Depth to mate and the 50-move rule

Article

Published Version

Huntington, G. and Haworth, G. (2015) Depth to mate and the 50-move rule. ICGA Journal, 38 (2). pp. 93-98. ISSN 13896911 Available at http://centaur.reading.ac.uk/39103/

It is advisable to refer to the publisher's version if you intend to cite from the work.

Publisher: The International Computer Games Association

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading's research outputs online

NOTE

DEPTH TO MATE AND THE 50-MOVE RULE

G. Huntington ${ }^{1}$ and G.M ${ }^{c} C$. Haworth ${ }^{2}$

Reading, UK

1. INTRODUCTION

The first author's DTM 50 'EGT' endgame tables (Huntington, 2013; Haworth, 2014a/b) provide 'DTM' Depth to Mate information as moderated by the FIDE (2014) ' 50 mr ' 50 -move rule and the ply-count $p c$. This note puts that achievement in the context of earlier DTM computations (Nalimov et al., 2000/2001; Wu and Beal, 2001a/b; Bleicher, 2015) and data from previous studies of 50mr-impact (Tamplin and Haworth, 2004; Bourzutschky et al., 2005; Tamplin, 2015). It compares some DTM $_{50}$ statistics with the intrinsic, unmoderated DTM and DTZ $_{50}$ data. ${ }^{3}$ Datasets supporting these results are available (Huntington and Haworth, 2015) and include a pgn file, its annotation, and the fuller statistics which cannot be accommodated here.

When considering 50 mr impact, the ply-count $p c$ or rather the ply-remaining count $p r \equiv 100-p c$ must be borne in mind. A position's $d_{t m 50, p c}$ may increase as $p c$ increases until the win becomes a 'frustrated win', a ' 50 mr -draw'. Even a mate in two ply will be frustrated if 99 ply have been expended, e.g., in KNNKP. These 'EM ${ }_{50}$ ' DTM ${ }_{50}$ EGTs are the first to provide depths for any value of $p c$. Clearly, $\operatorname{maxDTM}_{50, p c \geq 0} \geq \operatorname{maxDTM} 50, p c=0$.

The FIDE 50-move rule is not an intrinsic rule of the game but a 'rule of play' introduced by Ruy López (1561) for the convenience of professional coffee house players. The results here show that it has major impact on KBB KN and KNNKP, and therefore on the upstream KBBKNN, KNNKNP and KNNKPP. For s 6 m , s 7 m and s 8 m chess, maxDTZ is greater than 80,240 and 510 moves respectively (Haworth, 2014b). The 50 mr , now backed by the $75-$ move-rule, will apparently frustrate ever more subtle wins as the number of men increases.

The perspective here is that these extreme cases of extended wins, rather than being denied by rules of play, should become part of the culture, experience, record and history of chess, at least when an EGT-armed computer-engine demonstrates infallible play.

2. COMPUTING DTM: ALGORITHM, LANGUAGE AND PROGRAM

When generating any EGT, the fundamental principles are that (a) successor endgames' EGTs are computed first, and (b) a position can be given a depth:

- temporarily when one of its immediate successors has been given a depth, but
- definitively only after enough of its successors have been given their definitive depth.

Any computation begins by identifying 'mated' (in 0 ply) positions. Positions which can be assigned a depth may be found by repeated, linear sweeps of the whole endgame and the first sweeps efficiently net many positions. Shortly though, the more selective and efficient method is to 'unmove' from the 'frontier' of positions which have just been given a depth in the last cycle of the algorithm.

The best known DTM computations are those of Nalimov (2000/2001) which created EGTs for the whole of sub-7-man (s 7 m) chess (Bleicher, 2015). Nalimov employed linear sweeps rather than the more retrograde 'unmove' algorithm, giving a position a depth at the earliest opportunity but lowering it later as required. As evid enced by the results here, this occurred many times in generating the KNNKP EGT. In contrast, Wu (2001a/b) worked exclusively in unmove mode. His key idea was to defer identifying 'mates in $m+1$ ' until all 'mates in m ' had been identified. As each dtm is associated with one cycle of the algorithm, it only required two bits per position rather than one- or two-bytes, economising on memory by a factor of four or eight.

[^0]Huntington reverts to the principle of assigning depths as soon as possible. Each algorithm cycle corresponds to a specific number, $p r$, of ply remaining: $p r$ effectively increases from 0 to 100 during the computation. Lower values of DTM_{50} become possible when more ply are available. Table 3 shows that the highest variability of DTM $_{50}$ seen so far occurs in KNNKP with 25 different mate-depths. By noting on what cycle a DTM ${ }_{50}$ value is set, the various ply-ranges corresponding to a specific $d^{2} m_{50}$ can be identified for each chess position.

EGT generation, as a computation task, is challenging because the results are not self-evidently correct: the subtlety and toxicity of errors is well known (Hurd and Haworth, 2010). Where clarity of coding and correctness are particularly at risk, as has been argued in classic texts elsewhere (Hughes, 1990; Bird, 2014), 'FPL' functional programming languages, without side effects, may be preferred to imperative languages. The declarative style of FPLs, using higher levels of abstraction, creates programs which are more readable and understandable. Research in FPLs created an embarrassment of riches and ideas, and the best of these were brought together in the language Haskell, 'standardised' in Haskell 98 (Peyton-Jones, 2002) and then in Haskell 2010 (Marlow, 2010). HASKELL is most liked for its elegance as a language, for its type system, and for the confidence it creates that compiled code is likely to be correct code (MacIver, 2015) and was the choice of the first author here.

FPLs once had a reputation for inefficiency but modern compilers have largely offset this and performance is competitive today. For example, FPLs allow new methods of whole-program optimisation made possible by the promise of purity. Also, code can be written much more compactly due to the expressive power of treating functions as ordinary values that can be built at runtime. Certainly, there are new kinds of pitfalls which programmers must contend with: the challenge of balancing use of space and time remains. Small changes can have a large effect on performance by, e.g., causing an optimization to become inapplicable. Worse, unexpected memory leaks are common, and measures must be taken to prevent overzealous time optimisation that causes excess space usage. Such snags plagued earlier versions of the DTM ${ }_{50}$ EGT generator, and in general avoiding them is an active area of compiler research. The EGT itself consists internally of an array where each cell value stored the possible mate lengths for various ranges of PC, and an 'overflow' hash table to store values that do not fit in an array cell. The cell's size has to be fixed in advance and chosen with care. Too small, and the overflow structure becomes heavily used, which is much less space/time efficient than an array; too large, and much memory is wasted on unused array space.

