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Abstract   

We used a laboratory study to compare the performance of rose-grain aphid, 

Metopolophium dirhodum Walker (Hemiptera: Aphididae), on the wheat cultivars 

'Huntsman' (susceptible) and  'Rapier' (partially resistant) in both low density 

(uncrowded) and high density (crowded) colonies and examined the consequences for 

aphid susceptibility to malathion.  Adult apterae that developed on Rapier wheat had their 

mean relative growth rate (MRGR) reduced by 6% and 9% under uncrowded and 

crowded conditions, respectively, whereas the crowding treatment reduced MRGR by 

4%, but only in Rapier aphids.  Rapier resistance also reduced adult dry weight by 13% 

and 14% under crowded and uncrowded conditions, respectively, whereas crowding 

reduced it by 34% and 35% in Rapier and Huntsman aphids, respectively.  Development 

on Rapier substantially reduced the topical LC50 of malathion by 37.8% and 34.8% under 

crowded and uncrowded conditions, suggesting that plant antibiosis increased malathion 

susceptibility.  By comparison, crowding only reduced the LC50 by 29.5 % and 26.0% on 

Huntsman and Rapier, The LC50 data showed that reductions on aphid body size on 

Rapier and through crowding did not fully explain the differences in LC50. This was 

particularly the values for crowded aphids that were actually 80% higher than for 

uncrowded ones.  This apparent tolerance of crowded aphids, however, may partly be due 

to loss of insecticide from small aphids at dosing.  Evidence of synergy between plant 

resistance and insecticide susceptibility raises the possibility of using reduced 

concentrations of pesticides to control aphids on resistant crop cultivars, with diminished 

impacts on non-target and beneficial species important in IPM programmes.   
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Introduction 

 

The rose-grain aphid, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae), is one 

of three aphid species that attack cereals in Western Europe (Carter et al., 1985) and 

cause considerable losses in the UK (Cannon, 1986).  To mitigate the deleterious effects 

of cereal aphids, farmers often rely on IPM programmes that typically integrate 

traditional chemical controls with the use of resistant cultivars that impede aphid 

development and reproduction.  Host plant resistance can be viewed as the anthropic 

exploitation of naturally-evolved plant defences against insects (van Emden, 1997).  

Resistant cultivars are those which express physical or chemical traits that are either 

deleterious to the biology of the pest (antibiosis), or deter the pest from attacking the 

plant (antixenosis) (Smith, 2005).  Plant resistance is especially useful when crop value is 

relatively low, cosmetic damage unimportant and the pest's economic injury level 

relatively high (Painter, 1951), as is the case for cereal aphids on winter wheat.   

Graminaceous crops exhibit a variety of resistance mechanisms that are specific to 

aphids.  As they penetrate plant tissues, aphids secrete a continuous stylet sheath 

composed largely of lipoproteins and phospholipids that serves to protect the aphid's 

stylet from plant defensive responses while it feeds from the phloem (Dixon, 2000).  

Sheath formation is thought to be mediated by various enzymes in aphid saliva, notably 

polyphenol oxidase and peroxidases that interact with phenolic compounds mobilized by 

the plant (Urbanska et al., 1998).  The primary chemical defences in wheat consist of 

phenolics and hydroxamic acids (Urbanska et al., 1998).  The hydroxamic acids, in 
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particular the aglucone glucoside DIMBOA (2-O-Β-D-glucopyranosyl-4-hydroxy-7-

methoxy-1, 4-benzoxazin-3-one), are known to be important factors diminishing the 

susceptibility of young wheat plants to aphid feeding (Niemeyer et al., 1989).  Fuentes-

Contreras & Niemeyer (1998) showed that DIMBOA reduces the growth rate and body 

size of Sitobion avenae (F.) (Hemiptera: Aphididae), with concomitant detrimental 

effects on its parasitoid, Aphidius rhopalosiphi De Stefani-Perez (Hymenoptera: 

Braconidae).  Consequently, this defensive compound also has the potential for negative 

effects on natural enemies that may diminish its net benefit to IPM programmes. 

