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Vertical soundings of the atmospheric ion production rate have been obtained from Geiger counters
integrated with conventional meteorological radiosondes. In launches made from Reading (UK) during
2013–2014, the Regener–Pfotzer ionisation maximum was at an altitude equivalent to a pressure of
(63.172.4) hPa, or, expressed in terms of the local air density, (0.10170.005) kg m�3. The measured
ionisation profiles have been evaluated against the Usoskin–Kovaltsov model and, separately, surface
neutron monitor data from Oulu. Model ionisation rates agree well with the observed cosmic ray
ionisation below 20 km altitude. Above 10 km, the measured ionisation rates also correlate well with
simultaneous neutron monitor data, although, consistently with previous work, measured variability at
the ionisation maximum is greater than that found by the neutron monitor. However, in the lower
atmosphere (below 5 km altitude), agreement between the measurements and simultaneous neutron
monitor data is poor. For studies of transient lower atmosphere phenomena associated with cosmic ray
ionisation, this indicates the need for in situ ionisation measurements and improved lower atmosphere
parameterisations.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Molecular cluster ions contribute to the finite electrical con-
ductivity of atmospheric air, permitting current flow in the global
atmospheric electric circuit (Rycroft et al., 2000). Cluster ions are
formed in the lower troposphere by the ionising effects of natural
radioactivity and galactic cosmic rays (GCRs), and, episodically,
solar energetic particles (SEPs). Well above the continental surface,
GCRs provide the principal source of ionisation. Several possible
effects of cluster ions on atmospheric processes are now under
active investigation, such as through the electrification of layer
clouds associated with current flow in the global circuit (Nicoll and
Harrison, 2010), ion-induced nucleation at cloud levels (Kirkby
et al., 2011) or radiative absorption by cluster ions (Aplin and
Lockwood, 2013). These all require an accurate determination of
the spatial and temporal variations in atmospheric ionisation at
the relevant altitudes and location.

Ionisation from GCRs can be measured using a number of
techniques deployed, variously, at the surface, within the atmo-
sphere or in space. Spacecraft sensors can be used to detect
ionising particles, particularly SEPs, but as SEP emissions are
sporadic and associated with solar storms, they do not contribute
substantially to atmospheric ionisation in normal conditions, and
r Ltd. This is an open access article

Aplin).
hence are not considered further. When a primary cosmic ray
particle, often a helium nucleus or a proton (Usoskin and
Kovaltsov, 2006), enters an atmosphere it will interact with
molecules to produce a cascade of secondary particles including
protons, electrons, neutrons, and muons, many of which contri-
bute to atmospheric ionisation. A range of GCR detection techni-
ques can therefore be used as indirect measurements of atmo-
spheric ionisation. Some ground-based experiments determine
the energy of primary GCRs using Extensive Air Shower (EAS)
arrays or Cherenkov radiation, but, as these modern astroparticle
physics experiments are usually designed to detect only the
highest-energy particles, they are unsuitable for routine monitor-
ing of atmospheric ionisation (e.g. Abraham and the Pierre Auger
Observatory Collaboration, 2004; Watson, 2011). The cosmogenic
isotope 10Be is produced in the stratosphere and upper tropo-
sphere from the bombardment and breakdown (spallation), of N2

and O2 nuclei by GCR neutrons; inferring past 10Be generation
through assaying its abundance in polar ice sheets provides an
indirect (proxy) method for monitoring the long term GCR flux
(Lal and Peters, 1967; Beer, 2000). Disadvantages of the 10Be
technique are that its production occurs in the stratosphere, and
obtaining reliable information from the 10Be record requires
accurate representation of environmental processes controlling
10Be production, transport and deposition (Pedro et al., 2011).
Surface measurements of GCRs can also be made using muon
telescopes, which detect the muon component of the nucleonic
cascade. As muons cause most of the GCR ionisation in the lower
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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troposphere, this approach is useful for ionisation measurement,
but the technology is not widely used, as the data has to be
corrected for atmospheric variations to obtain the primary GCR
flux (e.g. Duldig, 2000).