Figure 1.5-man endgame wins, 1-0 and 0-1, at first apparently DTZ-susceptible to the 50-move rule.

3. THE RESULTS

DTM endgame tables presume a ply-count of $p c=0$ and therefore the DTM $_{50, p c}$ results with $p c=0$ provide a natural first focus. The later consideration of a free-ranging $p c$ places emphasis on the cost of $p c>0$ and the variability of $\mathrm{dtm}_{50, p c}$.

3.1 DTM $5_{0, p c}$ with zero ply-count pc

For sub-5-man chess, no endgames are affected as maxDTM < 100 ply. Figure 1 shows those 5 -man endgames, ranked by number of pawns, which appear at first to be susceptible to the $50 \mathrm{mr}, 1-0$ and/or $0-1$ wins ${ }^{4}$ perhaps being converted to 50 mr -draws or lengthened in some sense. Tamplin and Haworth (2004) identified the actual 50 mr impact in DTZ terms and this is annotated under four headings in Figure 1 and Table 1.

[^1]| | \＃P | Endgame | Res． | $\begin{aligned} & \text { maxDTM, ply } \\ & \text { wtm btm } \end{aligned}$ | | | | EZ | | | | | $\operatorname{maxDTM}_{50}$, ply | | | | | | | | | |
| :---: |
| | | | | | | | | $\begin{gathered} \equiv \\ E Z_{50} \\ ? \end{gathered}$ | \％wins frustrated | | $\begin{gathered} \% \text { wins } \\ \mathbf{d t z}_{50}>\mathrm{dtz} \end{gathered}$ | | $p c=0$ | | | | | any $p \boldsymbol{c}$ | | | | |
| | | | | | | | | | | | wtm | | btm | | | wtm | | btm | |
| | | | | \＃ | dtm | \＃ | tm | | wtm | btm | | | wtm | btm | | \＃ | dtm | \＃ | dtm | | \＃ | dtm | \＃ | dtm |
| 01 | 0 | KBBKN | 1－0 | 32 | 155 | 43 | 156 | | Δ | 21.05 | 48.20 | 0 | 0 | \downarrow | 275 | 131 | 319 | 132 | \downarrow | 275 | 131 | 319 | 132 |
| 02 | 1 | KBBKP | 1－0 | 1 | 147 | 15 | 146 | Δ | ε | ε | 0.01 | ε | \downarrow | 1 | 131 | 4 | 132 | $\downarrow \uparrow$ | 1 | 137 | 16 | 136 |
| 03 | 0 | KBNKN | 1－0 | 2 | 213 | 1 | 212 | Δ | 0.52 | 1.93 | 0 | 0 | \downarrow | 11，204 | 159 | 5，140 | 160 | | 11，204 | 159 | 5，140 | 160 |
| 04 | 1 | KBNKP | 1－0 | 9 | 207 | 9 | 208 | Δ | ε | ε | ε | ε | \downarrow | 5 | 161 | 10 | 162 | $\downarrow \uparrow$ | 8 | 175 | 2 | 174 |
| 05 | 1 | KBPKN | 1－0 | 1 | 199 | 1 | 192 | Δ | ε | ε | ε | ε | \downarrow | 6 | 175 | 4 | 174 | \uparrow | 1 | 177 | 1 | 176 |
| 06 | 2 | kbpkp | 1－0 | 92 | 133 | 52 | 134 | 三 | 0 | 0 | 0 | 0 | 三 | 92 | 133 | 52 | 134 | $\uparrow \uparrow$ | 3 | 145 | 3 | 146 |
| 07 | 1 | （ kbpkr） | 1－0 | 3 | 89 | 3 | 88 | 三 | 0 | 0 | 0 | 0 | $=$ | 3 | 89 | 3 | 88 | $\uparrow \uparrow$ | 5 | 89 | 5 | 90 |
| 08 | 1 | KNNKP | 1－0 | 2 | 229 | 4 | 228 | Δ | 26.35 | 46.87 | 42.16 | 30.80 | \downarrow | 7 | 223 | 12 | 222 | $\uparrow \uparrow$ | 28 | 255 | 3 | 256 |
| 09 | 1 | KNPKN | 1－0 | 5 | | 12 | 193 | Δ | ε | ε | ε | ε | \downarrow | 5 | 161 | 13 | 162 | $\downarrow \uparrow$ | 5 | 163 | 13 | 162 |
| 10 | 2 | knpkp | 1－0 | 10 | 113 | 10 | 114 | 三 | 0 | 0 | 0 | 0 | 三 | 10 | 113 | 10 | 114 | $\uparrow \uparrow$ | 1 | 129 | 2 | 130 |
| 11 | 2 | （ kppkb ） | 1－0 | 1 | 85 | 1 | 86 | 三 | 0 | 0 | 0 | 0 | 三 | 1 | 85 | 1 | 86 | 三－ | 1 | 85 | 1 | 86 |
| 12 | 2 | （ kppkn ） | 1－0 | 2 | 99 | 1 | 100 | 三 | 0 | 0 | 0 | 0 | 三 | 2 | 99 | 1 | 100 | ＝ | 1 | 99 | 1 | 100 |
| 13 | 3 | KPPKP | 1－0 | 6 | 253 | 7 | 254 | Δ | ε | ε | ε | ε | \uparrow | 4 | 281 | 4 | 282 | 个 | 5 | 281 | 4 | 282 |
| 14 | 2 | KPPKQ | 1－0 | 7 | 247 | 2 | 200 | Δ | 0.01 | 0.01 | 0 | 0 | \uparrow | 17 | 275 | 1 | 200 | $\uparrow \equiv$ | 17 | 275 | 1 | 200 |
| 15 | 1 | kppkr | 1－0 | 1 | 107 | 1 | 106 | 三 | 0 | 0 | 0 | 0 | 三 | 1 | 107 | 1 | 106 | 三 | 1 | 107 | 1 | 106 |
| 16 | 2 | KQPKP | 1－0 | 1 | 209 | 6 | 244 | Δ | ε | ε | ε | ε | ～ | 4 | 191 | 9 | 274 | ィ | 4 | 233 | 9 | 274 |
