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Summary 7 

Anthropogenic forcing played a substantial part in Western Europe's hot, dry summer 8 

in 2013. North Atlantic sea surface temperatures were likely a factor in the large contrast with 9 

summer 2012. 10 

Observations 11 

Western Europe experienced sweltering high temperatures in summer 2013. On 22 12 

July 2013, the United Kingdom recorded its hottest day since July 2006, with 33.5°C 13 

recorded at Heathrow and Northolt in west London (Met Office 2014). Averaged over 14 

Western Europe (Fig 1c), the seasonal mean (June–August) anomaly in surface air 15 

temperature (SAT) was 1.33°C above the mean over the period of 1964–93, which is 3.2 16 

standard deviations of the interannual variability. [HadCRUT4 data (Morice et al. 2012) 17 

shows a similar warming of 1.28°C.] This magnitude of warming is slightly less but 18 

comparable with the previous hot summers in Western Europe, such as 2003 (e.g., Schaer et 19 

al. 2004) and 2010 (e.g., Barriopedro et al. 2011) for which summer mean SAT anomalies 20 

were 1.46°C and 1.86°C respectively, corresponding to 3.5 and 4.5 standard deviations.  21 

The atmospheric circulation in summer 2013 was characterized by anomalously high 22 

sea level pressure (SLP) extending from the United Kingdom into northern Europe and 23 

anomalously low SLP over the Arctic (Fig. 1a). This pattern projects strongly onto the 24 

positive phase of the summer North Atlantic Oscillation (SNAO; Folland et al. 2009). The 25 

anomalous SNAO index of 2.7 hPa in 2013 was +1.0 standard deviation of the interannual 26 

variability, in stark contrast with the previous summer of 2012 for which the index was -2.7 27 

standard deviations (Supplementary Fig. S1b). The circulation pattern in 2013 was associated 28 

with a northward shift of summer North Atlantic storm track (Fig. 1e and f). The climatology 29 

of cyclone track density (Dong et al. 2013a and Fig. 1e) shows a split into two preferred 30 

cyclone paths at the North Atlantic jet exit region (5°W–5°E): one passing near Iceland at 31 
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~71°N and into the Nordic Seas and the other passing across the British Isles at ~56°N and 32 

into Western Europe. In summer 2013, more storms than usual passed over Iceland and fewer 33 

over the United Kingdom and into Western Europe (Fig. 1f). This led to dry conditions in the 34 

United Kingdom and most of Western Europe. The area-averaged precipitation anomaly was 35 

–0.35 mm day
–1

, which is –2.2 standard deviations of the interannual variability 36 

(Supplementary Fig. S1c). The low rainfall was also in stark contrast to the summer of 2012, 37 

which was a record wet summer in the United Kingdom and was last in a series of wet UK 38 

summers since 2007, each of which was associated with a negative SNAO index (Allan and 39 

Folland 2012; Dong et al. 2013b). [Note that the inhomogeneity of the data in E-OBS 40 

precipitation is a potential source of bias (Zolina et al. 2014), but negative precipitation 41 

anomalies in Western Europe are consistent with the northward shifted storm track.] 42 

Global SST anomalies for summer 2013 are illustrated in Fig. 1d. Warm SSTs 43 

(relative to 1964–93) were present in many regions, with a prominent warm anomaly (> 44 

1.0°C) along the Gulf Stream extension in the North Atlantic. Associated with this feature 45 

were an enhanced meridional SST gradient to the north and a reduced gradient to the south 46 

(Supplementary Fig. S2c). These anomalous SST gradients may have played a role in the 47 

observed northward shift of the North Atlantic storm track (e.g., Sampe et al. 2010; Ogawa et 48 

al. 2012) and influenced the related anomalies in the SNAO and Western European climate 49 

(Folland et al. 2009; Sutton and Dong 2012; Dong et al. 2013a). Warm anomalies were also 50 

observed in the Arctic, consistent with the continuing low sea ice extent (SIE); these SIE 51 

anomalies might also have had an influence on the atmospheric circulation (Balmaseda et al. 52 

2010; Petrie et al. 2014).  53 

Relative to the climatological period of 1964–93, by 2012 there were significant 54 

increases in anthropogenic greenhouse gas (GHG) concentrations (e.g., WMO 2013) and 55 

significant changes in anthropogenic aerosols. European and North American sulphur dioxide 56 
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emissions had declined while Asian emissions had increased (e.g., Lamarque et al. 2010). In 57 

this study, we investigate the roles of changes in SST, SIE, and radiative forcing in shaping 58 

the European summer of 2013, as well as possible reasons for the striking contrast between 59 

summer 2013 and summer 2012. Our focus is on seasonal mean conditions rather than on 60 

shorter-lived events that occurred within the season.  61 

 Climate model experiments 62 

Climate model experiments have been carried out to identify the roles of changes in: 63 