Extensive regular monitoring of GCRs utilises surface neutron
monitors, introduced in the 1950s (Simpson et al., 1953). These
devices are sensitive to the neutron component of the nucleonic
cascade initiated by the primary GCR particles. As Aplin et al.
(2005) pointed out, it is sometimes assumed that neutron monitor
data also provides a good estimate of ionisation in the lower
troposphere, rather than just at the neutron-producing region of
the atmosphere. However, the contribution to atmospheric ionisa-
tion from lower-energy particles, which do not necessarily pro-
duce neutrons, is also required (e.g. Lindy et al., 2014). This means,
for example, that the variability found in situ at the upper level
intensity maximum is larger than that in the nucleonic component
at the surface, e.g. by a factor of two (Brown, 1959). Models of
lower atmosphere ionisation calculate the average vertical profile
using standard atmospheric properties (e.g. Usoskin and Kovaltsov,
2006; Mishev, 2013), but, to determine the instantaneous ionisa-
tion rates in the real atmosphere, in situ measurements are still
required.

A series of in situ soundings of atmospheric ionisation is
described here, and compared with both neutron monitor data
and modelled profiles. These soundings are evaluated in terms of
their use in atmospheric electricity, both in providing parameters
for the global atmospheric electric circuit, and for investigating
radiative effects of ionisation, such as through effects on clouds.
1 The Roentgen is no longer a standard unit of radioactivity. It remains useful
for determining ion production rates, as it is characterised in terms of the charge
released per unit mass (2.658�10�4 C kg�1), from which the number of elemen-
tary charges produced per unit volume can be calculated.

2 The important contributions of Erich Regener (1881–1955) whilst working at
Stuttgart have been widely neglected (Watson and Carlson, 2014). Regener
2. Methodology

Standard meteorological balloon measurement systems, based
on radiosonde packages, are routinely used to obtain vertical
atmospheric profiles of temperature and relative humidity for
weather forecasting purposes. This established infrastructure can
also provide an inexpensive platform with which to make vertical
measurements of ionisation. A new disposable instrument for
meteorological radiosondes has recently been developed
(Harrison et al., 2012, 2013a) which is based on two miniature
Geiger tubes – a geigersonde – and a set of these instruments has
provided the measurements considered here. The geigersonde
approach to obtaining ionisation profiles is well-established (e.g.
Pickering, 1943; Stozhkov et al., 2009), but, by using a digital
interface system with a modern radiosonde (Harrison 2005a;
Harrison et al. 2012), the radiosonde's meteorological data can
also be retained. Hence, as well as telemetering the total number
of events detected since switch-on by the two independent Geiger
tubes, the standard meteorological measurements of temperature,
pressure, relative humidity, as well as GPS location can be
conveyed.

By using the radiosonde's height and position information, the
tubes' count rates can provide the vertical ionisation profile.
Furthermore, if a range of profiles are obtained that are well
separated in time, changes between the launches can be investi-
gated, for example that associated with the solar modulation
(Neher, 1967; Sloan et al., 2011). Finally, by releasing the same
design of instrument at different launch locations, the variation in
ionisation profile with geomagnetic latitude can be determined. In
each case, the validity of the ion production profiles can be
confirmed through comparison with modelled values and simul-
taneous surface measurements made using neutron monitors.

The Geiger tubes used in these instruments are Neon–Halogen
LND714 beta–gamma detectors, operated at a well-regulated bias
voltage of 465 V (Harrison et al., 2013a). This tube has a small
detection volume (33 mm length and 5 mm diameter) compared
with typical tubes employed in atmospheric applications, so the
count rates from the two tubes are summed to improve the statistics.
(A laboratory experiment with an 18 kBq 60Co gamma source
confirmed that combining the two count rates also reduced the
effect of tube-to-tube variability to better than 2% for the LND714s
tested.) The tube's response to gamma radiation from a 60Co source is
specified by the manufacturer as 1.5 counts s�1 per Roentgen of
radioactivity.1 Using this calibration to determine the charge gener-
ated per unit mass of air per count (for which the associated volume
can be found under conditions of standard temperature and pressure,
STP, defined here as 25 °C and 1000 hPa), and assuming that ions
carry a unit elementary charge, the rate of ion production per unit
volume of air qSTP associated with a count rate X in events min�1 can
be found as

=q X2.95 , (1)STP

where qSTP is the ionisation rate in number of ions cm�3 s�1. As
well as providing the bias voltage to operate the tubes, the
electronic system records the total number of pulses received
from each of the two tubes separately, the operating time, and the
interval between the pulses. The pulse interval can provide
additional resolution at low count rates, such as in the lower
atmosphere, as, if only a few counts occur per minute, the
proportional error in the count rate caused by a pulse occurring
at the beginning or end of the measuring time can otherwise be
appreciable (Harrison et al., 2013a). Measured quantities are
transmitted over the standard UHF radio link every 30 s, inter-
leaved with the meteorological data and position information. The
data values are processed by calculating the count rates for each
tube separately, using a moving 60 s window.
3. Results