| 17 | 1 | KQPKQ | 1－0 | 5 | 247 | 13 | 246 | Δ | 0.02 | 0.08 | 0.03 | 0.10 | \uparrow | 36 | 273 | 30 | 274 | $\uparrow \uparrow$ | 3 | 275 | 30 | 274 |
| 18 | 1 | KQRKP | 1－0 | 1 | 79 | 3 | 134 | Δ | 0 | ε | 0 | 0 | \downarrow | 1 | 79 | 3 | 122 | $\sim \uparrow$ | 5 | 107 | 3 | 122 |
| 19 | 0 | KQRKQ | 1－0 | 3 | 133 | 31 | 134 | Δ | ε | ε | 0 | 0 | \downarrow | 3 | 121 | 31 | 122 | \downarrow | 3 | 121 | 31 | 122 |
| 20 | 1 | （ krbkp） | 1－0 | 1 | 55 | 4 | 72 | 三 | 0 | 0 | 0 | 0 | ＝ | 1 | 55 | 4 | 72 | $\uparrow \uparrow$ | 1 | 73 | 1 | 74 |
| 21 | 0 | KRBKR | 1－0 | 28 | 129 | 19 | 128 | Δ | 0.01 | 0.02 | 0 | 0 | \downarrow | 939 | 111 | 162 | 112 | $\downarrow \equiv$ | 939 | 111 | 162 | 112 |
| 22 | 1 | KRPKB | 1－0 | 3 | 145 | 13 | 146 | Δ | ε | ε | ε | ε | 三 | 3 | 145 | 13 | 146 | $\uparrow \uparrow$ | 5 | 149 | 15 | 150 |
| 23 | 2 | KRPKP | 1－0 | 3 | 111 | 3 | 136 | Δ | 0 | ε | ε | ε | \downarrow | 3 | 111 | 23 | 118 | $\sim \uparrow$ | 1 | 121 | 9 | 120 |
| 24 | 1 | KRPKQ | 1－0 | 45 | 135 | 1 | 108 | Δ | ε | ε | ε | 0 | \sim | 22 | 123 | 1 | 114 | | 48 | 123 | 1 | 114 |
| 25 | 1 | krpkr | 1－0 | 33 | 147 | 4 | 148 | 三 | 0 | 0 | 0 | 0 | \equiv | 33 | 147 | 4 | 148 | $\uparrow \uparrow$ | 2 | 161 | 1 | 162 |
| 26 | 1 | KBBKP | 0－1 | 54 | 164 | 82 | 165 | Δ | 5.85 | 8.47 | 0.07 | 0.02 | \downarrow | 3 | 134 | 7 | 135 | $\downarrow \uparrow$ | 4 | 136 | 2 | 137 |
| 27 | 0 | KBBKQ | 0－1 | 74 | 162 | 15 | 161 | Δ | 8.49 | 1.46 | 0 | 0 | \downarrow | 3，116 | 124 | 1，030 | 123 | $\downarrow \equiv$ | 3，116 | 124 | 1，030 | 123 |
| 28 | 2 | kbpkp | 0－1 | 2 | 100 | 3 | 101 | 三 | 0 | 0 | 0 | 0 | 三 | 2 | 100 | 3 | 101 | $\overline{\underline{ }}$ | 2 | 100 | 3 | 101 |
| 29 | 1 | （ kbpkq） | 0－1 | 3 | 100 | 2 | 99 | 三 | 0 | 0 | 0 | 0 | 三 | 3 | 100 | 2 | 99 | $\uparrow \uparrow$ | 1 | 104 | 2 | 103 |
| 30 | 1 | KNNKP | 0－1 | 11 | 146 | 9 | 147 | Δ | 0.14 | 0.06 | 0.10 | ε | \downarrow | 12 | 130 | 13 | 131 | \downarrow | 16 | 130 | 13 | 131 |
| 31 | 0 | KNNKQ | 0－1 | 10 | 144 | 2 | 143 | Δ | 0.05 | 0.01 | 0 | 0 | \downarrow | 162 | 124 | 104 | 123 | $\downarrow \equiv$ | 162 | 124 | 104 | 123 |
| 32 | 2 | knpkp | 0－1 | 3 | 114 | 3 | 115 | 三 | 0 | 0 | 0 | 0 | 三 | 3 | 114 | 3 | 115 | 三 | 3 | 114 | 3 | 115 |
| 33 | 1 | KNPKQ | 0－1 | 1 | 124 | 2 | 109 | Δ | ε | 0 | 0 | 0 | \downarrow | 1 | 114 | 2 | 109 | $\uparrow \uparrow$ | 1 | 146 | 1 | 145 |
| 34 | 3 | （ kppkp） | 0－1 | 3 | 84 | 3 | 85 | 三 | 0 | 0 | 0 | 0 | 三 | 3 | 84 | 3 | 85 | $\overline{\overline{\text { ® }}}$ | 3 | 84 | 3 | 85 |
| 35 | 2 | （ kppkq） | 0－1 | 12 | 82 | 6 | 81 | 三 | 0 | 0 | 0 | 0 | 三 | 12 | 82 | 6 | 81 | ヘ｜ | 3 | 86 | 1 | 87 |
| 36 | 2 | KRPKP | 0－1 | 5 | 200 | 6 | 205 | Δ | 0.14 | 0.05 | 0.10 | ε | \downarrow | 3 | 188 | 2 | 193 | $\downarrow \equiv$ | 3 | 188 | 2 | 193 |
| 37 | 1 | KRPKQ | 0－1 | 3 | 206 | 1 | 207 | Δ | 0.06 | 0.02 | 0.02 | ε | \downarrow | 21 | 194 | 1 | 195 | $\uparrow \uparrow$ | 7 | 214 | 3 | 213 |
| 38 | 2 | （ kppkn ） | 0－1 | 12 | 32 | 31 | 33 | 三 | 0 | 0 | 0 | 0 | 三 | 12 | 32 | 31 | 33 | $\uparrow \uparrow$ | 2 | 36 | 10 | 35 |
| 39 | 0 | krbkq | 0－1 | 3 | 140 | 4 | 139 | 三 | 0 | 0 | 0 | 0 | 三 | 3 | 140 | 4 | 139 | $\uparrow \uparrow$ | 3 | 144 | 4 | 143 |
| 40 | 0 | KBBKNN | 1－0 | 11 | 211 | 1 | 212 | Δ | 50.15 | 70.98 | 1.75 | 2.78 | \downarrow | 1 | 179 | 1 | 178 | $\downarrow \uparrow$ | 2 | 181 | 1 | 180 |
| 41 | 1 | KNNKNP | 1－0 | 198 | 275 | 30 | | Δ | ？ | ？ | ？ | ？ | \downarrow | 160 | 223 | 11 | 222 | $\downarrow \equiv$ | 160 | 223 | 11 | 222 |
| 42 | 2 | KNNKPP | 1－0 | 2 | 259 | 3 | 258 | Δ | ？ | ？ | ？ | ？ | \downarrow | 1 | 257 | 2 | 256 | $\uparrow \uparrow$ | 2 | 269 | 2 | 268 |