(a) SST/SIE and (b) anthropogenic GHG and aerosol forcing in the European summer climate 64 

anomalies of 2013. In this study, we do not address the anthropogenic contribution to the 65 

SST/SIE changes, but rather consider these changes as an independent forcing factor. We use 66 

the atmosphere configuration of the Met Office Hadley Centre Global Environment Model 67 

version 3 (HadGEM3-A; Hewitt et al. 2011), with a resolution of 1.875° longitude by 1.25° 68 

latitude and 85 levels in the vertical. Dong et al. (2013b) used the same model to study the 69 

2012 summer in Europe. A series of experiments was performed, the details of which are 70 

summarized in Table 1. We use the same control experiment (CONTROL) for the period 71 

1964–93 as Dong et al. (2013b) and perform two other experiments: ALL2013 and SST2013. 72 

Both of these experiments use 2013 SST and SIE boundary conditions but they differ in the 73 

specification of anthropogenic GHG and aerosol forcing: ALL2013 uses anthropogenic 74 

forcing appropriate for 2013 while SST2013 uses the same anthropogenic forcing as for the 75 

CONTROL experiment, appropriate for 1964–93. The last 25 years of each experiment are 76 

used for analysis. The CONTROL experiment reproduces realistic climatological SLP and 77 

precipitation patterns for summer (Supplemental Fig. S10.2 of Dong et al. 2013b). 78 

The model simulates a significant warming over Europe in summer 2013 in response 79 

to changes in SST, SIE, and anthropogenic forcing (i.e., ALL2013-CONTROL, Fig. 2a) with 80 

an area averaged SAT change of 1.11°C over Western Europe. The observed anomaly of 81 
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1.33°C is within the ±1 standard deviation range of the interannual variability of the model 82 

response (Supplementary Fig. S1a). Changes in SST and SIE explain 63% (±26%) of the 83 

area-averaged Western European warming response in HadGEM3 (Fig. 2d), with the 84 

remaining 37% (± 29%) explained by the direct impact (without forcing-induced SST and sea 85 

ice feedbacks) of changes in radiative forcings from GHG and aerosols (Fig. 2g and 86 

Supplementary Fig. S1a). 87 

The atmospheric circulation anomalies simulated by the model (Fig. 2b) show notable 88 

similarities to the observed pattern over the North Atlantic and Europe (Fig. 1a), including 89 

low SLP anomalies over Greenland and an anomalous anticyclone over the United Kingdom. 90 

The wave train pattern of SLP anomalies suggests that changes in convection over the 91 

Caribbean Sea might be an important factor (e.g., Douville et al. 2011). However, in the 92 

model simulation the anomalous anticyclone does not extend as far eastward into central 93 

Europe as in the observations. The circulation anomalies correspond to a positive anomaly 94 

(mean = 1.2 hPa, which is only 0.5 standard deviations) in the SNAO index relative to the 95 

CONTROL, which is smaller than the observed anomaly (2.7 hPa; Supplementary Fig. S1b). 96 

The pattern of simulated Western European precipitation anomalies (Fig. 2c) is consistent 97 

with the positive phase of the SNAO and is similar to the observations, with anomalously low 98 

rainfall over most of Western Europe (Fig. 1b). As for the circulation anomaly, the magnitude 99 

of the mean precipitation anomaly is smaller than observed (Supplementary Fig S1c), 100 

although there is substantial interannual variability in the model results. 101 

The additional SST2013 experiment suggests that both SST/SIE changes and the 102 

direct impact of changes in anthropogenic radiative forcing contributed to the anomalous 103 

circulation (Figs. 2e and h, Fig. S1b) and reduced rainfall over Western Europe in summer 104 

2013 (Figs. 2f and i; Supplementary Fig. S1c). The SST change has the most impact on the 105 

low SLP anomalies simulated over Greenland, but GHG and aerosol forcing causes a 106 
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substantial anticyclonic anomaly over, and north of, the United Kingdom. This anticyclonic 107 

circulation anomaly is similar to the summer mean circulation response to an increase in 108 

GHG forcing (Blade et al. 2012) and is presumably due to an increase in the frequency of the 109 

positive SNAO-like circulation regimes over the Atlantic sector (Boe et al. 2009).  110 

Changes in GHG and aerosol forcing are unlikely to be a major factor in explaining 111 

the striking contrast in circulation and precipitation between the European summers of 2012 112 

and 2013 (Supplementary Fig. S2a), as the changes in these forcings between these two years 113 

were small. However, the model experiments suggest that changes in SST and SIE in the 114 