Givovich et al. (1992) found that the glucoside DIMBOA was excreted in the 

honeydew of Rhopalosiphum padi (L.) (Hemiptera: Aphididae), indicating that the 

chemical does occur in phloem elements.  At low concentrations DIMBOA was passively 

ingested, but at high concentrations, aphid feeding was deterred, yielding a biphasic 

pattern of honeydew production when plotted against hydroxamic acid concentrations.  

Thus, this chemical expressed antixenotic and antibiotic activity, first deterring aphid 

stylet penetration, and then diminishing feeding rate.  Furthermore, Nicol et al. (1992) 

showed that the settling rates of alate S. avenae in a field trial of 47 Triticum cultivars 

were inversely correlated with the DIMBOA concentrations expressed in the cultivar, 

suggesting the antixenotic effect could reduce rates of aphid colonization.   

Copaja et al. (2006) used electro-penetration graph technology to highlight the 

antifeedant effect of DIMBOA by manipulating the chemistry of barley leaves.  Jiao et al. 

(2005) increased concentrations of DIMBOA in wheat by spraying plants with jasmonic 

acid; such plants diminished the performance of S. avenae directly, and also defended 

themselves indirectly by emitting volatiles attractive to natural enemies.  Gianoli et al. 
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(1996) conducted a field trial with 26 wheat cultivars and concluded that high DIMBOA 

accumulation was not costly in terms of yield.  Silva et al. (2006) arrived at similar 

conclusions studying changes in DIMBOA concentrations in 15 wheat cultivars in 

response to drought stress and aphid infestation. 

Overall aphid performance can be inferred from changes in fresh weight over 

time, i.e., growth rate, and Leather & Dixon (1984) showed that the intrinsic rate of 

increase (rm) is closely correlated with mean relative growth rate (MRGR).  When aphids 

are reared under sub-optimal conditions, body weight and overall size tend to decrease 

(Dixon, 2000).  Since the size of aphids at maturity is strongly affected by colony density 

(Dewar, 1976), crowding can be used as a means of stressing aphids so as to compare 

their performance under optimal versus suboptimal conditions.  The fresh weight of 

aphids can also be reduced by plant crowding (Dewar, 1976) allowing one to control for 

age-weight interactions that might affect toxicological susceptibility.  For example, a 

small adult aphid might be more resistant to a toxin than a large adult aphid due to 

differences in overall mixed function oxidase enzyme titre (Leszczynski et al., 1993).  

The use of crowded/uncrowded cultures is also a means of detecting potential interactions 

between host plant resistance and other aphid stress factors.  For example, Nicol et al. 

(1993a, 1993b) found that the LD50 of deltamethrin for S. avenae nymphs was reduced by 

73% when these were raised on seedlings with high DIMBOA content.  These nymphs 

also showed the greatest reduction in growth rate, this translated to a reduction of 91 % in 

the LC50. In a study by Loayza-Muro et al. (2000), S. avenae showed overall greater 

induction of cytochrome P-450 and NADPH-cytochrome C reductase when reared on 

wheat cultivars with high concentrations of hydroxamic acids.  



Clayson et al. 

-   -  6 

Selander et al. (1972) were the first to show, using parathion and aphid-resistant 

chrysanthemum cultivars, the effectiveness against the aphids of a reduced dose on such 

cultivars. Since then, it has become well-established that host plant resistance to insects 

synergises positively with plant resistance, and van Emden (1999) was able to list 12 

examples of this phenomenon; three of these examples concerned aphids.  

The objective of this study was to test whether wheat plant resistance traits 

interact with the aphid stress factor crowding to reduce the LC50 and LD50 following 

acute pesticide exposure.  Aphids were reared in cages on potted plants in a greenhouse at 

two densities on two wheat cultivars that differed in susceptibility to M. dirhodum.  We 

measured the fresh weight, dry weight, hind tibia length and MRGR of aphid nymphs and 

adults from each culture.  These cultures were then tested for susceptibility to various 

concentrations of an organophosphorus insecticide, malathion, applied topically with a 

microapplicator. 