3.1. Characterisation of soundings

Geigersonde launches were made from Reading University
Atmospheric Observatory (51.442°N, 0.938°W) during 2013 and
early 2014 using 200 g helium-filled carrier balloons. These
launches were made when an instrument package had been fully
constructed and tested, and the meteorological conditions allowed
a straightforward single person release; these requirements
amounted to a largely random set of releases. This is apparent
from the trajectories taken by the geigersondes shown in Fig. 1
showing the different wind directions encountered, which also
marks the position where the maximum height was obtained. (Full
details of the flights are given in Table 1, including the times of the
balloon release. Raw data is available through the corresponding
author). Altitudes at which the balloon burst varied between the
launches, but most reached at least 20 km.

Fig. 2 shows the vertical profile of measured count rate for
soundings reaching at least 25 km, with the count rate obtained
using the averaging window technique (Harrison et al., 2013a). In
each sounding, the individual data points from the two tubes
carried are shown using different plotting symbols, with a cubic
spline fitted to smooth the data. All of these soundings show the
characteristic form of a small count rate in the lowest few km,
increasing sharply from about 5 km to reach a maximum value
around 20 km (referred to here as the Regener–Pfotzer,2 or RP,



2320

25 1717
25

29

27
29

20

27

15th Feb 2013
13th Mar 2013
11th Apr 2013
12th Apr 2013
15th May 2013
23rd May 2013
 6th Jun 2013
23rd Aug 2013
 6th Jan 2014
18th Feb 2014
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Fig. 2. Vertical profiles of count rate obtained from a subset of flights reaching
25 km altitude or greater (a) on 11th April 2013, (b) 23rd May 2013, (c) 6th June
2013 and (d) 23rd August 2013, using counts telemetered every 30 s. The plot
symbols are different for the two Geiger tubes carried. An interpolating spline
curve has been fitted for smoothing, and to allow estimation of the height of the
maximum count rate.
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maximum). The fitted spline provides the height of the RP
maximum, and the associated time and count rate have been
included in Table 1.

Because the count rates are small at low altitudes, the data
from both tubes in the geigersondes have been combined to give a
mean count rate in vertical layers of 1 km thickness, as shown in
Fig. 3a. This is an alternative approach to use of a smoothing spline
to reduce the variability, and allows visual comparison between
the different flights. Air temperature measurements made during
each sounding are provided for comparison in Fig. 3b, to show the
associated atmosphere structure. The height at which the air
Table 1
Characteristics of geigersonde flights.

Date Launch
time (UT)

Oulu neutron
monitor count
rate at launch
time

Burst
height
(km)

Height at which
maximum count
rate reached
(km)

Flight du
to reach
maximu
count ra

6th Feb 2013 16.85
15th Feb 2013 1400 6301747 23.93 18.89 3629
13th Mar 2013 1210 6436749 20.78
11th Apr 2013 1219 6304744 25.97 19.16 (ascent) 4545 (as

18.72 (descent) 6350 (de
12th Apr 2013 0831 6288742 18.18
15th May 2013 1420 6169730 25.51 indistinct
23rd May 2013 1329 6004746 29.14 19.88 5000
6th Jun 2013 1230 6111742 27.72 19.46 (ascent) 4628 (as

19.33 (descent) 6718 (de
23rd Aug 2013 0954 6188740 29.62 19.34 4867
6th Jan 2014 1720 6284740 20.36
18th Feb 2014 1140 6115739 27.91 19.24 (descent) 6663 (d
Mean values
(71.96
standard
errors)
temperature ceases to decrease with height, i. e. the base of the
tropopause, varies (as is well known) with the time of year. The
increase in temperature above this which marks the base of the
stratosphere is broadly consistent with the position of the RP
maximum. In comparison, the coarser vertical temperature profile
from the US standard atmosphere only approximates each of the
real soundings, particularly at the base of the tropopause. For the
ration

m
te (s)

Time at which
maximum
count rate
reached (UT)

Oulu neutron
monitor at time of
maximum count
rate

Meteorological properties
(temperature T, pressure P and
density ρ) at height of maximum
ionisation

