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NOTE 
 

DEPTH TO MATE AND THE 50-MOVE RULE 

 

 G. Huntington1 and G.McC. Haworth2 

 

Reading, UK 

 

1. INTRODUCTION 

 

The first author’s DTM50 ‘EGT’ endgame tables (Huntington, 2013; Haworth, 2014a/b) provide ‘DTM’ Depth 

to Mate information as moderated by the FIDE (2014) ‘50mr’ 50-move rule and the ply-count pc. This note puts 

that achievement in the context of earlier DTM computations (Nalimov et al., 2000/2001; Wu and Beal, 2001a/b;  

Bleicher, 2015) and data from previous studies of 50mr-impact (Tamplin and Haworth, 2004; Bourzutschky et 

al., 2005; Tamplin, 2015). It compares some DTM50 statistics with the intrinsic, unmoderated DTM and DTZ50 

data.3 Datasets supporting these results are available (Huntington and Haworth, 2015) and include a pgn file, its 

annotation, and the fuller statistics which cannot be accommodated here. 

 

When considering 50mr impact, the ply-count pc or rather the ply-remaining count pr  100-pc must be borne in 

mind. A position’s dtm50, pc may increase as pc increases until the win becomes a ‘frustrated win’, a ‘50mr-draw’. 

Even a mate in two ply will be frustrated if 99 ply have been expended, e.g., in KNNKP. These ‘EM 50’ DTM50 

EGTs are the first to provide depths for any value of pc. Clearly, maxDTM50, pc0  maxDTM50, pc=0. 

 

The FIDE 50-move rule is not an intrinsic rule of the game but a ‘rule of play’ introduced by Ruy López (1561) for 

the convenience of professional coffee house players. The results here show that it has major impact on KBBKN 

and KNNKP, and therefore on the upstream KBBKNN, KNNKNP and KNNKPP. For s6m, s7m and s8m chess, 

maxDTZ is greater than 80, 240 and 510 moves respectively (Haworth, 2014b). The 50mr, now backed by the 75-

move-rule, will apparently frustrate ever more subtle wins as the number of men increases.  

 

The perspective here is that these extreme cases of extended wins, rather than being denied by rules of play, should 

become part of the culture, experience, record and history of chess, at least when an EGT-armed computer-engine 

demonstrates infallible play. 

 

 

2. COMPUTING DTM: ALGORITHM, LANGUAGE AND PROGRAM 

 

When generating any EGT, the fundamental principles are that (a) successor endgames’ EGTs are computed first, 

and (b) a position can be given a depth: 

 temporarily when one of its immediate successors has been given a depth, but 

 definitively only after enough of its successors have been given their definitive depth. 

  

Any computation begins by identifying ‘mated’ (in 0 ply) positions. Positions which can be assigned a depth may 

be found by repeated, linear sweeps of the whole endgame and the first sweeps  efficiently net many positions. 

Shortly though, the more selective and efficient method is to ‘unmove’ from the ‘frontier’ of positions which 

have just been given a depth in the last cycle of the algorithm. 

  

The best known DTM computations are those of Nalimov (2000/2001) which created EGTs for the whole of sub-

7-man (s7m) chess (Bleicher, 2015). Nalimov employed linear sweeps rather than the more retrograde ‘unmove’ 

algorithm, giving a position a depth at the earliest opportunity but lowering it later as required. As evid enced by 

the results here, this occurred many times in generating the KNNKP EGT. In contrast, Wu (2001a/b) worked 

exclusively in unmove mode. His key idea was to defer identifying ‘mates in m+1’ until all ‘mates in m’ had been 

identified. As each dtm is associated with one cycle of the algorithm, it only required two bits per position rather 

than one- or two-bytes, economising on memory by a factor of four or eight. 