 

Materials and Methods 

 

Wheat cultivars 

 

We selected two commercial wheat cultivars (cv) for our experiments based on their 

differential susceptibility to aphids and ease of obtaining seeds.  These cvs were: ‘Maris 

Huntsman’, a susceptible variety (Attah, 1984) and ‘Rapier’ which has demonstrated 

partial resistance to cereal aphids, both in the laboratory (Attah 1984; Ul-Haq & van 

Emden, 2002) and the field (Lowe, 1982).  All plants used in experiments and for rearing 

aphids were grown in plastic pots (9 cm diameter) filled with potting mix (Levington® 
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John Innes No. 2, The Scotts Miracle-Gro Company, Surrey, UK) in a greenhouse under 

a photoperiod of L14:D10  that was maintained by supplementing natural sunlight with 

high intensity mercury vapor lamps during winter months.  Shading was employed during 

summer months to prevent excessive heating.  Daily minimum and maximum 

temperatures ranged from 16 – 21.5 ºC and 23 – 36.5 ºC, respectively. 

 For experiments, seeds of both cultivars were sown in pots in the greenhouse, 30 

pots per week.  Seven seeds were sown per pot and then thinned to four plants after three 

weeks.  To prevent infection by powdery mildew (Erysiphe graminis L.) (Ascomycotina: 

Erysiphales), the fungicide ‘Impact’ (Flutriafol®, PP-450, Syngenta, Surrey, UK) was 

applied as a soil drench (0.03 g a.i. per pot) when plants were seven days old.  This 

fungicide has been shown to have minimal effects on aphids and associated parasitoids 

(Jansen, 1999).  Four pots of each variety were placed in separate labelled cages.  The 

position of pots in each cage was altered by randomization once per week.  

 

Aphids 

 

A stock culture of M. dirhodum was established and maintained on potted Huntsman 

wheat plants from material collected from the main laboratory stock culture of aphids 

(also maintained on Huntsman) originally obtained from Rothamsted Research, 

Harpenden, Hertfordshire, UK.  In preparation for culture rotation, four week old wheat 

plants were thinned to four plants per pot and placed in a cage constructed of wood and 

clear Perspex™ (45 cm x 40 cm x 45 cm).  The sides were covered with muslin fabric 

and the front of each cage was fitted with a muslin sleeve, which was tied off when not in 

use.  Once a week, the stock culture was restarted by removing a few leaves from a 
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heavily infested plant and placing them on caged clean plants.  The stock culture was 

held in the greenhouse under the conditions described above except during periods of 

summer heat when cages were moved into an insectary.  The insectary was illuminated 

with ‘daylight’ fluorescent light tubes in a L14:D10 identical to the conditions for the 

plant rearing above.   

For experiments, two different aphid densities, each comprising four cages of 

each cultivar, were established by introducing different numbers of M. dirhodum: low 

density (ca. 100 per pot), and high density (> 500 per pot).  All plants were watered daily 

and changed weekly.  Aphid cultures were introduced into clean cages and allowed to 

reproduce for a period of four weeks before approximately 125 apterous adult aphids 

were carefully removed from each cultivar/treatment combination and placed into clip 

cages, five per cage, on clean plants of the corresponding cultivar.   

The clip cages used throughout these experiments were of the design of Adams & 

van Emden (1972).  Two clear, Perspex rings (20 mm diam x 10 mm high) were attached 

to opposing prongs of a hair-curl clip.  The upper rim of each ring was covered with a 

fine nylon mesh (to prevent aphid escape) and the lower rim was lined with polystyrene 

foam (to prevent leaf damage).  Aphids were confined on the abaxial leaf surface with the 

leaf sandwiched between the two foam-lined rims.  So the plant would not bear the 

weight of the clip cage, the latter was affixed to a small stake pushed into the soil.   

Adult clip cages contained five adults per cage and were used to generate up to 

five nymphs per day of known provenance.  These cages were opened daily and all first 

instar nymphs removed with a fine paintbrush.  Live nymphs were then placed in separate 

clip cages (five per cage) on separate clean plants of the appropriate cultivar.  All clip 
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cages were changed daily throughout the course of aphid development to prevent any 

build up of honeydew and exuviae and then remounted on previously unused areas of 

leaves to prevent local deterioration of plant quality.  Used clip cages were soaked in 

domestic detergent, rinsed in distilled water and thoroughly dried and examined before 

re-use.  Aphids were moved to and from clip cages with a moist paintbrush.   

