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Abstract This study investigates the impact of a full interactive ocean on daily initialized 15 day
hindcasts of the Madden-Julian Oscillation (MJO), measured against a Met Office Unified Model atmosphere
control simulation (atmospheric general circulation model (AGCM)) during a 3 month period of the Year
of Tropical Convection. Results indicate that the coupled configuration (coupled general circulation model
(CGCM)) extends MJO predictability over that of the AGCM, by up to 3–5 days. Propagation is improved in
the CGCM, which we partly attribute to a more realistic phase relationship between sea surface temperature
(SST) and convection. In addition, the CGCM demonstrates skill in representing downwelling oceanic
Kelvin and Rossby waves which warm SSTs along their trajectory, with the potential to feedback on the
atmosphere. These results imply that an ocean model capable of simulating internal ocean waves may be
required to capture the full effect of air-sea coupling for the MJO.

1. Introduction
The Madden-Julian Oscillation (MJO) [Madden and Julian, 1971] is the leading mode of intraseasonal vari-
ability in the tropics. It exerts considerable influence on tropical weather and climate variability, such as the
Indian and Asian monsoons [Goswami, 2005; Hsu, 2005; Wheeler and McBride, 2005] and tropical cyclone
activity [Vitart, 2009], and can modulate extratropical weather patterns through forcing of atmospheric
Rossby waves by the divergent outflow from tropical convection which propagate toward the midlatitudes
[Ferranti et al., 1990; Cassou, 2008].

It has been demonstrated the forecast skill of MJO improves in atmospheric simulations if forced with high
temporal frequency sea surface temperature (SST) variability and such simulations also display better rainfall
variability [Klingaman et al., 2008; Matthews, 2004]. The importance of two-way interaction between atmo-
sphere and ocean components in models [Woolnough et al., 2007; Fu et al., 2013] has also been suggested.
Another potentially important aspect in successfully simulating the MJO in models is maintaining a correct
phase relationship in the atmospheric response to SST anomalies [Kim et al., 2010; Fu et al., 2007].

Evidence is increasing that suggests ocean models may be necessary to capture dynamical ocean feedbacks
important for initializing and maintaining the MJO. Webber et al. [2010, 2012] highlight the important role of
ocean dynamics particularly in the Indian Ocean, where a tropical ocean internal wave response to the MJO
leads to SST anomalies with the potential to feedback on the atmosphere and trigger further MJO events.
Anomalous easterlies in the equatorial Indian Ocean can act to force a westward propagating downwelling
(upwelling) Rossby wave, and SST increases (decreases) in phase with the passage of the wave [Seiki et al.,
2013; Shinoda et al., 2013]. Drushka et al. [2012] demonstrate that mixed layer depth variations on MJO time
scales modulate the heat budget by ∼40% in the warm pool region. These studies imply that to accurately
model the MJO, ocean dynamics may need to be simulated adequately enough to resolve internal waves as
well as SST anomalies forced by waves. Developing a better picture for how MJO forcing impacts the ocean,
and how this may feedback onto the MJO, is necessary for improving MJO prediction and modeling.

This study extends previous work by carrying out daily initialized MJO simulations with a global coupled
Met Office Unified Model (MetUM) configuration and by using a more complex ocean model than has
been previously applied to MJO and air-sea interactions investigations on medium range time scales. The
experimental setup, outlined in section 2, permits us to examine the influence of the subsurface ocean
on MJO simulations. As MetUM uncoupled operational forecast models already have a good general rep-
resentation of the MJO on these time scales [Gottschalck et al., 2010], we consider the model a suitable
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tool for analyzing the impact of two-way air-sea coupling on mechanisms instrumental in the lifecycle and
predictability of the MJO.

2. Data and Methods

We compare MetUM models for a set of daily initialized 15 day hindcasts with observation and analysis data,
for the period falling within the Year of Tropical Convection (YOTC). Two strong MJO episodes denoted as
YOTCE (15 October to 6 December 2009) and YOTCF (16 December 2009 to 29 January 2010) with reference
to Figure 3 of Waliser et al. [2012] form the central focus for our analysis.

