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Computationally Efficient Rule-Based
Classification for Continuous Streaming Data

Thien Le, Frederic Stahl, João Bártolo Gomes, Mohamed Medhat Gaber, Giuseppe
Di Fatta

Abstract Advances in hardware and software technologies allow to capture stream-
ing data. The area of Data Stream Mining (DSM) is concerned with the analysis
of these vast amounts of data as it is generated in real-time. Data stream classifica-
tion is one of the most important DSM techniques allowing to classify previously
unseen data instances. Different to traditional classifiers for static data, data stream
classifiers need to adapt to concept changes (concept drift) in the stream in real-time
in order to reflect the most recent concept in the data as accurately as possible. A
recent addition to the data stream classifier toolbox is eRules which induces and
updates a set of expressive rules that can easily be interpreted by humans. However,
like most rule-based data stream classifiers, eRules exhibits a poor computational
performance when confronted with continuous attributes. In this work, we propose
an approach to deal with continuous data effectively and accurately in rule-based
classifiers by using the Gaussian distribution as heuristic for building rule terms
on continuous attributes. We show on the example of eRules that incorporating our
method for continuous attributes indeed speeds up the real-time rule induction pro-
cess while maintaining a similar level of accuracy compared with the original eRules
classifier. We termed this new version of eRules with our approach G-eRules.
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1 Introduction

One of the problems in the area of Big Data Analytics is concerned with is the
analysis of high velocity data streams. A data stream is defined as data instances
that are generated at a high speed and thus challenges our computational capabilities
for the processing of this data [10]. There are many applications that generate such
fast and possibly infinite data streams, such as sensor networks, communication
networks, Internet traffic, stock markets [8, 18].

Unlike traditional data mining systems that process static (batch) data, data
stream mining algorithms analyse the streaming data on the fly in order to avoid
storing these possibly infinite amounts of data. Data stream classification is only
one but very important data mining task on streaming data. Data stream classifiers
learn and adapt to changes in the data (concept drifts) in real-time and thus require
only a single pass through the training data. A concept drift occurs if the current
data mining model (i.e. the classifier) is no longer valid through a change of the
distribution in the data stream.

A recent data stream classifier development is eRules [16]. eRules is based on a
sliding window approach [3] and uses the rule-based Prism classifier [7] to work on
streaming data. eRules has shown good classification accuracy and adaptability to
concept drifts [16]. eRules induces rules of the form IF condition THEN classifica-
tion that are expressive and compact and effectively represent information for clas-
sification. The condition is a conjunction of rule terms of the form (Attribute=Value)
for categorical attributes and (Attribute <Value) or (Attribute≥Value) for contin-
uous data. Compared with other stream classifiers (such as Hoeffding Trees) eRules
tends to leave a data instance unclassified rather than forcing a possibly wrong clas-
sification. This feature is highly desirable in many applications where the results
from miss-classification are costly and un-reversible, e.g.: medical and financial ap-
plications. Further weaknesses of the decision tree structure in comparison with
rulesets have been analysed, and the reader is referred to [16] for further reading.

However, eRules method of processing continuous attributes is computationally
very expensive and hence results in long processing times, which is a disadvantage
on the application on data streams. In this paper, we propose a new heuristic method
based on the Gaussian distribution in order to make eRules computationally more
efficient. We show empirically that our method improves eRules’ processing times
and competes well with other data stream classifiers. We termed this new version of
the classifier G-eRules, where G stands for the use of the Gaussian distribution. Our
method is not only applicable to eRules but could potentially be adopted in other
rule and decision tree based stream classifiers as well.

The paper is organised as follows. Section 2 highlights related work in the field
of rule-based data stream classification. Section 3 discusses the principles of the
eRules classifier and our new approach for dealing with continuous attributes based
on the Gaussian distribution. An empirical analysis of eRules classifier with our
approach, termed G-eRules is presented in Section 4. Concluding remarks and a
brief description of ongoing work are given in Section 5.
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2 Related Work

