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ABSTRACT

Analysis of the forecasts and hindcasts from the ECMWF 32-day forecast model reveals that there is sta-

tistically significant skill in predicting weekly mean wind speeds over areas of Europe at lead times of at least

14–20 days. Previous research on wind speed predictability has focused on the short- to medium-range time

scales, typically finding that forecasts lose all skill by the later part of the medium-range forecast. To the

authors’ knowledge, this research is the first to look beyond the medium-range time scale by taking weekly

mean wind speeds, instead of averages at hourly or daily resolution, for the ECMWF monthly forecasting

system. It is shown that the operational forecasts have high levels of correlation (;0.6) between the forecasts

and observations over the winters of 2008–12 for some areas of Europe. Hindcasts covering 20 winters show

a more modest level of correlation but are still skillful. Additional analysis examines the probabilistic skill for

the United Kingdom with the application of wind power forecasting in mind. It is also shown that there is

forecast ‘‘value’’ for end users (operating in a simple cost/loss ratio decision-making framework). End users

that are sensitive to winter wind speed variability over the United Kingdom, Germany, and some other areas

of Europe should therefore consider forecasts beyond themedium-range time scale as it is clear there is useful

information contained within the forecast.

1. Introduction

Traditionally, studies of wind speed predictability

have focused on the short- to medium-range time scales,

as seasonal forecast systems (Arribas et al. 2011) have

shown little skill in predicting large-scale features such

as the North Atlantic Oscillation (NAO). A recent re-

view of wind speed and power forecasting techniques by

Foley et al. (2012) discussed many statistical and dy-

namical techniques with a focus on nowcasting to the

medium-range time scale. While they acknowledged the

importance of statistical models in estimating the

monthly/seasonal mean wind speed, there was no men-

tion of forecast information on these time scales from

dynamical models. To our knowledge, no published

peer-reviewed literature currently exists demonstrating

that there is wind speed predictive skill from dynamical

forecasts beyond the medium-range time scale.

Prediction of hour-to-hour variations in wind at long

lead times is difficult. Pinson and Hagedorn (2012) show

that hourly forecast data from the European Centre for

Medium-Range Weather Forecasts (ECMWF) medium-

range forecast loses almost all skill after 5–6 days. There

is, however, more opportunity for prediction over longer

time-averaging windows. For example, Rodwell and

Doblas-Reyes (2006) explain that by taking aweekly time

average over the meteorological variable of interest, the

unpredictable short-term fluctuations are reduced and

predictive skill arises from slow changes in the boundary

forcing. Weekly averaging for monthly forecasts of key
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meteorological variables such as temperature and geo-

potential height at 500hPa have been shown to produce

skillful forecasts (Vitart 2004; Vitart et al. 2008; Weigel

et al. 2008; Hudson et al. 2011), suggesting that the

monthly forecast system is able to capture some pre-

dictability of the large-scale flow. Here we extend the

evaluation of the monthly forecasting system to surface

wind speeds.

Dynamical monthly forecasting, otherwise known as

subseasonal prediction, is relatively new and lies at the

traditional ‘‘gap’’ between weather and climate. Com-

mon forecasting options at this lead time have therefore

been ‘‘persistence’’ or ‘‘climatology.’’ A persistence

forecast uses the most recent weather observations up to

the point of the forecast being issued to project forward in

time (assuming autocorrelation exists in the weather

variable of interest). A climatological forecast uses only

prior information from a long-term set of observations

(often 30 years) for the forecast period of interest. More

advanced statistical or dynamical models can therefore

be benchmarked in terms of performance against the

climatology or persistence methods. The monthly time

scale is influenced by both the initial atmospheric condi-

tions and boundary forcings from slower moving com-

ponents. It is known that sources of predictability come

from the stratosphere (Baldwin and Dunkerton 2001),

the Madden–Julian oscillation (MJO; Vitart and Jung

2010), soil moisture anomalies (Koster et al. 2010), and

sea surface temperatures (SSTs; Hu et al. 2011). Vitart

(2004) shows that the ECMWFmonthly forecast for days

12–18 can outperform persistence of the previous week

(days 5–11) from the same forecast. Since then, im-

provements in the forecast system have enhanced fore-

cast skill (Vitart 2014).

Wind speed predictability has a range of economic

and societal impacts. Forecasts better than climatology

or persistence can add value to the operations of many

end users. An end user is defined as someone who is

exposed to weather-related risk and is therefore faced

with making decisions based on a forecast and the po-

tential impacts. Examples of monthly forecast end users

include the energy sector, supermarket chains (as the

sales volume of certain products is dependent upon

temperature), agricultural industries, and financial in-

stitutions (trading commodities that are impacted by

weather). For instance, in the energy sector, an in-

creasing amount of wind power is being built (McGinn

et al. 2013). Therefore, the need for accurate forecasts

becomes increasingly important because of the inter-

mittent nature of wind power generation and the need to

match supply with demand at all times (Füss et al. 2013).
While previous studies have examined the forecasting

of short-term fluctuations in wind speed/power for

electricity grid management and market participation

(Pinson 2013), there has been little investigation on the

use of information contained in forecasts at the weekly

resolution and the implications for risk management in

the power system.