T (°C) P (hPa) ρ (g m�3)

1500 6321750 �63.4 66.8 111

cent) 1330 6326749 �53.6 63.9 101
scent) 1400 6317748 �52.7 68.4 108

1450 6018739 �53.1 57.2 90
cent) 1350 6131750 �54.2 61.0 97
scent) 1420 6118761 �52.8 62.3 99

1115 6218746 �52.7 61.7 98

escent) 1330 6089733 �51.6 63.2 99
�54.2 63.1 101
72.6 72.4 75
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flight to flight differences in count rates apparent in Fig. 3a, other
than the 11th April 2013 flight associated with a solar flare which
is discussed elsewhere (Nicoll and Harrison, 2014), the variability
cannot be straightforwardly associated with atmospheric structure
differences.

3.2. Comparison with ion production rate modelling

Fig. 4 shows the count rates after conversion using Eq. (1) to
provide the equivalent ion production rate under standard condi-
tions, qstp. In the left-hand panel of Fig. 4, the qstp values have been
(footnote continued)
originally identified the region of maximum ionisation, and subsequently described
this in a joint paper with his student, Georg Pfotzer (Regener and Pfotzer, 1935).
The long-standing use of the description “Pfotzer maximum” is therefore incom-
plete and historically inadequate.
plotted against the air pressure at which they are obtained, as
measured by the radiosonde's meteorological sensor. To these
values, the predicted ion production rate profile qmodel for Reading,
UK using the model has been added. Below 20 km, there is good
agreement between qmodel and qstp, as also apparent in the right-
hand panel. (The exception is in the lowest 1–2 km which is not
readily seen in Fig. 4, where, because of surface radioactivity, the
measured ionisation rate is up to twice that of the modelled
values. This is, however, not a failing in the model, as it only seeks
to represent the cosmic ray source of ionisation.) Above 20 km the
agreement lessens between the measurements and the Usoskin–
Kovaltsov model (worst case error 13%), although this is likely to
be influenced by the diminishing amount of data available at the
higher altitudes. Previously, for altitudes above the 50 hPa pres-
sure level, Sloan et al. (2011) suggested a discrepancy between the
Usoskin–Kovaltsov model and soundings of up to 20%.
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The Usoskin–Kovaltsov model is able to predict the ionisation
profile at any geomagnetic latitude. Three further soundings were
made during 22nd and 23rd August 2013 in Reykjavik, Iceland,
which is about 10° further north in geomagnetic latitude than
Reading (see left panel of Fig. 5.) The average qstp found from these
three flights is shown in the right panel of Fig. 5, with the qmodel

values added as a line, and the equivalent values from Reading are
also shown. There is, again, good agreement at altitudes below the
50 hPa pressure level, with the agreement diminishing as altitude
increases. Notably, the RP maximum is much less distinct in qmodel

for the higher latitude of Reykjavik compared with the model
results for Reading, which is supported by both the measured qstp
values, and previous observations at more northerly latitudes (e.g.
Neher, 1967). However, the generic form of the ionisation profile,
with a slow increase in the lower troposphere to a maximum in
the lower stratosphere, is still apparent.

By combining the data obtained from all the flights from
Reading where the RP maximum could be identified (Table 1),
the mean pressure at the maximum was determined as
(63.172.4) hPa and the air temperature (�54.272.6) °C, with
an associated air density (0.10170.005) kg m�3, where the un-
certainties represent 1.96 standard errors in each case. The
(pressure) position of the maximum ionisation rate in the
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3.3. Temporal variations

During the period of the launches listed in Table 1, variations in
the galactic cosmic ray flux occurred, associated with the weak
solar maximum conditions. Fig. 6 shows the daily time series of
count rate at the Oulu neutron monitor (NM) with the dates of the
launches marked. It is evident that the cosmic ray environment
differed markedly between some of the launches. Variations in the
surface NM count rates are expected to originate in the nucleonic
generation rate at the RP maximum. Fig. 7 plots the count rate
obtained when the balloon soundings are at the RP maximum
against the NM count rate measured at the same time, as
summarised in Table 1. The neutron monitor count rate and the
RP count rates are positively correlated, and, if a linear fit is made
between the two parameters assuming the least-squares criterion,
the proportional changes in the RP count rate are (3.071.2)
greater than those in the NM, which is not inconsistent with the
enhancement of 2.2 reported by Brown (1959).
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3.4. Vertical profile information

