for Sweden, AUTCHESVN and France (cf
figures 3(b), (e)). For 5yrl and 2+ events shorter RPs are
found for most Core Europe countries except for Denmark
and Ireland (figure 3(f)). Again, all RP changes are not sig-
nificant at the 95% confidence level (Kolmogorov–Smirnov
test). Generally, all regions with divergent tendencies between
the two methods show in fact only marginal RP changes
between present and future climate conditions (less than 1
year, supplementary F).

A much more homogeneous pattern of change is found
for empirical RPs using fixed 20C LI as threshold (eRPLI,
figures 3(g)–(i)). For Core Europe and most individual Eur-
opean countries, the RPs now clearly decrease for the three
shown RL. Only for Spain (1yrl and 2yrl), Portugal (2yrl),
and Italy (1yrl, 2yrl, and 5yrl) longer RPs are found. Changes
estimated theoretically (tRPLI) are similar (supplementary G).
These identified differences are significant for Denmark
(2yrl), Estonia (1yrl), and Latvia (1yrl) at the 95%

significance level (Kolmogorov–Smirnov test). Detailed
information on each country can be found in supplemen-
tary F.

In order to gain more insight on the possible changes of
RPs due to climate change, the above results are also com-
pared with RP estimates taken from the 505 year long pre-
industrial run with constant forcing. This long run permits a
quantification of natural inter-decadal climate variability (see,
International ad hoc Detection and Attribution Group
(IDAG) 2005 for a review), which we define as the range of
RPs between the 5th and the 95th percentile for the whole
run. These ranges are included in the tables of supplementary
E and F (5% PRE, 95% PRE columns both for theoretical and
empirical RPs). RP estimates outside of this range indicate
significant differences to the pre-industrial climate variability
and are marked in bold in these tables. A careful analysis of
the data indicates that while estimates at the 1yrl for tRP20C
and tRPRL are mostly within the 5th and 95th range of the
control run, this is rarely the case for tRPLI estimates.
Moreover, while the deviations between PRE and tRP20C as
well as tRPRL for high intense series (2yrl, 5yrl; figures 3(b),
(c), underlined numbers) are predominantly towards longer
RPs, the significant changes for tRPLI are almost always
towards shorter RPs (except some Southern European coun-
tries, supplementary E and F). Considering the empirical RPs,
results are similar but differences between eRPRL and eRPLI
are clearer: while for eRP20C and eRPRL almost all estimates
are within the 5th and 95th range of the PRE run
(figures 3(d)–(f) and supplementary E and F), the eRPLI
estimates are often outside this range, displaying shorter RPs
for most countries except Southern Europe (figures 3(g)–(i)
and supplementary E and F). Therefore, we conclude that the
changes identified here for RPRL are mostly probably also
within the range of natural climate variability. On the other
hand, results for RPLI clearly show shorter RPs, which are
mostly outside the range of natural climate variability, as a
consequence of the combined effect of changes in clustering
and shifts in ranking of top losses.

4. Summary

The main focus of this study is to estimate possible changes in
clustering of potential losses associated with windstorms
affecting Europe in a changing climate. In particular, possible
alterations of RPs of storm series at different RLs are ana-
lysed. 40 winters of NCEP data are used as basis to identify
historical storm series. Further, GCM ensembles for recent
and future climate conditions (20C and A1B scenarios; each
800 years) are considered. Time series of top events (1yrl,
2yrl or 5yrl) are used to estimate RPs associated with multiple
events per winter empirically or theoretically (negative
binomial distribution). In line with previous results for Ger-
many (Karremann et al 2014), overdispersion (clustering) is
found for most European countries, and RPs based on NCEP
and GCM data are similar for current climate conditions.

Future changes of RPs are estimated for fixed RLs and
fixed 20C LI thresholds. The latter approach combines the
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effect of clustering and of possible shifts in event ranking in a
changing climate, and is thus of particular interest for risk
assessment. While changes are small and rather hetero-
geneous when considering fixed RLs, they are larger and
homogeneous for fixed 20C LI thresholds, with clearly
shorter RPs for almost all countries except Southern Europe.