Many algorithms for data stream classification have been proposed. Gaber et al.
have identified such techniques and their features in [11]. Among these techniques,
possibly the best established methods, are the Hoeffding tree based approaches [9].
Nevertheless, tree based classification approaches have been criticised in the past
for both static data classification [7, 20] as well as for data stream classification [16,
19]. In particular, the drawbacks of decision tree based techniques in dealing with
concept drift are mentioned in [19] and the fact that decision trees cannot abstain
from a potentially wrong classification are discussed in [16]. Hence, alternative rule-
based approaches have been developed for data stream classification, such as the
aforementioned eRules algorithm [16] or Very Fast Decision Rules (VFDR) [12],
both based on the separate and conquer rule induction approach.

eRules induces expressive IF-THEN rules and performs well in terms of clas-
sification accuracy and adaptation to concept drifts, also it is able to abstain from
classification. However, eRules drawback is its computational efficiency when deal-
ing with continuous attributes. To the best of our knowledge, there is no single opti-
mised method to deal with continuous attributes for rule induction based algorithms.
Methods for working with continuous attributes have been studied extensively in the
past two decades for batch data. An overview of well-known methods for data dis-
cretisation in batch data is described in [13] and most of these methods cannot be
adopted for data streams without significant modifications, and consequently they
are unlikely to perform as good as they do on batch data. The work presented in this
paper addresses the problem of low computational efficiency in generating rules
from continuous attributes, especially for eRules as a representative technique, by
developing a heuristic method based on the Gaussian distribution.

3 Computationally Efficient Rule Term Induction for
Continuous Attributes in Data Streams

This section presents a new method for inducing rule terms from continuous at-
tributes that is computationally more efficient, assuming a Gaussian distribution of
the values of continuous attributes. We first highlight eRules conceptually and dis-
cuss its underlying rule induction mechanism. Then we present an alternative ap-
proach of dealing with continuous attributes with a different rule term structure. We
argue and show empirically that this approach is computationally more efficient.

3.1 eRules and its Rule Induction Approach

The eRules classifier has three main processes as illustrated in Figure 1.
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Fig. 1: The three main processes in eRules

Essentially eRules makes use of Cendrowska’s Prism algorithm [7] to learn clas-
sification rules from data streams by using a sliding window approach [3]. The three
main processes of eRules illustrated in Figure 1 are outlined as follow:

Learn Rules in Batch Mode – An initial ruleset is learnt using Prism on the first
batch of incoming data instances. Later instances are added to a buffer if they are
not covered by the current ruleset. If the number of instances in the buffer reaches a
user defined threshold then its instances are used to induce new rules (using Prism)
and the buffer is emptied.

Add New Rules – Whenever new rules are generated from the aforementioned
buffer then they are added to the current ruleset and thus adapt to new emerging
concepts in the data stream.

Validate and Remove Existing Rules – eRules also removes learnt rules from the
model if the concerning rules are not relevant to the current concept anymore, i.e.,
if a concept drift occurred. This is quantified by the deterioration of the individual
rule’s classification accuracy over time.

Algorithm 1 shows the basic Prism rule induction method employed by eRules.
ωi denotes a target class for a rule and C is the number of classes; α j is a rule term
of the form (α < v) or (α ≥ v) for continuous attributes or (α = v) for categorical
attributes, where α denotes an attribute name and v a valid value for this attribute.

Algorithm 1: Prism classification rule induction algorithm
1 for i = 1→C do
2 D← original Dataset
3 while D contains classes other than ωi do
4 forall the attributes α in D do
5 Calculate probability of occurrence, p(ωi|α j) for each possible rule term α j;

end
7 Select the α j with the maximum probability of occurrence, p(ωi|α j) as rule term;
8 Create subset S of D containing all the instances covered by α j;
9 D← S;

end
11 The induced rule, R is a conjunction of all α j at line 7;
12 Remove all instances covered by rule R from original Dataset;
13 repeat
14 lines 2 to 12

until all instances of ωi have been removed from original Dataset;
16 Reset original Dataset to its initial state;

end
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3.2 Current Rule Term Induction Method Based on Conditional
Probability

The original Prism approach [7] does only work on categorical data for inducing
rule terms of the form (α = v). On the other hand, eRules is also able to work on
continuous attributes in a very similar way compared with the VFDR [12] algorithm.