This research examines the skill in the ECMWF

monthly forecast system for wind speed at the weekly

time scale over Europe, with the aim of giving forecasters

an overview of the current limits of predictability. One

of the reasons a weekly average was chosen is that it

matches the length of commonly traded future contracts

for commodities such as power and gas. The European

region was chosen because of a significant penetration of

wind energy and therefore a strong interest in longer-

term wind speed predictability, particularly for countries

such as the United Kingdom, Germany, Denmark, and

Spain (McGinn et al. 2013). The special application of this

to quantitative risk management applications in the

power sector is a subject of ongoing research and will be

presented in subsequent papers.

To quantify the predictability of monthly wind speed

forecasts, the ECMWF monthly forecast system was

chosen because of its known skill in the extratropics

(Vitart et al. 2008). We focused on the winter months of

December, January, and February, as the winter season

was found to have the strongest predictability. In addi-

tion to this, larger wind speed variability during winter

(Sinden 2007) could make forecasts more useful for some

end users. Section 2 briefly outlines the data sources and

methodology used. Section 3 examines the seasonality of

predictive skill in the monthly forecast system and the

differences between the forecast and hindcasts in terms of

the correlation between the ensemble mean and the ob-

servations. Section 4 examines the probabilistic pre-

dictability of the operational forecasts using verification

scores and a number of common diagnostics. In section 5,

the value of the forecasts to the end user is demonstrated

in terms of cost/loss ratios. The findings are then dis-

cussed with potential applications in section 6, and con-

clusions are presented in section 7.

2. Data and methodology

a. Data

The wind speed forecasts used in this analysis were

from the ECMWF monthly forecast model. The model

is an extension of the medium-range forecasting system,

and the configuration analyzed runs by coupling to an

ocean model after day 10 (with persisted SST anomalies

prior to that). For a full description of the model, see

Vitart et al. (2008). Since March 2008, operational 51-

member ensemble monthly forecasts have been issued
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every Thursday (and since October 2011, every Monday

and Thursday). Prior to each Thursday’s forecast re-

lease, a set of calibration hindcasts is run using the same

version of the model from the same day of the year (e.g.,

5 December) over the previous 20 years with only five

members each time (see Fig. 1).1 There are therefore

two sets of data that we can use to evaluate the forecast

performance: the 51 member operational forecasts

(2008–13) and the five-member hindcasts (1992–2012,

20 years). As the operational forecast system began to

produce forecasts twice a week (Mondays as well as the

original Thursday forecasts) from October 2011, all

Monday forecasts have been removed from the quan-

titative analysis in order to maintain statistical in-

dependence of the results. We also verified that using

the Monday forecasts, instead of the Thursday fore-

casts, from October 2011 did not significantly affect the

results.

The hindcasts and forecasts have advantages and

disadvantages. Analysis of the hindcasts, as retrospec-

tive forecasts, allows a large period of climatic vari-

ability (20 years) to be sampled from but is limited by

only having five ensemble members per hindcast, which

makes reliable probabilistic predictions difficult. On the

other hand, the operational forecasts have 51 ensemble

members, allowing a better estimation of the uncertain

future atmospheric state but covering a relatively short

period of climatic variability (winters of 2008–13). Any

conclusions drawn on this data alone suffer from the fact

that the winters of 2008–13may have beenmore (or less)

predictable than usual. This research therefore exam-

ines 10-m wind speed predictability using both the

forecasts and hindcasts.

To verify the forecasts, the Interim ECMWF Re-

Analysis (ERA-Interim) dataset (Dee et al. 2011) was

used as the observational ‘‘truth’’ as it covers the full

period of the forecasts and hindcasts. Although the

reanalysis data are subject to error, Decker et al. (2012)

show that ERA-Interim has low RMSE; therefore,

once weekly averaging is applied to wind speeds, the

random error contribution should be minimized. We also

confirmed prior to this research that the error between

reanalysis wind speeds and meteorological mast data is

small for offshore sites. For onshore sites, it was shown

that by averaging over a larger number of meteorological

mast stations with anemometers at 10m covering an area

of 300–400 km results in a large reduction in the random

error term. This validation of U.K. wind speeds and wind

power in reanalysis data is discussed in more detail in

Cannon et al. (2014, manuscript submitted to Renewable

Energy). From these results, we concluded that the error

in the reanalysis (when compared to the ‘‘true’’ obser-

vations) is small relative to the error of the monthly

forecast model at longer lead times.

b. Methodology

A bias correction calibration was applied to the 10-m

wind speed data from the ECMWF monthly forecast to

correct for the model drift. This model drift occurs be-

cause of the model having its own natural climatology

that it tends to over time, leading to biases relative to the

observed climate. The forecasts/hindcasts and reanalysis

data were processed on a grid point by grid point basis,

over a regular N128 Gaussian grid covering the North

Atlantic and most of Europe. The forecasts were ana-

lyzed at a time step resolution of 6 h (0000, 0600, 1200,

and 1800 UTC) running out to 32 days. As one of the

potential applications at these time scales is producing

wind power forecasts, ideally 100-m wind speeds should

be the height of choice tomatch the typical hub height of

wind turbines. However, the ECMWF has not been ar-

chiving 100-m wind speeds for as long as the 10-m wind

speeds. As a larger number of operational forecasts in the

analysis is important, 10-mwinds were chosen.Moreover,

there is little difference in the verification scores between

FIG. 1. Schematic explaining the operational method currently used at the ECMWF for

producing themonthly forecasts. Prior to the operational forecast being generated, 20 hindcasts

simulations are run over the previous 20 years from the same start date of each year. Each

hindcast run consists of five ensemble members. The total set of hindcasts is then used to

generate themodel climatology and to calibrate the operational 51-member ensemble forecast.