Table 1．Data for some endgame wins，the first 37 being those of Figure $1 .{ }^{5}$
The four－way DTZ－based taxonomy is indicated as follows：
－obviously unaffected wins（7）（bracketed＇lower case＇），e．g．，KBPKR（1－0），KPPK（Q／P）（0－1）： maxDTM ≤ 100 ply $\Rightarrow \mathrm{EM}_{50} \equiv \mathrm{EM} \Rightarrow$ there need be no 50 mr －effect here or＇downstream＇，
－perhaps affected wins（6）（unbracketed lower case），e．g．，K（B／N）PKP（1－0 and 0－1）： the DTZ_{50} and DTZ EGTs，i．e．， $\mathrm{EZ}_{50} \equiv \mathrm{EZ}$ ，are identical but perhaps $d t m_{50}>d t m$ somewhere，
－affected wins（14）（upper case），e．g．，KBBKP and KRPKP（both，1－0 and 0－1），KPPK（Q／P）（1－0）： $\operatorname{maxDTZ} \leq 100$ ply but there are 50 mr draws，i．e．， $\mathrm{EM}_{50} \neq \mathrm{EM}$ ，
－obviously affected wins（10）（underlined，upper case），e．g．，KNNKP（1－0）and KRPKQ（0－1）： $\operatorname{maxDTZ}>100$ ply $\Rightarrow 50 \mathrm{mr}$－draws $\Rightarrow \mathrm{EM}_{50} \neq \mathrm{EM}$ ．

Beyond the scope of Figure 1，Table 1 provides DTM 50 data for a number of otherendgames which are affected．A second DTZ／Z50 review（Bourzutschky et al．，2005）provides further context for Pawnless 6－man endgames．

[^2]With increasing likelihood， $\operatorname{maxDTM}_{50, p c=0}$ is greater than，less than or equal to maxDTM as indicated in Table 1：

```
maxDTM 50,pc=0 > maxDTM:
    (1-0) KPPKP, KPPKQ, KQPKP btm, KQPKQ, KRPKQ btm
maxDTM
            (1-0) KB(B/N)K(N/P), KBPKN, KNNKP, KNPKN, KQPKP btm, KQRK(P/Q), KRBKR, KRPKP,
            KRPKQ wtm ( and 6-man) KBBKNN, KNNKPP;
            (0-1) KBBK(P/Q), KNNK(P/Q), KNPKQ, KRPK(P/Q)
```