However, only very few changes are statistical significant. RP
estimates were also tested against the (pre-industrial) natural
climate variability. In this case, RP estimates for future cli-
mate with fixed 20C LI thresholds typically show shorter RPs
for most Central and Northern European countries. These RPs
are mostly outside the 5th and 95th percentile range of

Figure 3. Future changes (2060–2100 minus 1960–2000) of RPs for storm series based on the accumulated events for single regions. Dark
blue: increase of more than 1 year. Blue: increase of 0–1 year. Dark red: decrease of more than 1 year. Red: decrease of 0–1 year. Numbers
denote the RP for 20C (upper number) and A1B (lower number). In italic and bold: changes, which are significant shorter compared to the
natural climate variability. Bold and underlined: changes, which are significant longer compared to the natural climate variability. (a)–(c) RP
changes estimated theoretically with a fixed RL (tRPRL). (d)–(f) RP changes estimated empirically with a fixed RL (eRPRL). (g)–(i) RP
changes estimated empirically with a fixed 20C LI threshold (eRPLI). For grey regions at least in one of the analysed periods no clustering is
found. For more details see text.
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variability of a pre-industrial control run, and thus they are
beyond the range of natural climate variability. This is not the
case for most eRP20C and eRPRL.

5. Discussion and conclusions

Recent results by Pinto et al (2013) using the same GCM
ensemble suggested that clustering of cyclones affecting
Europe may change under future climate conditions, pointing
to a decrease over the North Sea area (corresponding to longer
RPs) and an increase for Scandinavia (shorter RPs). These
results are sometimes partly in contrast with those obtained
here for losses associated with extreme cyclones, particularly
for 2yrl and 5yrl. These differences may be attributed to two
main factors: first, the number of (cyclone) events considered
in Pinto et al (2013) is much larger (typically about 10 events
per year) than the number of loss events analysed here (one
event per 1, 2, or 5 years). In fact, the conclusions of Pinto
et al (2013) are rather in line with present results for lower
RLs (1yrl) for Core Europe. Second, climate change signals
between events regarding only the meteorological intensity
(not considering the population density, MI) and loss events
(additionally considering the population density, LI) may
show a considerable spread (see discussion on MI and LI in
Pinto et al 2012). Thus, at least a part of the identified dif-
ferences may be attributed to the different thresholds con-
cerning the extremes and the different target variables.

While the results for fixed RLs are quite heterogeneous,
the changes of RPs are more pronounced for a fixed 20C LI
threshold, showing clearly shorter RPs for all countries
(except for Mediterranean region). This difference can be
explained by the fact that the latter approach also considers
the effect of changes of ranks for loss events. This result is in
line e.g. with Della-Marta and Pinto (2009), who identified a
shortening of return period for intense storms over the North
Sea area during the 21st century, documenting a shift of the
main storm track area towards the densely populated area of
Central Europe. Furthermore, Pinto et al (2012) provided
evidence that these changes in intense cyclones lead to an
increase of top losses over Western Europe and shorter RPs of
potential losses. As a consequence, more events exceeding a
fixed LI are identified in the second half of the 21st century
(e.g. 316 events in A1B instead of 160 in 20C, 5yrl), thus
leading to increased clustering and shorter RPs for storm
series.

In this study we have used a large ensemble of only one
GCM, which is motivated by the focus on statistical robust-
ness of the results rather than on inter-model sensitivity.
Further, the changes of synoptic activity in this GCM are
close to the CMIP3 ensemble average (Ulbrich et al 2008).
Hence it can be expected that our results are probably
representative for a CMIP3 multi-model ensemble. Future
work should focus on earth system models (ESMs) of the
CMIP5 ensemble. ESMs incorporate enhanced spatial reso-
lution and additional components of the climate system,
which may result in a better representation of mechanisms
leading to the clustering of storms. This will also permit a

better estimate of the statistical significance of results based
on such large multi-model ensembles, to provide more robust
estimates of possible changes of cumulative risks associated
with windstorm series affecting Europe.

Acknowledgments

We acknowledge the National Centres for Environmental
Prediction/National Centre for Atmospheric Research for the
NCEP reanalysis data. We thank the MPI for Meteorology
(Hamburg, Germany) and Andreas Sterl from the KNMI (De
Bilt, The Netherlands) for providing GCM data. We also
thank the Centre for International Earth Science Information
Network (CIESIN), Columbia University; and Centro de
Agricultura Tropical (CIAT) providing the Gridded popula-
tion of the World Version3 (GPWv3): Population density
grids. Palisades, NY: Socioeconomic Data and Applications
Centre (SEDAC), Columbia University. Available online
under the following weblink: http://sedac.ciesin.columbia.
edu/gpw (date of download: 5.4.2012). Furthermore we thank
the CRAN-R-project for providing the open-source software
package R: R Development Core Team (2011). R: A lan-
guage and environment for statistical computing. R founda-
tion for statistical computing, Vienna, Austria. ISBN 3-
900051-07-0, URL http://www.R-project.org/.