1On a technical note, Monday operational forecasts are cali-

brated using a weighted combination of the twoThursday hindcasts

on either side.

2980 MONTHLY WEATHER REV IEW VOLUME 142



the 10 and 100m winds (approximately 0.02 difference in

terms of correlation when forecasting 14 days ahead). All

verification scores were applied to the forecast anomalies

(i.e., measuring the ability of the model to forecast de-

partures from the seasonal and diurnal cycle) rather than

the absolute wind speed values, as there is clear season-

ality and diurnality in wind speeds. The precise details of

how to calculate the model and observational climatol-

ogies and convert towind speed anomalies is listed below.

1) ERA-INTERIM (OBSERVATIONS)

To estimate the seasonal cycle, a wind speed clima-

tology for every sixth hour of the day, for each day in the

year, is estimated by averaging over the whole ERA-

Interim record spanning 1979–2013. Any particular hour

of the year, such as 1800 UTC on 5 December, consists

of only 34 samples (one for each year 1979–2012), and

therefore, some noise remains because of sampling un-

certainty. As an additional noise reduction step, a mov-

ing average was applied to the climatology to isolate the

low-frequency seasonal variability. The 31-day moving

average was applied separately for each of the hour of the

day (0000, 0600, 1200, and 1800 UTC) to avoid artificial

skill arising from simulating the diurnal cycle. A time

series of wind speed anomalies is then calculated by re-

moving the climatology from the original ERA-Interim

wind speeds, giving the observational truth.

2) OPERATIONAL FORECASTS

The model climatology is estimated as a function of

lead time because of the model drift in the monthly

forecast model at longer lead times. Removing the

model climatology from the forecasts therefore mini-

mizes the model bias. The operational forecast ensem-

ble members are converted to anomalies by removing

this mean model climatology calculated at every time

step from the 100 hindcast runs. These forecast anom-

alies are then compared with the ‘‘observed’’ anomalies

from ERA-Interim. Temporal smoothing of the model

climate is not applied in this case because of there being

a larger number of realizations (100) of the model ‘‘cli-

mate’’ relative to 33–34 realizations in the ERA-Interim

record. This method is currently the same that is used at

the ECMWF (F. Vitart 2013, personal communication)

to calculate the operational forecast anomalies.

Wind speed terciles refer to the lower or upper one-

third of the climatological distribution. To calculate the

tercile thresholds, the model climate (again estimated

from the respective hindcasts) was used. There was no

significant difference in terms of skill scores if either the

model climate or observed climate (ERA-Interim) was

used as the threshold to estimate the terciles forecast

probabilities (as discussed in section 4).

3) HINDCASTS

Although the hindcasts are used to calibrate the op-

erational forecasts (see above), they can also be used as

‘‘retrospective forecasts.’’ These retrospective forecasts

are generated from the hindcasts, even though they are

only used in an operational setting to calibrate the real-

time forecasts. For a set of hindcasts run from the same

start day of each year over the past 20 years, 19 years of

the hindcast data are used to calculate the model clima-

tology (same method as above). To calculate the forecast

anomalies, the model climatology (estimated from the 19

years) is removed from the remaining year, which is

considered as the retrospective forecast. This process is

repeated over each of the 20 years, with the forecast year

always being removed from the model climatology cal-

culation. The 20 years of hindcast anomalies can then be

compared with the ERA-Interim anomalies.

3. Ensemble mean forecast skill

This section focuses on the ensemble mean forecast,

evaluating the forecasts in terms of the correlation co-

efficient of the anomalies (ACC) for both the hindcasts

and the operational forecasts on a grid point by grid point

basis. The resulting maps therefore give an indication

of the variation in prediction skill across Europe. As

the correlation is invariant to a change in the mean or

rescaling, it can be seen as the potential model skill ob-

tainable with good calibration.

a. Prediction skill by season

Figure 2 shows the ACC in the 51-member operational

forecasts for each season of the year. There is a clear

difference in the level of prediction skill between the

different seasons when forecasting with a lead time of

14 days (i.e., wind speeds averaged over days 14–20). The

strongest correlation that is statistically significant occurs

in the months of December–February (DJF) across areas

of the North Atlantic, United Kingdom, and northern

Europe.Themonthsof June–August (JJA)andSeptember–

November (SON; Figs. 2c,d) have very limited correla-

tion over the United Kingdom and Europe. The months

of March–May (MAM) have a high correlation in some

areas using the operational forecast (Fig. 2b), but, if

the analysis is repeated using the hindcasts, the corre-

lation is much reduced and comparable to SON (not

shown).

