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ABSTRACT

Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the

relationship between the global-mean net heat input to the climate system and the global-mean surface air

temperature change is nonlinear in phase 5 of theCoupledModel Intercomparison Project (CMIP5) atmosphere–

ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of

climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined,

the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective cli-

mate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the

AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics

(308N–308S). An important region involved is the tropical Pacific, where the surface warming intensifies in the

east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is

confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea

surface temperatures and sea ice prescribed from its AOGCMcounterpart, eachAGCMreproduces the time-

varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with

global temperature change or nearly so. It is also demonstrated that the regression and fixed-SSTmethods for

evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is

changed can produce a pattern of surface temperature change with zero global mean but nonzero change in

net radiation at the top of the atmosphere (;20.5Wm22 in HadCM3).

1. Introduction

Earth’s global energy balance provides a convenient

framework for describing and predicting climate change.

Changes to this balance caused by an external factor are

termed ‘‘radiative forcings’’ (e.g., Shine and Forster

1999). The magnitude of climate change in response to

a radiative forcing is determined by heat uptake and

various climate feedbacks that amplify or dampen the

initial perturbation, such as changes in clouds, sea ice,

and water vapor (e.g., Soden and Held 2006).

The value of the forcing–response framework is un-

derpinned by a simple linear relationship (e.g., Gregory

et al. 2004) between global radiative forcing (F; in

Wm22); heat uptake (N; in Wm22), which is over-

whelmingly into the ocean (e.g., Church et al. 2011); and

surface air temperature change (DT; in K), so that

N5F1aDT , (1)

where a (Wm22K21) is the climate feedback parame-

ter. This forcing–feedback framework assumes a to be

constant, so that variations in earth’s global energy

budget (N) are linear with DT in any scenario where F is

constant (such as abrupt CO2 quadrupling experiments).

Note that the sign convention is the opposite of that
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followed by Gregory et al. (2004) and Andrews et al.

(2012a); Eq. (1) requires that a, 0 for the system to be

stable under perturbations.

The paradigm was first applied to equilibrium states,

such as CO2 doubling (2xCO2) scenarios that use an

atmospheric general circulation model (AGCM) cou-

pled to a simple thermodynamic mixed layer (‘‘slab’’)

oceanmodel (i.e., with prescribed ocean heat transport).

More recently, a constant a has been found to be an

excellent approximation under this idealized experi-

mental design during transient climate change, as dem-

onstrated by a linear dependence of N on DT in 2xCO2

experiments (e.g., Gregory and Webb 2008).

In contrast to idealized model studies of climate sen-

sitivity, real-world climate forcing and change are time

dependent and involve nonlinear coupled atmosphere–

ocean processes and heat exchanges between the ocean

mixed layer and deep ocean that require an AOGCM

(i.e., with a 3D dynamic ocean model) to simulate. The

linearity of Eq. (1) is found to be less robust in AOGCM

climate change simulations (see Fig. 1; Gregory et al.

2004; Andrews et al. 2012a; Armour et al. 2013; Geoffroy

et al. 2013; Block and Mauritsen 2013), which we in-

terpret as a nonconstant a, though other interpretations

can be drawn (see below). Nonetheless, we note that

linearity is a surprisingly good approximation for some

AOGCMs (e.g., Danabasoglu and Gent 2009; Andrews

et al. 2012a).

Recent work describing the time-dependent response

of AOGCMs has focused on developing new conceptual

frameworks fitted to AOGCM results. Winton et al.

(2010), Held et al. (2010), and Geoffroy et al. (2013)

used a two-layer ocean model (approximating a mixed

layer and deep-ocean response) and an ‘‘ocean heat

FIG. 1. Abrupt 4xCO2 Gregory plot (N as a function of DT ) for (a) HadCM3, (b) HadGEM2-ES, and (c) the

CMIP5 AOGCM mean. Lines show regression fits to the global annual-mean data points for years 1–20 (blue) and

subsequent years (red). The plots show global annual-mean data for the first 20 yr, followed by decadal means. The

slope and N intercept (DT 5 0) give the feedback parameter (a; Wm22K21) and effective radiative forcing

(F; Wm22), respectively. The DT intercept (N 5 0) estimates the equilibrium response assuming the feedback

strengths remain unchanged. The blue dotted line represents the path the AOGCMwould have taken to equilibrium

if it had maintained the feedback strengths as simulated during the early years of the experiment. (d) Comparison of

the net feedback parameter (a) diagnosed from the early (years 1–20) and subsequent (years 21–150) years. The

length (blue) and width (red) of the symbols in (d) represent their 95% confidence intervals (estimated by 1.96

standard deviations from the regression).

Fig(s). 1 live 4/C
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uptake efficacy’’ term to describe the evolution ofN and

DT. Armour et al. (2013) proposed a constant regional

feedback framework convolvedwith an evolving pattern

of surface warming. However, these frameworks involve

simplifications that have not yet been thoroughly tested.

Limitations of the regional feedback approach have

been described by Rose et al. (2014) and are also seen

here in sections 2 and 3 and of the two-layer ocean

model by Bouttes et al. (2013). Therefore, we tackle the

issue from a different angle. Rather than trying to fit or

quantify the nonlinear behavior within a simplified

framework, we use model diagnostics and an innovative

experimental design to investigate why the AOGCMs

behave as they do.

The inconstancy of a could come from a number of

sources. First, some climate feedbacks will depend on

climate state (characterized by global T ). For example,

sea ice and land–snow-cover feedbacks will diminish as

the climate system warms enough for the ice and snow

coverage to have retreated (e.g., Colman and McAvaney

2009). Second, some climate feedbacks have their own

time scale not closely tied to DT, such as changes in veg-

etation or soil moisture. Finally, some climate feedbacks—

particularly cloud feedbacks—may be sensitive to an

evolving pattern of surface warming (e.g., Senior and

Mitchell 2000; Held et al. 2010; Andrews et al. 2012a;

Armour et al. 2013; Andrews and Ringer 2014; Rose

et al. 2014).

Andrews et al. (2012a) and Geoffroy et al. (2013)

examined the linearity of N as a function of DT across

CMIP5 AOGCMs forced by an abrupt quadrupling of

atmospheric CO2 levels. The purpose of this paper is to

go further: Sections 2 and 3 examine the robustness of

nonlinearity across a larger set of CMIP5 models than

was previously available and develops a physical un-

derstanding of the underlying mechanisms. Section 4

introduces an experimental design that uses AGCMs to

reproduce the nonlinear behavior of their corresponding

AOGCM and then test the sensitivity of a to evolving

sea surface temperature patterns. Section 5 investigates

how the effective radiative forcing arises. In section 6,

the behavior of climate feedback is further examined in

a long (over 1000 yr) HadGEM2-ES simulation. Finally,

section 7 discusses the implications of the nonlinearity in

the N versus DT relationship.

2. Evolving feedbacks in CMIP5 models

a. Nonlinear dependence of radiative fluxes on DT

We illustrate the nonlinear dependence of N on DT in

Fig. 1 for an abrupt4xCO2 scenario for the CMIP5

AOGCM mean (see Table 1 for individual models), as

well as separately for the AOGCMs HadCM3 and

HadGEM2-ES, which we use for a further analysis in

section 4. We approximate the data with two ordinary

least squares (OLS) regression fits, separated at year 20.

The choice of year 20 approximately separates the fast

and slow components of the climate response (Held et al.

2010; Geoffroy et al. 2013). Note that this choice is

somewhat arbitrary, but our purpose is not to best fit the

nonlinear behavior; rather, it is to illustrate that the slope

(the feedback parameter) changes during the simulation.

Whether the separation is chosen at 5, 10, 15, or 20 yr

does not affect this conclusion. Geoffroy et al. (2013)

provide an optimal method assuming a two-layer ocean

model for determining a point of separation if required.

Note that for clarity all the figures show decadal means

after the first 20 yr, but all calculations use annual means

and we treat all points as independent in the regressions.