		Value		depths in ply			Notes：annotations to the $\mathrm{DTZ}_{50}{ }^{\prime}$ metric
id Endgame	FEN	1－0？ 5	5－way	§ E	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	气苍 苍	
01 KBNKN	8／8／1N6／8／6B1／1K3n2／8／k7 b－－0 1	1－0	－2	100158	160	100100100	maxDTM ${ }_{50}$ s6m＿P－less pos for $p c \geq 0$
02 KPPKP	8／8／8／1p3K2／3P4／3P4／7k／8 b－－0 1	1－0	－2	8248	282	$2 \quad 2$	$\operatorname{maxDTM}_{50} \mathrm{~s}^{6} \mathrm{~m}$ pos for $p c \geq 0$
03 KRBKQ	k4B2／8／8／8／6q 1／8／K3R3／8 w－－0 1	0－1	－2	82140	140	$\begin{array}{lll}82 & 82 & 82\end{array}$	$\operatorname{maxDTM~}_{50}$ P－less 2－man win for $p c=0$
04 KRBKQ	k4B2／8／8／8／6q 1／8／K3R3／8 w－－ 111	0－1	－2	82140	144	$\begin{array}{llll}82 & 82 & 82\end{array}$	$\operatorname{maxDTM~}_{50}$ P－less 2－man win for $p c \geq 0$
05 KRPKQ	4q3／1R6／8／8／k7／1PK5／8／8 b－－ 1	0－1	2	137193	195	$77 \quad 7777$	$\operatorname{maxDTM}_{50} 2$－man win for $p c=0$
06 KRPKQ	2k5／8／8／R7／8／3K4／1P4q 1／8 w－－33 1	0－1	－2	126182	214	$64 \quad 64 \quad 64$	$\operatorname{maxDTM}_{50} 2$－man win for $p c \geq 0$
07 KNNKP	$6 \mathrm{k} 1 / \mathrm{p} 7 / 8 / 8 / 7 \mathrm{~N} / 7 \mathrm{~K} / 2 \mathrm{~N} 5 / 8 \mathrm{w}--01$	1－0	2	178181	223	$\begin{array}{llll}30 & 56 & 56\end{array}$	$\operatorname{maxDTM}_{50}$ KNNKP pos for $p c=0$
08 KNNKP	8／8／5N2／p7／8／k1K5／8／1N6 b－－4 1	1－0	－2	167190	256	$43 \quad 93 \quad 93$	$\operatorname{maxDTM}_{50} \mathrm{KNNKP}^{\text {pos for } p c \geq 0}$
09 KQPKQ	3Q4／8／8／5K2／8／3P4／7k／1q6 b－－ 01	1－0	－2	220240	274	100100100	$\operatorname{maxDTM}_{50}$ KQPKQ pos for $p c=0$
10 KQPKQ	3Q4／8／8／5K2／8／8／3P3k／1q6 w－－88 1	1－0	2	141163	275	11	$\operatorname{maxDTM}_{50} \mathrm{KQPKQ}^{\text {pos for } p c \geq 0}$
11 KBBKNN	7k／7B／8／2B5／3K4／2n5／8／5n2 w－－01	1－0	2	9133	179	$\begin{array}{llll}9 & 55 & 55\end{array}$	$\mathrm{maxDTM}_{50} \mathrm{KBBKNN}^{\text {pos for } p c=0}$
12 KBBKNN	2n5／8／3B4／8／3K4／1B6／6n 1／2k5 w－－431	1－0	2	21139	181	$21 \quad 55 \quad 55$	$\mathrm{maxDTM}_{50} \mathrm{KBBKNN}^{\text {pos for } p c \geq 0}$
13 KbBKN	8／8／8／7B／4k3／4B3／3K4／ln6 w－－01	＇1－0＇	1	119143	－	$119-119$	
14 KBBKP	8／8／8／7B／4k3／4B3／1p1K4／8 b－－ 01	＇1－0＇	－1	6144	－	$6-1$	1．．．．bl $=\mathrm{N}+^{\prime \prime \prime \prime}$ ， 50 mr －draw
15 KBNKN	8／8／3K4／8／8／3B4／k7／ln $1 \mathrm{~N} 4 \mathrm{w}--01$	＇1－0＇	1	139199	－	$139-139$	
16 KBNKP	8／8／3K4／8／8／3B4／kp6／3N4 b－－0 1	＇1－0＇	－1	9200	－	$9-1$	1．．．．bl $=\mathrm{N}^{\prime \prime \prime \prime}$ ， 50 mr －draw
17 KBPKN	1n6／3P4／8／8／1K6／7B／8／k7 w－－0 1	＇1－0＇	1	1199	－	1 －	1． $\mathrm{d} 8=\mathrm{N}^{\prime \prime \prime \prime}, 50 \mathrm{mr}$－draw
18 KNNKP	K1k5／3N1N2／8／8／4p3／8／8／8 w－－ 01	＇1－0＇	1	169169	－	$164-164$	
19 KNPKN	kn6／3P4／1K6／8／8／8／3N4／8 w－－0 1	＇1－0＇	1	1191	－	$1-1$	1．d8＝ $\mathrm{B}^{\prime \prime \prime \prime}$ ， 50 mr －draw
20 KPPKP	8／4P3／8／8／8／4P3／kp 1 K4／8 b－－ 01	＇1－0＇	－1	2244	－	$2-1$	1．．．．bl＝Q＇＂＇， 50 mm －draw
21 KPPKQ	8／4P3／8／8／8／4P3／k2K4／1q6 w－－01	＇1－0＇	1	243	－	$1-1$	1．e8＝Q＇＇＂＇， 50 mr －draw（ $d t z=102 \mathrm{p}$ ）
22 KQPKP	8／4Q3／8／8／8／K7／6Pp／5k2 w－－ 01	＇1－0＇	1	5191	－	1 －	1． $4^{\prime \prime \prime \prime \prime}, 50 \mathrm{mr}$－draw
23 KQPKQ	4Q3／8／8／8／8／4P3／k2K4／1q6 b－－ 01	＇1－0＇	－1	222242	－	$102-102$	
24 KQRKP	Q7／2k5／8／8／8／8／R2p4／K7 b－－ 01	＇1－0＇	－1	2134	－	$2-$	1．．．．dl＝Q ${ }^{\prime \prime \prime \prime}$ ， 50 mr －draw
25 KQRKQ	Q7／2k5／8／8／8／8／R7／K2q4 w－－0 1	＇1－0＇	1	119133		$119-119$	
26 KRBKR	8／3B4／8／1R6／5r2／8／3K4／5k2 w－－0 1	＇1－0＇	1	117129	－	$117-117$	
27 KRPKB	K1R5／8／3k4／3P4／8／8／1b6／8 w－－ 01	＇1－0＇	1	113131	－	105－105	
28 KRPKP	6R1／P6K／1k6／8／8／8／3p4／8 b－－ 01	＇1－0＇	－1	2136	－	2 －	1．．．．dl＝Q＇＂＇， 50 mr －draw
29 KRPKQ	6R1／P7／2q5／2k5／8／8／8／6K1 b－－ 01	＇1－0＇	－1	2118	－	$2-2$	1．．．．Kb6 ${ }^{\prime \prime \prime \prime}$ 2．a8＝Q ${ }^{\prime \prime \prime \prime}$ ， 50 mr －draw
30 KBBKNN	8／6B1／8／8／2B1n3／6K1／3k3n／8 w－－01	＇1－0＇	1	1147	－	1	1．Kxh2＇＂＇， 50 mr －draw
31 KBBKP	8／8／6B1／3K4／5B2／8／p7／3k4 b－－01	＇0－1＇	1	1157	－	$1-1$	1．．．．al＝Q＇＂＇， 50 mr －draw
32 KBBKQ	8／8／6B1／3K4／5B2／8／8／q2k4 w－－01	＇0－1＇	－1	136156	－	136－136	
33 KNNKP	$3 \mathrm{k} 3 \mathrm{~N} / 3 \mathrm{~N} 4 / 3 \mathrm{~K} 4 / 8 / 8 / 8 / 7 \mathrm{p} / 8 \mathrm{~b}--01$	＇0－1＇	1	1145	－	1 －	1．．．． $\mathrm{hl} 1=\mathrm{Q}^{\prime \prime \prime \prime}$ ， 50 mr －draw
34 KNNKQ	3k3N／3N4／3K4／8／8／8／8／7q w－－ 01	＇0－1＇	－1	126144	－	$126-126$	q．v．，KNNKP＇0－1＇
35 KNPKQ	1k1K4／4P1N1／8／8／8／6q 1／8／8 w－－ 01	＇0－1＇	－1	6124	－	6	1．e8＝N＂＇＂， 50 mr －draw
36 KRPKP	8／8／8／5PR1／8／2K5／5p2／k7 w－－0 1	＇0－1＇	－1	2188	－	2	1．Kd4＇＂＇＇，fl＝${ }^{\prime \prime \prime \prime \prime}$＇，50mr－draw
37 KRPKQ	8／7R／6K1／8／5P2／8／8／k6q b－－ 01	＇0－1＇	1	116165	－	3 －	1．．．．Qe4＋＂2．f5＂＇＂， 50 mr －draw

