
On the application of optimal wavelet filter  
banks for ECG signal classification 
Article 

Published Version 

Creative Commons: Attribution­No Derivative Works 3.0 

Open Access 

Hadjiloucas, S., Jannah, N., Hwang, F. and Galvão, R. K. H. 
(2014) On the application of optimal wavelet filter banks for 
ECG signal classification. Journal of Physics: Conference 
Series, 490 (1). 012142. ISSN 1742­6588 doi: 
https://doi.org/10.1088/1742­6596/490/1/012142 Available at 
http://centaur.reading.ac.uk/38005/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1088/1742­6596/490/1/012142 

Publisher: Institute of Physics 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/42149649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


Central Archive at the University of Reading 

Reading’s research outputs online



This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.225.215.136

This content was downloaded on 14/03/2014 at 14:11

Please note that terms and conditions apply.

On the application of optimal wavelet filter banks for ECG signal classification

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys.: Conf. Ser. 490 012142

(http://iopscience.iop.org/1742-6596/490/1/012142)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/490/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


 

 

 

 

 

 

On the application of optimal wavelet filter banks for ECG 

signal classification  

S Hadjiloucas
1*

, N Jannah
1
 F. Hwang

1
 and R K H Galvão

2
 

1
School of Systems Engineering the University of Reading 

2
Divisão de Engenharia Eletrônica, Instituto Tecnológico de Aeronáutica, São José 

dos Campos, SP, 12228-900 Brazil 

 

E-mail: s.hadjiloucas@reading.ac.uk  

 
Abstract. This paper discusses ECG signal classification after parametrizing the ECG 

waveforms in the wavelet domain. Signal decomposition using perfect reconstruction 

quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. 

In the current work, the filter parameters are adjusted by a numerical optimization algorithm in 

order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of 

achieving a better compromise between frequency selectivity and time resolution at each 

decomposition level than standard orthogonal filter banks such as those of the Daubechies and 

Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that 

they can be subsequently used as inputs for training to a neural network classifier. 

Introduction 

Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very 

parsimonious representation of ECG signals. In previous works [1] we have shown that optimal 

wavelets can be used for the post-processing of ECG signals so that classifiers can operate directly in 

the wavelet domain as opposed to the time or frequency domains. Our approach extends the wavelet 

parametrization approach proposed by Sherlock and Monro [2] to ensure that the derived wavelets 

have at least two vanishing moments. In the current work, the filter parameters are adjusted by a 

numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off 

sharpness. The goal consists of achieving a better compromise between frequency selectivity and time 

resolution at each decomposition level than standard orthogonal filter banks such as those of the 

Daubechies and Coiflet families. 

 

Wavelet filter bank parametrization 

In the signal decomposition using the DWT, both a low pass (LPF) and a high pass (HPF) filter bank 

are used to generate time domain responses, these are convolved with the time domain ECG signal. 

Convolving the response function of the chosen filter (corresponding to a particular mother wavelet) 

with the signal provides an output which has different energy at different scales. Approximation 

coefficients relate to the low frequency components of the signal whereas detail coefficients relate to 

the higher frequency components in the signal. Wavelet decomposition using the DWT provides 

essentially a multi-resolution representation of the input signal. The user normally retains coefficients 
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up to a particular scale whereas more detailed decompositions become redundant as their 

incorporation have a negligible effect on the signal. The convolution operation may be conveniently 

performed in the frequency domain where it is implemented through a simple multiplication process. 

 In this filter bank, the low-pass filtering result undergoes successive filtering iterations with the 

number of iterations Nit chosen by the analyst. The final result of the decomposition of data vector x is 

a vector resulting from the concatenation of row vectors c(Nit) (termed approximation coefficient at the 

largest scale level) and d(s) (termed detail coefficients at the s
th
 scale level, s = 1,..., Nit) in the 

following manner: 

 

t = [c(Nit) | d(Nit) | d(Nit – 1) | … | d(1)]     (1) 

 

with coefficients in larger scales (e.g. d(Nit),d(Nit – 1),d(Nit – 2),…) associated with broad features in 

the data vector, and coefficients in smaller scales (e.g. d(1),d(2),d(3),…) associated with narrower 

features such as sharp peaks. The filter bank transform can be regarded as a change in variables from 


J
 to 

J
 performed according to the following operation, 

1...,,1,0,)(
1

0






Jjnvxt
J

n

jnj
    (2) 

where tj is a transformed variable and vj(n)   is a transform weight. It proves convenient to write 

the transform in matrix form as: 

JJJJ   Vxt 11
     (3) 

where x = [x0 x1 … xJ1] is the row vector of original variables, t is the row vector of new 

(transformed) variables and V is the matrix of weights. Choosing V to be unitary (that is, V
T
V = I), the 

transform is said to be orthogonal and it, therefore, consists of a simple rotation in the coordinate axes 

(with the new axes directions determined by the columns of V).   

Let {h0, h1, …, h2N1} and {g0, g1, …, g2N1} be the impulse responses of the low-pass and high-

pass filters respectively. Assuming that filtering is carried out by circular convolution, the procedure 

for generating the approximation coefficients from the data vector x is illustrated in Table 1. The 

convolution consists of flipping the filtering sequence and moving it alongside the data vector. For 

each position of the filtering sequence with respect to the data vector, the scalar product of the two is 

calculated (with missing points in the filtering sequence replaced with zeros). For instance, if N = 2, 

the third row in Table 1 shows that c1′ = x1h3 + x2h2 + x3h1 + x4h0. Dyadic down-sampling is then 

performed to c2i′ to generate coefficients ci. The detail coefficients di are obtained in a similar manner 

by using the high-pass filtering sequence. 

