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Estimating correlated observation error statistics

using an ensemble transform Kalman filter

By JOANNE A. WALLER*, SARAH L. DANCE, AMOS S. LAWLESS and

NANCY K. NICHOLS, School of Mathematical and Physical Sciences, University of Reading,
5 Reading, Berkshire, RG6 6BB, United Kingdom

(Manuscript received 7 November 2013; in final form 15 July 2014)

ABSTRACT
10 For certain observing types, such as those that are remotely sensed, the observation errors are correlated and

these correlations are state- and time-dependent. In this work, we develop a method for diagnosing and

incorporating spatially correlated and time-dependent observation error in an ensemble data assimilation

system. The method combines an ensemble transform Kalman filter with a method that uses statistical averages

of background and analysis innovations to provide an estimate of the observation error covariance matrix. To
15 evaluate the performance of the method, we perform identical twin experiments using the Lorenz ’96 and

Kuramoto-Sivashinsky models. Using our approach, a good approximation to the true observation error

covariance can be recovered in cases where the initial estimate of the error covariance is incorrect. Spatial

observation error covariances where the length scale of the true covariance changes slowly in time can also be

captured. We find that using the estimated correlated observation error in the assimilation improves the
20 analysis.

Keywords: data assimilation, correlated observation errors, ensemble transform Kalman filter

1. Introduction

Data assimilation techniques combine observations with a
25 model prediction of the state, known as the background, to

provide a best estimate of the state, known as the analysis.

The errors associated with the observations can be attrib-

uted to four main sources:

(1) Instrument error.
30 (2) Error introduced in the observation operator � these

include modelling errors, such as the misrepresenta-

tion of gaseous constituents in radiative transfer

models, and errors due to the approximation of a

continuous function as a discrete function.
35 (3) Errors of representativity � these are errors that

arise where the observations can resolve spatial

scales that the model cannot.

(4) Pre-processing errors � errors introduced by pre-

processing of the data such as cloud clearance for
40 radiances.

For a data assimilation scheme to produce an optimal

estimate of the state, the error covariances associated with

the observations and background must be well understood

and correctly specified (Houtekamer and Mitchell, 2005).
45In practice, many assumptions are violated and the analysis

provided by the assimilation may be far from optimal.

Therefore to obtain an accurate analysis, it is important to

have good estimates of the observation and background

error covariance matrices to be used in the assimilation.
50In previous work, much attention has been given to the

estimation of the background error covariance matrix and

as a result static background error covariance matrices are

now often replaced with flow-dependent matrices that

reflect the ‘errors of the day’ (Bannister, 2008). Until
55recently, less emphasis has been given to understanding the

nature of the observation error covariance matrix and the

matrix is often assumed diagonal. The unknown errors,

such as the representativity error, and any other possible

unaccounted for correlations, are represented by inflating
60the error variance (Whitaker et al., 2008; Hilton et al.,

2009), or by using techniques such as observation thinning

(Buehner, 2010) or ‘superobbing’ (Daley, 1991).

One difficulty in quantifying observation error correla-

tions is that they can only be estimated in a statistical sense,
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65 not calculated directly. The distinction between biased and

correlated errors can be a particular issue. For example,

Stewart et al. (2013), report that ‘a series of correlated

samples will tend to be smoother than a series of indepen-

dent samples, with adjacent and nearby values more likely
70 to be similar. Hence, in practical situations it would be easy

for a sample from a correlated distribution with a zero mean

to be interpreted as a biased independent sample (Wilks,

1995)’.

Despite the challenges in estimating correlated errors,
75 recent works, for example, Stewart et al. (2009, 2014),

Bormann et al. (2002), Bormann andBauer (2010), Bormann

et al. (2010), using the methods of Hollingsworth and

Lönnberg (1986) and Desroziers et al. (2005) have shown

that for certain observing instruments the observation error
80 covariance matrix is correlated. When these correlated

errors have been accounted for in the assimilation, it has

been shown to lead to a more accurate analysis (Healy and

White, 2005; Stewart, 2010; Stewart et al., 2013), the

inclusion of more observation information content (Stewart
85 et al., 2008) and improvements in the UK Met Office skill

score (Weston, 2011; Weston et al., 2014). Indeed, Stewart

et al. (2013) and Healy and White (2005) reported that even

the use of a crude approximation to the observation error

covariance matrix may provide significant benefit.
90 The importance of accounting for correlated errors in the

assimilation has led to the development of new schemes that

provide estimates of the observation error covariance

matrix. The methods of Li et al. (2009) and Miyoshi et al.

(2013) use the diagnostic of Desroziers et al. (2005) (here-
95 after denoted as the DBCP diagnostic), embedded in a local

ensemble transform Kalman filter (ETKF) to derive esti-

mates of an observation error covariance matrix, assumed in

their study to be static. With this method, an initial estimate

of the observation error covariance matrix is updated
100 incrementally using statistics averaged over each observa-

tion type at each assimilation step. This method assumes

that all observations of a given type share the same variances

and spatial correlation structure. The method is limited by

the availability of samples. More significantly, the authors
105 have not shown that it permits true correlations that are

spatially varying over time to be estimated. It has been

demonstrated, however, that representativity errors are

dependent on both time and space (Janjic and Cohn, 2006;

Waller et al., 2014).
110 In this paper, we introduce a method that combines an

ensemble filter with the DBCP diagnostic. In this method,

the observation error covariance matrix is estimated using

statistics averaged over a rolling time window. This removes

the assumption that each observation of a given type shares
115 the same variances and correlations and enables a true

correlationmatrix that is spatially and temporally varying to

be estimated and incorporated in the assimilation scheme.

In Section 2, we describe the ensemble filter that can be

used to provide a time-varying estimate for correlated
120observation error. Our experimental design is given in

Section 3 and we present our numerical results in Section 4.

We show that, as demonstrated in experiments using simple

models, it is possible to use the proposed method to provide

an estimate of spatial observation error correlations that
125vary slowly in time. Finally, we conclude in Section 5.

2. Estimating the observation error covariance

matrix with the ETKF

Data assimilation techniques combine observations

yn 2 R
Np

at time tn with a model prediction of the state,
130the background xf

n 2 R
Nm

, which is often determined by a

previous forecast. Here Np and Nm denote the dimensions

of the observation and model state vectors, respectively.