There are potentially a number of reasons that may

explain the larger correlation during the winter months:

these include larger SST gradients, stronger coupling

between the stratosphere and troposphere, and influ-

ence from the MJO. It is beyond the scope of this study
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to address these in detail, but the results are consistent

with Vitart (2004), which also shows Northern Hemi-

sphere predictability is the strongest in winter for 2-m

temperature.As it is clear that the strongest predictability

exists in DJF, all subsequent analysis focuses on the

winter season DJF.

b. Differences between forecasts and hindcasts

Figures 3a,c clearly show the operational forecasts

and hindcasts have positive skill over large areas of the

North Atlantic and Europe at lead times of 14 days.

During the fivewinters of operational forecasts (Fig. 3a),

correlations of approximately 0.6 are found over the

United Kingdom between the forecast and reanalysis at

a lead time of 14 days. For the hindcasts (Fig. 3c), the

correlation is small but still statistically significant. For

the longer lead time of 22 days, the operational forecasts

have limited to no correlation. The majority of Europe

(Fig. 3b) is covered in gray stippling (dots), indicating

that the correlation is not statistically significant for the

ECMWF forecasting system at lead times of 22 days.

However, given that the patterns of correlation are

similar to those at shorter lead times and that there is

some small positive correlation over Europe, a larger

number of operational forecasts may reveal statistically

significant skill. It therefore appears that there is skill

over many areas of Europe at lead times of 14 days, with

suggestions of potential skill at 22 days but not enough

evidence to currently be confident.

There are two potential reasons why the forecasts

have higher levels of correlation than the hindcasts.

The first is that a greater number of ensemble members

in the forecasts leads to a better estimation of the future

atmospheric state. The second is that the five winters

covered by the operational forecasts were for some

reason more predictable than usual. To confirm that

the hindcast skill is not just coming from the years

overlapping the operational forecasts (2008–12), the

hindcast correlation scores have also been calculated

only for the years prior to the operational forecasts

(i.e., before December 2008) and shown in Fig. 3d.

From this it is clear that significant correlation scores

also exist prior to December 2008 in the hindcasts. It is

slightly weaker over the United Kingdom and northern

Europe in Fig. 3d than in the full hindcast period

(Fig. 3c), but it confirms that the correlation is not just

from predictability over the shorter period covering

that of the recent operational forecasts (December

2008 onward).

In summary, the ensemble mean weekly average

wind forecast has statistically significant levels of cor-

relation at lead times of 14 days for many parts of

Europe. The patterns of correlation are similar in both

the forecasts and the hindcasts. The hindcasts do have

much lower levels of correlation than the forecasts, but

this correlation exists across the full 20 years and not

just the five winters that the operational forecasts cover

(2008–12).

FIG. 2. Seasonal variation in the ACC between 10-mwind speed ensemblemean operational forecasts and ERA-

Interim. A lead time of 14 days is taken (and the subsequent week is averaged over day 14–20 before calculating the

ACC). The four plots show the differences in predictability between the seasons. (a) DJF shows the strongest signal

over the United Kingdom and some of northern Europe. (b) MAM, (c) JJA, and (d) SON show little to no pre-

dictability overmost of Europe. The stippling (gray dots) mask the regions that are not statistically significant at the

95% level.
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4. Probabilistic forecast skill

So far, discussion of the forecasts and hindcasts has

focused on the correlation coefficient, which is a de-

terministic score that only considers the ensemblemean.

However, there is often more value in the forecast if the

full predictive distribution is analyzed and taken into

account when an end user is faced with making a de-

cision (Gneiting 2011). This section uses the operational

probabilistic forecast to assess the past performance of

the system in terms of the continuous ranked probability

score (CRPS) and the characteristics of the forecast

resolution, reliability, and spread–skill relationship.

Each of the forecast verification metrics/diagnostics is

introduced in turn with the results stated alongside. All

the following results in this section are for predictability

over the United Kingdom (i.e., the weekly 10-m wind

speed averaged over a box spanning 498–608N and

108W–48E). By taking a United Kingdom–wide average,

the noise is reduced, enhancing the predictability. A

United Kingdom–wide wind speed forecast would be

useful for U.K. total wind power output.

a. CRPS skill score

The CRPS is a commonly used probabilistic score that

evaluates the predictive skill of the full probability dis-

tribution. The CRPS becomes themean absolute error if

a deterministic forecast is used (and may therefore be

thought of as the probabilistic version of the mean ab-

solute error). TheCRPS (Jolliffe and Stephenson 2011) is

defined as the integral of the squared difference between

the cumulative density forecast [P(x)] and the observa-

tion (xa):

CRPS(P, xa)5

ð1‘

2‘
[P(x)2H(x2 xa)]

2 dx , (1)

where the Heaviside functionH denotes the cumulative

density function for the observation xa:

H(x2 xa)5

(
0 (x2 xa), 0

1 (x2 xa)$ 0
. (2)

The CRPS can be converted into a skill score, measuring

the performance of a forecast relative to some bench-

mark forecast (i.e., climatology, persistence, or another

forecast system). In this case, we define the skill score

CRPSskill by normalizing it relative to a climatological

forecast, CRPSclim:

CRPSskill5 12
CRPS

CRPSclim
. (3)