As well as comparing the NM data with the count rates at the
RP maximum, the count rates at all other available heights
(vertical resolution 1 km as for Fig. 3) across the flights can be
compared with the NM values at the same times. Fig. 8a shows the
correlation between the geigersonde count rates and the asso-
ciated Oulu NM count rate at the launch time. The number of
values available at each height depends on the reliability of the
telemetry and the burst height, which is given in Fig. 8b. Statistically
significant correlations in Fig. 8a and c are identified with points.
Fig. 8c shows the correlation between the geigersonde count rate at
the RP maximum (for those flights when this could be identified)
with the geigersonde count rates at other altitudes. The region of
stronger significant correlations lies between about 8 km and 22 km,
indicating that there is little information on the lower atmosphere
ionisation rate available from the RP maximum ionisation region.
4. Discussion

Neutron monitor (NM) data has been widely used in the search
for correlations between cosmic rays and atmospheric processes,
notably that between galactic cosmic rays and satellite-derived
observation of low cloud amount. The usefulness of neutron
monitor data in providing information on the actual atmospheric
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ionisation at cloud heights is therefore an important consideration
(e.g. Harrison and Carslaw, 2003). From Fig. 8, it is apparent that
the majority of stronger and significant correlations are at the
higher (10–20 km) altitudes, i. e. that the NM data are most useful
for estimating the ionisation rate between 10 km and 20 km.
Below 10 km, the possibility that the correlations obtained be-
tween the launch time NM count rate and the in situ count rate
occur by chance cannot be discounted. Whilst this may be partially
due to the small count rates at the lower levels, or indeed the
contribution of surface radioactivity, Bazilevskaya et al. (2008) also
show that the correlation between in situ measurements and NM
data decreases substantially below 1 km. Hence it is unlikely that
short-term variations in atmospheric ionisation are well predicted
by NM data, for the typical timescales associated with balloon
flights of a few hours. For monthly timescales, a closer agreement
is apparent in the lower atmosphere, such as at 700 hPa (e.g.
Usoskin and Kovaltsov, 2006). Consequently the rapid onset of a
Forbush decrease which is apparent in NM data may not provide a
good representation of the actual atmospheric short-term ionisa-
tion changes at cloud levels. This may, in part, provide an
explanation for the differences found in the response of clouds
to monthly and Forbush changes (Calogovic et al., 2010).

In terms of the atmospheric electricity changes arising from
variations in atmospheric conductivity, the NM data may also be
far from ideal for indicating transient or short-term changes. This
is because the vertical profile of atmospheric conductivity has to
be integrated to obtain the resistance of a unit area column of
atmosphere between the surface and the ionosphere, which
determines the local current flow. The majority of the integrated
columnar resistance arises from the poorer conductivity in the
lower atmosphere, with approximately 70% of the columnar
resistance contributed by the lowest 3 km (Harrison and
Bennett, 2007). In this region there will be variable contributions
from surface radioactivity, and, as Fig. 8 shows, the NM data
provides only a poor estimate of the GCR ionisation. At the upper
levels from 10 to 20 km, where the NM data does provide a much
better estimate of the total ionisation, only about 10% of the
columnar resistance remains to be affected by GCR ionisation.
Thus the NM data cannot be expected to provide a good estimate
of the total columnar resistance in general, at least on the typical
timescales of the balloon flights considered, for which improved
parameterisations are needed. Instead, the columnar resistance
can be found by using integrated in situ conductivity profiles, or
through the use of simultaneous ionospheric potential and surface
current density measurements (e.g. Harrison, 2005b). For longer
period analyses, in which some of the random variability in the
lower atmosphere can be expected to be reduced by averaging, the
NM data can still provide an indication of the lower atmosphere
ionisation changes (e.g. Harrison et al. 2013b).

Finally, the properties of the atmosphere assumed by using the
US standard atmosphere only approximate the local atmospheric
properties found in one particular season, as apparent from Fig. 3.
As discussed in Aplin et al. (2005), reanalysis data from meteor-
ological soundings is now widely available at better than daily
resolution which will provide better representation of the atmo-
sphere for modelling purposes than the standard atmosphere
assumption. Of course, a particular advantage of using meteor-
ological radiosondes for ionisation measurements is that tempera-
ture, pressure, height and location are measured simultaneously
with the ionisation rate.
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