                                                                 
1 http://galen.metapath.org/egtb50/. 
2 The University of Reading, Berkshire, UK, RG6 6AH. email: guy.haworth@bnc.oxon.org. 
3 DTZ  minimaxed depth to the zeroing of the ply -count, i.e., to a pawn-push, capture and/or mate which end the current 

phase of play. 
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Huntington reverts to the principle of assigning depths as soon as possible. Each algorithm cycle corresponds to 

a specific number, pr, of ply remaining: pr effectively increases from 0 to 100 during the computation. Lower 

values of DTM50 become possible when more ply are available. Table 3 shows that the highest variability of 

DTM50 seen so far occurs in KNNKP with 25 different mate-depths. By noting on what cycle a DTM50 value is 

set, the various ply-ranges corresponding to a specific dtm50 can be identified for each chess position. 

 

EGT generation, as a computation task, is challenging because the results are not self-evidently correct: the 

subtlety and toxicity of errors is well known (Hurd and Haworth, 2010). Where clarity of coding and correctness 

are particularly at risk, as has been argued in classic texts elsewhere (Hughes, 1990; Bird, 2014), ‘FPL’ functional 

programming languages, without side effects, may be preferred to imperative languages. The declarative style of 

FPLs, using higher levels of abstraction, creates programs which are more readable and understandable.  Research 

in FPLs created an embarrassment of riches and ideas, and the best of these were brought together in the language 

HASKELL, ‘standardised’ in HASKELL 98 (Peyton-Jones, 2002) and then in HASKELL 2010 (Marlow, 2010). 

HASKELL is most liked for its elegance as a language, for its type system, and for the confidence it creates that 

compiled code is likely to be correct code (MacIver, 2015) and was the choice of the first author here. 

 

FPLs once had a reputation for inefficiency but modern compilers have largely offset this and performance is 

competitive today. For example, FPLs allow new methods of whole-program optimisation made possible by the 

promise of purity. Also, code can be written much more compactly due to the expressive power of treating 

functions as ordinary values that can be built at runtime. Certainly, there are new kinds of pitfalls which 

programmers must contend with: the challenge of balancing use of space and time remains. Small changes can 

have a large effect on performance by, e.g., causing an optimization to become inapplicable. Worse, unexpected 

memory leaks are common, and measures must be taken to prevent overzealous time optimisation that causes 

excess space usage. Such snags plagued earlier versions of the DTM50 EGT generator, and in general avoiding 

them is an active area of compiler research. The EGT itself consists internally of an array where each cell value 

stored the possible mate lengths for various ranges of PC, and an ‘overflow’ hash table to store values that do not 

fit in an array cell. The cell’s size has to be fixed in advance and chosen with care. Too small, and the overflow 

structure becomes heavily used, which is much less space/time efficient than an array; too large, and much 

memory is wasted on unused array space. 

 

 

Figure 1. 5-man endgame wins, 1-0 and 0-1, at first apparently DTZ-susceptible to the 50-move rule. 

 

 

3. THE RESULTS 

 

DTM endgame tables presume a ply-count of pc = 0 and therefore the DTM50,pc results with pc = 0 provide a 

natural first focus. The later consideration of a free-ranging pc places emphasis on the cost of pc > 0 and the 

variability of dtm50,pc. 

 
3.1 DTM50,pc with zero ply-count pc 

 

For sub-5-man chess, no endgames are affected as maxDTM < 100 ply. Figure 1 shows those 5-man endgames, 

ranked by number of pawns, which appear at first to be susceptible to the 50mr, 1-0 and/or 0-1 wins4 perhaps 

being converted to 50mr-draws or lengthened in some sense. Tamplin and Haworth (2004) identified the actual 

50mr impact in DTZ terms and this is annotated under four headings in Figure 1 and Table 1. 