Skill scores below 0 are therefore defined as unskillful,

those equal to 0 are equal to the climatology forecast,

and anything above 0 is an improvement upon climatol-

ogy, up to 1, which indicates a ‘‘perfect’’ forecast. Figure 4

shows the CRPSskill for the weekly mean 51-member

operational forecast. It can be seen that there is positive

skill at all lead times over the United Kingdom. There is

high predictability (of weekly average wind speeds) for

the short lead times, as one would expect. This forecast

FIG. 3. ECMWFmonthly (ensemblemean) forecast for DJF 10-mwind speedACCbetweenweeklymean forecast

(or hindcast) and observations for operational forecasts fromDecember 2008 to January 2013 at a lead time of (a) 14

days and (b) 22 days; (c) hindcasts (most recent model version) fromDecember 1992 to February 2012 at a lead time

of 14 days, and (d) as in (c), but only the years prior to the operational forecast (i.e., pre-2008). The stippling (gray

dots) mask the regions that are not statistically significant at the 95% level.
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skill drops off quickly but remains positive for lead times

up to 18 days (i.e., forecasting for a lead time of 18 days

and taking an average wind speed over days 18–24). The

forecast skill is statistically significant at the 95% level.2

At longer lead times, the forecast skill is no longer sta-

tistically significant.

b. ROC, reliability, and the spread–skill relationship

The quality of a probabilistic forecast system can be

analyzed in terms of a range of attributes such as reso-

lution, reliability, and the spread–skill relationship.

Each of these are considered now.

The empirical relative operating characteristic (ROC)

curve is commonly used to assess the forecast skill for a

binary forecast (i.e., 0/1 or no/yes) and indicates forecast

resolution. In this case, the binary forecast variable is

defined as the occurrence of the wind in the lower (or

upper) tercile. The hit rate and false alarm rate can be

calculated for the probabilistic forecast by applying

a probability threshold g to the predictive probability

distribution allowing classification of a forecast into

a binary event (if the threshold probability of occurrence

g is exceeded) or nonevent (if g is not exceeded). For

a set probability threshold, the forecasts can be evalu-

ated in terms of hit rate and false alarm rate using the

contingency matrix (Table 1), where the hit rate H and

false alarm rate F are calculated respectively as

H(g)5
a

a1 c
and (4)

F(g)5
b

b1 d
. (5)

By changing the threshold probability g of the event

occurring from 0 to 1 over all values, the respective hit

rate can be plotted against the false alarm rate on the

ROC diagram with the line going from (1, 1) (when g is

equal 0) to (0, 0) (when g is equal 1). A convex curve,

above the diagonal one-to-one line, occurs when there

is forecast skill. This is this case in Fig. 5a, where both

the lower and upper terciles have positive forecast skill.

The area under the upper tercile curve is larger than the

lower tercile area, indicating better forecast perfor-

mance for the upper tercile. The ROC curves in Fig. 5a

indicate good forecast resolution for both terciles, that

is, the ability of the forecast system to discriminate be-

tween the two types of events: occurrence and non-

occurrence.

A reliable probabilistic forecast is also a desirable

attribute: to illustrate, if a forecast issues a 70% chance

of rain, in terms of long-run statistics, on average it

should rain 70% of the time (for all forecasts that issue

a 70% chance of rain). In this case, the reliability of

forecasting the weekly average wind speeds occurring in

the lower or upper tercile is examined.3 For a perfectly

reliable forecast, the points should lie along the one-to-

one diagonal line in Fig. 5b. The upper tercile points fall

close to the diagonal line, indicating good reliability; for

FIG. 4. Operational ECMWF monthly forecast for 10-m wind speed averaged across the

United Kingdom (for weekly averages). CRPS skill score as a function of operational forecast

lead time (error bars show the 95% confidence intervals). A skill score of 1 indicates a perfect

forecast; 0 is equal to climatology, and therefore anything better than 0 is an improvement on

climatology.

2 Confidence intervals are estimated using a nonparametric

bootstrap method. Correlation is calculated for 10 000 resamples

with replacement. Because of serial correlation between weekly

wind speeds, a block-based samplingmethod was used with a block

length of 6 weeks. It should be pointed out that if the five winters

covered by the operational forecasts are not representative of the

long-term climatic predictability, then the confidence intervalsmay

also not be as representative.

3 The reliability diagram has been conditioned on the forecast

frequency rather than the observed frequency. The rationale for

this is that an end user wants to know, given that the forecast

suggests the probability of an event occurring is x, has this event

occurred with the same frequency x over all past forecasts?
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instance, when a 50% chance of the wind being in the

upper tercile is forecast, the observed event occurred

close to 50% of the time. The lower tercile has a sys-

tematic low bias, resulting in a higher frequency of ob-

served events relative to those forecast.

The spread–error relationship can be used to assess

whether there is useful information contained in the

ensemble spread. Forecasts with a wider spread, should,

on average, be less accurate. The forecasts are binned by

ensemble spread (i.e., standard deviation) and the error

for all forecast/observation pairs calculated (Fig. 5).

Because of there only being 59 forecast/observation pairs,

the data were stratified into three bins (of approximate

equal size) based on the standard deviation of the en-

semble. For each bin, the RMSE and CRPS is calculated.