References

Born K, Ludwig P and Pinto J G 2012 Wind gust estimation for mid-
European winter storms: towards a probabilistiv view Tellus A
64 17471

Della-Marta P M and Pinto J G 2009 The statistical uncertainty of
changes in winter storms over the North Atlantic and Europe in
an ensemble of transient climate simulations Geophys. Res.
Lett. 36 L14703

Deutsche R 2005 Sturmdokumentation 1997–2004 (Düsseldorf:
Deutsche Rück Reinsurance Company) p 180 in German
www.deutsche-rueck.de

Donat M G, Leckebusch G C, Wild S and Ulbrich U 2011 Future
changes of European winter storm losses and extreme wind
speeds in multi-model GCM and RCM simulations Nat.
Hazards Earth Syst. Sci. 11 1351–70

Feser F, Barcikowska M, Krueger O, Schank F, Weisse R and Xia L
2014 Storminess over the North Atlantic and Northwestern
Europe-A review Q. J. R. Meteorol. Soc. doi:10.1002/qj.2364

Hanley J and Caballero R 2012 Objective identification and tracking
of multicentre cyclones in the ERA-interim reanalysis dataset
Q. J. R. Meteorol. Soc. 138 612–25

Haylock M R 2011 European extra-tropical storm damage risk from
a multimodel ensemble of dynamically-downscaled global
climate models Nat. Hazards Earth Syst. 11 2847–57

International ad hoc Detection and Attribution Group (IDAG) 2005
Detecting and attributing external influences on the climate
system: a review of recent advances J. Clim. 18 1291–314

Jungclaus J H, Keenlyside N, Botzet M, Haak H, Luo J J, Latif M,
Marotzke J, Mikolajewicz U and Roeckner E 2006 Ocean
circulation and tropical variability in the coupled model
ECHAM5/MPI-OM J. Clim. 19 3952–72

Karremann M K, Pinto J G, v Bomhard P J and Klawa M 2014 On
the clustering of winter storm loss events over Germany Nat.
Hazards Earth Syst. Sci. 14 2041–52

9

Environ. Res. Lett. 9 (2014) 124016 M K Karremann et al

http://sedac�.�ciesin.columbia.edu/gpw
http://sedac�.�ciesin.columbia.edu/gpw
http://www.R-project.org/
http://dx.doi.org/10.3402/tellusa.v64i0.17471
http://dx.doi.org/10.1029/2009GL038557
http://www.deutsche-rueck.de
http://dx.doi.org/10.5194/nhess-11-1351-2011
http://dx.doi.org/10.5194/nhess-11-1351-2011
http://dx.doi.org/10.5194/nhess-11-1351-2011
http://dx.doi.org/10.1002/qj.2364
http://dx.doi.org/10.1002/qj.948
http://dx.doi.org/10.1002/qj.948
http://dx.doi.org/10.1002/qj.948
http://dx.doi.org/10.5194/nhess-11-2847-2011
http://dx.doi.org/10.5194/nhess-11-2847-2011
http://dx.doi.org/10.5194/nhess-11-2847-2011
http://dx.doi.org/10.1175/JC.LI3329.1
http://dx.doi.org/10.1175/JC.LI3329.1
http://dx.doi.org/10.1175/JC.LI3329.1
http://dx.doi.org/10.1175/JCLI3827.1
http://dx.doi.org/10.1175/JCLI3827.1
http://dx.doi.org/10.1175/JCLI3827.1
http://dx.doi.org/10.5194/nhess-14-2041-2014
http://dx.doi.org/10.5194/nhess-14-2041-2014
http://dx.doi.org/10.5194/nhess-14-2041-2014


Kistler R et al 2001 The NCEP/NCAR 50 year reanalysis: monthly
means CDROM and documentation Bull. Am. Meteorol. Soc.
82 247–67

Klawa M and Ulbrich U 2003 A model for the estimation of storm
losses and the identifi-cation of severe winter storms in
Germany Nat. Hazards Earth. Syst. Sci. 3 725–32

Lamb H H 1991 Historic Storms of the North Sea, British Isles, and
Northwest Europe (Cambridge: Cambridge University Press)

Mailier P J, Stephenson D B, Ferro C A T and Hodges K I 2006
Serial clustering of extratropical cyclones Mon. Weather Rev.
134 2224–40