Table 2．Positions p01－p37：example maxDTM 50 wins and 50 mr －draws．${ }^{6}$

3.2 DTM $_{p c}$ with free－ranging ply－count

With $p c$ being allowed to range over all values $0-99$ ，each endgame will have：
－a maxDTM ${ }_{50, p c \geq 0}$ and a set of positions and a set of $p c$－values for which $d t m_{50, p c}=\operatorname{maxDTM}_{50, p c \geq 0}$ ，
－＇maximum penalty＇positions for which ply－count $p c$ produces max $d_{t m 50, p c}-d t m$ ，
－＇maximum variety＇positions for which varying $p c$ gives most values of $d t m 50, p c$ ．
Five 5 m endgames have $\operatorname{maxDTM}_{50, p c=0}>\operatorname{maxDTM}$ and sixteen more have $\operatorname{maxDTM}_{50, p c \geq 0}>\operatorname{maxDTM}$ ： －within Figure 1：（1－0）KBPK（P／R），KNNKP，KNPKP，KQPKP，KQRKP wtm，KRPKB，KRPKP wtm， KRPKQ btm，KRPKR and（ $0-1$ ）K（B／N／P）PKQ，KRPKQ，
－beyond Figure 1：（0－1）KPPKN，KRBKQ and（6 man）KNNKPP．

[^3]Tables 2 and 3 provide a list of positions ${ }^{7,8}$ illustrating 50 mr -impact:

- p01-p06: zonal maxDTM ${ }_{50, p c=0}$ and maxDTM ${ }_{50, p c \geq 0}$ positions,
- p07-p12: endgame-specific $\operatorname{maxDTM}_{50, p c=0}$ and $\operatorname{maxDTM}_{50, p c \geq 0}$ positions,
- p13-p37: ‘50mr-draw’ frustrated wins or saved losses,
- p38-p46: DTM-lengthened wins or losses with $p c=0$,
- p47-p50: zonal 'maximum $p c / D T M-p e n a l t y ' ~ p o s i t i o n s, ~$
- p51-p56: endgame-specific 'maximum $p c /$ DTM-penalty' positions,
- p57-p60: zonal maximum of the number of $p c$-determined mate-depths DTM D $_{50, p c}$,
- p61-p63: endgame-specific maximum number of mate-depths, nmd.