Figure 1a shows the results from a seven-member en-

semble of 100-yr HadCM3 simulations. The value of the

ensemble is to demonstrate that the curvature (at least in

this individual model) is not a statistical artefact of un-

forced interannual variability; it is present in all ensem-

ble members and very clear in the ensemble mean. We

compare the feedback parameter derived from the first

20 yr against the remaining years in Table 1 and Fig. 1d

for the individual CMIP5 AOGCMs. Deviations from

the 1:1 line imply a nonlinearity. In 23 out of 27 CMIP5

models examined, the net feedback parameter becomes

significantly (95% confidence) less negative as the sim-

ulation progresses (Table 1 and Fig. 1d; i.e., in Fig. 1d the

points mostly lie below the 1:1 line).

For a givenN thewarming implied by the feedbacks from

the first 20yr understates the actual warming simulated by

the models on longer (multidecadal to centennial) time

scales (cf. dotted blue and thick red lines in Figs. 1a–c).

Extrapolating to N 5 0 (equal to 2F/a) estimates the

equilibrium DT (Gregory et al. 2004). If the forcing is

doubledCO2 then this is referred to as the ‘‘effective climate

sensitivity,’’ since it is the estimated equilibrium response

to 2xCO2 from a transient AOGCM simulation assuming

constant feedback strengths. This calculation of effective

climate sensitivity differs slightly from that originally de-

fined by Murphy (1995) and Senior and Mitchell (2000),

whofirst estimateda byassumingF: that is,a5 (N2 F)/DT.
Williams et al. (2008) showedhowan incorrectF can lead

to spurious time variations in a and the effective climate

sensitivity. Figure 2 shows the effective climate sensitiv-

ity, given by 2F/2a, which is half of the DT intercept,

noting that the factor of 1/2 follows because CO2 forcing is

approximately logarithmic with CO2 concentration, for

each CMIP5 model as determined from the early (years

1–20) and subsequent (years 21–150) years of the simu-

lation. In nearly all CMIP5 models, the effective climate

sensitivity increases during the simulation.
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To understand which feedback components drive the

nonlinearity we plot the individual longwave (LW) and

shortwave (SW) clear sky (clouds artificially removed

from the radiation call) and cloud radiative effect [CRE;

defined as the difference between all sky (i.e., with

clouds if present) and clear sky] downward radiative

fluxes as a function of DT (Fig. 3a) for the CMIP5

multimodel mean. We compare the components of the

feedback parameter derived from the first 20 yr against

the remaining years in Table 1 and Fig. 3b for the in-

dividual CMIP5 models. As in Eq. (1), the sign con-

vention is that the parameter is positive for feedbacks

which tend to increase climate warming.

Variation of outgoing LW clear-sky radiation with DT
(the combined effect of the Planck, water vapor, and

lapse-rate feedbacks) dominates the net (negative)

feedback (Table 1). AsDT increases, this contribution to

N shows a small but largely robust shallowing of its slope

(i.e., the net LW clear-sky feedback parameter become

less negative) across models. This is consistent with

Meraner et al. (2013), who argued that the (positive)

water vapor feedback should strengthen as the climate

warms, though we cannot definitively attribute the LW

clear-sky curvature to this.

Although the LW clear-sky gives the largest contri-

bution to the net feedback parameter, the largest

contribution to the change in the feedback parameter

withDT comes from theSWCRE feedback (Figs. 3a,b and

Table 1; note the change in slope of the SW CRE line in

Fig. 3a and the large deviations below the 1:1 line in

Fig. 3b). This suggests a change in strength of SW cloud

feedback processes (further analyzed in section 2b).

LW CRE (which is mostly influenced by high clouds)

and SW clear-sky (which is mostly influenced by sur-

face albedo and noncloud atmospheric SW absorption

and scattering) radiative fluxes are largely linear with

DT in CMIP5 models. Where significant deviations do

exist (Table 1), they tend to be small and there is no

robust direction of change across models (Table 1 and

Fig. 3).

TABLE 1. Feedback parameters (a) in Wm22K21 for the HadCM3 and CMIP5 AOGCMs as diagnosed from years 1–20 and 21–150

(21–100 for HadCM3) of the abrupt4xCO2 simulation and the radiative components [LW and SW clear sky, and cloud radiative effect

(CRE)]. Values are diagnosed from the slope of the ordinary least squares regression of the change in global annual-mean radiative flux

against DT. The CMIP5-mean AOGCM shows the coefficients from Figs. 1c and 3a.

Feedback parameters (a) for years 1–20 (121–150) (Wm22K21)

AOGCM Net LW clear sky SW clear sky LW CRE SW CRE

ACCESS1.0 21.08 (20.57*) 21.70 (21.64) 0.65 (0.86*) 0.17 (0.07*) 20.21 (0.14*)

ACCESS1.3 21.17 (20.49*) 21.89 (21.77*) 0.80 (0.79) 20.10 (20.09) 0.03 (0.57*)

BCC-CSM1.1(m) 21.22 (20.89*) 21.96 (21.92) 0.70 (0.86*) 20.04 (0.31*) 0.07 (20.14)

BCC-CSM1.1 21.43 (20.85*) 21.89 (21.87) 0.70 (0.98*) 0.21 (0.27) 20.46 (20.24*)

BNU-ESM 20.86 (20.97) 21.70 (21.68) 1.17 (1.05) 0.18 (0.20) 20.51 (20.54)

CanESM2 21.19 (20.91) 21.93 (21.86) 0.66 (0.76) 0.47 (0.42) 20.39 (20.23)

CCSM4 21.52 (20.94*) 21.99 (21.91) 0.84 (0.89) 0.10 (0.11) 20.47 (20.04*)

CNRM CM5 21.05 (21.23) 21.79 (21.76) 0.96 (0.56*) 0.18 (20.00*) 20.40 (20.03*)

CSIRO Mk3.6.0 21.09 (20.41*) 21.85 (21.64*) 0.68 (0.86*) 20.19 (20.13) 0.28 (0.51)

FGOALS-g2 21.32 (20.62*) 21.77 (21.73) 0.74 (1.14*) 0.09 (0.19*) 20.38 (20.22*)

GFDL CM3 21.13 (20.60*) 22.03 (21.92) 0.65 (0.67) 20.02 (20.03) 0.27 (0.68*)

GFDL-ESM2G 21.58 (20.73*) 21.54 (21.76*) 0.55 (0.78*) 0.39 (0.07*) 20.98 (0.19*)

GFDL-ESM2M 21.36 (21.13) 21.59 (21.77*) 0.65 (0.67) 0.37 (20.03*) 20.79 (0.00*)

GISS-E2-H 21.90 (21.47*) 21.74 (21.62*) 0.50 (0.51) 0.23 (0.36*) 20.89 (20.71)

GISS-E2-R 22.37 (21.33*) 21.78 (21.57*) 0.36 (0.42) 0.23 (0.40*) 21.18 (20.58*)

HadCM3 21.25 (20.74*) 21.84 (21.71*) 0.58 (0.59) 0.37 (0.45*) 20.35 (20.06*)

HadGEM2-ES 20.81 (20.35*) 21.81 (21.64*) 1.05 (0.76*) 0.20 (0.11*) 20.25 (0.44*)

INM-CM4 21.67 (21.22*) 22.00 (21.89) 0.71 (0.52*) 20.02 (0.18) 20.36 (20.04)

IPSL-CM5A-LR 20.86 (20.57*) 22.04 (21.92*) 0.59 (0.55) 0.01 (0.11) 0.58 (0.69)

IPSL-CM5B-LR 21.15 (20.73*) 21.89 (21.82) 0.69 (0.62) 20.03 (0.13*) 0.09 (0.34)

MIROC-ESM 21.06 (20.64*) 21.90 (21.99*) 1.03 (0.57*) 0.24 (20.25*) 20.44 (1.03*)