The observations and background are weighted by their

respective error statistics, to provide a best estimate of the
135state xa

n 2 R
Nm

, known as the analysis. This analysis is then

evolved forward in time, using the possibly non-linear

model Mn, to provide a background at the next assimila-

tion time. Under the perfect model assumption, we have

xf
nþ1 ¼Mnðxa

nÞ: (1)
140

We now give a brief overview of the ETKF (Bishop

et al., 2001; Livings et al., 2008) that we adapt here and the

notation that is used in this study. At time tn we have an

ensemble, a statistical sample of N state estimates xi
n

� �
for

145i ¼ 1; : : :;N. These ensemble members are stored in a

state ensemble matrix Xn 2 R
Nm�N , where each column of

the matrix is a state estimate for an individual ensemble

member,

Xn ¼ x1
n x2

n . . . xN
n

� �
: (2)

150

It is possible to calculate the ensemble mean,

xn ¼
1

N

XN

i¼1

xi
n; (3)

and subtracting the ensemble mean from the ensemble
155members gives the ensemble perturbation matrix

X0n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p x1

n � xn x2
n � xn . . . xN

n � xn

� �
: (4)

This allows us to write the ensemble error covariance

matrix as

Pn ¼ X0nX0n
T : (5)

160

When the forecast error covariance is derived from

climatological data and assumed static, it is often denoted

as B and known as the background error covariance
165matrix.
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For the ETKF, the analysis at time tn is given by,

xa
n ¼ xf

n þ Knðyn �Hnðx
f
nÞÞ; (6)

where xa
n is the analysis ensemble mean and xf

n is the
170 forecast ensemble mean. The possibly non-linear observa-

tion operator H : R
N

m

! R
N

p

maps the model state space

to the observation space. The Kalman gain matrix,

Kn ¼ X0fn Y0fTn S�1
n ; (7)

175 is a matrix of sizeNm�Np. The matrix Sn ¼ Y0fn Y0fTn þ Rn is a

matrix of size Np�Np, where Y0fn ¼ HnX0fn is defined as the

matrix containing the mapping of the ensemble perturba-

tions into observation space using the linearised observation

operator Hn and the observation error covariance matrix is
180 denoted by Rn 2 R

Np�Np

. The matrix Sn is invertible if it is

full rank. In the ETKF, we usually assume Rn is symmetric

and positive definite (i.e. full rank) sinceY0fn Y0fTn is typically of

low rank.

Previously, it has been assumed that the observation error
185 covariance matrixR is diagonal. However, with recent work

showing thatR is correlated and state dependent, it is impor-

tant to be able to gain accurate estimates of the observation

error covariance matrix. Here, we propose a method that

combines theDBCPdiagnostic with anETKF (Bishop et al.,
190 2001). This method provides a new technique for estimating

time-varying correlated observation error matrices that can

be used within the assimilation scheme.We begin by describ-

ing the diagnostic proposed in Desroziers et al. (2005).

2.1. The DBCP diagnostic

195 The DBCP diagnostic described in Desroziers et al.

(2005) makes use of the background (forecast) and analysis

innovations to provide an estimate of the observation

error covariance matrix. The background innovation,

db ¼ y �Hðxf Þ, is the difference between the observation y
200 and the mapping of the forecast vector, xf, into observation

space by the observation operator H. The analysis innova-
tions, da ¼ y �HðxaÞ, are similar to the background in-

novations, but with the forecast vector replaced by the

analysis vector xa. Taking the statistical expectation, E, of
205 the outer product of the analysis and background innova-

tions and assuming that the forecast and observation errors

are uncorrelated results in

E½dadbT � � R: (8)

210 This is valid if the observation and forecast error

covariance matrices used in the gain matrix,

K ¼ Pf HT ðHPf HT þ RÞ�1
; (9)

to calculate the analysis, are the exact observation error
215 covariance matrix and forecast error covariance matrix

(Desroziers et al., 2005). However, provided that the

correlation length scales in Pf and R are sufficiently

different, it has been shown that a reasonable estimate of

R can be obtained even if the R and P
f used in K are not

220correctly specified. It has also been shown that the method

can be iterated to estimate R (Desroziers et al., 2009;

Mènard et al., 2009).

The DBCP diagnostic does not explicitly account for

model error. Nevertheless, the diagnostic has been success-
225fully used in complex operational models to estimate

correlated observation error covariances, including time

invariant non-isotropic inter-channel error correlations

(Stewart et al., 2009; Bormann and Bauer, 2010; Bormann

et al., 2010; Stewart, 2010; Weston, 2011; Stewart et al.,
2302014; Weston et al., 2014). However, much of this previous

work has considered variational data assimilation methods.

As ensemble filters and hybrid methods are becoming more

widely used in operational data assimilation (Buehner et al.,

2010; Miyoshi et al., 2010; Clayton et al., 2013), we consider
235the use of theDBCP diagnostic when using an ensemble data

assimilation method with flow-dependent forecast error

statistics.

2.2. The ETKF with R estimation

We first give a brief overview of the proposed method, the
240ETKF with R estimation (ETKFR), before discussing it in

further detail. The idea is to estimate a possibly non-uniform

observation error covariance matrix that varies in time using

the ETKF. We use the ETKF to provide samples of the

background and analysis innovations to be used in the
245DBCP diagnostic. After the initial ensemble members,

forecast error covariance matrix and observation error

covariance matrix are specified, the filter is split into two

stages: a spin-up phase where the matrix R remains static

and a ‘varying estimate’ stage. The spin-up stage is run for a
250predetermined number of steps, Ns, and is an application of

the standard ETKF. This stage also allows the structures in

the background error covariance matrix to develop. In the

second stage, the DBCP diagnostic is calculated using Ns

samples to provide a new estimate of R that is then used
255within the assimilation. We note that for any assimilation

that is running continuously, the spin-up stage need only be

run once to determine the initial samples required to

estimate R. We now present in detail the method that we

have developed. Here the observation operator,H, is chosen
260to be linear, but themethod could be extended to account for

a non-linear observation operator H (e.g. Evensen, 2003).

Initialisation � Begin with an initial ensemble xa;i
0

� �

for i ¼ 1 : : : N at time t�0 that has an associated initial

covariance matrix Pf
0. Also assume an initial estimate of

265the observation error covariance matrix R0; it is possible

that this could just consist of the instrument error.

ESTIMATING CORRELATED OBSERVATION ERROR STATISTICS 3



Step 1 � The first step is to use the full non-linear model,

Mn, to forecast each ensemble member, xf;i
nþ1 ¼Mnðxa;i

n Þ.
Step 2 � The ensemble mean and covariance are

270 calculated using (3) and (5).

Step 3 � Using the ensemble mean and the background

innovations at time tn, calculate and store db
n ¼ yn �Hxf

n.

