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Data assimilation (DA) systems are evolving to meet the demands of convection-10

permitting models in the field of weather forecasting. A special interest group11

meeting of the Royal Meteorological Society brought together UK researchers12

looking at different aspects of the data assimilation problem at high resolution,13

from theory to applications, and researchers creating our future high resolu-14

tion observational networks. The meeting was chaired by Dr Sarah Dance of15

the University of Reading and Dr Cristina Charlton-Perez from the MetOf-16

fice@Reading.17

The purpose of the meeting was to help define the current state of high reso-18

lution data assimilation in the UK. The workshop assembled three main types of19

scientist: observational network specialists, operational numerical weather pre-20

diction researchers and those developing the fundamental mathematical theory21

behind data assimilation and the underlying models. These three working areas22

are intrinsically linked; therefore, a holistic view must be taken when discussing23

the potential to make advances in high resolution data assimilation.24

1 Background25

In 2003, a workshop was convened to assess the feasibility of a mesoscale now-26

casting system [Dabberdt et al., 2005]. At that meeting the scientific challenges27

facing high resolution precipitation forecasting were identified as improving the28

simulation of convective processes within numerical models, improving knowl-29

edge of convective downdrafts and gusts from individual storms and improving30

the understanding of the initialisation of convection [Wilson and Roberts, 2006].31

On the lack of high resolution three-dimensional observations of state variables32
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above the boundary layer, they noted there was “currently no observational1

capability to fill this gap” [Dabberdt et al., 2005].2

Around the same time, review articles were released summarising the state3

of high resolution DA [Dance, 2004; Sun, 2005; Park and Županski, 2003]. In4

all references the main problem addressed is the forecasting of precipitation at5

fine space and time discretisations.6

2 Current state of data assimilation and fore-7

casting at high resolutions8

At the present time, pressing issues with DA methods related to both the high9

spatial and time resolution in the forecasting system are no longer limited to10

precipitation forecasting. Issues discussed at this meeting could be grouped into11

the following themes:12

• lateral boundary conditions for nested models,13

• nonlinearity of the models,14

• scale disparities,15

• background, model and observational errors and16

• computational demands of DA at scales relevant to precipitation forecast-17

ing.18

Ad hoc networks of devices such as smart phones and vehicles have exploded19

in size and functionality. These networks are currently being considered for20

their feasibility to provide information to assimilate into meteorological models21

[Mahoney and O’Sullivan, 2013]. These networks have the potential to provide22

surface measurements at the resolutions required by future high resolution data23

assimilation systems, however they will still lack the three-dimensional structure24

desired to fill the aforementioned observation gap.25

Numerical weather prediction has benefited greatly from an increase in avail-26

able computational power. This has allowed the models to grow rapidly in com-27

plexity and resolution, producing much more realistic simulations. Likewise the28

number, type and quality of observations have increased, thanks to the expan-29

sion of radar networks and increases in the number and quality of satellite data30

products. However, the data assimilation techniques to combine these two areas31

of science in order to initialise a forecast are not yet capable of utilising all the32

modern advances in modelling and observation. As an example, only around 5%33

of scatterometer data are assimilated into both global and limited area models34

at the MetOffice, whereas in the global model only 24% of AMDARS data is35

assimilated which increases to 68% in the high resolution model [personal com-36

munication, MetOffice]. The reasons for the number of observations utilised in37

models of different resolution are complicated and vary greatly by observation38
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type. In some cases it is due to the resolution of the observations, their tempo-1

ral and physical spacing or the quality control procedures used. Hence impact2

studies of potential new observations are proving necessary to quantify the ben-3

efits of additions to observing networks [Eyre and Weston, 2013; Simonin et al.,4

2013a].5

In the summer of 2012 during the London Olympic Games, the MetOffice6

demonstrated its numerical weather prediction (NWP) based nowcasting sys-7

tem using 4D-Var [Golding et al., 2013; Simonin et al., 2013b]. Nowcasts are8

very short-range, high resolution forecasts used to give a prompt, quantitative9

forecast of hazardous weather and precipitation. This was an advance on previ-10

ous nowcasting systems which used extrapolation and heuristic techniques, and11

is described in Sun et al. [2013].12

3 Scientific presentations13

Dr Ali Rudd of the University of Reading began the presentations by talking14

on the subject of model errors in high resolution, hence convection-permitting,15