MIROC5 21.73 (21.19*) 21.94 (21.77*) 0.73 (0.86*) 20.17 (0.14*) 20.36 (20.43)

MPI-ESM-LR 21.33 (20.90*) 21.87 (21.74*) 0.61 (0.71*) 0.06 (0.26*) 20.12 (20.13)

MPI-ESM-MR 21.40 (20.82*) 21.89 (21.78*) 0.62 (0.80*) 0.02 (0.26*) 20.14 (20.10)

MPI-ESM-P 21.58 (20.96*) 21.92 (21.75*) 0.59 (0.68) 0.05 (0.22*) 20.31 (20.10)

MRI-CGCM3 21.54 (21.06*) 22.05 (21.93) 0.62 (0.77*) 20.36 (20.28) 0.25 (0.39)

NorESM1-M 21.63 (20.83*) 21.90 (21.81) 0.69 (0.90*) 20.04 (0.10) 20.39 (20.03*)

CMIP5 mean 21.30 (20.79*) 21.86 (21.77*) 0.74 (0.77) 0.09 (0.09) 20.27 (0.27*)

* Indicates a significant change in slope at the 95% confidence interval obtained by testing whether jaa 2 abj . 1.96(sa
2 1 sb

2)1/2, where

sa and sb are the standard deviations from the regression associated with slope aa (years 1–20) and ab (subsequent years).
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Figure 4 shows the local contribution to the CMIP5-

mean global results: that is, the geographical distribution

of feedback parameters as derived from the early (years

1–20) and long-term (years 21–150) parts of the simu-

lation (calculated by regressing the change in local top-

of-atmosphere radiative fluxes against global-meanDT).
The change in geographical distribution of the feedback

parameter is shown on the right-hand side. Note that the

BCC and BNU models are excluded from this regional

analysis since they introduced singularities near the

poles.

The pattern of decreasing (more positive) feedback

parameter (Fig. 4, top right) is largely dominated by the

change in net (LW 1 SW) CRE feedback. The corre-

lation coefficient between these two patterns (area

weighted) is 0.6, compared to only 0.3 for the change in

clear-sky terms to the change in total feedback param-

eter. The change in feedback pattern highlights large

positive changes in the equatorial Pacific, the east

tropical Pacific (regions important for low cloud stra-

tocumulus decks which form over the relatively cold

SSTs associated with ocean upwelling), and the South-

ern Ocean storm tracks, though these are clearly not the

only regions that contribute to the curvature (Fig. 4).

Approximately 60% of the change in AOGCM-mean

global net CRE and total net feedback comes from the

tropics (308N–308S). The remaining 40% suggests a less

dominant, though clearly still important, role for changes

in the strength of extratropical feedbacks. The change in

net CRE feedback can be further traced to a change in

the patterns of SW and LW CRE feedbacks, which ad-

ditionally show more widespread changes across the

tropical Pacific that cancel in the net CRE (Fig. 4): a well-

known result from changes in high clouds which have

opposing LW and SW effects (e.g., Kiehl 1994).

These findings are in contrast to those ofArmour et al.

(2013), who emphasized a larger role for noncloud high-

latitude feedbacks in causing time variation in the

feedback parameter of CCSM4. We cannot reconcile

their results with ours since virtually all of the curvature

in CCSM4 comes from a change in SW CRE feedback

parameter in our analysis; the SW clear-sky feedback

parameter—where changes in sea ice feedbacks will

have the largest impact—shows no change (Table 1).We

presume Armour et al. (2013) did not observe the time

variation in the SW cloud feedback parameter either

because of limitations imposed by their fixed local

feedback framework (see section 3; Rose et al. 2014) or

because they did not separate cloud adjustments from

cloud feedbacks in their analysis. We also note that our

focus is on the 150 yr of CMIP5-type simulations; high-

latitude responses may strengthen or weaken on longer

(multicentennial) time scales (e.g., Senior and Mitchell

2000; Li et al. 2013; section 6).

b. Cloud masking and SW APRP

Attributing changes in CRE to change in clouds re-

quires caution because of ‘‘cloudmasking’’ effects of the

clear-sky fluxes (e.g., Soden et al. 2004, 2008). For ex-

ample, the sea ice feedback is larger under clear skies

(since clouds will mask, at the TOA or tropopause, the

radiative effects of any sea ice change); hence, defining

the CRE as all-sky minus clear-sky downward fluxes will

give nonzero CRE changes without any change in cloud

properties.

Large negative SW CRE changes at high latitudes are

likely due to the cloudmasking effects of sea ice changes,

indicated by a positive contribution from the SW clear-

sky feedbacks in both polar regions. The poleward shift

of the sea ice feedback is clear in the SW clear-sky

feedbacks. For example, in years 1–20 there is a large

positive feedback in the SW clear-sky fluxes north and

west of the Aleutian Islands, not present in the years

21–150 regression. Similarly, the large positive SW clear-

sky feedbacks around Antarctica retreat poleward,

though it tends to increase where sea ice still exists.

We do not believe cloud masking has any impact on

our conclusion that changes in cloud feedbacks are the

main driver of the nonlinear behavior. This is because (i)

the global clear-sky fluxes are largely linear, especially

the SW; (ii) the dominant change in the geographical

pattern of the feedback parameter picks out regions

important for cloud feedback, not sea ice changes (i.e.,

the SWCRE changes at low andmiddle latitudes cannot

be due to masking of sea ice); and finally (iii) Zelinka

FIG. 2. Comparison of the effective climate sensitivity (ECS) for

individual CMIP5 models as estimated from the early (years 1–20)

and subsequent (years 21–150) years of the abrupt4xCO2AOGCM

simulations. ECS is calculated as 2F/2a, where F and a are de-

termined from the linear regression ofN against DT in the relevant

time periods of the experiments.
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et al. (2013) found global nonlinear behavior in cloud

feedbacks using more sophisticated kernel techniques

that avoid masking issues.

To corroborate our attribution of the SW feedback

changes to cloud changes, we use the SW approximate

partial radiative perturbation (SW APRP) technique

(Taylor et al. 2007) applied to monthly-mean data to

split the change in SW radiative fluxes into a contribu-

tion from surface albedo, cloud, and noncloud (i.e.,

clear-sky atmospheric scattering and absorption)

components. Taylor et al. (2007) compared the SW

APRPmethod against full PRP and found global-mean

feedback calculations to agree well (errors on the order

of 5%–10%), concluding that APRP is an appropriate

tool for calculating SW forcing and feedbacks in cli-

mate models. We exclude any data where the global

annual-mean residual is greater than 0.1Wm22.

Figures 3c,d show the CMIP5 multimodel-mean re-

gression of the SW APRP breakdown as a function

of DT and the individual AOGCM short-term versus

long-term feedback parameter results. It confirms that

the curvature comes from cloud feedback changes and

that the use of CRE is an adequate approximation for

our purpose. It also confirms that global surface albedo

and noncloud atmospheric scattering–absorption are

well approximated as linear with DT for most models.

Where curvature does exist in the noncloud terms, it is

small (Fig. 3d). The one anomaly is INM-CM4, which

has a near-zero surface albedo feedback on the longer

time scale (years 21–150) (anomalous blue point in

Fig. 3d), which is consistent with an anomalous evolution

in its Northern Hemisphere polar amplification (next

section).

The SW APRP analysis points to other largely un-

derappreciated results: (i) changes in noncloud atmo-

spheric absorption–scattering with DT (presumably the

SW absorption component of the water vapor feedback)

contribute approximately the same as surface albedo

feedbacks to SW radiation budget changes and (ii) there is

a considerable intercept and uncertainty in the clear-sky

FIG. 3. (a) Radiative components of the CMIP5 4xCO2 AOGCM-mean Gregory plot, with linear fits separated

over two periods: years 1–20 (blue) and years 21–150 (red). Points show global annual means for years 1–20, followed

by decadal means. (b) Comparison of the radiative feedback parameters determined from regression on short (years

1–20) and long (years 21–150) time scales for individual CMIP5 models. (c) CMIP5 AOGCM-mean cloud, noncloud

(i.e., clear-sky atmospheric scattering and absorption), and surface albedo contributions to the SW radiation budget

changes, as a function of DT, as determined from the SW APRP method. (d) As in (b), but for the SW APRP

component terms. The vertical length and horizontal width of the symbols in (b),(d) represent their 95% confidence

intervals (estimated by 1.96 standard deviations from the regression).