Palutikof J P and Skellern A R 1991 Storm Severity Over Britain: a
Report to Commercial Union General Insurance (Norwich,
UK: Climatic Research Unit, School of Environmental
Science, University of East Anglia)

Pinto J G, Bellenbaum N, Karremann M K and Della-Marta P M
2013 Serial clustering of extratropical cyclones over the North
Atlantic and Europe under recent and future climate conditions
J. Geophys. Res.-Atmos. 118 12476–85

Pinto J G, Fröhlich E L, Leckebusch G C and Ulbrich U 2007
Changes in storm loss potentials over Europe under modified
climate conditions in an ensemble of simulations of
ECHAM5/MPI-OM1 Nat. Hazards Earth Syst. Sci. 7
165−75

Pinto J G, Karremann M K, Born K, Della-Marta P M and Klawa M
2012 Loss potentials associated with European windstorms
under future climate conditions Clim. Res. 54 1–20

Roeckner E et al 2006 Sensitivity of simulated climate to horizontal
and vertical resolution in the ECHAM5 atmosphere model
J. Clim. 19 3771−91

Schwierz C, Köllner-Heck P, Zenklusen Mutter E, Bresch D N,
Vidale P L, Wild M and Schär C 2010 Modelling European
winter wind storm losses in current and future climate Clim.
Change 101 485−514

Sillmann J and Croci-Maspoli M 2009 Present and future
atmospheric blocking and its impact on European mean and
extreme climate Geophys. Res. Lett. 36 L10702

Sterl A, Severijns C, Dijkstra H, Hazeleger W, van Oldenborgh G J,
van den Broeke M, Burgers G, van den Hurk B,
van Leeuwen P J and van Velthoven P 2008 When can we
expect extremely high surface temperatures? Geophys. Res.
Lett. 35 L14703

Taylor K E, Stouffer R J and Meehl G A 2012 An overview of
CMIP5 and the experiment design Bull. Am. Meteorol. Soc. 93
485–98

Ulbrich U, Pinto J G, Kupfer H, Leckebusch G C, Spangehl T and
Reyers M 2008 Changing Northern hemisphere storm tracks in
an ensemble of IPCC climate change simulations J. Clim. 21
1669–79

Vitolo R, Stephenson D B, Cook I M and Mitchell-Wallace K 2009
Serial clustering of intense European storms Meteorol. Z. 18
411–24

Wieringa J 1973 Gust factors over open water and built-up country
Bound.-Layer Meteorol. 3 424–41

10

Environ. Res. Lett. 9 (2014) 124016 M K Karremann et al

http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
http://dx.doi.org/10.5194/nhess-3-725-2003
http://dx.doi.org/10.5194/nhess-3-725-2003
http://dx.doi.org/10.5194/nhess-3-725-2003
http://dx.doi.org/10.1175/MWR3160.1
http://dx.doi.org/10.1175/MWR3160.1
http://dx.doi.org/10.1175/MWR3160.1
http://dx.doi.org/10.1002/2013JD020564
http://dx.doi.org/10.1002/2013JD020564
http://dx.doi.org/10.1002/2013JD020564
http://dx.doi.org/10.5194/nhess-7-165-2007
http://dx.doi.org/10.5194/nhess-7-165-2007
http://dx.doi.org/10.3354/cr01111
http://dx.doi.org/10.3354/cr01111
http://dx.doi.org/10.3354/cr01111
http://dx.doi.org/10.1175/JCLI3824.1
http://dx.doi.org/10.1007/s10584-009-9712-1
http://dx.doi.org/10.1029/2009GL038259
http://dx.doi.org/10.1029/2008GL034071
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1175/2007JCLI1992.1
http://dx.doi.org/10.1175/2007JCLI1992.1
http://dx.doi.org/10.1175/2007JCLI1992.1
http://dx.doi.org/10.1175/2007JCLI1992.1
http://dx.doi.org/10.1127/0941-2948/2009/0393
http://dx.doi.org/10.1127/0941-2948/2009/0393
http://dx.doi.org/10.1127/0941-2948/2009/0393
http://dx.doi.org/10.1127/0941-2948/2009/0393
http://dx.doi.org/10.1007/BF01034986
http://dx.doi.org/10.1007/BF01034986
http://dx.doi.org/10.1007/BF01034986

	1. Introduction
	2. Data and methods
	3. Results
	3.1. Clustering and related RPs for NCEP
	3.2. Clustering and related RPs for GCM data under recent climate conditions
	3.3. Future changes of clustering and related RPs

	4. Summary
	5. Discussion and conclusions
	Acknowledgments
	References