North Atlantic were a significant factor (Supplementary Fig. S2e). In particular, the 115 

anomalous meridional SST gradient to the north of the Gulf Stream in 2013, relative to 2012 116 

(Supplementary Fig. S2c), may have favored a positive phase of the SNAO and a northward 117 

shift of North Atlantic summer storm track (e.g., Folland et al. 2009; Dong et al. 2013a), as 118 

was observed (Supplementary Figs. S2d and f). The model experiments show some evidence 119 

of capturing this shift, although the mean signal (Supplementary Fig. S2e) is again much 120 

weaker than was observed (Supplementary Fig. S2a). 121 

The model results show an encouraging degree of consistency with observations, but 122 

it is difficult to assess precisely what level of consistency should be expected in view of the 123 

high level of internal variability and uncertainty about the true magnitude of forced signals in 124 

the real world. It is clear from Supplementary Fig. S1 that the signal-to-noise ratio for the 125 

changes in SAT is large, which permits more confident conclusions, whereas that for changes 126 

in circulation and precipitation is much lower (though it is interesting to note that the model 127 

suggests a stronger forced signal in Western European summer precipitation than in the 128 

SNAO). One limitation of the current experiments, which may well influence the signal-to-129 

noise ratio, is the use of a prescribed SST boundary condition. Active ocean–atmosphere 130 

coupling may modify the response to forcings and is an important area of future work (Sutton 131 
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and Mathieu 2002; Dong et al. 2013a). Another extension not addressed here is the 132 

anthropogenic contribution to the SST/SIE changes. 133 

Conclusions 134 

The European summer of 2013 was marked by hot and dry conditions in Western 135 

Europe associated with a northward shifted Atlantic storm track and a positive phase of the 136 

SNAO. Model results suggest that, relative to a 1964–93 reference period, changes in 137 

SST/SIE explain 63% (±26%) of the area-averaged warming signal over Western Europe, 138 

with the remaining 37% (±29%) explained by the direct impact of changes in anthropogenic 139 

radiative forcings from GHG and aerosols. The results further suggest that the anomalous 140 

atmospheric circulation, and associated low rainfall, were also influenced both by changes in 141 

SST/SIE and by the direct impact of changes in radiative forcings; however, the magnitude of 142 

the forced signals in these variables is much less, relative to internal variability, than for 143 

surface air temperature. Further evidence suggests that changes in North Atlantic SST were 144 

likely an important factor in explaining the striking contrast between the European summers 145 

of 2013 and that of 2012. A major area for further work is to understand more completely the 146 

mechanisms that explain these influences. 147 

 148 

149 
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Table 1. Summary of numerical experiments. 226 

Experiments Boundary conditions Length of run 

CONTROL Forced with monthly mean climatological sea surface 

temperature (SST) and sea ice extent (SIE) averaged over 

the period of 1964 to 1993 using HadISST data (Rayner 

et al. 2003) and with anthropogenic greenhouse gases 
(GHG) concentrations averaged over the same period and 

anthropogenic aerosols emissions averaged over the 

period of 1970 to 1993. 

    32 years 

ALL2013 Forced with monthly mean SST and SIE from December 

2012 to November 2013 using HadISST data, with 

anthropogenic GHG concentration in 2012 (WMO 2013) 

and anthropogenic aerosol emissions for 2010 (Lamarque 
et al. 2010), which is the most recent year for which 

emissions data were available. 

27 years 

SST2013 As ALL2013, but with anthropogenic GHG 

concentrations and anthropogenic aerosol emissions the 

same as in CONTROL. 

27 years 

 227 

228 
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Figure legends 229 

FIGURE. 1. Anomalies for JJA 2013 from the climatological period 1964-1993 for (a) SLP 230 

(hPa) and (c) SAT (
o
C) from NCEP reanalysis (Kalnay et al. 1996), (b) percentage 231 

precipitation change (%) from the daily gridded E-OBS precipitation (version 9.0) over 232 

Europe (Haylock et al. 2008) and (d) SSTs (
o
C) from HadISST (Rayner et al. 2003). (e) and 233 

(h) for the climatological period and 2013 cyclone track density as in Hoskins and Hodges 234 

(2002) based on NCEP reanalysis. Track density is in unit of numbers per month per unit 235 

area, where the unit area is equivalent to a 5o spherical cap (about 106 km2). Note that this 236 

climatological period is dominated by cold AMO conditions and is the period used for the 237 

climatological model simulations. Thick lines in (a) and (c) highlight regions where the 238 

differences are statistically significant at the 90% confidence level using a two-tailed Student 239 

t-test. 240 

FIGURE. 2. SAT (
o
C) (left column), SLP (hPa) (middle column) and precipitation changes 241 