			Value		depths in ply						Notes: annotations to the $\mathrm{DTZ}_{50}{ }^{\prime}$ metric
id	Endgame	FEN	1-0? 5	5-way	\#	E	$\begin{aligned} & \theta \\ & \text { En } \\ & \text { En } \end{aligned}$	N	N	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	
38	KNNKP	6k1/p7/8/8/7N/7K/2N5/8 w--0 1	1-0	2	180	0181	223	32	58	58	$\mathrm{dtm}_{s o}=d t m+42 \mathrm{p} ; \operatorname{maxDTM}_{\text {so } 0 . p c} \Rightarrow$ pos.
39	KPPKP	8/8/8/2K4p/4P3/4P3/k7/8 b-- 1	1-0	-2	8	248	282	2	2	2	$d t m_{s o}=d t m+34 \mathrm{p} ; \operatorname{maxDTM}_{50, p c}=0$ pos.
40	KPPKQ	8/4P3/8/8/1q6/3KP3/k7/8 w--01	1-0	2	1	241	275	1	1	1	$\mathrm{dtm}_{s o}=\mathrm{dtm}+34 \mathrm{p} ; \operatorname{maxDTM}_{50, p c} \Rightarrow$ pos.
41	KQPKQ	8/K7/8/8/7q/4PQ2/8/k7 b--01	1-0	-2	220	0240	274	100		100	$d t m_{s o}=d t m+34 \mathrm{p} ; \operatorname{maxDTM}_{50, p c} \Rightarrow$ pos.
42	KRPKQ	1K4R1/P7/8/8/8/8/1k6/q7 b--0 1	1-0	-2	4	112	114	4	4	4	$\mathrm{dtm}_{s o}=\mathrm{dtm}+2 \mathrm{p} ; \operatorname{maxDTM}_{50, p c}=0 \mathrm{btm}$ pos.
43	KBBKNN	8/8/6n 1/8/k3BB2/8/n 1 K5/8 w--0 1	1-0	2	1	133	149	1	55	55	$d t m_{s o}=d t m+16 \mathrm{p}$
44	KBBKP	8/8/8/1k6/8/8/p4BB1/3K4b--0 1	0-1	2	1	123	125	1	13	13	$\mathrm{dtm}_{\text {so }}=\mathrm{dtm}+2 \mathrm{p}$
45	KRPKP	8/8/5K2/8/2R2P2/8/6p 1/k7 b--0 1	0-1	2	1	159	163	1	11	11	$d t m_{s o}=d t m+4 \mathrm{p}$
46	KRPKQ	8/4q2R/k5K1/8/5P2/8/8/8 b--01	0-1	2	113	3163	167	3	41	41	$d t m_{s o}=d t m+4 \mathrm{p}$
47	KPPKP	8/4P3/8/8/8/2K1P3/k3p3/8 w--991	1-0	2	1	17	275	1	1	1	max 5m_win $p c /$ DTM $-\operatorname{cost}=258 \mathrm{p}$
48	KRRKN	k7/3R4/8/8/8/K2R4/8/4n3 w--971	1-0	2	4	5	81	4	4	4	max 5m_P-less_win pc/DTM-cost $=76 \mathrm{p}$
49	KNNKR	$5 \mathrm{r} 2 / 5 \mathrm{~N} 2 / 8 / 8 / 2 \mathrm{~N} 5 / \mathrm{K} 1 \mathrm{k} 5 / 8 / 8 \mathrm{~b}--981$	0-1	2	1	3	73	1	1	1	max 2-3m_P-less_win pc/DTM-cost $=70 \mathrm{p}$
50	KRPKQ	8/8/8/8/2K5/4k3/RP6/4q3 b --88 1	0-1	2	13	1329	191	7	7	7	max 2-3m_win pc/DTM-cost $=162 \mathrm{p}$
51	KBBKN	k7/8/B2B4/8/3K4/8/8/6n 1 w--90 1	1-0	2	9	11	45	9	9	9	$\max \mathrm{KBBKN} \mathrm{pc} / \mathrm{DTM}-\operatorname{cost}=34 \mathrm{p}$
52	KNNKP	$7 \mathrm{k} / 2 \mathrm{~K} 3 \mathrm{~Np} / 3 \mathrm{~N} 4 / 8 / 8 / 8 / 8 / 8 \mathrm{w}-\mathrm{-91} 1$	1-0	2	17	717	207	8	8	8	max KNNKP pc/DTM - cost $=190 \mathrm{p}$
53	KQPKQ	8/1K6/8/8/q7/5Q2/4P3/k7 w--961	1-0	2	7	33	275	1	1	1	\max KQPKQ pc/DTM - cost $=242 \mathrm{p}$
54	KRBKR	8/8/B7/1R6/8/1K6/6r1/k7 w--90 1	1-0	2	9	11	37	9	9	9	$\max \operatorname{KRBKR}(1-0) \mathrm{pc} / \mathrm{DTM}-\operatorname{cost}=26 \mathrm{p}$
55	KRBKR	5r2/B7/8/8/2R5/1k6/8/K7 b --98 1	0-1	2	1	3	57	1	1	1	$\max \operatorname{KRBKR}(0-1) \mathrm{pc} / \mathrm{DTM}-\operatorname{cost}=54 \mathrm{p}$
56	KBNKNN	8/4B3/4N3/7n/k1K4n/8/8/8 w--98 1	1-0	2	1	3	161	1	1	1	\max KBNKNN pc/DTM - cost $=158 \mathrm{p}$
57	KNNKP	8/p7/2N3K1/8/8/8/2N1k3/8 w--pc 1	1-0	2	120	121	$\rightarrow 223$	42	44	44	max sub-6-man $n m d=25$
58	KQNKR	7N/6rk/8/8/K7/8/8/6Q1 w--pc 1	1-0	2	11	129	$\rightarrow 61$	11	11	11	max sub-6-man_P-less nmd $=12$
59	KRNKQ	7N/8/6R1/k7/8/8/K7/2q5 w--pc 1	0-1	-2	8	42	$\rightarrow 66$	8	8	8	max 2-3m_P-less win $n m d=11$
60	KRPKQ	8/8/4R3/3K2q 1/2P5/8/7k/8w--pc 1	0-1	-2	58	8104	$\rightarrow 164$	31	31	31	max 2-3m win max $n m d=14$
61	KBBKN	$5 \mathrm{n} 2 / 1 \mathrm{BB} 5 / 8 / 8 / 8 / 2 \mathrm{~K} 5 / 8 / 3 \mathrm{k} 4 \mathrm{w}--p c 1$	1-0	2	17	737	$\rightarrow 51$	17	17	17	KBBKN max $n m d=8$
62	KQPKQ	8/8/8/3P4/6k1/3K2q 1/3Q4/8w--pc 1	1-0	2	99	115	$\rightarrow 159$	29	29	29	KQPKQ max $n m d=13$
63	KRBKR	6B1/8/5r2/8/1K6/7R/8/1k6 w--pc 1	1-0	2	23	333	$\rightarrow 41$	23	23	23	KRBKR max $n m d=5$

Table 3. Positions p38-p63: example elongated wins, and maximum penalty/variety positions.

4 SUMMARY AND VIEW FORWARD

The impact of the 50 -move rule on sub-6-man chess, including the effect of the ply count $p c$, has been identified. Given a shortage of remaining ply, the winning strategy is more adaptable in some endgames than in others. The 50 mr impact increases as the number of men increases, and has been observed in key 6- and 7-man endgames of interest. This impact should be measured as the 50 mr , now backed up by a mandatory 75 -move rule, truncates chess as experienced over the board, whether played by man or machine. The evolving data files associated with this note (Huntington and Haworth, 2014) provide:

- extended versions of Tables 1-3,
- (annotated) pgn files illustrating various positions and lines mentioned here, and
- a set of spreadsheets of the first author's complete data.

The maxDTZ ${ }_{50}$ figures inferred from these DTM ${ }_{50}$ EGTs confirm previous figures (Tamplin and Haworth, 2004). Some maxDTM ${ }_{50, p}$ positions and lines have been published in an evolving collection of chess records (Haworth, 2014b) which facilitates the comparison of DTM, DTM ${ }_{50}$, DTZ and DTZ $_{50}$ lines.

[^4]Acknowledgements. Thanks first to 'Kronsteen' (2012) who inspired this work on DTM ${ }_{50}$ and shared data from his own work. Thanks also to Eiko Bleicher (2014) and John Tamplin (2014) for previous collaborations and for their long-standing EGT query services.