Figure 5c shows a positive spread–skill relationship, not

just for the deterministic RMSEmeasure, but also for the

probabilistic CRPS score.A forecast issuedwith a smaller

spread therefore gives the end user more confidence in

the forecast.

c. Discussion of forecast skill

The week 3 wind speed forecast, for a grid box over

the United Kingdom, results in a CRPS score greater

than climatology. The CRPS score is a harder metric to

outperform climatology on than simple scores such as

the Brier score for terciles. It should be noted that the

wind speed climatology used as a benchmark only has

a varying time-mean component (seasonal cycle) and

assumes constant variance for the 3 months of winter

(DJF). There is clearly seasonality in the variance of the

wind speeds across the United Kingdom, larger in the

winter and smaller in summer. However, the reduction

in the CRPS skill score from including a time-varying

variance in the climatology will be minimal. This is be-

cause the difference in wind speed variance during the

months of DJF is found to be relatively small.

Reliability is a requirement for predictability, but res-

olution is also needed to be able to correctly differentiate

between events and nonevents. Reliability can also be

corrected for by a posterior calibration, whereas the

resolution cannot be improved (Jolliffe and Stephenson

2011) by calibration. Provided a large enough set of pre-

vious forecasts exists, it is possible to correct the reliability.

A reliability correction could be applied to future fore-

casts, based on the previous operational forecasts per-

formance. However, the ECMWF monthly forecast

model is updated every year (or sometimes more often),

and it is unknown whether any reliability correction

would still hold under a new version of the model with

slightly different model physics.

The spread–skill relationship (Fig. 5c) shows that

there is useful information contained in the variance of

the forecast pdf. There is therefore more value in the

forecast if the end user considers not just the ensemble

mean but also the ensemble variance. Although the

three bins, plotted in Fig. 5c have an approximately

linear relationship, it should be noted that the error of

any individual forecast may be substantially different

from the average error expected from a forecast that has

been binned by its spread.

The spread–skill relationship was also analyzed for the

hindcasts, as there is a larger set of forecast–observation

pairs. However, despite there being over 200 independent

forecasts, there was no spread–skill relationship. This

suggests that only having five ensemble members does

not allow effective sampling of the flow-dependent at-

mospheric uncertainty. This suggests that the hindcasts

are only able to provide predictability of the mean at-

mospheric state, whereas the operational forecasts are

also able to provide information on the uncertainty that

is conditional on the forecast probability distribution.

5. Forecast value

A range of end-user applications require the conver-

sion of a probabilistic forecast into a yes/no decision for

protection against an event; an example given in

Richardson (2000) is the gritting of roads to protect

against ice. The rationale is that an end user has some

risk, such that if an event occurs they incur some loss L.

They may choose to take preventative action to avoid

the loss at a cost C. They are therefore faced with the

contingency matrix outlined in Table 2. Given a proba-

bilistic forecast of the event (say, lower tercile winds),

the user therefore wishes to determine an optimal

probability threshold g above which they will pay the

costC to avoid the lossL. Below the threshold, they take

no action. The threshold g can therefore be chosen to

TABLE 1. The contingency table for the four different possibili-

ties (a, b, c, and d) for some event, that is, wind speed in the upper

tercile.

Event occurs

Yes No

Event forecast Yes a b

No c d

TABLE 2. The cost/loss contingency table for the four different

possibilities for some event, that is, wind speed in the upper tercile.

Event occurs

Yes No

Action taken Yes C C

No L 0
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maximize the economic value of the forecast for a specific

cost/loss ratio (a 5 C/L). To calculate the forecast value,

Richardson (2000) shows that the hit rateH [Eq. (4)], false

alarm rate F [Eq. (5)], climatological frequency s of the

event, and cost/loss ratio a are needed:

V5
min(a, s)2F(12 s)a1Hs(12a)2 s

min(a, s)2 sa
. (6)

Negative forecast value indicates that the end user is

better using the climatological forecast, and positive

forecast value offers more financial gain than climatol-

ogy and is bounded at one. For a specific probability

threshold [Pr(U )], the forecast value can be calculated

using Eq. (6) for all cost/loss ratios a. An example is

given by the solid black line in Fig. 6a, where the value is

shown using a forecast threshold [Pr(U)] of 0.3 and

therefore insuring against an event when any forecast

exceeds the threshold. The optimal probability thresh-

old g is shown in Figs. 6c and 6d by the colored dots. For

a specific cost/loss ratio, the color of the dot corresponds

to the optimal (long run) probability threshold that the

end user should use to convert the probability forecast

into a yes/no decision.

As the cost of protecting against the event increases

(high cost/loss ratio), a higher threshold g is required as

more certainty is needed that the event will happen. The

upper tercile has more value to the end user than the

lower tercile for cost/loss ratios below approximately

0.6. The highest value obtainable from the lower tercile

is for a user with a cost/loss ratio equal to the climato-

logical frequency (1/3) of lower tercile occurring. This is

the same for the upper tercile; however, this maximum

value achievable from the forecast also occurs for cost/

loss ratios below the climatological frequency. In gen-

eral, there is a large range over which the forecast has

value.

Overall, we have shown that there is forecast value for

binary decision making relating to the upper and lower

terciles across all cost/loss ratios. This is beneficial, as

typically the forecast value lies in a narrower range of

cost/loss ratios (see Vitart 2004; Vitart et al. 2008).