 

Determination of fresh weight and MRGR 

 

Synchronous aphid cohorts were obtained by caging 75 apterous adults on each of 4 

plants of each respective variety /density for a period of 24 h, removing them, and leaving 

all deposited nymphs caged on that plant.  The leaf positions of cages and nymphs were 

changed daily in all treatments.  Fifteen aphids were then removed from each plant on 

day 3 and collected in clean, labeled 5 cm glass test tubes.  These were plugged with 

cotton wool and the aphids anaesthetised with CO2 to facilitate handling.  The fresh 

weight of each aphid was then recorded using a microbalance.  Two days later another 

batch of 15 aphids from each plant were weighed, and MRGR was calculated according 

to van Emden (1969): 

MRGR (µg-1µg-1day-1) = (loge final weight (µg) – loge initial weight (µg)) / 

number of days between the two measurements.  

 

Determination of dry weight 

 

Fifteen adults of the same cohort were randomly selected from each of four plants of each 

culture type, placed in a clean, labelled glass Petri dish and put in a 150 ºC oven for ca. 
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12 h (overnight).  Preliminary observations revealed this to be sufficient time to ensure 

complete desiccation.  After drying, the dish was carefully removed and placed in a 

desiccator to cool, after which time each aphid was removed from the dish and weighed 

individually.   

 

Determination of hind tibia length 

 

Hind tibia length has been shown to be a reliable indicator of body mass in aphids that is 

insensitive to variation in water content (Nicol & Mackauer, 1999).  The hind tibia length 

was measured for 100 individual adults from each of three replications for each cultivar/ 

treatment combination.  A single drop of glycerol was placed in the centre of a clean, 

labeled microscope slide, whereupon an individual adult aphid was placed in the glycerol 

and the hind leg separated with forceps.  A cover slip was slowly lowered onto the drop 

and then the hind tibia was measured under a binocular dissecting microscope in graticule 

units.  At the end of the experiment, graticule units were converted to µm following 

calibration with a stage micrometer.  

 

Insecticide bioassay 

 

A stock solution of one percent a.i. malathion (Fyfanon®, technical grade, 96 – 97 % 

Cheminova Agro, Lemvig, Denmark) was made using butanone (methyl-ethyl-ketone) as 

a solvent.  Serial dilutions were prepared from this stock solution at the beginning of each 

experiment.  Adult aphids for testing were removed from clip cages with a moist paint 

brush and placed in a clean glass Petri dish painted with black enamel paint and coated 
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with Fluon around the rim.  An Arnold microapplicator (Arnold, 1965), consisting of a 

Hamilton™ RN syringe coupled to a precision syringe driver, was calibrated to deliver 

precisely droplets of 0.75 µl to the dorsal surface of each insect (Needham & Devonshire, 

1973).  This volume remained constant throughout the experiment; dosage was varied by 

altering the amount of a.i. in the solution.  On the basis of preliminary experiments and 

the results of Attah (1984) and Smith (1990), six doses were tested ranging in 

concentration from 38.6 to 724.0 p.p.m. a.i: 0.02, 0.04, 0.048, 0.06, 0.07, and 0.08 mg l-1; 

butanone was used as a control.  Approximately 100 individuals were tested at each dose 

with three replications.  

Droplet application resulted in a rapid darkening of the aphid's coloration until 

complete evaporation of the droplet had occurred.  Aphids that did not exhibit this color 

change were excluded from the experiment.  Treated aphids were transferred to a clip 

cage, five per cage, and held on a leaf on a fresh plant as above; mortality was assessed 

after 24 h. 

 

Results 

 

The  MRGR of M. dirhodum (Figure 1) was 7.44 % lower on the partially resistant 

Rapier than on Huntsman (F1,56 
 

= 23.15, P < 0.001) but the 3.00% reduction caused by 

crowding was only marginally significant (F1,56  = 3.58, P = 0.064).  The  'cultivar x 

crowding' interaction was not significant (F1,56  = 0.66, P = 0.421).   