Step 4 � The ensemble mean is updated using,

xa
n ¼ xf

n þ Knðyn �Hnxf
nÞ; (10)

275

where Kn is the Kalman gain.

Step 5 � The analysis perturbations are calculated as

X0an ¼ X0fn Cn; (11)

280 where Gn is the symmetric square root of I� Y0fTn S�1
n Y0fn

(Livings et al., 2008). Using this method means that no

centring technique is required in order to preserve the

analysis ensemble mean.

Step 6 � The analysis mean is then used to calculate the
285 analysis innovations, da

n ¼ yn �Hxa
n.

Step 7 � If n > Ns, where Ns is the specified sample size,

update R using

Rnþ1 ¼
1

Ns � 1

Xk¼n

k¼n�Nsþ1

da
kdbT

k : (12)

290 Then symmetrise the matrix, Rnþ1 :¼ 1
2
ðRnþ1 þ RT

nþ1).

Otherwise keep Rnþ1 ¼ R0.

Many of the steps in the proposed method are identical to

the ETKF. Step 7, along with the storage of the background

and analysis innovations in steps 3 and 6, are the additions
295 to the ETKF that provide the estimate of the observation

error covariance matrix. At every assimilation step R is

updated using the latest information, with the oldest

information being discarded. Although this does not give

a completely time-dependent estimate of R it should give a
300 slowly time-varying estimate that should take into account

the most recent information relating to the observations. In

step 5, rather than calculating the symmetric square root

explicitly, it is possible to make use of the fact that

ðI� Y0fTn S�1
n Y0fn Þ ¼ ðIþ Y0fTn R�1

n Y0fn Þ
�1
. It is then necessary

305 to invert a full R matrix. This may be carried out efficiently

using the Cholesky decomposition method. Rather than

inverting the matrix at each assimilation step, the decom-

position can be updated using rank-1 down and updates

with only a small number of operations relative to the
310 dimension of the matrix (Golub and Van Loan, 1996).

The first time a correlated observation error matrix is

introduced, it is possible that the assimilation may be

affected by the sudden change, although this has not caused

any problems in our experiments. In a practical situation,
315 this would only occur once during the spin-up phase and, if

necessary, it could be overcome by applying a smoothing to

introduce the new matrix over a short period of time.

In general, the optimal number of samples, Ns, required

to estimate R is unknown. Ideally, the number of samples
320would be larger than the number of entries to be estimated.

However, using a larger number of samples means the

estimate of the observation error covariance matrix is an

average over a large period of time. Hence, the larger the

number of samples the less time-dependent the estimate
325becomes. Therefore, the optimal value of Ns must be a

compromise between the large number of samples required

to obtain a good approximation to the matrix and the

limited number of samples that allows the time-varying

nature of the observation error covariance matrix to be
330captured.

In practice, the number of samples available will be

limited and, therefore, the estimated observation error

covariance matrix will not be full rank. In this case, it

may be necessary to apply some form of regularisation to
335the estimated matrix, see Bickel and Levina (2008). This

regularisation could, for example, take the form of a

covariance localisation to remove spurious long range

correlations (Hamill et al., 2001; Bishop and Hodyss,

2009), or the assumption that the correlation function is
340globally uniform. Weston et al. (2014) used reconditioning

techniques to obtain full rank approximations of the matrix

and this allowed their estimated matrix to be used success-

fully in the assimilation.

3. Experimental design

3453.1. The models

To demonstrate the potential of the ETKFR approach, we

use two different models: the Lorenz ’96 model (Lorenz,

1996; Lorenz and Emanuel, 1998) and the Kuramoto-

Sivashinsky (KS) equation (Sivashinsky, 1977; Kuramoto,
3501978).

3.1.1. The Lorenz ’96 model. The Lorenz ’96 model

has been widely used to test state estimation problems

(Anderson, 2001; Ott et al., 2004; Fertig et al., 2007). The

model emulates the behaviour of a meteorological variable
355aroundacircle of latitude.Themodel consists ofNmvariables

X1; : : : ;XNm on a cyclic boundary, that is, X�1 ¼ XNm�1,

X0 ¼ XNm and XNmþ1 ¼ X1, which are governed by,

dXj

dt
¼ Xj�1ðXjþ1 � Xj�2Þ � Xj þ F : (13)

360The first term on the right-hand side simulates advection,

whereas the second simulates diffusion, and the third is a

constant forcing term. The solution exhibits chaotic

behaviour for Nm]12 and F�5 and to ensure that we

4 J. A. WALLER ET AL.



see chaotic behaviour in our solution we choose Nm�40
365 and F�8.

3.1.2. The KS equation. The KS equation,

@u

@t
¼ �u

@u

@x
� @

2u

@x2
� @

4u

@x4
; (14)

is a non-linear, non-dimensional partial differential equa-
370 tion where u is a function of time, t, and space, x. The

equation produces complex behaviour due to the presence

of the second- and fourth-order terms. The equation can be

solved on both bounded and periodic domains and, when

this spatial domain is sufficiently large, the solutions exhibit
375 multi-scale and chaotic behaviour (Eguı́luz et al., 1999;

Gustafsson and Protas, 2010). This chaotic and multi-scale

behaviour makes the KS equation a suitable low dimen-

sional model that represents a complex fluid dynamic

system. The KS equation has been used previously for the
380 study of state estimation problems using both ensemble and

variational methods (Protas, 2008; Jardak et al., 2010).

3.2. Twin experiments

To analyse the ETKF with R estimation (ETKFR), we

perform a series of twin experiments. For our twin experi-
385 ments, we determine a ‘true’ trajectory by evolving the

perfect model equations forward from known initial condi-

tions. From the true trajectory we create observations (see

Section 3.2.1). These observations are then used in the

assimilation. In the assimilation all the ensemble members
390 are also evolved using the perfect model equations but

beginning from perturbed initial conditions. We now de-

scribe how we calculate the observations; then we provide

details for the experiments using the Lorenz ’96 and KS

models.

395 3.2.1. The observations. To create observations from the

true model trajectories we must add errors from a specified

distribution. The true observation error covariance matrix,

Rt�RD�RC, consists of two components, representing

the uncorrelated observation error part and the correlated
400 observation error part. The uncorrelated observation

covariance matrices are defined as RD ¼ r2
DI, where r2

D is

the corresponding error variance and the correlated

observation covariance matrices are defined as RC ¼ r2
CC,

where r2
C is the corresponding error variance and C is a

405 correlation matrix. We use direct observations with added

uncorrelated observation error, which are calculated by

adding pseudo-random samples from Nð0; r2
DIÞ to the

values of the truth. We then add correlated error to our

observations. Since we are testing the feasibility of the
410 proposed method, here we consider an isotropic and

homogeneous observation error covariance. As the correla-

tion function we use the SOAR function,

qði; jÞ ¼ fcosð2ba sinð
hi;j

2
ÞÞ

þ
sinð2ba sinðhi;j

2
ÞÞ

Lb
gexpð�2a sinð

hi;j

2
Þ=LÞ; (15)

415where r is the correlation between two points i and j on a

circle and ui,j is the angle between them (Thiebaux, 1976).