Fig(s). 3 live 4/C
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FIG. 4. Geographical distribution of the radiative feedback terms (top to bottom) net TOA, net CRE, LW clear-sky feedback, SW clear-sky

feedback, LW cloud radiative effect, and SWcloud radiative effect, on (left) short (years 1–20) and (middle) long (years 21–150) time scales, and

(right) their difference (long minus short), for the CMIP5 AOGCM mean. Plots are calculated from linear regression of local radiative fluxes

against global DT over the relevant time periods.

Fig(s). 4 live 4/C
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scattering–absorption term [;0.3Wm22 in the CMIP5

multimodel mean, with a range (not shown) from ;0.0

to 1.0Wm22 across models], which we interpret as the

instantaneous SW absorption component of the 4xCO2

effective radiative forcing.

3. An evolving pattern of surface warming in
CMIP5 models

This section considers how an evolving pattern of

surface warming may drive the change in feedback

strengths identified in section 2. Figure 5 shows the

CMIP5 AOGCM-mean surface warming pattern [de-

termined fromOLS regression of localDT against global

DT (i.e., it is dimensionless: in KK21) and is unity in the

global mean] for the first 20 yr (Fig. 5a) and the re-

maining years (Fig. 5b). Figure 5c shows the change in

pattern (i.e., Fig. 5b2 Fig. 5a, which must be zero in the

global mean by construction). The zonal-mean surface

warming patterns for the individual models are shown in

Figs. 5d–f. Note that, as with Fig. 4, the BCC and BNU

models are excluded.

A large Northern Hemisphere (NH) polar amplifica-

tion is well established early on in the simulation in all

FIG. 5. Geographical distribution of the pattern of surface air temperature change for (a) years 1–20, (b) years 21–

150, and (c) their difference for the CMIP5 AOGCMmean. Plots show the slope of the linear regression of local DT
against global DT for the relevant time periods and are dimensionless. By construction, the global mean of (a),(b) is

unity, while (c) is zero. (d)–(f) The zonal-mean patterns (red lines), where thin lines are individual CMIP5 models.

Fig(s). 5 live 4/C
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models examined (Figs. 5a,d): that is, the NH high lati-

tudes warm more than the global mean. Subsequently,

some models increase their NH polar amplification

whereas some models reduce it (Figs. 5e,f). One model,

INM-CM4, surprisingly has a negative polar amplifica-

tion during years 21–150 of the simulation. In contrast to

the NH, pronounced polar amplification in the Southern

Hemisphere (SH) is not seen in the initial (years 1–20)

part of the simulation but subsequently (years 21–150)

increases in virtually all models (Figs. 5d–f).

The largest change in the zonal-mean warming pat-

tern generally occurs at high latitudes across models, but

the zonal-mean distributions do not reveal important

shifts in the tropical warming pattern. Figure 5a shows

a relatively uniform tropical Pacific warming pattern

during years 1–20, with some delayed warming in the

east. In contrast, a strong east–west gradient then

emerges after a few decades with a more pronounced

warming pattern in the east Pacific compared to the west

(Fig. 5b). The change in warming pattern (Fig. 5c)

highlights the east tropical Pacific, the Southern Ocean,

and Antarctica as regions where warming is more pro-

nounced per degree global temperature change on lon-

ger time scales compared to the immediate years

following the abrupt4xCO2. Put another way, these are

regions of delayed warming following a perturbation,

presumably because ocean heat transports, because of

circulation andmixing, convey heat more efficiently into

the interior or to other regions (also see section 7).

In some regions, there are similarities between the

change in feedback patterns (Fig. 4, right) and the

change in surface warming pattern (Fig. 5c). In partic-

ular, the enhanced warming of the east tropical Pacific

and Southern Ocean coincides with more positive cloud

feedbacks in these regions. However, there are also

other regions where large feedback changes occur above

relatively unchanged warming patterns, such as the In-

dian Ocean at around 308S and the Atlantic Ocean at

around 308N. Presumably, there are nonlocal connec-

tions between the warming pattern and feedbacks via

the atmospheric circulation or local nonlinearities, and

a purely local framework (e.g., Armour et al. 2013)

cannot give an entirely adequate explanation. There

would be value in future work examining the extent to

which time-varying regional feedback processes in

AOGCMs should be considered local or not.

4. Dependence of feedbacks on an evolving pattern
of surface warming

To test the hypothesis that the change in SST patterns

identified in section 3 are responsible for the change in

feedback parameters shown in section 2, in this section

we perform a series of atmosphere-only (AGCM) ex-

periments. These experiments are introduced in turn in

the following subsections, and summarized for reference

in Table 2.

a. Climate change under 4xCO2 with an evolving
pattern of SST change

We force the atmospheric components of HadCM3

and HadGEM2 (HadCM3-A and HadGEM2-A, re-

spectively) with CO2 andmonthly-mean SST and sea ice

fraction derived from their respective coupledAOGCM

piControl and abrupt4xCO2 simulations.We thus aim to

reproduce the surface and atmospheric climate change

simulation of eachAOGCM (HadCM3 andHadGEM2-

ES) with its respective AGCM (HadCM3-A and

HadGEM2-A). The HadCM3-A and HadGEM2-A ex-

periments use standard AMIP-type techniques (i.e., the

model linearly interpolates between monthly-mean

values to obtain submonthly boundary conditions). The

absence of high-frequency surface variability and sup-

pression of atmosphere–ocean feedback means that the

AGCM control climate differs slightly from that of the

AOGCM, so we cannot use the latter’s piControl as

a control for the AGCM abrupt4xCO2. In this and fol-

lowing subsections, our results for climate change simu-

lated by each AGCM are calculated as differences from

its own control.

For HadGEM2 we have a single realization of the

abrupt4xCO2 AOGCM experiment, and we carry out

one HadGEM2-A experiment with monthly-mean

piControl boundary conditions and one with abrupt4xCO2

boundary conditions, both of 150 yr. For HadCM3-Awe

reduce the noise of unforced variability by (i) building

boundary conditions from the ensemble mean of the

seven coupled atmosphere–oceanHadCM3 abrupt4xCO2

simulations and then (ii) performing an ensemble of seven

abrupt4xCO2 HadCM3-A runs. The HadCM3-A piCon-

trol is a single realization using climatological rather than

a time series of monthly-mean boundary conditions de-

rived from the HadCM3 piControl. Using climatological

monthly means instead of individual months reduces the

interannual variability, which makes it more consistent

with the ensemble-mean boundary conditions derived

from the abrupt4xCO2 experiments. Because of the ex-

pense of running ensembles, the HadCM3-A experiments

are 100yr long. TheAGCMexperiment with abrupt4xCO2

boundary conditions is named ‘‘E4’’ in Table 1 (for

‘‘evolving’’ pattern of SST change and ‘‘4xCO2’’).

Figures 6a,b compares the Gregory plots of the

HadCM3-A and HadCM3 results (black points against

gray points). HadCM3-A reproduces the time-varying net

feedback parameter simulated by the AOGCM: that is,

the net feedback parameter becomes more positive with
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time (Fig. 6a) and this is mostly due to an increase in the

SWCRE feedback parameter as in theAOGCM(Fig. 6b).

The same is true for theHadGEM2-A (Figs. 6c,d).We

perform an additional HadGEM2-A experiment

(Figs. 6e,f) where we prescribe the vegetation cover by

switching off the dynamic vegetation model. This is

because in HadGEM2 there is a coupling between dust

aerosol sources and bare soil fraction, simulated by the

dynamic vegetation model, which provide strong feed-

backs in climate change simulations (Andrews et al.