 There was a significant effect of both cultivar (F1,6  = 689.11, P < 0.001) and 

crowding (F1,6  = 5 903.42, P < 0.001) on the dry weight of M. dirhodum adults.  The 
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aphids on Rapier weighed 13.40% less than Huntsman aphids and crowding greatly 

reduced adult dry weight on both cultivars (Figure 2).  The weight reduction was 34.26% 

on Rapier and 35.20% on Huntsman.  These reductions led to a significant 

'cultivar*crowding' interaction (F1,6  = 45.85, P < 0.001) due to the very small residual 

variation (giving a SE. for even the smallest mean of less than 1%).  Therefore, this 

interaction was not considered to be biologically significant. 

Cultivar and crowding had very similar effects on both fresh and dry weight. 

Aphids on Rapier weighed 23.11% less than those on Huntsman (F1,6  = 1 339.98, P < 

0.001), but crowding caused a much larger fresh weight reduction of 53.24% (F1,6  = 14 

978.34, P < 0.001, Figure 3).  A significant interaction between the two factors (F1,6 = 

112.36, P < 0.001) again related to a very small difference between the weight reduction 

with crowding on Rapier (62.91%) and that on Huntsman (59.14%). As for dry weight, 

the interaction only attained statistical significance because of extremely low residual 

variation.  

 For hind tibia length (HTL), the cultivar x crowding interaction was significant 

(F1,6 = 499.85, P < 0.001) (Figure 4). Crowding significantly reduced the HTL of aphids 

on both Rapier and Huntsman (by 20 and 28% respectively). Whereas HTL did not differ 

between cultivars under crowded conditions, when not crowded, aphids on Huntsman had 

an HTL 15% longer than on Rapier.   

Both cultivar and crowding had an effect on the LC50 of malathion (F1,6  = 429.66, 

P < 0.001 and F1,6  = 231.06, P < 0.001, respectively, Figure 5).  For the main effects, the 

antibiosis expressed in Rapier wheat reduced the LC50 value by 36.7% and crowding 

reduced the LC50 of aphids by 28.19%.  The interaction, although statistically significant 
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(F1,6  = 19.16, P < 0.01) was biologically unimportant in that the main effects would 

suggest that the LC50 of 68.67 μg ml -1 of uncrowded aphids on Huntsman should reduce 

to 30.64 for crowded aphids on Rapier, and the actual LC50
 was hardly different at 31.56.   

Since insecticide toxicity is a function of body weight, it is important to 

recalculate bioassay results as LD50s, the toxicity as the dose of a.i. per unit body fresh 

weight (Mohamed & van Emden, 1989).  If the smaller size of crowded aphids and those 

reared on Rapier was wholly responsible for the reduced LC50 values, LD50s would not be 

affected.  Yet there were significant differences, and in an unexpected direction (Figure 

6).  The increase in sensitivity to malathion of aphids on Rapier compared with those on 

Huntsman (the LD50 was reduced by 19.27%; F1,6 = 45.90,  P < 0.001) revealed that the 

lower weight of aphids on that cultivar only partly accounted for the increased sensitivity.  

However, in contrast with the LC50 data, LD50s were actually over 80% higher for 

crowded aphids (F1,6  = 758.23, P < 0.001), in spite of their smaller size.  This overall 

effect of crowding arose from a near doubling in LD50 on Rapier combined with a 

somewhat smaller (72.56%) increase on Huntsman, but this interaction was not 

statistically significant (F1,6 d.f. = 0.10, P > 0.05). 

 

Discussion 

 

Aphids reared on the susceptible cultivar Huntsman  had a lower mean relative growth 

rate (MRGR) than aphids reared on the partially resistant cultivar Rapier, regardless of 

whether they were crowded or not (Figure 1), indicating that the antibiosis present in the 

latter variety delayed aphid development.  However, the crowding treatment did not 
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affect the growth rate of aphids on Huntsman.  The crowding treatment had a bigger 

effect than cultivar in reducing adult size, whether measured as dry weight (Figure 2) or 

fresh (Figure 3) or as hind tibia length (Figure 4), but Rapier aphids were still smaller 

than Huntsman aphids in both treatments.  