For continuous attributes eRules produces rule terms of the form (α < v), or
(α ≥ v) and VFDR produces rule terms of the form (α ≤ v), or (α > v). The pro-
cess of eRules dealing with a continuous attribute is outlined in the following steps:

1. Sort the dataset according to the attribute value.
2. For each possible value v of the continuous attribute α , calculate the probability

for a target class for both terms (α < v) and (α ≥ v).
3. Return the term, which has overall highest probability for the target class.

It is evident that this method of dealing with continuous attributes in eRules
requires many cutpoint calculations for the conditional probabilities p(ωi|α < v)
and p(ωi|α ≥ v) for each attribute value v, where ωi is the target class. Thus, this
method decreases the computational efficiency of eRules and VFDR considerably.
We propose to use the Gaussian distribution of the attribute values associated with
the target class in order to create rule terms of the form (x < α ≤ y), and thus avoid
frequent cutpoint calculations, as described in Section 3.3.

3.3 Using Gaussian Distribution to Discriminant Classification

For each continuous attribute in a dataset, we can generate a Gaussian distribution
as shown in Figure 2 to represent all possible values of that continuous attribute for
a target class.

Fig. 2: Gaussian distribution of a classification from a continuous attribute
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Assume a dataset with classifications, ω1, ...ωi. If we have a measurement vec-
tor (of attribute values) x then we can compute the attribute value that is the most
relevant one to a particular classification based on the Gaussian distribution of the
values associated with this particular classification.

The Gaussian distribution is calculated for a continuous attribute α with mean
µ and variance σ2 from all attribute values with classification, ωi. The class condi-
tional density probability is then given by:

p(α j|ωi) = p(α j|µ,σ2) =
1√

2rσ2
exp(−

(α j−µ)2

2σ2 ) (1)

Then a heuristic measurement of posterior class probability, p(ωi|α j), or equiv-
alently log(p(ωi|α j)) can be calculated and used to determine the probability of a
target class for a valid value of a continuous attribute.

log(p(ωi|α j)) = log(p(α j|ωi))+ log(p(ωi))− log(p(α j)) (2)

We calculate the probability of regions Ωi for these attribute values such that
if x ∈ Ωi then x belongs to class ωi. This approach may not necessarily capture
the full details of the intricate continuous distribution, but it is highly efficient in
computation and memory perspectives. This is because the Gauss distribution only
needs to be calculated once and can then be updated when new data stream instances
are received, by simply recalculating mean µ and variance σ2.

The range of values, which extends to both sides from the mean µ of the distri-
bution should represent the most common values of attribute α for a target class ωi.
A candidate rule term can be generated by selecting an area under the curve for a
range of values for which the density class probability p(x < α ≤ y|ωi) is the high-
est, where x and y are valid values of attribute α from the Gauss distribution for the
target class ωi. As shown in Figure 3, the shaded area represents the highest density
class probability p(x < α ≤ y|ωi) of a subset from the training dataset.

Fig. 3: Shaded area represents a range of values of attribute α for class ωi

Globally, the area right in the middle under the curve represents the most com-
mon values of the attribute for a target class. For example, the shaded area of one
standard deviation of the mean (µ±1σ ), as illustrated in Figure 4a, covers 68% of
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all possible values of the attribute for the target class; or as illustrated in Figure 4b
95 % of all possible values of the attribute for the area of (µ±1.96σ ) [6].

Fig. 4: Shaded area represents a range of values of attribute α for class ωi

(a) 68% of all possible values (b) 95% of all possible values

However, distributions for different classifications can overlap each other and
an area of a distribution for a target class sometimes cannot be used to precisely
distinguish a classification as shown in Figure 5.

Fig. 5: Distributions of different classification overlap each other

However, we are interested to find a rule term, which can maximise the cover-
age of the rule for a target class. Therefore, our approach uses density estimation to
discover a rule term in the form of (x < α ≤ y) by selecting only a highly relevant
range of values from a continuous attribute, which can then be used to represent a
subset of instances for the target class along with other rule terms. Our approach for
rule induction from continuous attributes can be described with the following steps:

1. For each continuous attribute, calculate a Gaussian distribution with mean µ and
variance σ2 for each classification.

2. Calculate class conditional density and posterior class probability for each con-
tinuous attribute value for the target class, using equations (1) and (2).

