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Abstract 

This paper examines the ability of several models to generate optimal hedge ratios. Statistical 

models employed include univariate and multivariate GARCH models, and exponentially 

weighted and simple moving averages. The variances of the hedged portfolios derived using 

these hedge ratios are compared with those based on market expectations implied by the 

prices of traded options. One-month and three-month hedging horizons are considered for 

four currency pairs. Overall, we find that an exponentially weighted moving average model 

leads to lower portfolio variances than any of the GARCH-based, implied or time-invariant 

approaches. 
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INTRODUCTION 

The issue of volatility forecasting has witnessed immense interest from academics in the past 

decade. Though closely related to volatility forecasting, the variety of models employed for 

the prediction of hedging ratios has been limited. Hedging is an attempt to reduce the risk of 

an exposure to movements of an asset by taking an offsetting position in another asset. For 

example, in the context of foreign exchange risk, a global fund management firm will 

probably desire to hedge such exposures. The firm’s purpose is presumably to maximize 

profits from the stock market and it will therefore not want its performance to be affected by 

the movement of currencies. Further, manufacturing firms who export or import raw 

materials will also want to minimize their exposure to exchange rate movements. Hence, it is 

of utmost importance that fund management and other firms employ the most effective 

models in determining the optimal hedge ratio, rather than simply relying on a conventional 

model. 

 

Early literature in this area tended to focus on estimating hedge ratios via an ordinary least 

squares (OLS) regression of the spot price on the futures price (Ederington, 1979; Anderson 

and Danthine, 1980), the slope coefficient obtained being the hedge ratio. However, such an 

approach does not take into account the time varying nature of covariances and variances 

which make up the hedge ratio. That the variances of asset returns are time-varying has since 

been recognized with the advent of the autoregressive conditionally heteroscedastic (ARCH) 

model of Engle (1982) and the generalized ARCH (GARCH) model of Bollerslev (1986). 

Recent literature has dealt mostly with estimating hedge ratios by employing bivariate 

GARCH models, in the form of the constant correlation model (Bollerslev, 1990) or the 

VECH model (Bollerslev, Engle, and Wooldridge, 1988). The various financial instruments 

covered in the literature on hedging that employs such a methodology, include commodity 
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futures (Baillie and Myers, 1991; Garcia, Roh and Leuthold, 1995; Bera, Garcia and Roh, 

1997), currency futures (Kroner and Sultan, 1991, 1993; Lin, Najand and Yung, 1994), 

interest rate futures (Gagnon and Lypny, 1995), and stock index futures (Park and Switzer, 

1995; Tong, 1996). 

 

It is also possible that, instead of hedging currency risk using futures, a firm may wish to 

hedge its exposure to one currency by forming an opposite position in another. Such an 

approach is employed by Siegel (1997). Employing currency and cross-currency options on 

the Philadelphia Stock Exchange (PHLX), Siegel assesses the performances of the 

regression-based model and the implied correlation by their beta hedge ratio. The beta hedge 

ratio is the ratio for hedging the risk (denominated in USD) of holding one currency by 

selling an offsetting amount of another currency. The options examined are for the currencies 

USD/DEM, USD/JPY, DEM/JPY, GBP/USD, and GBP/DEM. The two tests performed on 

the beta hedge ratio are 1) to assess the volatility of the hedged position, and 2) multiple 

regression analysis to ascertain the incremental information content of each hedge ratio. In 

both tests, the author finds that the implied beta hedge ratio performs better than the 

regression-based beta hedge ratio. 