The crowding treatment reduced aphid body dry weight by more than one third on 

both cultivars (Figure 2), and fresh weight to an even greater extent (Figure 3).  The 

proportional reduction in dry weight was reasonably similar, if slightly greater than, the 

reduction in LC50 as a consequence of crowding.  Thus, a parsimonious explanation 

might attribute much of the effect of crowding on increased susceptibility to malathion 

concentrations to the effect of this treatment on body size.  Crowding in an aphid colony 

results in competition for food and is thus a potential source of stress, eventually 

triggering many physiological changes such as the development of alatae in many species 

(Dixon 2000).  It is therefore conceivable that crowding stress could have adversely 

affected the titres of enzymes involved in detoxification processes, in addition to stunting 

aphid growth.  In the case of the cultivar effect, the LC50 of malathion for aphids grown 

on the resistant Rapier was about one third lower than that of aphids grown on Huntsman 

(Figure 4), even though the former were only 13-14% smaller.  Thus, the smaller size of 

Rapier aphids relative to Hunstman aphids cannot fully account for their greater 

malathion sensitivity.  Similarly, Mohamed & van Emden (1989) found that rearing 

Myzus persicae (Sulzer) (Hemiptera: Aphididae) on a resistant cultivar of Brussels 

sprouts reduced the LC50 of malathion by more than 50%, when the plants were between 

13 and 16 weeks old, and also found that size reduction only accounted for part of this 

reduction.  Detoxification of glucosinolates and isothiocyanates present in the 
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Brassicaceae has been shown to occur in M. persicae via the induction of glutathione S-

transferases (GST) (Francis et al., 2005), and these may also be involved in detoxification 

of malathion.  The efficacy of such enzyme systems may be compromised when they are 

forced to detoxify plant-based and synthetic toxins simultaneously.  For example, Luchao 

et al. (2007) found that Aphis citricola van der Goot (= Aphis spiraecola (Patch)) 

(Hemiptera: Aphididae) resistance to malathion and other insecticides correlated with 

levels of GST and other detoxifying enzymes in the aphids that, in turn, varied as a 

function of their host plant.   

Hydroxamic acids such as DIMBOA have often been implicated as compounds 

that confer insect resistance in seedling cereals, and this chemical group may be involved 

in the antibiosis expressed by Rapier to M. dirhodum.  These compounds are normally 

correlated with reduced activities of key detoxification enzymes in feeding aphids 

(Loayza-Muro et al., 2000) and may be partly responsible for the lower LC50 observed for 

Rapier aphids.  For example, Mukanganyana et al. (2003) fed a hydroxamic acid 

(DIMBOA) to Rhopalosiphum padi (L.) (Hemiptera: Aphididae) in artificial diet and 

found that it significantly inhibited the activities of key esterases, and to a lesser extent 

glutathione S-transferases, effects that should reduce insecticide tolerance.  Thackray et 

al. (1990) observed that resistance to S. avenae and R. padi were both correlated with 

increased levels of hydroxamic acids in six Triticum cultivars.  However, Castañeda et al. 

(2009) found that hydroxamic acids in wheat did not induce increased levels of key 

detoxification enzymes in S. avenae.  These inconsistencies may reflect the fact that 

DIMBOA is metabolised by different enzymes from those used to detoxify insecticides 

(Figueroa et al., 1999).  Interactions between plant resistance traits and the insecticide 
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susceptibility of spider mites have been shown (Gould et al., 1982) but the possibilities of 

similar interactions in aphids have received little research attention to date.   

Crowding, like the partial plant resistance of Rapier, reduced aphid size, and also 

lowered the LC50 on both cultivars (Figure 4).  However, when toxicity of malathion to 

the aphids was expressed as dose per unit fresh weight (LD50), plant resistance and 

crowding showed effects in opposite directions.  As for LC50, the LD50 was lower for 

aphids on Rapier than on Huntsman, confirming that the reduction in LC50 could not be 

fully explained by the smaller size of the aphids.  In contrast, crowding raised the LD50 of 

the smaller aphids resulting from it.  However, this may not represent a reduction in 

'physiological' sensitivity, since it may have resulted from run-off onto the substrate of 

some of the insecticide applied to the smaller aphids; had 20% of the malathion run off 

crowded aphids, the LD50 would not have differed from that for uncrowded ones. 