The constants L and b determine the length scale of the

correlation function and the correlation function is valid on

the domain of length 2ap. We choose the SOAR function
420to approximate our correlated error because, at large

correlation length scales, the SOAR resembles the observa-

tion error covariance structure found in Bormann et al.

(2002). The SOAR function is used to determine the

circulant covariance matrix C. Having a specified observa-
425tion error covariance matrix allows us to determine how

well the method is working as the estimated matrix can be

compared to the truth.

3.2.2. Regularising the estimated error covariance matrix.

In our experiments, we make the regularising assumption
430that the observation error covariance structure is isotropic

and homogeneous. Hence, the observation error covariance

matrices we use in the assimilation have a circulant structure,

which is determined by a single vector, c. This vector

occupies the first row of the matrix, the remaining rows
435being determined by cyclic permutations of the vector c.

To regularise the estimated error covariance matrix Rest

obtained from the ETKFR, we find a vector ce 2 R
1�Np

from which we construct a circulant error covariance

matrix R to use in the next assimilation step. To calculate
440the vector ce we first permute the rows of Rest so that for

each row the variance lies in the same column. The

averages of these columns are then taken to produce the

elements of the vector ce that defines circulant matrix R.

The estimated vector ce can also be compared to the
445corresponding vector ct defining the true circulant error

covariance matrix in order to evaluate the performance of

the DBCP diagnostic (see Section 4.1).

3.2.3. The Lorenz ’96 model. In this study, we solve the

system of equations using MATLAB’s (version R2008b)
450ode45 solver, which is based on an explicit Runge-Kutta

formula (Dormand and Prince, 1980); this uses a relative

error tolerance of 10�3 and an absolute error tolerance of

10�6. To generate the true solution the Lorenz equations

are started from initial conditions where Xj=8, j=1 . . . 40
455with a small perturbation of 0.001 added to variable X20.

The numerical model provides output at intervals of

Dt�0.01 until a final time of T�50. To generate the initial

ESTIMATING CORRELATED OBSERVATION ERROR STATISTICS 5



ensemble background states, N�500 pseudo-random sam-

ples from the distributionNð0; r2
bIÞ, where r2

b is the forecast
460 error variance, are added to the true initial condition.

A large number of ensemble members is used to minimise

the risk of ensemble collapse and to help obtain an accurate

forecast error covariance matrix. For the purposes of this

initial study, we wish to avoid using the techniques of
465 covariance inflation and localisation so as not to contam-

inate the estimate of R. We take 20 equally spaced direct

observations, calculated as described in Section 3.2.1, at

each assimilation step. Constants for eq. (15) are chosen to

be L�6 and b�3.6 (unless otherwise stated). We then
470 consider time-dependent R where b varies linearly with time

according to b(t)�at�b. The frequency varies between

experiments, with the chosen frequencies being observations

available every 5 and 30 time steps, that is, every 0.05 and

0.3 time units, respectively.

475 3.2.4. The KS equation. In this study, the KS equation is

solved using an exponential time differentiating Runge-

Kutta 4 (ETDRK4) numerical scheme. Details of this

scheme, along with code to solve the KS equation are given

in Cox and Matthews (2000) and Kassam and Trefethen
480 (2005). The truth is defined by the solution to the KS

equation on the periodic domain 05x532p from initial

conditions u ¼ cosð x
16
Þð1þ sinð x

16
ÞÞ until time T�10000,

using N�256 spatial points and a time step of Dt�0.25.

The assimilation model is run at the same spatial and
485 temporal resolution as the truth with Dt�0.25 andN�256.

To determine the initial ensemble background states,

pseudo-random samples from the distribution Nð0; r2
bIÞ,

where r2
b is the forecast error variance, are added to the true

initial condition. For the KS equation we choose to use
490 N�1000 ensemble members as we are estimating a large

number of state variables. From the background N�1000

ensemble members are created by adding pseudo-random

samples from the initial forecast error distribution, which is

chosen also to be Nð0; r2
bIÞ. We take 64 equally spaced

495 direct observations, calculated as described in Section 3.2.1,

at each assimilation step. Constants for eq. (15) are chosen

to be L�15 and b�3.8 (unless otherwise stated); for some

experiments b is chosen to vary linearly in time according

to bðtÞ ¼ atþ b. The frequency varies between experi-
500 ments, with the chosen frequencies being observations

available every 40 and 100 time steps. We next present

experimental results of applying ETKFR to these models.

4. Results

We carry out a number of experiments to test the perfor-
505 mance and robustness of the ETKFR method.

To demonstrate the potential of the proposed methodol-

ogy, we perform several ETKF runs with the predefined

observation error covariance matrix. In these runs, we use

either the true observation error covariance (1L, 4L, 7L,
5101K, 4K, 7K) or we approximate the observation error

covariance through a diagonal one omitting the cross-

correlated terms (2L, 5L, 2K, 5K).

We note that the ETKFR has been tested with different

frequencies of observations in both time and space. The
515results presented here have been selected to demonstrate

the different behaviours of the method under certain

conditions. The method was also run with fewer ensemble

members, down to Nm�50 for the Lorenz ’96 model

and Nm�500 for the KS model, and appears to work
520well. For ensemble sizes smaller than this, the techniques of

localisation and inflation would be required for the ETKF

itself not to diverge. Experiments have also been run with

different realisations of observation and background error

noise and it is found that the qualitative results are
525unchanged. The ETKFR has also been tested with a range

of reduced sample sizes, Ns, with the minimum number of

samples being a tenth of those in the results presented. In

these cases we find that the assimilation performs qualita-

tively similarly to the cases shown. As expected the estimate
530of the covariance is slightly degraded; however, even with

the smallest number of samples, the estimates of the

covariance matrix appear qualitatively similar to those

presented.

For the DBCP diagnostic to provide good estimates of
535the observation error covariance function it is assumed that

the length scales of the background and observation error

covariances are sufficiently different. It is not possible to fix

the length scale of the background errors as they are

determined through the model evolution. However, unless
540otherwise stated, in general the length scales of the back-

ground error correlations are three to five times smaller

than those assumed for the observation errors and hence the

DBCP diagnostic should perform well (Desroziers et al.,

2009).