2012b). This can be seen by contrasting theHadGEM2-A

results with fixed vegetation to the HadGEM2-ES re-

sults, which shows that theAGCM takes a different path

to theAOGCM (Fig. 6e) because of large differences in

the response of SW clear-sky fluxes (Fig. 6f), consistent

with changes in surface albedo and atmospheric dust

aerosol loads that will influence reflected SW radiation.

This response appears to be nonlinear with DT, since
the AGCM and AOGCM separate within the first few

years and then evolve in parallel. While this clearly

contributes to the nonlinear behavior in this particular

model, we do not believe it to be the basic physical driver

of the nonlinear N versus DT relationship, which occurs

in many models that are not considered ‘‘earth system’’

models. Hence, in the rest of this study we prescribe the

vegetation in our AGCM design to focus on the basic

physical drivers.

b. Climate change under 4xCO2 with fixed patterns of
SST change

Having shown that HadCM3-A and HadGEM2-A

forced with monthly-mean output from their AOGCM

counterpart are able to reproduce the nonlinear de-

pendence of N and cloud feedback on DT (section 4a),

we next use the atmosphere GCM design to test the

hypothesis that the nonlinearity arises from the evolu-

tion of the SST patterns. We do this by repeating the

HadCM3-A and HadGEM2-A experiments, but this

time we prevent the SST warming pattern from chang-

ing. We build a monthly-mean climatological pattern of

SST change (local DT normalized by global DT) repre-
sentative of the last 20 yr of the abrupt4xCO2 simula-

tion, scale this warming pattern by the global-mean

monthly DT time series and add it to the piControl

monthly SST fields. Using these SST boundary condi-

tions, the atmosphere GCMs are forced to take the

same global-mean monthly DT path as the AOGCM

abrupt4xCO2 results but with a fixed pattern of SST

TABLE 2. List of AGCMexperiments. ‘‘Both’’ in the model columnmeans that the experiment was carried out with both HadGEM2-A

and HadCM3-A AGCMs. The CO2 column gives the atmospheric CO2 concentration in the AGCM experiment relative to the control.

‘‘Evolving’’ sea surface boundary conditions means that monthly-mean SSTs were used from the 4xCO2 AOGCM experiment, ‘‘scaled

final’’ pattern means that the climatological time-mean SST change of the final 20 yr of the AOGCM experiment was scaled by global-

mean temperature change and added onto the control SSTs, ‘‘scaled initial’’ patternmeans the same procedure using the initial 20 yr of the

AOGCM experiment, and ‘‘scaled tangent’’ pattern used the derivative of local SST with respect to global-mean temperature for years

21–100 (more details are given in the text). The n column indicates the number of members in the ensembles of HadCM3-A experiments

having time-dependent boundary conditions. In all cases, the sea ice fraction boundary conditions use the evolving monthly-mean sea ice

fractions from the 4xCO2 AOGCM experiment (deviations from this are indicated in text where applicable).

Name Model CO2 n Sea surface boundary conditions

E4 Both 4xCO2 7 Evolving pattern: monthly SSTs from 4xCO2 AOGCM output

E1 Both 1xCO2 4

SF4 Both 4xCO2 4 Scaled final pattern: climatology of SST change based on the final 20 yr

of 4xCO2 AOGCM, scaled by monthly global DT time series and

added to control SSTs

SF1 HadGEM2-A 1xCO2 —

SI4 HadCM3-A 4xCO2 4 Scaled initial pattern: climatology of SST change based on the initial

20 yr of 4xCO2 AOGCM, scaled by monthly global DT time series

and added to control SSTs

SI1 HadCM3-A 1xCO2 4

ST4 HadCM3-A 4xCO2 4 Scaled tangent pattern: climatology of SST change based on the de-

rivative of local SST with respect to global DT for years 21–100 of

4xCO2AOGCM, scaled bymonthly globalDT time series and added

to control SSTs

CC4 HadCM3-A 4xCO2 — Constant control pattern: SST climatology based on AOGCM

piControl SSTs

CI4 HadCM3-A 4xCO2 — Constant initial pattern: SST climatology based on initial 20 yr of

4xCO2 AOGCM

CF4 HadCM3-A 4xCO2 — Constant final pattern: SST climatology based on final 20 yr of 4xCO2

AOGCM

CZ1 HadCM3-A 1xCO2 — Constant pattern derived from regressing the 4xCO2 AOGCM local

SST against global DT for years 1–20 and extrapolating to monthly

global DT 5 0
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change. This experiment is labeled ‘‘SF4’’ in Table 1 (for

‘‘scaled final pattern’’ of SST change under 4xCO2).

With HadCM3-A, SF4 and other time-dependent ex-

periments described later in this section are each an

ensemble of four integrations from different initial

states, and we show the ensemble mean.

With the scaled final pattern (experiment SF4) the net

radiative response is largely linear withDT in bothmodels

(Figs. 7a,c). Similarly, the component responses (Figs. 7b,d)

are also linear with DT, in contrast to the results with

the evolving SST pattern (E4) which showed SW CRE

feedback to becomemore positive with time. Since most

FIG. 6. (a)TheHadCM3AOGCMGregory plot for abrupt4xCO2 (gray points) compared to aHadCM3-AAGCM

experiment (black points) forced with CO2 and monthly-mean SSTs and sea ice fractions as simulated by the

AOGCM (experiment E4 in Table 2); and (b) the radiative components of (a). (c),(d) As in (a),(b), but for

a HadGEM2-ES AOGCM and HadGEM2-A AGCM experiment. (e),(f) As in (a),(b), but for a HadGEM2-A

AGCM experiment that excludes the dynamic vegetation model. The HadCM3-A AGCM results are ensemble

means from seven-member ensembles, while the HadGEM2-A AGCM results are single realizations. Lines show

regression fits to the global annual-mean data points for years 1–20 (blue) and subsequent years (red). The plots show

global annual-mean data for the first 20 yr, followed by decadal means. The blue dotted lines in (a),(c),(e) represent

the path the model would have taken to equilibrium if it had maintained the feedback strengths as simulated during

the early years of the experiment.

Fig(s). 6 live 4/C
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of the nonlinear behavior has been removed when the

SST patterns are forced to take a fixed path, we identify

the evolving pattern of surface warming as the main

driver of the nonlinear radiative response with DT. The
remaining deviations of SF4 from a perfectly straight

line in HadCM3-A are further discussed in section 4c.

Using HadCM3-A (but not HadGEM2-A because of

its computational expense), we have carried out various

additional experiments (listed in Table 2), which we

describe in the remainder of this section. These experi-

ments allow us to demonstrate that the trajectory of the

HadCM3 abrupt4xCO2 experiment in (DT, N) space,

particularly its declining (more positive) climate feed-

back parameter as time passes, can be mostly replicated

by applying the different patterns of SST change that

prevail as the evolution proceeds. Thus, they provide

further evidence that the relationship betweenN andDT
is determined by the SST pattern.

We carry out three experiments with 4xCO2 using

constant climatological sea surface boundary conditions.

Experiment CC4 (for ‘‘constant control pattern’’ under

4xCO2, 100 yr long) uses the monthly control climatol-

ogy; this experiment is the same as the HadCM3-A

control, except for the CO2 concentration, and is the

design proposed by Hansen et al. (2005) to estimate the

effective radiative forcing [i.e., imposing DT5 0 implies

F 5 N from Eq. (1)]. We note, however, that CC4 does

not lie exactly at DT 5 0K, because of land surface

warming, and hence its N is a biased estimate of the

effective radiative forcing (Hansen et al. 2005; Andrews

et al. 2012a).