  

This paper attempts to provide a comprehensive review of various implied and statistical 

hedging models by employing over-the-counter currency options data. As such, this study 

follows in spirit, and considerably extends, that conducted by Siegel (1997). This paper 

reviews a wider variety of empirically relevant models and employs a longer data set. Siegel 

compares only historical and implied measures, while this paper also evaluates the 

performance of various conditional variance and covariance estimators found to be more 

useful than historical measures in other studies. Although hedging currency risk with 
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currency futures would be more effective in many cases, often firms will obtain a “natural 

hedge” where they have opposite exposures to movements in two or more currencies. This 

would occur where a firm has effectively a long position in one foreign currency and a short 

position in another. Take, for example, the case of a US multinational corporation that 

exports to Germany and imports from Japan, then there is a natural hedge that is often 

overlooked. Jorion (2000, p.475) argues that until recently, hedging systems typically 

consisted of focusing on and hedging each source of risk separately. An example would be 

for multinational corporations to evaluate their transaction risks in various currencies and to 

hedge them individually. This is an inefficient approach as it ignores the correlations that 

exist among the various exchange rate movements. One way to counter currency risks and to 

save on transaction costs is to first take advantage of the natural hedge and then to reduce the 

residual risk via futures contracts. Thus, even though futures provide a more effective 

hedging instrument than cross-currency positions, the latter will still be of importance to any 

firms with partially off-setting international exposures
1
. Survey evidence

2
 indicates that only 

50% of US non-financial firms use derivatives to hedge, although foreign exchange risks 

were more commonly managed with derivatives than any other forms of risk. 60% of firms 

were found to balance out total foreign currency revenues with foreign currency expenses, 

giving further motivation for our study. 

 

To anticipate our main findings, we observe that while no single model is uniformly superior 

across all currency pairs and hedging horizons, neither the implied nor the simple historical 

models perform particularly well. In the remaining sections of this paper, the data set and 

                                                 
1
 Our findings show that the cross-currency hedge can reduce volatility by around 15%. A separate analysis 

using futures contracts (not shown, but available from the authors on request), showed that risk reduction in this 

case would be of the order of 60%-80% depending on the currency pairs. 
2
 “Survey of Derivatives Usage by US Non-financial Firms”, conducted by the Weiss Centre for International 

Financial Research, Wharton School and CIBC World Markets, 1998. 
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methodology are described, followed by the test results comparing the hedging capabilities of 

the various models. The study ends with the summary and conclusion. 

 

DATA 

The data employed for this study are on spot currencies and currency options and are 

provided by a prominent bank based in London dealing in these instruments, collected at 

16:00 GMT. This reduces the errors resulting from non-synchronous prices. The data spans 

the period 19 July 1993 to 13 September 1999, a length of time slightly more than six years 

and a total of 1,605 daily observations. The options data consists of over-the-counter (OTC) 

price quotes for USD/DEM (interpreted as DEM per USD), USD/JPY, DEM/JPY, GBP/USD 

and GBP/DEM. These currency options are traded inter-bank and the price quotes refer to an 

at-the-money forward straddle, a combination of one European call option and one European 

put option at the same exercise price equaling the forward rate. Times-to-expiration are one-

month and three-months. The norm for such options is a quotation in terms of implied 

volatility (percent per year), which could be derived from the Garman-Kohlhagen option 

pricing model (Garman and Kohlhagen, 1983). This model is the foreign exchange equivalent 

to the model of Black and Scholes (1973). 

  

OTC and Exchange Traded Options 

The implied volatility data could also be derived from currency options listed on exchanges 

such as the PHLX. However, there are a few differences that tend to favor using OTC data. 

The first difference is that the OTC currency options market is more liquid than the PHLX. In 

the Bank of International Settlements ‘Central Bank Survey of Foreign Exchange and 

Derivatives Market Activity 1995’ (1996), both outstanding notional amounts and average 

daily turnover (adjusted for local and cross-border double counting) for OTC and exchange-
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traded currency options were reported. At end-March 1995, the outstanding notional amounts 

for the OTC USD/DEM, USD/JPY and DEM/JPY options were USD518.720 billion, 

USD625.163 billion, and USD93.991 billion respectively. The corresponding exchange-

traded outstanding notional amounts were USD36.395 billion, USD21.749 billion, and 

USD230 million respectively. The daily average turnover for the OTC USD/DEM, USD/JPY, 