5454.1. Metrics

To evaluate the performance of the method and how well it

estimates the covariances, we provide a number of mea-

sures. The first measure we present, E1, gives the time-

averaged norm of the difference between the analysis xa
n at

550time tn and the truth xt
n at time tn,

1

Na

XNa

n¼0

xa
n � xt

n

�� ��
2
; ðE1Þ (16)

where Na is the number of assimilation steps.
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To allow a comparison between experiments we also give
555 the percentage of the error, E1, with respect to the time-

averaged norm of the true solution,

1
Na

PNa

n¼0

xa
n � xt

n

�� ��
2

1
Na

PNa

n¼0

xt
n

�� ��
2

� 100: ðE2Þ (17)

Rank histograms (Hamill, 2000) (shown in Waller, 2013)
560 were examined to give information about the ensemble

spread. If the ensemble spread is not maintained the analysis

and the estimation of the observation error covariance

matrix may be affected.

We also present metrics for how well the ETKFR
565 estimates the covariance matrix. As the covariance matrix

is isotropic and homogeneous, rather than comparing

the estimated matrix R to the true matrix Rt, we compare

the vector ce
n, at time tn (described in Section 3.2.2) with the

corresponding vector ct
n. We compute C1, the time-averaged

570 norm of the difference between the estimated vector, ce
n, at

time tn and the true vector, ct
n, at time tn,

1

Nae

XNae

n¼0

ce
n � ct

n

�� ��
2
; ðC1Þ (18)

where Nae is the number of assimilation steps at which the
575 observation error covariance is estimated.

Again we provide a percentage, C2, with respect to the

true error covariance to allow a comparison between

experiments,

1
Nae

PNae

n¼0

ce
n � ct

n

�� ��
2

1
Nae

PNae

n¼0

ct
n

�� ��
2

� 100: ðC2Þ (19)

580

When experiments are run with different realisations of

observation and background error noise it is found that the

error metric results are unchanged to two decimal places.

Wepresent the results of our experiments inTables 1 and2.
585In Table 1, we consider how the ETKFR method performs

against the standard ETKF. In Table 2, we consider how the

ETKFR performs under different conditions. In the tables,

we givedetails of thematrixusedas the trueobservation error

covariance matrixRt. We also give details of the assimilation
590method used and the R used in the assimilation. We provide

the frequency of the observations and the variances for the

initial forecast, uncorrelated and correlated error. We

present the metrics E1 and E2, and for the experiments using

the ETKFR we also present metrics C1 and C2.

5954.2. Performance of the ETKFR

We first consider how the ETKFR performs in comparison

with the standard ETKF. Variances corresponding to the

initial forecast r2
b, uncorrelated r2

D and correlated error r2
C

are all set to 0.1.

Table 1. Details of experiments executed using the Lorenz ’96 (L) and Kuramoto-Sivashinsky (K) models to investigate the assimilation

performance of the ETKFR compared to the ETKF

Exp. no. Assimilation method Obs Freq. (time steps) E1 E2 ð 1
Na

PNa

n¼0

xt
n

�� ��
2
Þ C1 C2 ð 1

Nae

PNae

n¼0

ct
n

�� ��
2
Þ

1L ETKF (R�R
t) 5 0.68 2.3% (29.53) � �

2L ETKF (R�diagRt) 5 0.73 2.5% (29.53) � �
3L ETKFR (R0�RD) 5 0.70 2.4% (29.53) 0.02 9.1% (0.22)

4L ETKF (R�R
t) 30 2.31 7.8% (29.46) � �

5L ETKF (R�diagRt) 30 2.83 9.6% (29.46) � �
6L ETKFR (R0�RD) 30 2.43 8.3% (29.46) 0.04 18.2% (0.22)

7L ETKF (R�Rt) 5 0.66 2.2% (29.53) � �
8L ETKFR (R0�R

D) 5 0.67 2.3% (29.53) 0.02 8.7% (0.23)

1K ETKF (R�Rt) 40 4.00 19.0% (20.98) � �
2K ETKF (R�diagRt) 40 4.41 21.0% (20.98) � �
3K ETKFR (R0�R

D) 40 4.12 19.6% (20.98) 0.05 17.2% (0.29)

4K ETKF (R�R
t) 100 5.65 26.8% (21.05) � �

5K ETKF (R�diagRt) 100 6.00 28.5% (21.05) � �
6K ETKFR (R0�R

D) 100 5.95 28.3% (21.05) 0.14 48.2% (0.29)

7K ETKF (R�R
t) 40 3.89 18.6% (20.98) � �

8K ETKFR (R0�RD) 40 4.07 19.4% (20.98) 0.09 29.0% (0.31)

The experiments are run with R
t�R

C�R
D and r2

b ¼ r2
D ¼ r2

C ¼ 0:1. For experiments 1L to 6L the correlation length scale parameter is

b�3.6 and for 1K to 6K is b�3.8. For 7L and 8L a� �3�10�4 and b�3.6 and for 7K and 8K a�3�10�4 and b�3.7. Note that for

different runs of these experiments, the results are unchanged to two decimal places.
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600 4.2.1. Results with a static R and frequent observations.

We begin by examining the case where the observations are

available frequently in time. Observations are available

every five time steps for the Lorenz ’96 model and 40 time

steps for the KS model. We set the true static matrix Rt to
605 R

t�R
D�R

C, where the uncorrelated error covariance is

RD�0.1I and the correlated error covariance is RC�0.1C ,

where C is the correlation matrix described in Section 3.2.1

with L and b as described in Sections 3.2.3 and 3.2.4. We

use the standard ETKF and use the correct static observa-
610 tion error covariance matrix, Rt, in the assimilation. The

Lorenz ’96 and KS models are each run for 1000 assimila-

tion steps and results are presented in Table 1 Experiments

1L and 1K, respectively. As the correct error covariance

matrices are used, these experiments provide a reference for
615 the best performance we can expect from the assimilation.

In Experiments 2L and 2K we use the standard ETKF

for the assimilation, but assume that R is diagonal, with

R0�diag(Rt). The details for these experiments using the

Lorenz and KS models are given in Table 1, Experiments
620 2L and 2K. We see from the errors E1 and percentages E2

that the assimilation performs slightly worse than in the

case where the true observation error covariance matrix is

used in the assimilation, with the percentage error increas-

ing from 2.3 to 2.5%. However the assimilation still
625 performs well and the rank histogram (not shown) suggests

that the ensemble is well spread.