 
Table 1. Convolution procedure for low-pass filtering showing 

results before and after dyadic down-sampling. 
 

x0 x1  x2N1 x2N  xJ1 x0 x1 ... x2N2 Before After 

h2N1 h2N2  h0  c0′  

 h2N1  h1 h0  c1′ c0 

     
     

      h2N1 h2N2 h2N3  cJ2′  

       h2N1 h2N2  h0 cJ1′ cJ/21 

If the approximation c and detail d coefficients are stacked in vector t = [c | d], the wavelet 

transform can be expressed in the matrix form with the transformation matrix given by: 
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  (4) 

A requirement for the transform to be orthogonal (i.e., V
T
V=I) is that the sum of the squares of 

each column must be equal to one and the scalar product of different columns must be equal to zero 

[3]. Therefore, for a filter bank that utilizes low-pass and high-pass filters, the following conditions 

ensure orthogonality of the transform so that no information is lost in the decomposition process [4]:  
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12...,,1,0,)1( 12

1  

 Nnhg nN

n

n
       (5b) 

Under these conditions, the filter bank is said to enjoy a perfect reconstruction (PR) property, because 

x can be reconstructed from t which means that there is no loss of information in the decomposition 

process. Although other non-orthogonal filter bank transforms can also enjoy a PR property, provided 

that they are associated to a non-singular matrix V, the analysis in the present work is restricted to 

orthogonal transforms. In fact, the orthogonality of the transform (with the consequent PR property) 

ensures that no information that may be potentially useful for classification purposes is lost in the 

decomposition process. Moreover, convenient parameterisation schemes may then be employed to cast 

the transform filters into forms amenable to optimization. 

 

Parametrization and optimization approach.  

Let:  
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As stated in [5, 6], in order to ensure two vanishing moments for the resulting transform,  
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In what follows, an optimization process is proposed that maximizes the selectivity of the pair of high-

pass/low-pass orthonormal wavelet filters with a given length.  
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As discussed in [5, 6] the expression in (7) has a real value solution if the set of angles ia  where 

1 2i N    satisfy a set of constrains that define a non-convex region in 2NR  .  Additional constrains 

are imposed to ensure this, by invoking a new parameter i  so that: 
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Rearranging (8) and (9) we have:  
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The cost J is defined from the frequency response of the low pass filter as: 
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    (12) 

with 2 /s T   being the sampling frequency. As discussed in [6], optimization of the cost function 

with respect to the i  parameters is accomplished by using sequential quadratic programming (SQP) 

which uses local quadratic approximations of the cost function and local linear approximations of the 

restrictions. An interesting variance to the above algorithm where additional constrains are imposed to 

ensure a third vanishing moment can be found in [7]. 

 

Example of a signal decomposition process 

The signal in Fig. 1 represents the first 1000 points out of a 3600 data points record from patient 

number 100 (lead 1) from the MIT database. The patient does not have a pathogenic condition and his 

record (among others from that database) is normally used as a training set to different classifiers to 

discriminate from other pathogenic patient records. A typical decomposition of the signal to 

approximation and detail coefficients at the first decomposition level is shown as an inset to that 

figure. Normally, a much smaller filter tap is generated by the user as shown in the Figure 1b. Figure 2 

depicts the angular parameter alpha associated with a standard db6 filter bank as well as for the filter 

bank generated on the basis of the proposed procedure. Figure 2b shows the difference in the function 

of these filters in the frequency domain. The introduction of a vanishing moment in the random 

parameter filter shown in Fig. 2b ensures that its gain drops to zero at high frequencies. 

Figure 1. a) Typical signal from the MIT-BIH database with corresponding reconstruction on the 

basis of approximation and wavelet coefficients at the first decomposition level and b) comparison of 

filter coefficients impulse response function assuming 12 taps. 

(a) (b) 
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Figure 2. a) Comparison of angular parameters for a standard db6 filter bank with those of a filter 

bank generated using the proposed procedure and b) normalized frequency response for the two filter 

banks depicting the difference in their function.   
 

Conclusion 

The current work advances previous ECG wavelet decompositions by placing recent work on wavelet 

parametrizations [5, 7] within a biomedical applications context. A test waveform was decomposed to 

qualitatively describe the new parametrization process being implemented. This decomposition was 

contrasted to that of a standard db6 parametrization. We intend to further explore this approach as a 

feature reduction method before presenting ECG signals from the MIT-BIH database to different 

classifiers (e.g. a successive projections algorithm [8]). Further work intends to optimize the number 

of wavelet coefficients as well as number of decomposition levels presented to the classifier. Contrary 

to previous works in the ECG literature, this needs to be performed in a more systematic manner (e.g., 

using Kohonen maps), evaluating the performance of the classifier output when it is presented with 

normal beats, premature ventricular contraction beats, paced beats, left and right bundle branch block 

beats, atrial premature contraction beats, ventricular flutter wave and ventricular escape beats.    
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