                                                                 
4 In fact, the 50mr only affects both 1-0 and 0-1 wins in the endgames KBBKP, KNNKP, KRPKQ and KRPKP of Figure 1. 
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Table 1. Data for some endgame wins, the first 37 being those of Figure 1.5 

 

The four-way DTZ-based taxonomy is indicated as follows: 

 obviously unaffected wins (7) (bracketed ‘lower case’), e.g., KBPKR (1-0), KPPK(Q/P) (0-1):  

  maxDTM  100 ply  EM50  EM  there need be no 50mr-effect here or ‘downstream’, 

 perhaps affected wins (6) (unbracketed lower case), e.g., K(B/N)PKP (1-0 and 0-1):  

  the DTZ50 and DTZ EGTs, i.e., EZ50  EZ, are identical but perhaps dtm50 > dtm somewhere, 

 affected wins (14) (upper case), e.g., KBBKP and KRPKP (both, 1-0 and 0-1), KPPK(Q/P) (1-0): 

  maxDTZ  100 ply but there are 50mr draws, i.e., EM50  ≢ EM,  

 obviously affected wins (10) (underlined, upper case), e.g., KNNKP (1-0) and KRPKQ (0-1):  

  maxDTZ > 100 ply  50mr-draws  EM50 ≢ EM. 

 

Beyond the scope of Figure 1, Table 1 provides DTM50 data for a number of other endgames which are affected. A 

second DTZ/Z50 review (Bourzutschky et al., 2005) provides further context for Pawnless 6-man endgames. 

  

                                                                 
5 maxDTM 50,0 is compared with maxDTM. maxDTM 50,pc is compared with maxDTM and then maxDTM 50,0. ‘’, ‘’, ‘’ 
and ‘~’ mean, respectively, ‘if anything, less than’, ‘identical’, ‘if anything, more than’ and ‘considering wtm/btm, both less 

than and more than’. ‘=’ rather than ‘’ indicate that the number of maximal positions has changed.  