The models used are a MetUM coupled general circulation model (CGCM) and a corresponding atmo-
spheric general circulation model (AGCM) with prescribed ocean boundary conditions using persisted SST
anomalies. Anomalies in the MetUM analysis are calculated relative to Hadley Centre sea ice and sea surface
temperature data set climatology [Rayner et al., 2003]. The anomaly is added to the evolving climatological
cycle of SST on a daily basis to obtain the AGCM SST forcing. We persist SST anomalies instead of persisting
initial SSTs as the seasonal cycle affects the amplitude of SSTs within a few days, indicated by sensitivity tests
carried out at the Met Office.

The atmospheric model physics is based on the GlobalAtmos3.0 version [Walters et al., 2011], at a resolution
of 60 km in the horizontal with 85 vertical levels. The ocean component is based on Nucleus for European
Modelling of the Ocean (NEMO) configured with version 3.2 physics on a 0.25◦ horizontal grid, with 75
vertical levels and 1 m vertical resolution in the top 10 m, coupled to The Los Alamos sea ice model. The
atmosphere is initialized from MetUM analyses, the ocean component is initialized from NEMO Variational
data assimilation system analyses [Mogensen et al., 2009], and the models communicate on a 3 hourly cou-
pling frequency. Any difference in hindcast skill in the CGCM compared to AGCM measures the impact of
two-way air-sea interaction between the model components in dynamically predicting SSTs.

In order to measure MetUM performance and ability to represent processes key to the MJO, a number of
metrics are calculated. This study focuses on dates which contain an MJO in the initial conditions; it does
not include hindcasts from prior to the start of the MJO events. RMM1 and RMM2 are formed following
the Wheeler and Hendon [Wheeler and Hendon, 2004, hereinafter WH] method, removing the annual mean
and the first three harmonics of the annual cycle. Anomalies of Outgoing Longwave Radiation (OLR) and
winds at 850 hPa (u850) and 200 hPa (u200) are combined and projected onto WH empirical orthogonal
functions to yield real-time multivariate time series RMM1 and RMM2. Anomaly correlations are calculated
against MetUM operational analysis following the method of Gottschalck et al. [2010] as a measure of MJO
predictability in both model configurations. Significance of the correlation coefficients is tested using the
Pearson critical value table. The sample sizes for YOTCE and YOTCF are 50 and 44, respectively.

We are interested in relationships which exist between the atmosphere and ocean, and the method of
time-lagged correlations is used to examine the forcing of the atmosphere by the ocean and vice versa.
The model data were regridded to a 2.5◦ x 2.5◦ grid, to match NOAA OLR observations. A band-pass filter
is commonly used to isolate the MJO-related signal between 30 and 80 days in longer simulations, but it is
not possible to apply this technique to 15 day hindcasts as the band-pass length exceeds hindcast length.
Instead, to minimize high-frequency variability prior to calculating lagged relationships, a 5 day running
mean is applied to the data. Either side of each 15 day hindcast is padded with MetUM analyses data, a
viable technique at the beginning of the hindcast when model fields are close to initial conditions, but we
acknowledge that the end of the hindcast will likely erroneously improve due to influence of the analysis.
Therefore, we disregard hindcast data past day 13 that have been treated in this manner. This smoothing
has only been applied to data used in Figure 2.

The lagged phase relationship between SST and convection is calculated, using OLR as a proxy for convec-
tion. A single 15 day initialized hindcast does not provide a sufficiently long time series to adequately assess
lagged relationships. To circumvent this issue, we collect all of the day 5 lead times from each 15 day hind-
cast over the YOTCE and (separately) YOTCF period. We extract the Indian Ocean region from the full global
data set and average over latitudes between 10◦N and 10◦S, for each point of longitude between 60◦E
and 100◦E between the SST and OLR data sets. We subsequently perform lagged correlations between the
data sets for lags of up to 15 days. At each longitude, the latitude-averaged OLR is lag correlated with the
latitude-averaged SST, for leads and lags up to 15 days. NOAA OLR [Liebmann and Smith, 1996] observations
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Figure 1. Hindcast anomaly correlation scores during (left) YOTCE and (right) YOTCF for (row 1) combined fields, (row 2)
OLR, (row 3) U200, and (row 4) U850 as measured against MetUM analyses, for MJO amplitudes exceeding 1. All phases
are included in each plot. The CGCM is in red and AGCM in blue. A persistence hindcast (black) is shown for combined
fields. Significance at 99% level is denoted by a triangle.

and operational sea surface temperature and sea ice analyses (OSTIA) [Donlon et al., 2012] are used to verify

the data. Previous work [Klingaman et al., 2011] suggests that correlations between these fields peak at a 10

day lag (see Figure S1 in the supporting information). In order to examine propagation of each YOTC event,

we additionally calculate lagged correlations of OLR at a base point (70◦E) with latitude-averaged OLR at all

points of longitude in the Indian Ocean.