DEM/JPY, GBP/USD, and GBP/DEM options were USD10.241 billion, USD13.266 billion, 

USD1.936 billion, USD1.288 billion, and USD1.366 billion respectively. Corresponding 

figures on the exchange-traded markets were USD1.233 billion, USD842 million, USD16 

million, USD166 million, and USD9 million respectively.
3
 A second difference is in the 

options’ time-to-expiration. For OTC currency options, the time-to-expiration is constant in 

that there are daily quotes for one- and three-month implied volatility. With exchange-traded 

currency options, specific expiration dates result in varying time-to-expirations. Hence with 

OTC currency options, it is not necessary to adjust the implied volatilities for the options’ 

time decay. The third difference is with regard to moneyness. OTC currency options are 

quoted at-the-money forward, which reduces the ‘smile’ effects when implied volatility 

varies with exercise price. With the exercise prices of exchange-traded currency options set at 

discrete intervals, the implied volatilities computed are at best derived from nearest-the-

money options. 

 

Day-Count Convention 

 

In computing the various hedge ratio forecasts, we employ the modified day count 

convention consistent with market practice. Using a one-month currency option as an 

example, the contract settles in one calendar month from the spot value date, which is two 

                                                 
3
 The triennial survey was updated in 1998. However, as the reporting framework is limited to OTC markets, it 

is not possible to obtain comparative figures for OTC and exchange-traded currency options. Outstanding 

notional amounts are also not available for the currency options examined. Nevertheless, in April 1998, the 

average daily turnover for the OTC USD/DEM, USD/JPY, DEM/JPY, GBP/USD and GBP/DEM options were 
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business days from the spot transaction. If the day in which the contract settles is not a 

business day, the settlement date is brought forward to the next business day. However, 

should the next business day cross into the next calendar month, then the settlement date will 

be brought backwards to the previous business day (following Breuer and Wohar, 1996). 

Hence the time-to-expiration for the one-month currency option in our sample ranges from 23 

to 27 trading days. The number of trading days ranges from 66 to 69 for the three-month 

currency option. 

 

METHODOLOGY 

Calculating the Optimal Hedge Ratio 

The objective of a hedge is to reduce the risk of investing in a currency X  (for example, 

USD/DEM) by holding an offsetting position in another currency Y  (for example, USD/JPY) 

or in a currency futures contract (a USD/DEM futures). To gauge the effectiveness of a 

hedge, we evaluate the variability of the investor’s portfolio and the hedge that results in the 

largest volatility reduction for the hedged portfolio is considered the most effective
4
. The 

optimal hedge ratio (OHR), the hedge ratio that minimizes the conditional variance of the 

hedged portfolio, can be derived (Kroner and Sultan, 1991) as 

 
 1

2

11 ,




tt

ttt

t
y

yx




 ,      (1) 

where  1,1  ttt yx  is the covariance at time t  between the logarithmic returns of currency X  

and Y , and  1

2

tt y  is the variance at time t  of currency Y  logarithmic returns. This ratio is 

similar to the conventional hedge ratio obtained from ordinary least squares with the 

exception of the covariance and variances being time varying. 

                                                                                                                                                        
USD17.393 billion, USD33.262 billion, USD5.257 billion, USD3.837 billion, and USD4.998 billion 

respectively. 
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Hedging Models 

The hedging models under study are categorized as naïve, implied, historical (random walk, 

simple historical, EWMA), univariate GARCH (GARCH, EGARCH, GJR, GARCH-t), and 

multivariate GARCH (VECH, BEKK) models. This constitutes a total of eleven models 

under review. The various models are used to capture different stylized features of the 

currency returns under consideration. 

 

Naïve Model 

The naïve hedge assumes a hedge ratio of –1 at all times. 