3. Select the value of the attribute with greater posterior class probability.
4. Select the next smaller and larger values from the value chosen in step 3 which

have the greatest posterior class probability.
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5. Calculate density probability with two values from step 4 from the normal dis-
tribution for the target class.

6. Select the range of the attribute (x < α ≤ y) as the rule term for which density
class probability is the maximum.

Algorithm 2 outlines eRules using our approach for extracting rule terms from
continuous attributes. The resulting algorithm is termed G-eRules, where G stands
for Gauss distribution.

Algorithm 2: G-eRules induction approach for continuous attributes
1 for i = 1→C do
2 D← original Dataset
3 while D contains classes other than ωi do
4 forall the α in D do
5 calculate mean µ and variance σ2 of continuous attribute α for class ωi;
6 foreach value α j of attribute α do
7 Calculate p(α j|ωi);

end
9 Select α j of attribute α , which has highest value of p(α j|ωi);

10 For values < α j select the value x that has the highest probability density in
this range, and for values ≥ α j select the value y that has the highest
probability density in this range;

11 Calculate p(x < α ≤ y|ωi);
end

13 Select (x < α ≤ y) for which p(x < α ≤ y|ωi) is a maximum;
14 Create subset S of D containing all the instances which has (x < α ≤ y);
15 Build a rule term describing S;
16 D← S;

end
18 The induced rule, R is a conjunction of all the rule terms built at line 15;
19 Remove all instances covered by rule R from original Dataset.;
20 repeat
21 lines 2 to 19;

until all instances of ωi have been removed;
23 Reset original Dataset to its initial state;

end

4 Evaluation

The main aim of our experimental evaluation is to study the effectiveness of our
proposed approach in terms of its computational performance but also its com-
petitiveness in terms of its accuracy compared with other established data stream
classifiers. The implementation of our experiments were realised in the Java based
Massive Online Analysis (MOA) [4] framework, a workbench for evaluating data
stream mining algorithms. MOA was chosen as it already implements a wide range
of data stream classifiers.
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4.1 Experimental Setup

In our experiments, we used four different classifiers for a comparative analysis:

1. VFDR (Very Fast Decision Rules)–[12] a rule-based data stream classifier avail-
able in MOA.

2. Hoeffding Tree–[9] is the state-of-art decision tree classifier implemented in
MOA for data streams.

3. eRules–is outlined in Section 3.1, it is the only data stream classifier that is able
to abstain from classifying when uncertain.

4. G-eRules–inherited from original eRules but this version of the classifier uses
our continuous rule term format and induction approach outlined in Section 3.3.

The reason for these choices is that Hoeffding tree has been studied by the com-
munity [14] for the last decade as the state-of-the-art in data stream classification
and VFDR is one of few rule-based classifiers, which can generate rules directly
from a data stream, and thus shares similarities with eRules. We used the default
settings for eRules and G-eRules in the experiments, which are: a sliding window
of size 500; a particular rule is removed if it falls below an individual accuracy 0.8
and a has had a minimum number of 5 classification attempts. We use both, artificial
(stream generators in MOA) and real datasets in our experiments:

SEA Generator–This artificial dataset is introduced in [17], it generates an arti-
ficial data stream with 2 classes and 3 continuous attributes, whereas one attribute
is irrelevant for distinguishing between the 2 classes. The interested reader is re-
ferred to [17] for more information. This data generator has been used in empirical
studies in [5, 12, 16] amongst others. For our evaluation we used the default gen-
erator settings which are concept function 1, a random instance seed of 1, allowing
unbalanced classes and a noise level of 10 %. We generated 500,000 instances.

Random Tree Generator–This generator is introduced in [9] and is based on a
randomly generated decision tree and the user can specify the number of attributes
and classes. New instances are generated by assigning uniformly distributed random
values to attributes and the class label is determined using the tree. Because of the
underlying tree structure, decision tree based classifiers should perform better on
this stream. We have generated 2 versions of this data stream, one with 5 categorical
and 5 continuous attributes, and 3 classifications called RT Generator 5-5-3; and
the other one also with 3 classifications but no categorical and only 4 continuous
attributes called RT Generator 0-4-3. Both versions comprised 500,000 instances.
The remaining settings were left at their default values, which are a tree random
seed of 1, instance random seed option of 1, 5 possible values for each categorical
attribute, a maximum tree depth of 5; minimum tree level for leaf nodes of 3, and
the fraction of leaves per level from first leaf Level onwards is 0.15.