We now consider what happens where we estimate R

within the ETKFR assimilation scheme described in Section

2 with Ns�100 for the Lorenz model and Ns�250 for the
630 KS model. These values of Ns are chosen to provide an

adequate number of samples to estimate R while still

allowing the time-varying nature of the observation error

covariance matrix to be captured. For the estimated covari-

ance matrix to be full rank, and hence used in the assimila-
635tion, we find it is necessary to regularise the estimatedmatrix.

We regularise the matrix using the method described in

Section 3.2.2. This method of regularisation requires no

information about the true correlation structure. However,

it does make the assumption that all the observations have
640the same correlation structure. If this assumption is not

expected to hold, such as in operational systems, a different

method of regularisationmay be required.We verify that the

method proposed is able to improve the analysis by including

improved estimates of R in the assimilation scheme.
645We begin by assuming that the initial observation error

covariance matrix consists of only the uncorrelated error

RD. The details and results for these experiments using the

Lorenz and KS models are given in Table 1 Experiments 3L

and 3K. We see that the errors, E1, and percentages, E2,
650are lower than Experiments 2L and 2K and this, together

with an improved ensemble spread, shows that overall the

assimilation scheme performs better than the case where

the observation error covariance matrix is assumed diag-

onal. When considering how the norm of the difference
655between the analysis xa and the truth xt varies over time

(not illustrated), we see an overall reduction in the error

after the spin-up phase once the correlated observation

error matrix is included in the assimilation.

In Fig. 1, we plot the true covariance (solid) as well as the
660first estimate of the covariance calculated using the first Ns

background and analysis innovations (dashed) and the last

Table 2. Details of experiments executed using the Lorenz ’96 (L) and Kuramoto-Sivashinsky (K) models to investigate the robustness of

the ETKFR

Exp. no. True R r2
b, r2

D, r2
C E1 E2 ð 1

Na

PNa

n¼0

xt
n

�� ��
2
Þ C1 C2 ð 1

Nae

PNae

n¼0

ct
n

�� ��
2
Þ

9L a�0, b�5.0 0.1 0.74 2.5% (29.53) 0.02 9.1% (0.22)

10L a�3�10�4, b�3.3 0.1 0.68 2.3% (29.53) 0.02 9.1% (0.22)

11L a� �1�10�3, b�3.6 0.1 0.68 2.3% (29.53) 0.03 13.0% (0.23)

12L a� �3�10�4, b�3.6 0.01 0.21 0.7% (29.53) 0.00 0.0% (0.02)

13L a� �3�10�4, b�3.6 1.0 2.43 8.2% (29.53) 0.26 11.6% (2.25)

14L a� �3�10�4, b�3.6 0.1, 1.0, 1.0 2.62 8.9% (29.53) 0.26 11.6% (2.25)

15L a� �3�10�4, b�3.6 1.0, 0.1, 0.1 0.68 2.3% (29.53) 0.02 8.7% (0.23)

9K a�0, b�3.5 0.1 4.97 23.7% (20.98) 0.07 25.0% (0.28)

10K a� �3�10�4, b�4.0 0.1 4.03 19.2% (20.98) 0.10 34.5% (0.29)

11K a�4�10�4, b�3.7 0.1 4.03 19.2% (20.98) 0.10 31.3% (0.32)

12K a�3�10�4, b�3.7 0.01 0.95 4.5% (20.98) 0.00 0.0% (0.03)

13K a�3�10�4, b�3.7 1.0 11.27 53.7% (20.98) 0.85 27.6% (3.08)

14K a�3�10�4, b�3.7 0.1, 1.0, 1.0 11.25 53.6% (20.98) 0.88 28.6% (3.08)

15K a�3�10�4, b�3.7 1.0, 0.1, 0.1 4.18 19.9% (20.98) 0.10 32.3% (0.31)

The initial matrix used in the assimilation is always equal to R0 ¼ RD ¼ r2
DI. Observations are available every five time steps for the

Lorenz ’96 model and 40 time steps for the KS model. Note that for different runs of these experiments, the results are unchanged to two

decimal places.
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estimate of the covariance calculated using the last Ns

background and analysis innovations (dot�dash). We see

that the first estimate of the covariance using the DBCP
665 diagnostic gives a good estimate of the true covariance with

approximately correct length scales. This suggests that even

if a correlated observation error covariance is initially

unknown it should be possible to use the DBCP diagnostic

to estimate it (Desroziers et al., 2009). This is consistent
670 with results using 4D-Var (Stewart et al., 2009, 2014;

Bormann and Bauer, 2010; Bormann et al., 2010) and the

ETKF (Miyoshi et al., 2013). We see that the last estimates

of the covariance are closer to the true covariance. From

the table, we see that on average the covariance for Experi-
675 ment 3L is more accurate than for the Experiment 3K.

This is a result of a proportionally larger number of

samples being used to estimate fewer points in the

covariance matrix. Overall, the method performs well and

this suggests that updating the estimate of R at each
680 assimilation step in the ETKF improves the estimation of a

static R. It also suggests that it should be possible to gain a

time-dependent estimate of correlated observation error.

4.2.2. Static R, infrequent observations. We keep the true

matrix Rt static, as in the previous section, but now consider
685the case where the observations are less frequently available.

Observations are available only every 30 time steps (six

times less frequent) for the Lorenz ’96 model and 100 time

steps (2.5 times less frequent) for the KS model; therefore

we have statistics from 166 to 400 assimilation steps. We
690keep the value ofNs at 100 for the Lorenz ’96 model and 250

for the KS model. We again begin by showing the best

performance we can hope to achieve from the assimilation.

We use the standard ETKF and use the correct observation

error covariance matrix, Rt, in the assimilation. We present
695the details and results for these experiments in Table 1

experiments 4L and 4K. Errors E1 and E2 show that the

assimilation is not as accurate as experiments 1L and 1K.
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Fig. 1. Rows of the true and estimated covariance matrices. (a) Experiment 3L. Rows of the true (solid) and estimated covariance

matrices. Covariance calculated using the first 100 background and analysis innovations (dashed). Covariance calculated using the last 100

background and analysis innovations (dot�dashed). (b) Experiment 3K. Rows of the true (solid) and estimated covariance matrices.

Covariance calculated using the first 250 background and analysis innovations (dashed). Covariance calculated using the last 250

background and analysis innovations (dot�dashed).
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The infrequent observations result in a longer forecast

before each assimilation step. This larger forecast time
700 allows the forecast to diverge further from the truth and

hence this results in a less accurate analysis.