# #P Endgame Res. 

EZ50

# dtm # dtm ? wtm btm wtm btm # dtm # dtm # dtm # dtm

01 0 KBBKN 1-0 32 155 43 156 D 21.05 48.20 0 0  275 131 319 132  275 131 319 132

02 1 KBBKP 1-0 1 147 15 146 D e e 0.01 e  1 131 4 132  1 137 16 136

03 0 KBNKN 1-0 2 213 1 212 D 0.52 1.93 0 0  11,204 159 5,140 160  11,204 159 5,140 160

04 1 KBNKP 1-0 9 207 9 208 D e e e e  5 161 10 162  8 175 2 174

05 1 KBPKN 1-0 1 199 1 192 D e e e e  6 175 4 174  1 177 1 176

06 2 kbpkp 1-0 92 133 52 134  0 0 0 0  92 133 52 134  3 145 3 146

07 1 ( kbpkr ) 1-0 3 89 3 88  0 0 0 0  3 89 3 88  5 89 5 90

08 1 KNNKP 1-0 2 229 4 228 D 26.35 46.87 42.16 30.80  7 223 12 222  28 255 3 256

09 1 KNPKN 1-0 5 194 12 193 D e e e e  5 161 13 162  5 163 13 162

10 2 knpkp 1-0 10 113 10 114  0 0 0 0  10 113 10 114  1 129 2 130

11 2 ( kppkb ) 1-0 1 85 1 86  0 0 0 0  1 85 1 86  1 85 1 86

12 2 ( kppkn ) 1-0 2 99 1 100  0 0 0 0  2 99 1 100 == 1 99 1 100

13 3 KPPKP 1-0 6 253 7 254 D e e e e  4 281 4 282  5 281 4 282

14 2 KPPKQ 1-0 7 247 2 200 D 0.01 0.01 0 0  17 275 1 200  17 275 1 200

15 1 kppkr 1-0 1 107 1 106  0 0 0 0  1 107 1 106  1 107 1 106

16 2 KQPKP 1-0 1 209 6 244 D e e e e ~ 4 191 9 274  4 233 9 274

17 1 KQPKQ 1-0 5 247 13 246 D 0.02 0.08 0.03 0.10  36 273 30 274  3 275 30 274

18 1 KQRKP 1-0 1 79 3 134 D 0 e 0 0  1 79 3 122 ~ 5 107 3 122

19 0 KQRKQ 1-0 3 133 31 134 D e e 0 0  3 121 31 122  3 121 31 122

20 1 ( krbkp ) 1-0 1 55 4 72  0 0 0 0  1 55 4 72  1 73 1 74

21 0 KRBKR 1-0 28 129 19 128 D 0.01 0.02 0 0  939 111 162 112  939 111 162 112

22 1 KRPKB 1-0 3 145 13 146 D e e e e  3 145 13 146  5 149 15 150

23 2 KRPKP 1-0 3 111 3 136 D 0 e e e  3 111 23 118 ~ 1 121 9 120

24 1 KRPKQ 1-0 45 135 1 108 D e e e 0 ~ 22 123 1 114 ~= 48 123 1 114

25 1 krpkr 1-0 33 147 4 148  0 0 0 0  33 147 4 148  2 161 1 162

26 1 KBBKP 0-1 54 164 82 165 D 5.85 8.47 0.07 0.02  3 134 7 135  4 136 2 137

27 0 KBBKQ 0-1 74 162 15 161 D 8.49 1.46 0 0  3,116 124 1,030 123  3,116 124 1,030 123

28 2 kbpkp 0-1 2 100 3 101  0 0 0 0  2 100 3 101  2 100 3 101

29 1 ( kbpkq ) 0-1 3 100 2 99  0 0 0 0  3 100 2 99  1 104 2 103

30 1 KNNKP 0-1 11 146 9 147 D 0.14 0.06 0.10 e  12 130 13 131  16 130 13 131

31 0 KNNKQ 0-1 10 144 2 143 D 0.05 0.01 0 0  162 124 104 123  162 124 104 123

32 2 knpkp 0-1 3 114 3 115  0 0 0 0  3 114 3 115  3 114 3 115

33 1 KNPKQ 0-1 1 124 2 109 D e 0 0 0  1 114 2 109  1 146 1 145

34 3 ( kppkp ) 0-1 3 84 3 85  0 0 0 0  3 84 3 85  3 84 3 85

35 2 ( kppkq ) 0-1 12 82 6 81  0 0 0 0  12 82 6 81  3 86 1 87

36 2 KRPKP 0-1 5 200 6 205 D 0.14 0.05 0.10 e  3 188 2 193  3 188 2 193

37 1 KRPKQ 0-1 3 206 1 207 D 0.06 0.02 0.02 e  21 194 1 195  7 214 3 213

38 2 ( kppkn ) 0-1 12 32 31 33  0 0 0 0  12 32 31 33  2 36 10 35

39 0 krbkq 0-1 3 140 4 139  0 0 0 0  3 140 4 139  3 144 4 143

40 0 KBBKNN 1-0 11 211 1 212 D 50.15 70.98 1.75 2.78  1 179 1 178  2 181 1 180

41 1 KNNKNP 1-0 198 275 30 274 D ? ? ? ?  160 223 11 222  160 223 11 222

42 2 KNNKPP 1-0 2 259 3 258 D ? ? ? ?  1 257 2 256  2 269 2 268

dtz50 > dtz

EZ

wtm btm

pc = 0

maxDTM, ply maxDTM50, ply

wtm btm wtm btm

any pc%  wins

frustrated

%  wins
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With increasing likelihood, maxDTM50, pc=0 is greater than, less than or equal to maxDTM as indicated in Table 1:  

 maxDTM50, pc=0  > maxDTM:  

  (1-0) KPPKP, KPPKQ, KQPKP btm, KQPKQ, KRPKQ btm  

 maxDTM50, pc=0  < maxDTM:  

  (1-0) KB(B/N)K(N/P), KBPKN, KNNKP, KNPKN, KQPKP btm, KQRK(P/Q), KRBKR, KRPKP,  

   KRPKQ wtm ( and 6-man) KBBKNN, KNNKPP;  

  (0-1) KBBK(P/Q), KNNK(P/Q), KNPKQ, KRPK(P/Q) 

 

 
 

Table 2. Positions p01-p37: example maxDTM50 wins and 50mr-draws.6 

 

3.2 DTMpc with free-ranging ply-count 

 

With pc being allowed to range over all values 0-99, each endgame will have:  

 a maxDTM50, pc0 and a set of positions and a set of pc-values for which dtm50,pc = maxDTM50, pc0,  

 ‘maximum penalty’ positions for which ply-count pc produces max dtm50,pc - dtm, 

 ‘maximum variety’ positions for which varying pc gives most values of dtm50,pc. 