Covertype–is a dataset from US Forest Service (USFS) Region 2 Resource In-
formation System(RIS) which contains the forest cover type for 30x30 meter cells.
There are 581,012 instances with 54 attributes and 10 of them are continuous at-
tributes. This dataset has been used in several papers on data stream classification,
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i.e. in [2]. This real dataset was downloaded from the MOA website [1] and used
without any modifications.

Airlines–this data source was created based on the regression dataset from Elena
Ikonomovska, which was extracted from Data Expo 2009, which consists of about
500,000 flight records and the task is to use the information of scheduled departure
to predict whether a given flight will be delayed. The datset comprises 3 continuous
and 4 categorical attributes. The dataset was also used in one of Elena’s studies
about data streams [15]. This real dataset was downloaded from the MOA website
[1] and used without any modifications.

Instead of initialising each artificial generator for each experiment anew, we have
created static datasets and streamed these datasets to the classifiers. We did not
initialise each artificial data stream anew as the generators are non-deterministic.
This way we ensure that each classifier is presented with exactly the same instances
and the same order of instances in the stream.

4.2 Results

The evaluation is focussed on the scalability of G-eRules to fast data streams but
also shows its competitiveness in terms of classification accuracy. We used ‘Inter-
leaved Test-Then-Train’ strategy [4] to calculate the mean-accuracy of each of the
algorithms. All parameters for artificial stream generators were left at default values
unless stated otherwise.

4.2.1 Overall Accuracy, Tentative Accuracy and Learning Time

One feature of eRules is the ability to abstain from classification and G-eRules inher-
ited this feature of eRules. Therefore, we also record tentative accuracy for eRules
and G-eRules, which is the accuracy for instances where the classifier is confident.

We can see that G-eRules achieves a very similar classification accuracy com-
pared with its original eRules classifier, however, it is significantly faster. Both,
eRules and G-eRules suffer from higher abstain rates when confronted with data
streams with many continuous attributes (i.e., Random Tree Generator datasets and
SEA), however, G-eRules has a lower abstain rate on continuous data. Neverthe-
less, G-eRules not only has a lower abstain rate when confronted with continuous
attributes, but also a higher accuracy.
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Table 1: G-eRules compared with eRules, Hoeffding Trees and VFDR. The abbreviation Ab stands
for abstain rate, T.Ac stands for tentative accuracy, T stands for execution time and Ac stands for
accuracy.

Dataset Classifier
eRules G-eRules Hoeffding Tree VFDR

Ab
(%)

T.Ac
(%)

T
(ms)

Ab
(%)

T.Ac
(%)

T
(ms)

Ac
(%)

T
(ms)

Ac
(%)

T
(ms)

CoverType 27.993 81.12 90,098 35.77 80.68 12,484 80.61 10,631 61.29 20,722
Airlines 9.63 61.76 366,859 16.68 62.55 116,975 65.20 4,289 61.02 4,818
RT Generator
5-5-3 10.52 69.28 333,163 26.47 64.77 36,486 89.78 2,422 55.51 79,153

RT Generator
0-4-3 96.35 34.94 47,790 65.65 81.21 4,283 96.39 2,391 90.10 3,883,291

SEA Generator 94.06 68.58 22,043 40.84 95.87 3,227 99.9.3 1,265 62.70 176,705

G-eRules generally outperforms, in terms of accuracy and running time, exist-
ing rule-based classifier VFDR. In terms of accuracy G-eRules outperforms VFDR
in 3 out of 4 cases and in general processes the data stream much faster. For the
RT-Generator 0-4-3 stream VFDR is unexpectedly slow. This could be explained
by VFDR not reaching a stable ruleset that keeps changing over time. Regarding
the Airlines stream eRules and G-eRules need much longer to process the stream,
however, again, this could be due to the fact that both algorithms are unstable on
this particular dataset due to a fixed sliding window size. However, this problem can
be addressed by using a sliding window that adapts its size dynamically to concept
changes (see Section 5).