We next consider the case where the observation error

covariance matrix used in the assimilation is assumed

diagonal, R0�diag(Rt). The details and results for these
705 experiments are given in Table 1, Experiments 5L and 5K.

The assimilation performs worse (L5, E2�9.6%. K5

E2�28.5%) than in experiments 4L (E2 �7.8%) and 4K

(E2�26.8%) where the correct observation error covar-

iance matrix is used in the assimilation. Again, comparing
710 experiments 5L and 5K to Experiments 2L and 2K, we see

from E1 and E2 that the reduction in the number of obser-

vations results in a poorer performance in the assimilation.

We now estimate R within the ETKFR scheme and then

reuse the estimated R at the next assimilation step. As our
715 initial error covariance we choose the diagonal error

covariance, R�RD. We see from Experiment 6L and 6K

in Table 1 that the time-averaged analysis error norm, E1,

is lower than in the case where R is assumed diagonal and

fixed throughout the assimilation. We see from error metric
720 E2 in Table 1 that the percentage of the error is reduced,

though a greater reduction is seen for 6L than for 6K. The

error E2 for experiment 6L is much closer to the case where

the correct observation error covariance matrix is used in

the assimilation.
725 We now determine if the ETKFR can give a good esti-

mate of the covariance matrix. Errors C1 and C2 show that

for experiment 6L the method still provides a reasonable

estimate of the covariance with the percentage error

approximately doubled from the case when observations
730 were available frequently. We find that for Experiment 6K

the first estimate of the covariance after Ns steps is an

improvment over the initially uncorrelated observation

error. The final estimate is an improvement over the first

estimate. However, the final estimate does not match the
735 truth as closely as in experiment 3K and the average error

in the covariance is large. As we are considering a static

observation error matrix we expect the estimated R to

improve with every assimilation step. If the assimilation is

run for longer period of time, and the estimate of R is
740 accurate, we would expect the estimated Pf to converge to

the truth (Mènard et al., 2009). In general experiments 6L

and 6K suggest that the larger temporal spacing between

observations may affect how well the DBCP diagnostic

estimates R.
745 We now return to the case of more frequent observa-

tions, but use a time-dependent true R.

4.2.3. Time-dependent R. We now investigate the case

where the true R is time-dependent. We choose the

correlation to be the SOAR function as described by eq.
750(15). To create time-dependence we vary the length scale

with time according to b(t)�at�b. For the Lorenz ’96

experiments we choose a��3�10�4, and b�3.6 and for

the KS experiments we choose a��3�10�4 and b�3.7.

We set the variance of the correlated error matrix to
755r2

C ¼ 0:1. In Table 1, Experiments 7L and 7K give the

details and results where the standard ETKF is run with the

correct observation error covariance matrix. We find that

the assimilation performs well, with a similar analysis error

norm to the case where the observation error covariance
760matrix was static.

We then consider the case where the observation error

matrix is initially assumed diagonal; the observation error

matrix is then estimated with the ETKFR and the estima-

ted matrix is used in the assimilation. We give the results in
765Table 1 Experiments 8L and 8K. We see from the error

metric E2 that the assimilation performs almost as well as

the assimilations with the correct matrix R and the rank

histogram shown in Waller (2013), Chapter 7, suggests that

the ensemble spread is maintained. We now show how well
770the DBCP diagnostic estimates the true observation error

covariance matrix. We see from C1 and C2 in Table 1 that

on average the covariance is well estimated. For experiment

8L the estimate of the covariance is better than the estimate

for the static case with the same observation frequency (3L),
775whereas for Experiment 8K the covariance is not quite as

well estimated as in the static case with the same observation

frequency (3K). For Experiment 8K, we plot the estimates

at every 100 assimilation steps in Fig. 2.

We see that the first estimate of R captures the true
780covariance well. Considering the estimates at each of the

times plotted we see that the true covariance is well

approximated. The ETKF with R estimation gives a good

estimate of a slowly time-varying observation error covar-

iance matrix. As the covariance is estimated using the
785innovations from the previous Ns�250 assimilations we

expect to see some delay in the covariance function

estimate. We see this in Fig. 2 as the estimated covariance

function has a slightly shorter length scale than the true

covariance function. This delay could be reduced by
790reducing the number of samples used. However, this may

introduce more sampling error into the estimate of the

covariance function.

So far we have shown that it is possible to use the ETKF

and DBCP diagnostic to estimate a time-varying observa-
795tion error covariance matrix. We have shown that it is better

to use the ETKFR and an estimated observation error

covariance matrix in place of assuming a diagonal matrix.

However, if the observation frequency is low, the perfor-

mance of the ETKFR and the DBCP diagnostic may be
800reduced.
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4.3. Robustness of the ETKFR

We now consider how robust the ETKFR is when we

change the covariance used to determine the observation

error covariance matrix and how it varies in time. We also

805consider what happens when observation and background

error variances are altered. We run experiments using only

the ETKFR and observations are available every five time

steps for the Lorenz ’96 model and 40 time steps for the KS
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Fig. 2. Rows of the true (solid) and estimated (dashed) covariance matrices (covariance function plotted against observation point) every

100 assimilation steps from 300 to 1000 for Experiment 8K with a time-dependent R, where b varies from 3.7 to 4.0, frequent observations

and initial forecast, diagonal and correlated error variances set to 0.1.
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model. We present results for both the Lorenz ’96 and KS
810 experiments in Table 2.

4.3.1. Covariance structures. We begin by returning to a

static matrix but use different length scales to those used in

Experiments 3L and 3K. To define the true observation

error covariance matrix, Rt, we use the SOAR function as
815 described by eq. (15) with b�5.0 for experiment 9L and

b�3.5 for experiment 9K. With these values of b, the

length scale of the observation error covariance is similar to

the length scale of the background error covariance. We set

the true forecast, correlated and uncorrelated observation
820 error variances to r2

b ¼ r2
D ¼ r2

C ¼ 0:1, and the initial

matrix used in the assimilation to R0 ¼ RD ¼ r2
DI. We

show the results in Table 2. From E1 and E2 we see that the

assimilation does not perform as well as the case where the

observation error length scales are longer (3L and 3K).
825 From C1 and C2 we see that for 9L the covariance is

estimated as well as for 3L. For 9K the estimate of the

covariance is only slightly less accurate than 3K. This

suggests that the method still works well when the length

scales in the observation error covariance matrix are similar
830 to the background error length scales. We conjecture that

the good performance of the diagnostic is a result of the

background error covariance matrix being accurately

evolved by the ETKF.