 

Five 5m endgames have maxDTM50, pc=0 > maxDTM and sixteen more have maxDTM50,pc0 > maxDTM: 

 - within Figure 1: (1-0) KBPK(P/R), KNNKP, KNPKP, KQPKP, KQRKP wtm, KRPKB, KRPKP wtm,  

  KRPKQ btm, KRPKR and (0-1) K(B/N/P)PKQ, KRPKQ, 

 - beyond Figure 1: (0-1) KPPKN, KRBKQ and (6 man) KNNKPP. 

                                                                 
6 ʹʹʹʹ absolutely unique value-preserving move; ʹʹ  unique metric-optimal move; ʹ  metric-equi-optimal move 

id Endgame FEN 1-0? 5-way d
tc

d
tm

d
tm

5
0

d
tz

d
tz

5
0

d
tz

5
0


Notes:  annotations to the DTZ50  metric

01 KBNKN 8/8/1N6/8/6B1/1K3n2/8/k7 b - - 0 1 1-0 -2 100 158 160 100 100 100 maxDTM50 s6m_P-less pos for pc  0

02 KPPKP 8/8/8/1p3K2/3P4/3P4/7k/8 b - - 0 1 1-0 -2 8 248 282 2 2 2 maxDTM50 s6m pos for pc   0

03 KRBKQ k4B2/8/8/8/6q1/8/K3R3/8 w - - 0 1 0-1 -2 82 140 140 82 82 82 maxDTM50 P-less 2-man win for pc  = 0

04 KRBKQ k4B2/8/8/8/6q1/8/K3R3/8 w - - 11 1 0-1 -2 82 140 144 82 82 82 maxDTM50 P-less 2-man win for pc  0

05 KRPKQ 4q3/1R6/8/8/k7/1PK5/8/8 b - - 0 1 0-1 2 137 193 195 77 77 77 maxDTM50 2-man win for pc  = 0

06 KRPKQ 2k5/8/8/R7/8/3K4/1P4q1/8 w - - 33 1 0-1 -2 126 182 214 64 64 64 maxDTM50 2-man win for pc   0

07 KNNKP 6k1/p7/8/8/7N/7K/2N5/8 w - - 0 1 1-0 2 178 181 223 30 56 56 maxDTM50 KNNKP pos for pc  = 0

08 KNNKP 8/8/5N2/p7/8/k1K5/8/1N6 b - - 4 1 1-0 -2 167 190 256 43 93 93 maxDTM50 KNNKP pos for pc   0

09 KQPKQ 3Q4/8/8/5K2/8/3P4/7k/1q6 b - - 0 1 1-0 -2 220 240 274 100 100 100 maxDTM50 KQPKQ pos for pc  = 0

10 KQPKQ 3Q4/8/8/5K2/8/8/3P3k/1q6 w - - 88 1 1-0 2 141 163 275 1 1 1 maxDTM50 KQPKQ pos for pc   0

11 KBBKNN 7k/7B/8/2B5/3K4/2n5/8/5n2 w - - 0 1 1-0 2 9 133 179 9 55 55 maxDTM50 KBBKNN pos for pc  = 0

12 KBBKNN 2n5/8/3B4/8/3K4/1B6/6n1/2k5 w - - 43 1 1-0 2 21 139 181 21 55 55 maxDTM50 KBBKNN pos for pc   0

13 KBBKN 8/8/8/7B/4k3/4B3/3K4/1n6 w - - 0 1 '1-0' 1 119 143 — 119 — 119

14 KBBKP 8/8/8/7B/4k3/4B3/1p1K4/8 b - - 0 1 '1-0' -1 6 144 — 6 — 1 1. … b1=N+ 50mr-draw

15 KBNKN 8/8/3K4/8/8/3B4/k7/1n1N4 w - - 0 1 '1-0' 1 139 199 — 139 — 139