numerical weather prediction models. A random parameter perturbed physics16

scheme has been used to represent the uncertainties due to model error in a17

convective-scale research ensemble prediction system (1.5km-EPS). As a test18

case, they used a DIAMET [DIAMET, 2013] flight campaign case, during which19

measurements were made of a frontal wave with structures not captured by the20

Met Office UKV (1.5km) operational model forecast or the 1.5km-EPS control21

forecast. The random parameters scheme had the effect of changing the spread22

of the ensemble, but did not improve the forecast skill in capturing the banding23

observed (by radar) in the rainfall [Baker et al., 2014]. It is vital to understand24

these changes in ensemble spread in order to tune an ensemble data assimilation25

system such as the ensemble transform Kalman filter that was used.26

Prof Rob Scheichl of the University of Bath spoke on multilevel approaches27

from numerical analysis which show great potential in the next generation of28

data assimilation applications. These included geometric multigrid methods for29

the fast solution of a linear system [Buckeridge and Scheichl, 2010] where the30

matrix in question is the background error covariance matrix from variational31

data assimilation. Techniques from multilevel methods for the efficient solution32

of stochastic PDEs were presented [Teckentrup et al., 2013] because they promise33

to improve the efficiency of particle filters.34

Prof Slobodan Djordjevic of the University of Exeter spoke on high resolution35

modelling of urban flooding events [Chen et al., 2012a,b]. With satellite imagery36

used to generate a topological network of the area in question, a multi-layered37

approach to calculation of flood extents was shown to be close to a much more38

computationally expensive high resolution model. Case studies shown included39

flooding events on the Isle of Wight and in Dhaka, Bangladesh. These compu-40

tational techniques can be used to inform drainage system re-design, emergency41

flooding evacuation plans and the health impacts of pollution. The feasibil-42

ity of creating a real-time flood warning system in which satellite and in-situ43
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observations would be assimilated into such models was discussed.1

Dr Lee Hawkness-Smith from the MetOffice@Reading Data Assimilation2

Group presented work on the assimilation of radar reflectivity in high resolution3

numerical weather prediction [Hawkness-Smith and Ballard, 2013]. Reflectivi-4

ties were assimilated using 4D-Var into the Met Office Nowcasting Demonstra-5

tion Project model, an NWP-based nowcasting research system.6

Dr John Lees-Miller of the University of Bristol spoke on extracting infor-7

mation from wireless networks for traffic modelling [Lees-Miller et al., 2013].8

Making use of Bluetooth devices found in mobile phones and those increasingly9

built into motor vehicles, observations of traffic densities and speeds were used to10

build a hidden Markov model for traffic flow. These novel observations brought11

with them a number of challenges, including privacy considerations, missed de-12

tections and difficulties in discerning what is being measured; for example, is13

the device which is detected actually in a car or on a bicycle? One application14

of the model is measuring whether traffic policy changes have made an impact15

on the dynamics of the road network. The use of such observations as described16

by Dr Lees-Miller shows promise as a way in which to provide high resolution17

surface observations for use in NWP models.18

Dr Barbara Brooks from the University of Leeds was the final speaker of19

the meeting and presented work on improving NWP forecasts by the use of20

remotely controlled aircraft measurements [Jonassen et al., 2012]. Unmanned21

aerial systems (UASs) are being developed to reduce costs and increase both22

spatial and temporal resolution of the observation network in areas that are23

currently under-observed. The main application of a particular UAS was to act24

as a reusable radiosonde. A range of available UASs was described in order to25

highlight the wide range of measurements that can be made using these modern,26

reusable devices.27

4 Discussion28

A well-attended discussion session followed the presentations to consider the29

future of high resolution data assimilation. Techniques to adaptively improve30

the representation of background error covariances are already being employed31

in high resolution DA systems [Piccolo and Cullen, 2012; Browne et al., 2014].32

These methods go some way to addressing scale disparities in nested models,33

particularly those disparities which can impact the simulation of boundary layer34

dynamics. However, it was generally agreed that due to the nested nature of35

high resolution meteorological data assimilation systems, a considerable amount36

of the larger forecast errors on the high resolution grid come from large-scale37

or synoptic uncertainties. During the discussion, a number of open research38

questions emerged as the most pressing to be considered:39

• Errors in the boundary conditions for the high resolution model exist due40

to intrinsic errors in the synoptic scale model and to the process of taking41

the coarse data down to a fine scale. Should the high resolution data42
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assimilation system be tailored to incorporate these uncertainties in the1