Experiments CI4 (for ‘‘constant initial pattern,’’ 80 yr

long) and CF4 (for ‘‘constant final pattern,’’ 100 yr long)

use monthly climatologies made from years 1–20 and

years 81–100, respectively, of the abrupt4xCO2AOGCM

experiment. These experiments are constructed to be

FIG. 7. The 4xCO2 Gregory plots for (a),(c) HadCM3-A and HadGEM2-A AGCMs forced with CO2 and sea ice

fractions as simulated by the correspondingAOGCMbutwith fixed patterns of SST change (experiment SF4 in Table

2), respectively; and (b),(d) the radiative components of (a),(c), respectively. The monthly-mean SST patterns are

derived from the last 20 yr of theAOGCMexperiment and then scaled by themonthly-mean globalDT time series of

the AOGCM. The AGCM therefore takes the same global DT path as the 4xCO2 AOGCM model but with a fixed

pattern of SST change. Lines show OLS regression fits to the global annual-mean data points for years 1–20 (blue)

and subsequent years (red). The plots show global annual-mean data for the first 20 yr, followed by decadal means.

The blue dotted line in (a) represents the path the model would have taken to equilibrium if it had maintained the

feedback strengths as simulated during the early years of the experiment; in (c), the red line overlies the blue dotted

line.

Fig(s). 7 live 4/C

15 FEBRUARY 2015 ANDREWS ET AL . 1641



time slices of climate states that occur during the

abrupt4xCO2 AOGCM experiment, and their results lie

on the (DT, N) curve (Fig. 8a). These time-slice experi-

ments confirm that the radiation balance and climate

feedbacks are determined by the prevailing sea surface

conditions, with no other significant dependence on the

time evolution simulated by the AOGCM.

By construction, the SSTs used in the last 20 yr of the

scaled final pattern (SF4) have a climatological time

mean that is approximately equal to the constant cli-

matology applied in CF4, which was computed from

the same 20 yr of HadCM3 abrupt4xCO2. Conse-

quently, SF4 ends at the state simulated by CF4, as does

E4 (Fig. 8b). Because most of the nonlinearity of E4 is

removed by using fixed patterns, SF4 clearly bypasses

the state of CI4 on its way to CF4 (Fig. 8b). We note

that the forcing implied by the N intercept of SF4 is

about 0.5Wm22 more than for E4; this is discussed in

section 5.

In experiment SI4 (for ‘‘scaled initial pattern’’ of SST

change under 4xCO2) we force HadCM3-A with SSTs

using the pattern of the time mean of the initial 20 yr of

HadCM3 abrupt4xCO2, scaled by DT. This experiment

consequently follows the (DT, N) trajectory of E4 for its

first 20 yr, passing through the state of CI4 but then

continues along the same straight line, from which the

experiment with evolving SST patterns (E4) diverges

with a concave-upward curve (Fig. 8c).

In experiment ST4 (for ‘‘scaled tangent pattern’’ of

SST change, under 4xCO2), we force HadCM3-A with

SST fields C(x, m) 1 DTs(m, t) D(x, m), where DTs is

surface temperature change, x is geographical location,

m is the month, t is the year, C is the intercept, and

D is the slope obtained by linear regression of the

FIG. 8. The HadCM3-A experiment E4, which reproduces the AOGCM 4xCO2 results, and its relationship to

(a) the constant climate experiments CC4 (4xCO2 with climatological control SSTs), CI4 (4xCO2 with climatological

SSTs based on the initial 20 yr of abrupt 4xCO2), and CF4 (4xCO2 with climatological SSTs based on the final 20 yr of

abrupt 4xCO2); (b) SF4 (4xCO2 with climatological SSTs based on the final 20 yr of abrupt 4xCO2, then scaled by the

global monthly-mean DT time series); (c) SI4 (4xCO2 with climatological SSTs based on the initial 20 yr of abrupt

4xCO2, then scaled by the global monthly-mean DT time series); and (d) ST4 (4xCO2 with climatological SSTs based

on the derivative of local SST change with respect to globalDT over years 20–100 of abrupt 4xCO2, then scaled by the

global monthly-mean DT time series). The linear fits are separated at year 20, and the dotted lines represent the path

the model would have taken to equilibrium if it had maintained the feedback strengths as simulated during the early

years of the experiment.

Fig(s). 8 live 4/C
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abrupt4xCO2 SST(x,m, t) against global-meanmonthly-

mean surface temperature change DTs(m, t), for years

21–100. The termD is the derivative of local SST change

with respect to global DT experienced after the first

20 yr, the equivalent of Fig. 5b for the CMIP5 ensemble.

The purpose of this experiment is to test whether we can

simulate the tangent to the curve given the appropriate

pattern of SST change. We find, as expected, that ex-

periment ST4 has the same slope, or ‘‘differential cli-

mate feedback parameter’’ (Gregory et al. 2004), as the

experiment with evolving SST patterns (E4) after the

initial 20 yr (Fig. 8d).

c. Dependence of climate feedback on SST pattern,
DT, and CO2

We can gain a detailed view of the dependence of

radiative feedbacks on SST patterns and DT by com-

paring the feedback parameters for years 1–20 and years

21 onward in all our experiments (Fig. 9 for HadCM3;

HadGEM2 results not shown). In this comparison, we

also test for any dependence on CO2 concentration by

including further atmosphere GCM experiments. Ex-

periment E1 (for ‘‘evolving pattern’’ of SST change,

under 1xCO2, with bothHadCM3-A andHadGEM2-A)

is forced by changing SSTs and sea ice from the

abrupt4xCO2 simulation, exactly as in the corresponding

evolving SST experiment E4 but with the control CO2

concentration (1xCO2) (Table 2). Similarly, experiments

SF1 and SI1 (HadCM3-A only) use scaled final and ini-

tial SST patterns, exactly as in the corresponding ex-

periments SF4 and SI4 of section 4b but with 1xCO2.

Thus, climate change is forced in E1, SF1, and SI1 by the

imposed SST and sea ice change but not by CO2 change.

The HadCM3-A experiments are each an ensemble of

four integrations from different initial states, and we

show the ensemble mean.

As in the CMIP5 ensemble, there is a small but sig-

nificant weakening of the LW clear-sky feedback: that is,

it becomes less negative as DT increases, in both models.

This occurs for all the SST patterns, both fixed and

evolving. In both models, LW clear-sky feedback in

years 1–20 shows a small but significant dependence

on CO2, being about 0.1Wm22K21 less negative for

4xCO2. The LW clear-sky feedback depends also on the

SST pattern in HadCM3-A, and this dependence further

contributes to the nonlinearity of abrupt4xCO2. A small

additional nonlinearity arises fromLWCRE feedback in

HadCM3. In both models, SW clear-sky feedback shows

hardly any dependence on SST pattern, DT or CO2.

As we have already found, the nonlinearity of the net

feedback in the abrupt4xCO2 AOGCM experiment

(deviation of from the 1:1 line in Fig. 9) arises primarily

from the SW CRE feedback. Enforcing a fixed pattern

of warming largely eliminates this source of nonlinearity.

FIG. 9. Comparison of the net feedback parameter (a) and its various components as di-

agnosed from the early (years 1–20) and subsequent (years 21–100) years of the various

HadCM3AGCM experiments. The sizes of the symbol represent the 95% confidence interval,

as determined from the standard deviation in the regression multiplied by 1.96. Points that fall

below the 1:1 line demonstrate a significant shallowing of the slope (i.e., the feedback pa-

rameter becomes less negative) as time passes.

Fig(s). 9 live 4/C
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The HadGEM2-A experiment with evolving SST pat-

terns under 1xCO2 (E1) has a SWCRE feedback in both

time periods, which is statistically indistinguishable from

the same experiment under 4xCO2 (E4).WithHadCM3-A,

the SW CRE feedback parameter intersects the 1:1 line

for nearly all the fixed-pattern experiments except ST4

(Fig. 9), but it appears that SW CRE feedback with

a given pattern of SST change can depend also on CO2

(comparing E1 with E4 and SF1 with SF4).