Chelton et al. [2003] demonstrated that Rossby waves generally have a sea surface height (SSH) maxima

centered 4◦ of latitude away from the equator, with positive (negative) SSH anomalies associated with

a downwelling (upwelling) Rossby wave. To assess the modeled representation of tropical ocean waves

associated with the MJO, we examine anomalies of both SSH and depth of the 20◦C isotherm (Dep20)

and verify against daily Forecast Ocean Assimilation Model (FOAM) analyses [Storkey et al., 2010] for these

quantities. We validated the daily SSH FOAM analysis against Archiving Validation and Interpretation of

Satellite Oceanographic data observations and these largely agree (not shown). To search for propagating

Rossby waves, we form a latitudinal average between 2◦N–8◦N and 2◦S–8◦S in the Indian Ocean and plot

time-longitude diagrams for the period spanning September 2009 to January 2010 for analyses and CGCM

hindcasts at day 1 and day 14. To study equatorial Kelvin wave propagation, a latitudinal average is formed

over the equatorial waveguide between 2◦N and 2◦S in the Indian Ocean.

SHELLY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5672



Geophysical Research Letters 10.1002/2013GL059062

3. Results

During YOTCE, the CGCM demonstrates enhanced performance for RMM1 over that of the AGCM from day
4 for combined fields, extending predictability by 3 days based on a threshold of 0.6 (Figure 1, left). The
configurations display similar skill out to day 11 for RMM2, after which the CGCM is slightly more skillful. The
persistence hindcast is shown to rapidly diverge from the dynamical hindcasts at day 1, indicating a rapid
loss of predictability. Over YOTCF, the AGCM has greater RMM1 predictability from day 5 out to day 10, after
which the score rapidly deteriorates. CGCM anomalies remain above a correlation of 0.6 in these later lead
times (Figure 1, right) and extend predictability by 5 days in the case of RMM1 for combined fields based on
a threshold of 0.6. However, both configurations are similar in the case of RMM2.

CGCM correlation scores for OLR are demonstrably better than the AGCM for both RMM1 and RMM2. Over
the YOTCE period, the CGCM shows greater performance from day 8 (RMM1) and from day 4 (RMM2) and
similarly for the YOTCF event, from day 6 (RMM1) to day 8 (RMM2). Performance is comparable for upper
level winds as the two configurations remain close throughout lead times. Nonetheless, the CGCM displays
a slight improvement over YOTCE, particularly for RMM2 and for RMM1 between days 12 and 15. In the case
of U850, the CGCM shows generally greater predictability in the latter 5 days for YOTCF but similar perfor-
mance over YOTCE. In general, the CGCM has greater predictability particularly for OLR and U850 and is
capable of maintaining higher correlation scores over the entire hindcast length. The results for both sim-
ulations are found to be mostly significantly different from zero (denoted as triangles in Figure 1), but the
differences between the two simulations are not found to be significant. We acknowledge that the study
is somewhat limited by focusing on deterministic hindcasts of two MJO events and would expect some
variation in evolution and characteristics between MJO events.

We next examine possible mechanisms leading to the improved predictability seen in the CGCM hindcasts.
Propagation of the convective center of action of the MJO through the Indian Ocean over YOTCE is illus-
trated in Figures 2a–2c. The eastward propagation of the MJO is apparent in the observations throughout
the period (Figure 2a). As the main center of convection follows a trajectory across the Indian Ocean and
clear skies (positive OLR) turn cloudy (negative OLR), the correlations switch sign from negative to positive.
The AGCM-simulated MJO is stationary by day 5 (Figure 2c). Lead-lag correlations as shown in Figure 2b
for day 5, but constructed using respectively later days in the hindcast, indicate that the CGCM is still able
to propagate the MJO out to day 9 hindcasts, though slower than observed (not shown). This result indi-
cates that dynamically evolving SSTs play a role in improving propagation of the MJO and is corroborated
by other studies [Fu et al., 2007; Waliser et al., 1999].