 A likely body length for M. dirhodum on susceptible wheat (i.e., Huntsman) is 

about 2.5 mm (Blackman & Eastop, 2000). Simplifying the aphid body shape to a sphere 

gives a volume of 8.2 µl, which is more than 10 times that of the 0.75µl drop of 

malathion applied.  However, the reduction in length of the aphid’s HTL on Huntsman 

when crowded would suggest a body length of only 1.79 mm. This converts to a sphere 

of  3.00 µl, only four times greater than the applied drop, and with only about one-half 

the surface area of an uncrowded aphid. It is therefore possible that some run-off may 

have occurred. 

The results of the present study, as far as insecticides and plant resistance are 

concerned, confirm a phenomenon that may have practical implications for aphid 

management.  Both are important tools in cereal aphid IPM and synergistic interactions 
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between the two are a desirable outcome.  Our findings suggest that aphids stressed either 

by crowding or plant resistance can be killed with significantly lower concentrations of 

malathion than those growing under more favourable conditions, an effect that could be 

exploited to diminish pesticide impact on aphid natural enemies.  In contrast to crowding 

that only affects aphids in high density colonies, the beneficial effects of plant resistance 

can be expected to act during all stages of aphid development and in colonies of all sizes.  

Thus, the antibiosis in Rapier wheat is not merely compatible with the use of 

organophosphate insecticides for control of M. dirhodum, but has the potential to enhance 

their efficacy.  

However, perhaps the most interesting result of these experiments is the contrast 

in apparent 'physiological' sensitivity to malathion of aphids subjected to the two stresses 

of plant resistance and crowding, both of which result in a reduction in aphid size. 

Although some run-off of insecticide may have occurred from the very much smaller 

crowded aphids, we cannot say how far this accounts for the large increase in LD50 

compared with uncrowded ones. Further research is clearly warranted. 
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Legends for fFigure legends   

 

 

 

 

 

 

 

Fgure 1.   Mean + SE (n=15) MRGR (Mean Relative Growth Rate) of uncrowded and 

crowded Metopolophium dirhodum reared on two wheat cultivars (Hunstman and 

Rapier). Columns with the same letter so not differ significantly at P = 0.05). 

 

 

 

 

 

 

 

Figure 2.   Mean + SE (n=3 batches of 15 aphids) dry weight of uncrowded and crowded 

adult  Metopolophium dirhodum reared on two wheat cultivars (Hunstman and Rapier). 

Columns with the same letter so not differ significantly at P = 0.05). 
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Figure 3.   Mean + SE (n=3 batches of 15 aphids) fresh weight of uncrowded and 

crowded adult  Metopolophium dirhodum reared on two wheat cultivars (Hunstman and 

Rapier). Columns with the same letter so not differ significantly at P = 0.05). 

 

 

 

 

 

 

 

 

 

Figure 4.   Mean + SE (n=3 averages of 100 aphids) hind tibia length of uncrowded and 

crowded adult  Metopolophium dirhodum reared on two wheat cultivars (Hunstman and 

Rapier). Columns with the same letter so not differ significantly at P = 0.05). 
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Figure 5.   Mean + SE (n=3 batches of 100 aphids) LC50  to malathion of uncrowded and 

crowded adult  Metopolophium dirhodum reared on two wheat cultivars (Hunstman and 

Rapier). Columns with the same letter so not differ significantly at P = 0.05). 

 

 

 

 

 

 

 

 

 

Figure 6.   Mean + 

SE (n=3 batches of 100 aphids) LD50  to malathion of uncrowded and crowded adult  

Metopolophium dirhodum reared on two wheat cultivars (Hunstman and Rapier). 
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Columns with the same letter so not differ significantly at P = 0.05). 

 