Forecast value is likely to exist for other thresholds over

a range of cost/loss ratios. Further analysis (not shown),

revealed that in the hindcasts, for a range of different

thresholds, the area under the ROC curve was greater

than 0.5, which indicates an improvement on climatol-

ogy and positive forecast value (for at least some cost/

loss ratios), given the link between the ROC curve and

forecast value in Eq. (6). Moreover, the forecast value is

present for all cost/loss ratios from zero and one, as is

shown in Figs. 6c and 6d.

6. Discussion

We have shown that there is statistically significant

probabilistic forecast skill over the United Kingdom for

weekly averaged 10-m wind speeds during DJF, at lead

times of up to 3 weeks and potentially beyond. This was

FIG. 5. Operational ECMWF monthly forecast for 10-m wind speed averaged across the United Kingdom (for weekly averages).

(a) ROC for upper and lower terciles (days 14–20); convex curves above the diagonal indicate forecast skill for both terciles. (b) Reliability

diagram for upper and lower terciles (days 14–20), where the size of circles is proportional to the number of forecast cases in each bin. For

perfect reliability, the points should fall on the diagonal line. The upper tercile forecast is reliable; however, the lower tercile probabilities

are systematically too low. (c) Spread–skill relationship for the ECMWF operational forecasting system (during DJF) for the United

Kingdom. The 59 individual forecasts issued every Thursday during the winter (from December 2008 to January 2013) have been binned

by their ensemble spread (with sizes of 20, 20, and 19 for the lower, middle, and upper bins, respectively). The binned ensemble spread is

plotted against the RMSE for the respective forecasts in each bin. The plot shows a positive spread–skill relationship, which thus gives the

forecaster more confidence in the accuracy of the ensemble mean if the forecasted ensemble spread is smaller.
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achieved by taking weekly averaged wind speeds instead

of hourly/daily wind speeds used in studies such as Pinson

and Hagedorn (2012). There is therefore the possibility

that monthly forecasts may provide useful wind speed

forecasts, helping extend the limit of predictability be-

yond the medium-range time scale.

As this is the first study to quantify wind speed pre-

dictability in the monthly forecast (to the best of our

knowledge), we can only compare with previous litera-

ture that has focused on 2-m temperature. As wind speed

is generally harder to predict than temperature [see

CRPS skill differences between Pinson and Hagedorn

(2012) and Hagedorn et al. (2012)], it would be expected

that the wind speed skill scores are lower than that in

previous verification studies for temperature. The model

skill shown in Vitart (2004) is for an old version of the

ECMWF monthly forecast that was only run 45 times

each with 51 ensemble members. The ROC score for 2-m

temperature (averaged across all land points in the ex-

tratropics) at similar lead times was less than that found

for the 10-m wind speeds averaged across the United

Kingdom in Fig. 5. There was also no 2-m temperature

skill for the area over theUnitedKingdom.As this was an

old version of the model, subsequent improvements have

led to an increase in the skill (Bechtold et al. 2008).

Weigel et al. (2008) used a more recent version of the

ECMWF monthly forecast model and show that there

is some small skill over the United Kingdom for spring

temperatures. The ROC diagrams shown in Vitart

(2004), Vitart et al. (2008), and Vitart andMolteni (2010)

for 2-m temperature in the extratropics and/or Europe at

lead times (similar to week 3) have less area under the

curve than the wind speed ROC curves shown in Fig. 5a.

Many factors such as the different geographical areas,

lead times, number of ensemble members, and model

version make a direct comparison between the literature

and the ROC curves (Fig. 5a) in this paper impossible.

However, the key point is that the 10-mwind speed ROC

curve area is larger than anything in the literature for

similar lead times when forecasting 2-m temperature.

One possible explanation for this high level of pre-

dictability over the last five winters (2008–12) is from

sampling a period of enhanced predictability. It is possible

that the last five wintersmay not have been representative

FIG. 6. End user value for using the ECMWFmonthly forecast (during DJF) instead of climatology for the United

Kingdom when exposed to some risk associated with the wind occurring in the (left) lower tercile and (right) upper

tercile. The value obtained is expressed in terms of percentage improvement upon climatology, where 0% is equal to

climatology, anything greater than 0% is an improvement, and 100% is obtained from using a perfect fore-

cast. (a),(b) Each black line shows the value obtained by choosing to act (i.e., pay the cost) when a specific forecast

probability thresholdPu is exceeded (for the wind being in the lower/upper tercile). The solid black line corresponds to

a probability threshold Pu of 0.30, and the dotted black line corresponds to a Pu of 0.50. (c),(d) The colored dots show

the optimal Pu an end user should choose (given their cost/loss ratio a) in order to maximize the value of the forecast.
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of the long-term climatic variability in flow-dependent

predictability. This issue has been addressed in section 3,

where the both the hindcasts and the operational fore-

casts have been compared side by side. This analysis

confirmed that the week 3 predictive skill was robust and

not simply an artifact of an unusually predictable period.