(right column) (%) in the model simulations forced by different configurations of forcings in 242 

2013 relative to the control simulation. (a), (b) and (c) forced by changes in SST and SIE, 243 

GHG concentrations, and aerosols emissions (ALL2013-CONTROL). (d), (e) and (f) forced 244 

by changes in SST and SIE (SST2013-CONTROL). (g), h) and (i) forced by changes in GHG 245 

and aerosols emissions (ALL2013-SST2013). Only changes that are statistically significant at 246 

the 90% confidence level using a two-tailed Student t-test are plotted in (a), (d) and (g) while 247 

thick lines in other panels highlight regions where the differences are statistically significant 248 

at the 90% confidence level.  249 

 250 

 251 

252 
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 253 

FIGURE. 1. Anomalies for JJA 2013 from the climatological period 1964-1993 for (a) SLP 254 

(hPa) and (c) SAT (
o
C) from NCEP reanalysis (Kalnay et al. 1996), (b) percentage 255 

precipitation change (%) from the daily gridded E-OBS precipitation (version 9.0) over 256 

Europe (Haylock et al. 2008) and (d) SSTs (oC) from HadISST (Rayner et al. 2003). (e) and 257 

(h) for the climatological period and 2013 cyclone track density as in Hoskins and Hodges 258 

(2002) based on NCEP reanalysis. Track density is in unit of numbers per month per unit 259 

area, where the unit area is equivalent to a 5o spherical cap (about 106 km2). Note that this 260 

climatological period is dominated by cold AMO conditions and is the period used for the 261 

climatological model simulations. Thick lines in (a) and (c) highlight regions where the 262 

differences are statistically significant at the 90% confidence level using a two-tailed Student 263 

t-test. 264 

  265 



 

14 
 

 266 
 267 
FIGURE. 2. SAT (

o
C) (left column), SLP (hPa) (middle column) and precipitation changes 268 

(right column) (%) in the model simulations forced by different configurations of forcings in 269 

2013 relative to the control simulation. (a), (b) and (c) forced by changes in SST and SIE, 270 

GHG concentrations, and aerosols emissions (ALL2013-CONTROL). (d), (e) and (f) forced 271 

by changes in SST and SIE (SST2013-CONTROL). (g), h) and (i) forced by changes in GHG 272 

and aerosols emissions (ALL2013-SST2013). Only changes that are statistically significant at 273 
the 90% confidence level using a two-tailed Student t-test are plotted in (a), (d) and (g) while 274 

thick lines in other panels highlight regions where the differences are statistically significant 275 

at the 90% confidence level.  276 
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SUPPLEMENTAL MATERIALS: THE 2013 HOT, DRY SUMMER IN WESTERN 278 

EUROPE 279 

BUWEN DONG, ROWAN SUTTON AND LEN SHAFFREY 280 

 281 
 282 

Figure S1: (a) SAT (
o
C), (b) summer NAO (hPa), and (c) precipitation (mm day

-1
) indices for 283 

observations and model experiments. SAT index is area averaged SAT over region (35
o
N-284 

75
o
N, 10

o
W-40

o
E, land only) (black box in Fig.1c). The SNAO index is defined as the 285 

difference of the area mean SLP between two regions around the British Isles (45
o
-60

o
N, 286 

30oW-10oE) and over Greenland (65oN-80oN, 60oW-20oW) (red and blue boxes in Fig. 1a). 287 

Precipitation index is area averaged precipitation over region (35oN-60oN, 10oW-20oE, land 288 

only) (black box in Fig.1b). All black diamonds in observations are for years from 1964 to 289 

1993 with red diamonds for 2012 and blue diamonds for 2013. Red squares and lines are the 290 

mean and mean ± sigma ranges where sigma is the corresponding standard deviation.   291 

292 
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 293 
 294 

Figure S2. Anomalies in JJA between 2013 and 2012. (a) SLP (hPa), (b) SST (oC), and (c) 295 

SST gradient (oC per 1000 km) in observations. (e) Simulated SLP difference between 2013 296 

and 2012 from the changes in SST and SIE. The experiment of 2012 was documented in 297 

Dong et al. (2013b). (d) and (f) are 2012 and 2013 cyclone track density. Track density is in 298 

unit of numbers per month per unit area, where the unit area is equivalent to a 5o spherical 299 

cap (about 106 km2). Note that this climatological period is dominated by cold AMO 300 

conditions and is the period used for the climatological model simulations. Thick lines in (e) 301 

highlight regions where the differences are statistically significant at the 90% confidence 302 

level using a two-tailed Student t-test. 303 

 304 
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