16 KBNKP 8/8/3K4/8/8/3B4/kp6/3N4 b - - 0 1 '1-0' -1 9 200 — 9 — 1 1. … b1=N, 50mr-draw

17 KBPKN 1n6/3P4/8/8/1K6/7B/8/k7 w - - 0 1 '1-0' 1 1 199 — 1 — 1 1. d8=N, 50mr-draw

18 KNNKP K1k5/3N1N2/8/8/4p3/8/8/8 w - - 0 1 '1-0' 1 169 169 — 164 — 164

19 KNPKN kn6/3P4/1K6/8/8/8/3N4/8 w - - 0 1 '1-0' 1 1 191 — 1 — 1 1. d8=B, 50mr-draw

20 KPPKP 8/4P3/8/8/8/4P3/kp1K4/8 b - - 0 1 '1-0' -1 2 244 — 2 — 1 1. … b1=Q, 50mr-draw

21 KPPKQ 8/4P3/8/8/8/4P3/k2K4/1q6 w - - 0 1 '1-0' 1 1 243 — 1 — 1 1. e8=Q, 50mr-draw (dtz  = 102p)

22 KQPKP 8/4Q3/8/8/8/K7/6Pp/5k2 w - - 0 1 '1-0' 1 5 191 — 1 — 1 1. g4, 50mr-draw 

23 KQPKQ 4Q3/8/8/8/8/4P3/k2K4/1q6 b - - 0 1 '1-0' -1 222 242 — 102 — 102

24 KQRKP Q7/2k5/8/8/8/8/R2p4/K7 b - - 0 1 '1-0' -1 2 134 — 2 — 1 1. … d1=Q, 50mr-draw

25 KQRKQ Q7/2k5/8/8/8/8/R7/K2q4 w - - 0 1 '1-0' 1 119 133 — 119 — 119

26 KRBKR 8/3B4/8/1R6/5r2/8/3K4/5k2 w - - 0 1 '1-0' 1 117 129 — 117 — 117

27 KRPKB K1R5/8/3k4/3P4/8/8/1b6/8 w - - 0 1 '1-0' 1 113 131 — 105 — 105

28 KRPKP 6R1/P6K/1k6/8/8/8/3p4/8 b - - 0 1 '1-0' -1 2 136 — 2 — 1 1. … d1=Q, 50mr-draw

29 KRPKQ 6R1/P7/2q5/2k5/8/8/8/6K1 b - - 0 1 '1-0' -1 2 118 — 2 — 2 1. … Kb6 2. a8=Q, 50mr-draw

30 KBBKNN 8/6B1/8/8/2B1n3/6K1/3k3n/8 w - - 0 1 '1-0' 1 1 147 — 1 — 1 1. Kxh2, 50mr-draw

31 KBBKP 8/8/6B1/3K4/5B2/8/p7/3k4 b - - 0 1 '0-1' 1 1 157 — 1 — 1 1. … a1=Q 50mr-draw

32 KBBKQ 8/8/6B1/3K4/5B2/8/8/q2k4 w - - 0 1 '0-1' -1 136 156 — 136 — 136

33 KNNKP 3k3N/3N4/3K4/8/8/8/7p/8 b - - 0 1 '0-1' 1 1 145 — 1 — 1 1. … h1=Q, 50mr-draw

34 KNNKQ 3k3N/3N4/3K4/8/8/8/8/7q w - - 0 1 '0-1' -1 126 144 — 126 — 126 q.v., KNNKP '0-1'

35 KNPKQ 1k1K4/4P1N1/8/8/8/6q1/8/8 w - - 0 1 '0-1' -1 6 124 — 6 — 1 1. e8=N, 50mr-draw

36 KRPKP 8/8/8/5PR1/8/2K5/5p2/k7 w - - 0 1 '0-1' -1 2 188 — 2 — 2 1. Kd4, f1=Q, 50mr-draw

37 KRPKQ 8/7R/6K1/8/5P2/8/8/k6q b - - 0 1 '0-1' 1 116 165 — 3 — 2 1. … Qe4+ 2. f5, 50mr-draw

Value depths in ply
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Tables 2 and 3 provide a list of positions7,8 illustrating 50mr-impact: 