References

Bird, R. (2014). Thinking Functionally with Haskell. CUP. ISBN 978-1107452640.
Bleicher, E. (2015). Nalimov DTM EGT query service. http://www.k4it.de/index.php?topic=egtb\&lang=en.
Bourzutschky, M. S., Tamplin, J. A. and Haworth, G. M ${ }^{\text {c }}$ C. (2005). Chess endgames: 6-man data and strategy. Theoretical Computer Science, Vol. 349, No. 2, pp. 140-157. ISSN 0304-3975. doi: 10.1016/j.tcs.2005.09.043. http://centaur.reading.ac.uk/4524/.
FIDE (2014). Laws of chess, post 2014-07-01. http://www.fide.com/fide/handbook.html?id=171\&vie w=article.
Haworth, G.M ${ }^{c}$ C. (2014a). Chess Endgame News. ICGA Journal, Vol. 37, No. 1, pp. 25-9, with supporting pgn dataset at http://centaur.reading.ac.uk/37158/.

Haworth, G.M ${ }^{\mathrm{c}}$ C. (2014b). Chess Endgame Records. Dataset at http://centaur.reading.ac.uk/34268/.
Hughes, J. (1990). Why Functional Programming Matters.From Research Topics in Functional Programming (ed., Turner, D.A.), pp. 17-42. Addison Wesley, Longman. ISBN 978-0201172362 (1990).

Huntington, G. (2013). Endgame tablebases with the fifty-move rule. http://galen.metapath.org/egtb50/.
Huntington, G. and Haworth, G.M ${ }^{\mathrm{c}}$ C. (2015). Depth to Mate and the 50-Move Rule. ICGA Journal, Vol. 38, No. 1, pp. 50-55. This note plus supporting pgn dataset and annotation at http://centaur.reading.ac.uk/39103/.

Hurd, J. and Haworth, G. M ${ }^{\text {c C. (2010). Data assurance in opaque computations. Advances in Computer Games } 12}$ (eds., H. J. van den Herik and P. Spronck), LNCS Vol. 6048, pp. 221-231. ISSN 0302-9743, ISBN 978-3-642-12992-6, doi 10.1007/978-3-642-12993-3_20.
'Kronsteen' (2012) http://preview.tinyurl.com/of9gk49. DTM ${ }_{50}$: a new metric for EGTs.
López de Segura, R. (1561). Libro de la invencion liberaly arte del juego del axedrez. Book of the liberal invention and art of the game of chess.

MacIver, D.R. (2015). http://hammerprinciple.com/therighttool/items/haskell/c-2 on the 'Hammer Principle' website: a comparison of HASKELL and C++.
Marlow, S. (ed.) (2010). https://www.haskell.org/onlinereport/haskell2010/. HASKELL 2010, Language Report.
Nalimov, E.V., Haworth, G.M ${ }^{c}$ C. and Heinz, E.A. (2000). Space-Efficient Indexing of Endgame Tables. ICGA Journal, Vol. 23, No. 3, pp. 148-162. ISSN 1389-6911. http://centaur.reading.ac.uk/4562/.
Nalimov, E.V., Haworth, G.M ${ }^{\mathrm{c}}$ C. and Heinz, E.A. (2001). Space-Efficient Indexing of Endgame Databases for Chess. Advances in Computer Games 9, (eds. H.J. van den Herik and B. Monien), pp. 93-113. Institute for Knowledge and Agent Technology (IKAT), Maastricht, The Netherlands. ISBN 9-0621-6576-1. http://centaur.reading.ac.uk/4563/.

Peyton-Jones. S. (ed.) (2002). https://www.haskell.org/onlinereport/. HASKELL 98, The Revised Report: language and libraries.
Tamplin, J.A. (2015). 'Nalimov format' DTC/Z/Z ${ }_{50}$ EGT query service. http://chess.jaet.org/endings/.
Tamplin, J.A. and Haworth, G.M ${ }^{\mathrm{c}}$ C. (2004). Chess endgames: data and strategy. In: Advances in Computer Games: Many Games, Many Challenges (eds., van den Herik, H. J., Iida, H. and Heinz, E. A.), pp. 81-96. Proceedings of Advances in Computer Games (10). Kluwer Academic Publishers, Norwell MA. http://centaur.reading.ac.uk/4547/.

Wu, R. and Beal, D.F. (2001). Computer Analysis of some Chinese Chess Endgames. Advances in Computer Games 9, (eds.H. J. van den Herik and B. Monien), pp. 261-273. Institute for Knowledge and Agent Technology (IKAT), Maastricht, The Netherlands. ISBN 9-0621-6576-1.

Wu, R. and Beal, D.F. (2001). Fast, Memory-Efficient Retrograde Algorithms. ICGA Journal, Vol. 24, No. 3, pp. 147-159.

[^0]: ${ }^{1} \mathrm{http}: / /$ galen.metapath.org/egtb50/.
 ${ }^{2}$ The University of Reading, Berkshire, UK, RG6 6AH. email: guy.haworth@bnc.oxon.org.
 ${ }^{3} \mathrm{DTZ} \equiv$ minimaxed depth to the zeroing of the ply-count, i.e., to a pawn-push, capture and/or mate which end the current phase of play.

[^1]: ${ }^{4}$ In fact, the 50 mr only affects both 1-0 and $0-1$ wins in the endgames KBBKP, KNNKP, KRPKQ and KRPKP of Figure 1.

[^2]: ${ }^{5} \operatorname{maxDTM}_{50,0}$ is compared with maxDTM． $\operatorname{maxDTM}_{50, p c}$ is compared with maxDTM and then $\operatorname{maxDTM}_{50,0}$ ．\downarrow ，＇\equiv＇，‘ \uparrow＇ and＇\sim＇mean，respectively，＇if anything，less than＇，＇identical＇，＇if anything，more than＇and＇considering wtm／btm，both less than and more than＇．＇$=$＇rather than＇\equiv＇indicate that the number of maximal positions has changed．

[^3]: $6{ }^{\prime \prime \prime \prime} \equiv$ absolutely unique value－preserving move；${ }^{\prime \prime} \equiv$ unique metric－optimal move；＇\equiv metric－equi－optimal move

[^4]: ${ }^{7}$ The 5 -way value-scale is ± 2 for unconditional ' 50 mr -wins $/$ losses', ± 1 for ' 50 mr -draws' and 0 for unconditional draws.
 ${ }^{8}$ The list includes a frustrated win but not necessarily a DTM -elongated win for every affected endgame.