We have advanced the hypothesis that the pattern of

SST change largely determines the SW CRE feedback.

We note that in HadCM3-A the SW CRE feedback of

SI4 agrees with E4 in years 1–20 and ST4 agrees with E4

in years 81–100 (Fig. 9), consistent with our hypothesis

and with the reproduction of portions of the E4 trajec-

tory by SI4 and ST4 (Figs. 8c,d). It could seem surpris-

ing, therefore, that SF4 is statistically indistinguishable

from SI4 in SW CRE feedback (Fig. 9), despite their

different patterns of SST change. This is because the

majority of the global warming during E4 occurs during

the first 20 yr and hence with the pattern of SI4 (Fig. 8).

Although the trajectory of E4 during years 21–100 has

the markedly different SST pattern of ST4, relatively

little additional warming occurs with this pattern. Thus,

the scaled pattern and the SWCRE feedback parameter

of SF4 are much more similar to SI4 than to ST4.

5. Definition of radiative forcing

The linear regression method used in the previous

sections to diagnose the radiative feedbacks also allows

us to diagnose the effective radiative forcing (ERF)

from the N intercept (Gregory et al. 2004). This section

uses the large number of HadCM3-A experiments to

better understand how the 4xCO2 effective radiative

forcing arises in this model. Specifically, in keeping with

the previous sections that showed there was a strong

dependence of radiative feedbacks on the evolution of

the SST patterns, we are interested in a small but sig-

nificant effect of rapid SST pattern adjustments (see

below) on the ERF.

We estimate the ERF (Table 3) in each of our

HadCM3-A experiments with time-dependent bound-

ary conditions as the N intercept of the regression line

for years 1–20 (Gregory et al. 2004). Focusing only on

the early years allows us to extrapolate back to DT 5
0 without the result being influenced by the curvature

discussed in the previous sections that arises on the

longer time scales and would act to reduce the ERF. The

uncertainty of the intercept arises from the scatter of

the points around the regression line. We use t tests for

statistical differences at the 5% significance level be-

tween the ERFs from pairs of experiments. The ERF of

7.6 6 0.3Wm22 from E4 is consistent with the ERF of

the abrupt4xCO2 AOGCMHadCM3 experiment that it

emulates (Table 3).

As noted in section 4b (Fig. 8), the Hansen or fixed-

SST estimate of the 4xCO2 ERF from N in CC4 is sig-

nificantly less than the E4 ERF that is determined from

regressing N back to DT 5 0, because preventing SST

change in the fixed-SST experiment does not prevent

land surface temperature change. This result is common

amongst CMIP5 models (Andrews et al. 2012a). (Note

the CC4 forcing estimate has amuch smaller uncertainty

than the other forcings because it is computed from

100 yr of a steady state.) As proposed by Hansen et al.

(2005), we adjust this forcing back to DT 5 0 using the

net climate feedback parameter of E4, allowing also for

the uncertainty of the latter, and thus obtain a 4xCO2

ERF that is not significantly different from E4. How-

ever, as noted by Gregory and Webb (2008), this as-

sumption is physically implausible because it assumes

the feedbacks in the transient experiment (where both

the land and SSTs respond) are the same in the fixed-

SST experiments (where the feedbacks over the ocean

have been inhibited by the experimental design as far as

possible).

The ERFs from the scaled final and initial patterns

of SST change (SF4 and SI4) are statistically in-

distinguishable but significantly greater than from E4

(one-tailed t test). (The ERF of SI4I, in which sea ice

changes as well as SST changes are scaled with DT, is not
distinguishable from SI4.) Since the CO2 concentration

is the same in all these experiments, the difference can

come only from the SSTs. In the experiments with scaled

TABLE 3. The effective radiative forcing F for 4xCO2 in Wm22,

for various HadCM3 experiments, all except the first using the

AGCM. The F is determined from the N intercept of the Gregory

plot based on a linear fit to years 1–20, except for CC4, CC4adj, and

CZ1 (see text). Errors represent the 95% confidence interval.

Experiment F (Wm22)

AOGCM 7.73 6 0.26

E4 7.64 6 0.30

CC4 7.11 6 0.04

CC4adj 7.92 6 0.07

SF4 8.06 6 0.19

SI4 8.12 6 0.20

SI4I 8.21 6 0.18

E1 20.47 6 0.26

SF1 0.07 6 0.21

SI1 0.19 6 0.14

E4 2 E1 8.11 6 0.39

SF4 2 SF1 7.98 6 0.29

SI4 2 SI1 7.93 6 0.25

E4 2 SF4 20.41 6 0.35

E4 2 SI4 20.47 6 0.36

CZ1 20.53 6 0.05
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SSTs, the extrapolation to global-meanDT5 0 is also by

construction an extrapolation of local SST everywhere

back to zero. In E4, however, the extrapolation toDT5 0

does not enforce zero local SST change.

A possible explanation of this difference is that in

response to abrupt imposition of 4xCO2 there is a rapid

SST adjustment with zero global-mean SST change but

local positive and negative SST changes, which induce

a nonzero change in global-mean TOA radiative bal-

ance. Thus, in E4 there is a rapid negative forcing ad-

justment due to SST adjustment, which is excluded in

the scaled-SST experiments and is not the same as the

land temperature adjustment that occurs in all the

4xCO2 experiments. This interpretation is corroborated

by the AGCM experiments with 1xCO2. E1 (evolving

SST patterns under 1xCO2) has an ERF of about

20.5Wm22, which we attribute to SST adjustment,

since a forcing is being diagnosed without any change in

CO2, while the scaled-SST experiments under 1xCO2

have ERFs much closer to zero. We can alternatively

estimate the effect of SST adjustment by considering the

difference in ERF between E4 and the 4xCO2 scaled-

SST experiments, which differ only in respect of the

SSTs (Table 3). These estimates agree with the ERF of

E1. The mean of these estimates of the effect of SST

adjustment on ERF is 20.5 6 0.2Wm22.

We can also construct this state, using a similar method

to the one we employed for the scaled tangent experiment

(ST4; section 4b).We regress themonthly-meanSST(x,m, t)

for years 1–20 from the abrupt4xCO2 experiment

against global-meanmonthly-mean surface temperature

DTs(m, t) change in those years from experiment E1,

which was forced by the abrupt4xCO2 SST. The intercept

of this regression gives us an estimated SSTclim(x, m)

field consistent with DTs(m, t)5 0 for each monthm. We

carry out experiment CZ1 (100 yr long) with this monthly

SST climatology and with sea ice and CO2 for the control

climate. The field of annual-mean surface air temperature

anomaly has a global mean of DT 5 20.036 6 0.009K,

very near to zero, but an area-weighted spatial standard

deviation of 0.5K, and it shows warming of over 1K

around 308S and 458N, with cooling of comparable mag-

nitude at lower and higher latitudes (Fig. 10). The global-

mean annual-meanN520.536 0.05Wm22, substantially

different from zero (95% confidence intervals, assuming

annual variations to be independent). This estimate of the

forcing adjustment due to rapid SST adjustment in re-

sponse to 4xCO2 is more precise than and consistent with

the estimate made above from time-dependent experi-

ments. Experiment CZ1 demonstrates that a nonzero

perturbation to the global energy budget can be produced

by a zero global-mean temperature change, because of

regionally varying SSTs and feedbacks.

The state following SST adjustment and with DT 5
0 does not actually occur in the trajectory of the

abrupt4xCO2 AOGCM experiment or E4 in the

AGCM. We suppose that the SST adjustment takes

place on time scales of less than 1 yr, causing a curvature

in the Gregory plot that cannot be resolved. However

considering this state offers a useful way of quantifying

and interpreting the effect within the linear forcing–

feedback framework and is consistent with an effective

radiative forcing definition that includes adjustments

that act on time scales much less than 1 yr (Gregory and

Webb 2008). The effect of rapid SST adjustment is in-

cluded in the forcing estimated by the regressionmethod

(requiring zero global-mean temperature change) but

excluded by the Hansen method (requiring zero local

temperature change), so these two definitions are in

principle different but statistically indistinguishable in

our experiments (CC4adj and E4 in Table 3).