 p01-p06: zonal maxDTM50, pc=0 and maxDTM50, pc0 positions, 

 p07-p12: endgame-specific maxDTM50, pc=0 and maxDTM50, pc0 positions, 

 p13-p37: ‘50mr-draw’ frustrated wins or saved losses, 

 p38-p46: DTM-lengthened wins or losses with pc = 0, 

 p47-p50: zonal ‘maximum pc/DTM-penalty’ positions, 

 p51-p56: endgame-specific ‘maximum pc/DTM-penalty’ positions, 

 p57-p60: zonal maximum of the number of pc-determined mate-depths DTM50, pc, 

 p61-p63: endgame-specific maximum number of mate-depths, nmd. 

 

 
 

Table 3. Positions p38-p63: example elongated wins, and maximum penalty/variety positions . 

 

 

4 SUMMARY AND VIEW FORWARD 

 

The impact of the 50-move rule on sub-6-man chess, including the effect of the ply count pc, has been identified. 

Given a shortage of remaining ply, the winning strategy is more adaptable in some endgames than in others. The 

50mr impact increases as the number of men increases, and has been observed in key 6- and 7-man endgames of 

interest. This impact should be measured as the 50mr, now backed up by a mandatory 75-move rule, truncates chess 

as experienced over the board, whether played by man or machine. The evolving data files associated with this note 

(Huntington and Haworth, 2014) provide: 

 extended versions of Tables 1-3, 

 (annotated) pgn files illustrating various positions and lines mentioned here, and  

 a set of spreadsheets of the first author’s complete data. 

 

The maxDTZ50 figures inferred from these DTM50 EGTs confirm previous figures (Tamplin and Haworth, 2004). 

Some maxDTM50, pc positions and lines have been published in an evolving collection of chess records  (Haworth, 

2014b) which facilitates the comparison of DTM, DTM50, DTZ and DTZ50 lines. 

 

                                                                 
7 The 5-way value-scale is 2 for unconditional ‘50mr-wins/losses’, 1 for ‘50mr-draws’ and 0 for unconditional draws. 
8 The list includes a frustrated win but not necessarily a DTM -elongated win for every affected endgame. 