boundary conditions?2

• A recent study [Baxter et al., 2011] has shown that large scale meteoro-3

logical features may not be sufficiently well represented in a limited area4

domain, thus posing difficulties for DA in the smaller domain. What scales5

should one analyse in high resolution DA (just the small scale or also the6

large scales)?7

• In a future where NWP uses correlated observation errors, how do the8

scales implicit in the background and observation error correlations inter-9

act?10

The future of observational networks were discussed, specifically the net-11

works which are not being designed or run specifically for meteorological ap-12

plications. For example, important meteorological data is being extracted from13

existing networks such as AMDAR [AMDAR, 2013] and mode-S data [de Haan,14

2011; de Haan and Stoffelen, 2012; Strajnar, 2012] from air traffic, humidity15

measurements from global positioning systems [de Haan, 2013] and road traffic16

data [Mahoney and O’Sullivan, 2013]. Increasingly, cheap sensors found in mo-17

bile phones are being adapted for use in all kinds of observational networks. If18

such sensors prove to be the most important part of a meteorological observa-19

tional network then the agencies which rely on them will come under increasing20

pressure to control them in order to have confidence in their resilience.21

• How will operational centres ensure the security of new ad-hoc networks22

of observations?23

Making full use of all of the available meteorological observations will still be24

limited by the amount of computational power available to operational centres.25

In the next generation of data assimilation systems more value may be gained26

by incorporating information such as error structures in observations [Stewart27

et al., 2008, 2013b; Weston, 2011; Stewart et al., 2013a; Bormann and Bauer,28

2010] instead of simply increasing the number of observations.29

• What gains could be made in forecasting by including observational error30

structures in the data assimilation process compared with simply increas-31

ing the number of observations?32

In order to seek the greatest improvement of forecast skill in all applications33

of atmospheric science, data assimilation must be heavily invested in. Only in34

doing so will the gap between modern models of atmospheric dynamics and high35

resolution observations be bridged in a rigorous way. Whilst the use of devel-36

opment systems or test-beds were strongly encouraged a decade ago [Dabberdt37

et al., 2005], the ability for researchers to test their advances using operational38

systems and access any impact of new types of observations remains rather39

limited. Systems like the Data Assimilation Research Testbed (DART) [Ander-40

son et al., 2009], OpenDA [OpenDA, 2013] and the Parallel Data Assimilation41
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Framework (PDAF) [Nerger and Hiller, 2012] have the ability to test well de-1

veloped DA methods on new models in various areas of science, but they do2

not easily lend themselves to testing novel DA methods with operational at-3

mospheric science models. Adoption of functionality such as EMPIRE [Browne4

and Wilson, 2014] in operational forecast models would allow rapid testing and5

prototyping of academic concepts and theories in the most realistic settings.6

The need for a flexible data assimilation system that can be accessed by7

researchers in academia and industry who are not in the operational centres8

remains an imperative goal that if created will benefit the whole atmospheric9

science community.10

References11

AMDAR (2013). The World Meterological Organisation12

Aircraft Meteorological DAta Relay Observing System.13

http://www.wmo.int/pages/prog/www/GOS/ABO/AMDAR/.14

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano,15

A. (2009). The Data Assimilation Research Testbed: A Community Facility.16

Bulletin of the American Meteorological Society, 90(9):1283–1296.17

Baker, L. H., Rudd, a. C., Migliorini, S., and Bannister, R. N. (2014). Rep-18

resentation of model error in a convective-scale ensemble prediction system.19

Nonlinear Processes in Geophysics, 21(1):19–39.20

Baxter, G., Dance, S., Lawless, A., and Nichols, N. (2011). Four-dimensional21

variational data assimilation for high resolution nested models. Computers &22

Fluids, 46(1):137–141.23

Bormann, N. and Bauer, P. (2010). Estimates of spatial and interchannel24

observation-error characteristics for current sounder radiances for numerical25

weather prediction. I: Methods and application to ATOVS data. Quarterly26

Journal of the Royal Meteorological Society, 136(649):1036–1050.27

Browne, P., Budd, C., Piccolo, C., and Cullen, M. (2014). Fast three dimensional28

r-adaptive mesh redistribution. Journal of Computational Physics. Under29

Review.30

Browne, P. and Wilson, S. (2014). A simple framework for integrating a complex31

model into an ensemble data assimilation system using MPI. Environmental32

Modelling and Software. Under Review.33

Buckeridge, S. and Scheichl, R. (2010). Parallel geometric multigrid for global34

weather prediction. Numerical Linear Algebra with Applications, 17:325–342.35
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