6. 1000-yr HadGEM2-ES 4xCO2 simulation

In this section, we make use of an extended

HadGEM2-ES AOGCM simulation that has been run

for nearly 1300 yr to assess the relationship between N

and DT on longer time scales than the 150 yr of CMIP5-

type simulations previously analyzed. Figure 11a in-

dicates that linearity is a reasonable approximation for

the subsequent 1000 yr in this model. However, the lin-

earity may be fortuitous since the decomposition

(Fig. 11b) shows a cancellation of terms; on the longer

time scale (or greater values of DT reached), the in-

creasing SW CRE feedback is largely offset by a de-

creasing SW clear-sky feedback (Fig. 11b). Presumably,

this is the effect of sea ice or land–snow-cover feedbacks

weakening once the system has warmed sufficiently

enough to reduce the sea ice and land–snow cover sig-

nificantly. The timing or temperature dependence of this

FIG. 10. Change in surface air temperaturewith zero globalmean in

response to abrupt4xCO2 rapid SST adjustment in HadCM3.

Fig(s). 10 live 4/C
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effect will likely vary across models, and the degree

to which it offsets or introduces new nonlinearities is

uncertain.

7. Summary and discussion

We have shown that the relationship between the

global-mean net heat input N to the climate system (at

the top of the atmosphere) and the global-mean surface

air temperature change DT is nonlinear in most CMIP5

coupled atmosphere–ocean general circulation models,

when forced by an abrupt quadrupling of CO2 levels (see

also Andrews et al. 2012a; Geoffroy et al. 2013). The

nonlinearity increases the sensitivity of the climate sys-

tem to external forcing: that is, the feedback parameter

becomes less negative and the effective climate sensi-

tivity increases as time passes. Shortwave cloud feed-

back processes show the largest changes (becoming

more positive), although other feedback processes also

change.

An important region involved in this effect in the

AOGCM mean is the tropical Pacific, although other

regions—including the extratropics and in particular the

Southern Ocean—also contribute to the increasing

(more positive) feedback strengths. In the tropical Pa-

cific, warming is initially delayed in the east for the first

few years after the perturbation (see also Held et al.

2010), presumably because of the upwelling of cold

unperturbed waters (e.g., Clement et al. 1996; Held

et al. 2010). In contrast, on multidecadal time scales the

east tropical Pacific warms significantly more than the

west and the tropical warming pattern becomes more

El Niño like (e.g., Fig. 5; Held et al. 2010). This shift in

the tropical Pacific warming pattern appears to have

a considerable influence on the evolution of climate

feedback in the AOGCMs, particularly cloud feed-

back (Fig. 4). The mechanisms likely involve complex

atmosphere–ocean processes that are not yet well un-

derstood in the tropical Pacific on climate change time

scales (e.g., Collins et al. 2010). For example, east–west

temperature gradients may well be amplified by coupled

atmosphere–ocean processes analogous to those acting

during the El Niño–Southern Oscillation (ENSO), such

as the Bjerknes feedback (Ma and Yu 2014). Further

work developing a detailed understanding of tropical

warming patterns and atmosphere–ocean processes and

feedbacks on various time scales inAOGCMswould be

useful.

We have devised experiments with the HadCM3 and

HadGEM2 AGCMs to test the hypothesis that the

change in radiative feedbacks can be explained by an

evolving pattern of surface temperature change as sim-

ulated in the corresponding AOGCMs. When the

AGCMs were forced with a fixed pattern (but with

growing amplitude) of warming the radiative feedbacks

on global temperature change became linear or nearly

so. Thus, we confirm in these AOGCMs that the

evolving pattern of surface warming is the dominant

cause of nonlinearity.

We have demonstrated using further AGCM experi-

ments that the trajectory of the HadCM3 abrupt4xCO2

experiment in (DT,N) space, particularly its increasingly

positive climate feedback parameter, can be largely

explained by the different patterns of SST change that

prevail as the evolution proceeds. Rapidly changing SST

patterns also modify the effective radiative forcing be-

cause of 4xCO2, defined as the perturbation toN caused

by the change to CO2, without any global climate change

FIG. 11. Gregory plot for (a) the net radiative flux and (b) the radiative component terms for a HadGEM2-ES

AOGCM abrupt4xCO2 simulation run for 1290 yr. Lines show linear regression fits to the global annual-mean data

points for years 1–20 (blue) and subsequent years (red). The plots show global annual-mean data for the first 20 yr,

followed by decadal means. The blue dotted line represents the path theAOGCMwould have taken to equilibrium if

it maintained the feedback strengths as simulated during the early years of the experiment.

Fig(s). 11 live 4/C
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having occurred in response (defined by DT 5 0). The

effective radiative forcing in HadCM3 is reduced by

about 6% by rapid local adjustments (in much less than

1 yr) to SST when the CO2 concentration is changed.

The pattern of rapid surface temperature change has

zero global mean but causes a nonzero perturbation to

N, which is included in the forcing obtained by the re-

gression (Gregory) method but excluded by definition

from the fixed-SST (Hansen) forcing.

The equilibrium climate sensitivity has long been

used in climate modeling as a benchmark metric (e.g.,

Charney et al. 1979). An inconstant feedback parame-

ter in AOGCMs means that we cannot confidently es-

timate the equilibrium climate sensitivity of an

AOGCM without running it to equilibrium. The

CMIP5 results suggest that the equilibrium climate

sensitivity maybe systematically underestimated by

extrapolation of the first 20 yr of an abrupt4xCO2 ex-

periment. However, there may be further curvature on

longer (millennia) time scales (section 6; Senior and

Mitchell 2000; Li et al. 2013) that we are unable to assess

across models. We would be glad to see other modeling

centers extend their 4xCO2 simulations to test the ro-

bustness of the linear forcing–feedback paradigm on

longer time scales. In contrast to Armour et al. (2013)

and Frölicher et al. (2014), we argue that the non-

linearity does not represent a bias in the Gregory et al.

(2004) regression method; our interpretation is that

when the system is nonlinear the simple linear forcing–

feedback concept breaks down. Still, the linear Gregory

method applied equally across models retains its utility

since it can quantify the main sources of forcing and

feedback uncertainty (Andrews et al. 2012a), which in

turn explains most of the spread in model projections

for the twenty-first century for a given scenario (Forster

et al. 2013).

The climate feedback parameter a can be estimated

from climate change in response to time-dependent

forcing if a is assumed to be constant (Murphy 1995;

Gregory et al. 2004). A strong dependence of climate

feedbacks on the pattern of SST change therefore raises

a question about the applicability of estimates of climate

sensitivity derived from the historical record (e.g.,

Gregory and Forster 2008; Otto et al. 2013). Where on

the (N, DT) curve does the observed estimate of climate

feedback lie? If the SST change evolves in the future

with patterns different from those of the twentieth

century then it is conceivable that real-world estimates

of climate feedbacks may not be representative of long-

term change (Armour et al. 2013; Rose et al. 2014).

Further work determining how feedbacks and SST pat-

terns, including the role of coupled atmosphere–ocean

variability in the observed record, have evolved over the

twentieth century and how they relate to long-term cli-

mate change would be valuable.

The equilibrium climate sensitivity is useful as in-

formation on committed warming, but it is not the most

useful concept for quantifying and comparing climate

responses to time-dependent forcing. Improved physical

understanding will come from shifting focus onto tran-

sient forcings, feedbacks, and ocean heat uptake, which

jointly determine the rate and magnitude of time-

dependent climate change. There would be value in fur-

ther research examining the effect of ocean heat uptake

and transport on the evolution of surface warming pat-

terns (e.g.,Woollings et al. 2012;Winton et al. 2013; Rose

et al. 2014) in view of their influence, which we have

elucidated, on climate feedback.
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