id Endgame FEN 1-0? 5-way d
tc

d
tm

d
tm

5
0

d
tz

d
tz

5
0

d
tz

5
0


Notes:  annotations to the DTZ50  metric

38 KNNKP 6k1/p7/8/8/7N/7K/2N5/8 w - - 0 1 1-0 2 180 181 223 32 58 58 dtm 50  = dtm  + 42p; maxDTM50,  pc =0 pos.

39 KPPKP 8/8/8/2K4p/4P3/4P3/k7/8 b - - 0 1 1-0 -2 8 248 282 2 2 2 dtm 50  = dtm + 34p; maxDTM50,  pc =0 pos.

40 KPPKQ 8/4P3/8/8/1q6/3KP3/k7/8 w - - 0 1 1-0 2 1 241 275 1 1 1 dtm 50  = dtm  + 34p; maxDTM50,  pc =0 pos.

41 KQPKQ 8/K7/8/8/7q/4PQ2/8/k7 b - - 0 1 1-0 -2 220 240 274 100 100 100 dtm 50  = dtm  + 34p; maxDTM50,  pc =0 pos.

42 KRPKQ 1K4R1/P7/8/8/8/8/1k6/q7 b - - 0 1 1-0 -2 4 112 114 4 4 4 dtm 50  = dtm  + 2p; maxDTM50,  pc =0 btm pos.

43 KBBKNN 8/8/6n1/8/k3BB2/8/n1K5/8 w - - 0 1 1-0 2 1 133 149 1 55 55 dtm 50  = dtm  + 16p

44 KBBKP 8/8/8/1k6/8/8/p4BB1/3K4 b - - 0 1 0-1 2 1 123 125 1 13 13 dtm 50  = dtm  + 2p

45 KRPKP 8/8/5K2/8/2R2P2/8/6p1/k7 b - - 0 1 0-1 2 1 159 163 1 11 11 dtm 50  = dtm  + 4p

46 KRPKQ 8/4q2R/k5K1/8/5P2/8/8/8 b - - 0 1 0-1 2 113 163 167 3 41 41 dtm 50  = dtm  + 4p

47 KPPKP 8/4P3/8/8/8/2K1P3/k3p3/8 w - - 99 1 1-0 2 1 17 275 1 1 1 max 5m_win pc /DTM-cost = 258p

48 KRRKN k7/3R4/8/8/8/K2R4/8/4n3 w - - 97 1 1-0 2 4 5 81 4 4 4 max 5m_P-less_win pc/DTM-cost = 76p

49 KNNKR 5r2/5N2/8/8/2N5/K1k5/8/8 b - - 98 1 0-1 2 1 3 73 1 1 1 max 2-3m_P-less_win pc/DTM-cost = 70p

50 KRPKQ 8/8/8/8/2K5/4k3/RP6/4q3 b - - 88 1 0-1 2 13 29 191 7 7 7 max 2-3m_win pc/DTM-cost = 162p

51 KBBKN k7/8/B2B4/8/3K4/8/8/6n1 w - - 90 1 1-0 2 9 11 45 9 9 9 max KBBKN pc/DTM-cost = 34p

52 KNNKP 7k/2K3Np/3N4/8/8/8/8/8 w - - 91 1 1-0 2 17 17 207 8 8 8 max KNNKP pc/DTM-cost = 190p

53 KQPKQ 8/1K6/8/8/q7/5Q2/4P3/k7 w - - 96 1 1-0 2 7 33 275 1 1 1 max KQPKQ pc/DTM-cost = 242p

54 KRBKR 8/8/B7/1R6/8/1K6/6r1/k7 w - - 90 1 1-0 2 9 11 37 9 9 9 max KRBKR (1-0) pc/DTM-cost = 26p

55 KRBKR 5r2/B7/8/8/2R5/1k6/8/K7 b - - 98 1 0-1 2 1 3 57 1 1 1 max KRBKR (0-1) pc/DTM-cost = 54p

56 KBNKNN 8/4B3/4N3/7n/k1K4n/8/8/8 w - - 98 1 1-0 2 1 3 161 1 1 1 max KBNKNN pc/DTM-cost = 158p

57 KNNKP 8/p7/2N3K1/8/8/8/2N1k3/8 w - - pc  1 1-0 2 120 121 223 42 44 44 max sub-6-man nmd  = 25

58 KQNKR 7N/6rk/8/8/K7/8/8/6Q1 w - - pc  1 1-0 2 11 29  11 11 11 max sub-6-man_P-less nmd  = 12

59 KRNKQ 7N/8/6R1/k7/8/8/K7/2q5 w - - pc  1 0-1 -2 8 42  8 8 8 max 2-3m_P-less win nmd  = 11

60 KRPKQ 8/8/4R3/3K2q1/2P5/8/7k/8 w - - pc  1 0-1 -2 58 104 31 31 31 max 2-3m win max nmd  = 14

61 KBBKN 5n2/1BB5/8/8/8/2K5/8/3k4 w - - pc  1 1-0 2 17 37  17 17 17 KBBKN max nmd  = 8

62 KQPKQ 8/8/8/3P4/6k1/3K2q1/3Q4/8 w - - pc  1 1-0 2 99 115 29 29 29 KQPKQ max nmd  = 13

63 KRBKR 6B1/8/5r2/8/1K6/7R/8/1k6 w - - pc  1 1-0 2 23 33  23 23 23 KRBKR max nmd = 5

Value depths in ply
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