The lack of propagation of the MJO in the AGCM after a few days could be related to a loss of coherent evo-
lution between atmospheric convection and underlying SST anomalies related to the MJO [Waliser et al.,
1999; Klingaman et al., 2011]. In Figures 2d–2f, the SST-convection relationship is investigated through cal-
culation of the lagged correlation between OLR and SST anomalies. Figures 2e and 2f depict the lagged
correlation coefficients in the Indian Ocean for all day 5 hindcasts for the CGCM and AGCM for YOTCE. Sim-
ilar results are obtained for YOTCF and in the Western Pacific (not shown). Observed warm SSTs are shown
to lead enhanced convection by 5–10 days, and conversely, active convection leads cool SSTs by 5–10 days
(Figure 2d). The CGCM reproduces the observed phase relationship, though it is slightly weaker and main-
tains the relationship out to day 13 lead time (not shown). However, in the AGCM experiment, convection
adjusts to a location where SST anomalies peak, which results in colocated OLR and SST anomalies by day
5. In reality, warm SST anomalies not only influence the convection but are concurrently influenced by the
atmospheric state. The AGCM is unable to reproduce this key air-sea interaction, and the MJO simulation
suffers. A phase relationship analysis of operational global MetUM and climate model configurations is
presented in the supporting information which corroborates results presented here.

Fu et al. [2013] found that an AGCM forced by daily observed SSTs can sustain the SST-convection relation-
ship and that the match between the atmospheric MJO conditions and underlying SST is the important
factor. However, this is not practical from an operational forecasting standpoint when the future evolution
of the SST is unknown. Thus, the only way that this mechanism can be represented to the advantage of
operational forecasting is through an interactive ocean.

It is clear from Figure 2 that that SST modulates and is modulated by the MJO. We next consider the CGCM
representation of tropical ocean waves, which play a role in modulating the SST in the tropical warm pool

SHELLY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5673
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Figure 2. Lead-lag correlations for OLR at a base point of 70◦E with OLR at all points of longitude in the Indian Ocean
over YOTCE period (15 October to 6 December 2009) for (a) observations (b) CGCM, and (c) AGCM, for all day 5 hindcasts.
Lead-lag correlations over YOTCE period (15 October to 6 December 2009) for SST correlated with OLR in the Indian
Ocean for (d) observations, (e) CGCM hindcast, and (f ) AGCM hindcast (surface temperature at sea points), for all
day 5 hindcasts.

[Mccreary, 1983; Shinoda, 2005]. Downwelling waves deepen the thermocline and raise the SST by reducing
entrainment of cold subsurface waters, while upwelling waves lead to enhanced entrainments and cooling.
Suryachandra et al. [2012] demonstrate through a budget analysis that advection plays a key role in warming
SSTs in the region, suggesting that it is important that tropical waves are well simulated in a GCM.

Enhanced convection and strong surface winds likely associated with the MJO YOTCE activity in
mid-October excites an oceanic Kelvin wave which propagates eastward along the equator (Figure 3a)
reaching the Maritime Continent in late November, visible as a positive anomaly moving eastward in the
FOAM analysis Dep20 field. The perturbation in the ocean height (equatorial SSH, not shown) and at the
thermocline (Dep20) is well reproduced in CGCM day 1 and day 14 hindcasts, with a propagation speed
and amplitude similar to the FOAM analysis (Figures 3b and 3c). The modeled OLR is similar to observed
OLR anomalies at day 1 (Figure 3b, contours) in magnitude and propagation but appears stationary by
day 14 (Figure 3c).