Nevertheless, it should be noted that Jung et al. (2010)

showed that the winter of 2009/10 was highly predict-

able in the ECMWFmonthly forecast system, with skill

3–4 weeks ahead forecasting the onset of an extremely

negative NAO and maintaining its persistence there-

after in subsequent forecasts. The winter of 2010/11 was

also predominantly a negative NAO, and medium-range

forecasts had high levels of predictability (Langland and

Maue 2012). It is therefore likely that enhanced pre-

dictability, due to more predictable large-scale flow

conditions, may have contributed to high levels of fore-

cast skill in the operational forecasts at times over the

winters of 2008–12.

It is accepted that having a larger ensemble will gen-

erally lead to an improvement in the forecast skill

(Buizza et al. 1998). Consistent with this, the operational

forecast tends to outperform the hindcasts over Europe,

so an additional explanation for the high levels of skill in

the operational forecasts is having 51 ensemble mem-

bers, relative to the 5 in the hindcasts. The impact of

sampling a period of enhanced predictability and having

more ensemble members in the operational forecasts

are therefore both likely to contribute to high forecast

skill in the operational forecasts. However, it is not pos-

sible to quantify the relative contributions from these two

sources (given the limited sample size of the available

forecast data) as the operational forecast model config-

uration is continually changing relative to themost recent

hindcasts used in the analysis.

Without a full dynamical analysis, we can only suggest

what might be causing this signal of predictability over

Europe. There is literature showing the MJO (Vitart

and Molteni 2010; Cassou 2008; Lin et al. 2010), ENSO

(Ineson and Scaife 2009; Bell et al. 2009), and the

stratosphere (Sigmond et al. 2013) can have an impact on

large-scale extratropical circulation at these time scales.

It is shown inVitart andMolteni (2010) that forecasts that

were initialized with a strong MJO in the initial condi-

tions had a greater Brier skill score and ROC score. This

was most evident for lead times of 12–19 days. It is

therefore possible that the skill in the week 3 wind speed

forecasts is coming from the model’s ability to represent

the MJO- and ENSO-related teleconnections.

A common criticism of subseasonal and seasonal

forecasts is the low levels of skill in the extratropics.

Typical meteorological forecast end users prefer point

forecasts (i.e., a single value) for the variable of interest.

With such low levels of skill, the ensemble mean esti-

mate can often be of little to no practical use. Method-

ologies therefore need to be developed to take advantage

of the full probability density forecast and to utilize the

information effectively in a decision-making context.

To give an example, vessel hire for offshore wind farm

maintenance can result in large losses/costs depending

on the decisions made when to book a vessel. For in-

stance, the loss of revenue for a 100-MWwind farm that

was offline for a month was estimated to be approxi-

mately £3 million (Turner et al. 2013). Boat hire can be

in the region of £270 000 per day for a vessel that can

install a substation (BVG Associates 2012). It therefore

becomes clear that applying a cost/loss ratio decision

framework to the problem of whether to hire the boat or

wait another week could result in significant savings for

the business.

7. Conclusions

Traditionally, wind speed forecasts were thought to

contain no skill beyond the medium-range time scales.

Having skillful forecasts at longer lead times may enable

new risk management strategies for wind energy pro-

ducers. We have shown that there is 10-m wind speed

forecast skill at lead times of 14 days when averaging the

wind speed over a weekly period (day 14–20). This skill

is found to exist over the United Kingdom and other

areas of Europe during the wintermonths ofDecember–

February. It was found in the operational forecasts that

correlations of 0.6 between the forecast and observa-

tions existed at lead times of 14 days (i.e., weekly aver-

aged wind speed over days 14–20) for some regions of

Europe, particularly the United Kingdom. At lead times

of 14 days, there was also probabilistic skill for the op-

erational forecasts over the United Kingdom, with a

positive CRPS skill score. It was shown that the end user

could gain potential economic value from using the

forecast instead of climatology, if faced with a cost/loss

binary decision problem.

Very high levels of predictability were found in the

operational forecasts for the recent period (2008–13).

This comes, in part, from a large ensemble size (51

members), but also partly as a result of an anomalously

predictable period in the large-scale weather flows. It is

not possible, with the limited sample size of the 51 en-

semble member forecasts, to quantify the relative con-

tributions of these two factors in the current analysis.

Nevertheless, the hindcast analysis, covering a longer

period (20 years) also has small but statistically significant

levels of predictability, enhancing our confidence in the

ability of the model to forecast wind speeds at lead times

of 14 days. It should be noted that the predictability in
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week 3 was found to be the strongest during the winter

months and did not cover all areas of Europe; by week 4

skill in the forecast was not statistically significant. As this

was only a statistical analysis, further work would be

needed to investigate the dynamical processes resulting in

this predictability. Despite these limitations, it is possible

the forecasts may offer useful information for a range of

end-user applications.

This research has shown that skillful weekly average

wind speed predictions beyond the medium-range time

scales are possible. Having demonstrated that there is

statistically significant wind speed skill for week 3 fore-

casts over the United Kingdom (and other parts of

Europe) during winter, novel techniques utilizing the

probabilistic information effectively to enhance the value

of operational business decisions can be developed.

Ongoing work to be published will demonstrate the

application of these forecasts for quantitative risk man-

agement in the energy sector. Probabilistic skill scores

could also be calculated for areas of Europe other than

the United Kingdom that also have high levels of corre-

lation, for instance, Germany.
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