In comparison to Hoeffding trees, we achieve a comparable accuracy on the two
real datasets Covertype and Airlines, on the MOA data generators Hoeffding tree
performs better. However, one needs to note that Hoeffding trees are less expressive
classifiers than G-eRules and eRules. The rulesets generated by our techniques can
easily be interpreted and examined by the users. On the other had, Hoeffding trees
need a further processing step to explain the single path that led to a particular
decision that may well be quite long for interpretation by decision takers. As such
we argue that G-eRules is the most expressive rule-based technique for data stream
classification.

In order to examine G-eRules’ computational advantage on continuous attributes
we have compared eRules and G-eRules on the same base datasets as in Table 1,
but with increasing numbers of continuous attributes. SEA and Random Tree Gen-
erator (with continuous attributes only) were used, both with a gradual concept drift
lasting 1000 instances starting at the 250,000th instance in order to trigger adapta-
tion and thus make the problem computationally more challenging. The two real
datasets Covertype and Airlines have been chosen. For all datasets the continuous
attributes were gradually increased by duplicating the existing attributes. The rea-
son for duplication is that the concept encoded in the stream stays the same, but the
computational effort needed to find the rules is increased.
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Fig. 6: Learning time of Random Tree and SEA generators with concept drift.

(a) Random Tree Generator (b) SEA Generator

As expected, Figures 6a, 6b, 7a and 7b show that the execution times of G-eRules
do increase at a much smaller rate than the execution times of eRules do. In fact,
G-eRules’ increase in execution time when confronted with an increasing number of
continuous attributes seems to be very close to that of Hoeffding trees. The reason
for this is that eRules has to work out p(ωi|α < v) and p(ωi|α ≥ v) for each value
of a continuous attribute and then this process is repeated during the learning.

Fig. 7: Learning time of real datasets, CoverType and Airlines

(a) Forest CoverType (b) Airlines

On the other hand, for each continuous attribute, G-eRules only has to calculate
Gaussian distributions for each classification once and then the classifier can update
and look up p(ωi|x < α ≤ y) value from created distributions. Please note we have
omitted the execution times for VFDR in Figures 6a, 6b, 7a and 7b, as they are gen-
erally much greater compared with eRules and G-eRules on these particular cases,
as shown in Table 1.

Moreover, we can observe that eRules tends to produce rules with irrelevant
terms for continuous attributes, resulting in some of the rules produced by eRules
being too specific. In other words, eRules encounters the problem of overfitting
in dealing datasets with lots of continuous attributes. But rule terms in form of
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(x<α ≤ y) produced from G-eRules for continuous attributes tend to cover more in-
stances matching the target class and thus need to produce less rule terms. Although,
G-eRules may not dramatically improve the levels of accuracy from original eRules,
the processing time is clearly improved.

5 Conclusion

In this paper we presented a new computationally efficient method of extracting
rule terms in the form of (x < α ≤ y) from continuous attributes in a data stream for
classification algorithms. The new method is based on the density class probability
from Gaussian distribution. This generic way of extracting continuous rule terms can
potentially be used in any rule-based data stream classifier in order to increase the
data throughput of the algorithm. We have implemented this approach in the eRules
algorithm, a simple yet competitive rule-based data stream classifier, that allows
abstaining from a classification, but is computationally inefficient when dealing with
continuous attributes. We termed this new version of the classifier G-eRules. Our
evaluation shows that G-eRules with the new method for generating continuous rule
terms achieves comparable levels of accuracy compared with original eRules, but
is much faster when dealing with continuous attributes, which is desired in mining
high velocity data streams.

We are currently developing a new rule-based classifier motivated by the scala-
bility of our density class probability based approach for inducing continuous rule
terms. Currently eRules and G-eRules are using a fixed size sliding window, how-
ever, this does not take the length of a concept drift into account. We are currently
exploring metrics that could be used to dynamically re-size the sliding window to
the optimal number of data instances for generating rules. For this the Hoeffding
bound is considered similarly to the Hoeffding Tree algorithm [9]. However, we are
also planning to change the nature of the rules from conjunctive combinations of
rule terms to also allow disjunctive combinations. Thus the classifier could natu-
rally capture concepts for classification that encode not only ‘AND’ but also ‘OR’
relationships between different attributes.
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