Several westward propagating, downwelling Rossby waves are noticeable over the period between October
2009 and January 2010 (R1–R3). R1 propagates west from 65◦E between September and early November
(Figure 3d), R2 moves from 90◦E to 60◦E between September and January. The third observed wave (R3) is
triggered in late November coinciding with YOTCE MJO propagation into the Maritime Continent and moves
West from early December toward 80◦E by mid-January. A potential mechanism for the trigger of R3 could

SHELLY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5674
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Figure 3. Time-longitude plots for (top) Dep20 anomaly (m) and OLR anomaly (±10 W m−2) for (a) FOAM analysis
(shading) and NOAA OLR (contours), (b) day 1 CGCM hindcasts, and (c) day 14 CGCM hindcasts averaged between 2◦N
and 2◦S; (middle) SSH anomaly (m) for (d) FOAM analysis, (e) day 1 CGCM hindcasts, and (f ) day 14 CGCM hindcasts aver-
aged between 2◦N–8◦N and 2◦S–8◦S; (bottom) SST anomaly field for (g) OSTIA, (h) day 1 CGCM hindcasts, and (i) day
14 CGCM hindcasts averaged between 2◦N–8◦N and 2◦S–8◦S. Diagonal lines (R1, R2, and R3) in Figures 3d–3i represent
downwelling Rossby waves propagating from East to West across the Indian Ocean.

be through reflection and splitting of the earlier Kelvin wave back into the Indian Ocean along the Rossby
waveguide at 4◦N/S [Chelton et al., 2003].

Though SST is sensitive to many processes and the daily SST anomaly field will contain high-frequency
variability caused by surface fluxes and the diurnal cycle, there are clearly some westward propagating SST
anomalies which follow the trajectory of the westward propagating Rossby waves (Figure 3g). The R1 wave
seen in the SSH propagates westward at the same speed and direction as a warm SST anomaly seen in the
OSTIA dataset (Figure 3g). It is possible that this wave could have had warmed SSTs prior to YOTCE, creating
conditions more amenable to large-scale convection. Competing processes clearly play a role, and the
prominent SST cooling caused by the passage of the YOTCE and YOTCF events is visible in the anomalously

SHELLY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5675



Geophysical Research Letters 10.1002/2013GL059062

cool conditions in mid-November and again in late December. Warming induced by the passage of R2
is likely overshadowed by entrainment of deeper, cooler waters brought about by strong winds and
large-scale convection associated with the MJO event moving through the Indian Ocean. However, it does
appear that there is westward propagation of positive SST anomalies superimposed on top of this pat-
tern (Figure 3g). This is particularly obvious as a break in the eastward propagation of cool SST anomalies
between 15 and 25 November, where the anomalies briefly turn slightly positive for about 10 days. Again, in
the case of R3, there is an indication of westward motion of warm SSTs. The CGCM captures all three Rossby
waves, and the SST anomaly fields largely resemble the OSTIA analysis. The influence of data assimilation
is likely to be large on the initial days of the hindcast (Figure 3h); however, SSH and SST anomalies for day
14 hindcasts still retain resemblance to the analyses (Figures 3f and 3i). Warm SSTs advected by the tropi-
cal waves could potentially act as a positive feedback onto further convective events. Webber et al. [2012]
showed that MJO events can coincide with the arrival of a downwelling oceanic equatorial Rossby wave in
the western Indian Ocean, implying that such waves could act as a trigger.

4. Conclusions

Our findings indicate that an interactive ocean produces improved MJO hindcasts over those of an AGCM
forced with persisted SST anomalies. It is clear that there is potential for SST anomalies to be a key compo-
nent of the MJO. Skill measures are improved in the CGCM likely because of the dynamical prediction of
SSTs. We have not considered the complex impact of drift in the mean state of the CGCM on MJO hindcasts
here, as SSTs in the Indian Ocean display minimal drift by day 14 over YOTCE/F (not shown). Klingaman and
Woolnough [2014] address the separation of climate mean state influence on MJO simulation from improve-
ments due to coupled processes in the Met Office Hadley Centre model, and we will address contributions
from SST drifts on numerical weather prediction time scales in future work. We have demonstrated that the
propagation of the MJO suffers in the AGCM simulation, which could result from the failure to represent the
phase relationship that exists between convection and SST. The CGCM shows skill in representation of both
oceanic equatorial Kelvin waves and of westward propagating Rossby waves out to 15 days. It has also been
shown that while SST is sensitive to many different processes, anomalously warm waters occur along the tra-
jectory of downwelling tropical waves, and this process could be important to the life cycle of the MJO. The
case for using an ocean model capable of simulating waves seems strong, given that tropical waves appear
both to influence and be influenced by the MJO.
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