We now consider the case where the observation error
835 is time varying and the observation error covariance

length scale decreases with time. The results are shown in

Table 2, Experiments 10L and 10K. In both experiments the

assimilation performs well with error metric E2 being simi-

lar to Experiments 8L and 8K. C1 and C2 show that the
840 covariance is not estimated quite so well as when the length

scales increase with time (Table 1, Experiments 8L and 8K).

In Experiments 11L and 11K, we consider the case where

the covariance function used to determine Rt varies more

quickly with time. In this case averaging over the Ns

845 innovation samples results in an estimated covariance

function that has a greater delay than that seen where the

covariance function length scale varies more slowly. Again

we see the filter is performing well. We find that for

Experiment 11L the covariance is well estimated and closely
850 resembles the truth. For Experiment 11K the estimate of the

covariance is not as accurate as in the case where the true

covariance function varies more slowly with time (8K).

However, the variance is well estimated and the correlation

length scale is approximately correct (not shown).

855 4.3.2. Error variances. We now consider how well the

method performs when the magnitudes and ratios of the

forecast, uncorrelated and correlated error variances are

varied. Experiments 12L, 12K, 13L, 13K, 14L, 14K, 15L

and 15K use the time-varying observation error covariance
860matrix used in Experiments 8L and 8K.

In Experiments 12L and 12K we set the background, r2
b,

uncorrelated, r2
D, and correlated, r2

C , error variances to

0.01. In this case, due to the accurate observations and the

perfect model assumption, the assimilation performs sig-
865nificantly better than where the error variances were chosen

to be 0.1 (8L and 8K). We also find that the observation

error covariance is very well estimated with the error

undetectable at the level of significance shown.

In Experiments 13L and 13K all the error variances are
870set to 1. In Experiments 14L and 14K the correlated and

uncorrelated observation error variances are set to 1 and

the background error covariance is set to 0.1. In each of

these experiments, we see a degradation in the analysis.

This is due to the large error in the observations. Despite
875the degradation in the analysis, the percentage of error in

the covariance is similar to the cases with other error

variances.

Finally in Experiments 15L and 15K we set the initial

background error variance to 1, and the observation error
880variances to 0.1. In these cases the analysis accuracy is

similar to Experiments 8L and 8K and the covariance is

estimated well.

These experiments suggest that although the initial

magnitudes and ratio of the forecast and observation
885errors may affect the accuracy of the analysis, they do

not affect the ability of the ETKFR to estimate the

observation error covariance.

5. Conclusions

For a data assimilation scheme to produce an optimal
890estimate of the state, the error covariances associated with

the observations and background must be well understood

and correctly specified. As the observation errors have

previously been found to be correlated and time-dependent,

it is important to determine if the observation error
895covariance matrix, R, can be estimated within an assimila-

tion scheme. In this work, we introduce an ETKF with

observation error covariance matrix estimation. This is an

ETKF where analysis and background innovations are

calculated at each analysis step and the most recent set of
900these innovations is used to estimate the matrix R using the

DBCP diagnostic. This estimate of R is then used in the

next assimilation step. The method has been developed to

allow a slowly time-varying estimate of the observation

error covariance matrix to be calculated.
905In a simple framework, using simple models and neglect-

ing model error we show that estimatingRwithin the ETKF

works well, with good estimates obtained, the ensemble

spread maintained and the analysis improved in comparison

12 J. A. WALLER ET AL.



with the case where the matrix R is always assumed
910 diagonal. We also show that the method does not work as

well in the case where the observations are less frequent,

although this may be dependent on the model. However, the

method still produces a reasonable estimate of R, maintains

the ensemble variance and the time-averaged error in the
915 analysis is lower than where a diagonal R is used. The

method also performs well where the length scale of the

observations is similar to the background error length

scale.

As we are testing the feasibility of the proposed method,
920 here we consider an isotropic and homogeneous observa-

tion error covariance. In practice it is likely that the

observation error covariance structure will be non-uniform.

As the DBCP diagnostic has previously been successfully

used to estimate non-isotropic inter-channel error correla-
925 tions, for example, Stewart et al. (2014), we would expect

the method to be able to estimate a non-uniform observa-

tion error covariance matrix but an alternative covariance

regularisation method might be required.

We next consider a case where R varies slowly with time.
930 We show that the method works well where the true R is

defined to slowly vary with time. The time-averaged error in

the analysis is low and the ensemble spread is maintained.

The estimates of the covariance matrix are good, suggesting

that the method is capable of estimating a slowly time-
935 varying observation error covariance matrix. A case where

the length scale of the observation error covariance varies

more quickly is also considered, and the ETKFR produces

reasonable estimates of the observation error covariance

matrix. We also show that the ability of the method to
940 approximate the covariance structure is not sensitive to

the forecast error variances or the true magnitude of the

observation error variance. Particularly, in the case where

observation error variances are increased, the percentage of

the error in the covariance is similar to the cases with other
945 error variances despite a degradation in the analysis. This

suggests that the method would be suitable to give a time-

dependent estimate of correlated observation error. We

note that the effectiveness of the method will depend on how

rapidly the synoptic situation and hence correlated error is
950 changing and how often observations are available. The

correlated error will also be dependent on the dynamical

system. For models designed to capture rapidly developing

situations, where representativity error and hence correlated

error is likely to change rapidly, assimilation cycling and
955 observation frequency within the assimilation is expected to

be more frequent and hence more data is available for

estimating the observation error.

In this study, the method has been tested under a

simplified framework with a perfect model, linear observa-
960 tion operator and assuming that observation errors are

isotropic and homogeneous. Many of these simplifying

assumptions may not be applicable in an operational

framework and further work is required to understand the

limitations of the method when these assumptions are
965violated. In particular, it will be necessary to understand

the interaction between the observation error covariance

estimation in the ETKFR and the methods of inflation and

localisation that will be required when a reduced ensemble

size is required. It will also be important to understand how
970the method performs when the observation error matrix is

large and non-isotropic. However, the use of the DBCP

diagnostic by Bormann and Bauer (2010), Bormann et al.

(2010), Stewart et al. (2009), Stewart (2010), Stewart et al.

(2014), Weston (2011), Weston et al. (2014) has been
975successful in diagnosing correlated observation error covar-

iances, including time invariant non-isotropic inter-channel

error correlations, in complex operational models using

variational assimilation techniques.

In this study, we have shown that, using the ETKFR, it
980is possible to estimate time-varying correlated error statis-

tics. However, further work is required to understand the

robustness of the ETKFR in an operational framework.
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