 

Implied Model 

The implied model forecasts the conditional covariance by employing implied volatilities 

derived from currency options. The implied variance of the cross-currency returns xy  is 

given by 

       yxyxxy ,~2~~~ 222   ,    (2) 

where  x2~  and  y2~  are the implied variances of the X  and Y  returns, x  and y , 

respectively, and  yx,~  is the implied covariance between x  and y . By substituting the 

observed option implied volatilities of the three currencies into (2), the implied covariance is 

obtained via 

 
     

2

~~~
,~

222 xyyx
yx





 .    (3) 

So, for instance, if the implied hedge ratio for hedging USD/DEM with USD/JPY is of 

interest, then the implied variances of the returns of USD/DEM and USD/JPY, as well as the 

                                                                                                                                                        
4
 The Survey of Derivatives research discussed previously found that 40% of US non-financial firms view the 
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returns of the cross-currency DEM/JPY, are required so as to obtain the implied hedge ratio 

using equation (1). 

 

Since the forecast of the hedging ratio using this model is based on option-derived variances, 

an implicit shortcoming is that an option pricing model has to be determined first. Even then, 

one cannot be certain that the model specifications are correct. A further limitation of this 

approach is the fixed forecast horizon. That is, the implied hedge ratio from a one-month 

option is only appropriate for a one-month forecast horizon and not for a forecast of any other 

number of days.  

 

Historical Models 

The Random Walk Model 

The random walk model assumes that the most appropriate forecast of tomorrow’s and 

subsequent days’ variance or covariance, is the variance or covariance observed today. This 

simplest model employs realized covariances and variances T  days (which depends on the 

time to maturity of the option: see the section on day-count conventions) prior to time t , that 

is ),( yxTt  and )(2 yTt  respectively, to determine the hedge ratio. 

 

The Conventional/Simple Historical Model 

The simple historical hedge ratio is simply the ratio of the equally weighted average of 

realized covariance and variance. One of the most commonly used hedge ratios is the 

conventional hedge, where the OHR is computed as the least squares estimator. This is 

achieved by simply regressing the historical daily return series of the currency to be hedged 

on those for the hedging instrument (be it a currency or currency futures), multiplied by –1. 

                                                                                                                                                        
reduction of volatility as the main objective of hedging. 
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As shown in Watsham and Parramore (1997, pp.192–194), the conventional hedge is 

equivalent to the OHR determined by the simple historical model. 

 

The EWMA Model 

RiskMetrics
TM

 (J.P. Morgan/Reuters, 1996), the popular risk measurement software (based 

on value at risk), forecasts covariances and variances using an exponentially weighted 

moving average (EWMA) model. Under an EWMA specification, the latest observation 

carries the largest weight, and weights associated with previous observations decline 

exponentially over time. This approach has two advantages over the simple historical and the 

random walk models. First, volatility is affected more by recent events, which carry more 

weight, than events in the past. Second, the effect on volatility of a single given observation 

declines at an exponential rate as weights attached to recent events fall. On the other hand, 

the simple historical approach could lead to an abrupt change in volatility once the shock falls 

out of the measurement sample. And if the shock is still included in a relatively long 

measurement sample period, then an abnormally large observation will imply that the 

forecast will remain at an artificially high level even if the market is subsequently tranquil. 

The one-day EWMA covariance and variance forecast is represented by 

    itit

i

i

tt yxyx 





 
0

1
1,  ,    (4) 

    2

0

1

2 1 it

i

i

tt yy 





   .     (5) 

  ( 10   ) is referred to as the decay factor and determines the relative weights attached 

to the observations. In the RiskMetrics
TM

 technical document, it is suggested that for one-day 

forecasts,   should be 0.94, and this approach is also followed here. 
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The GARCH Family of Models 

The autoregressive conditional heteroscedasticity (ARCH) family of models is a group of 

models that mimics changing variances witnessed in the volatility clustering of asset returns. 

Volatility clustering occurs when “large changes tend to be followed by large changes, of 

either sign, and small changes tend to be followed by small changes” (Mandelbrot, 1963, 

p.418). GARCH models (when extended as necessary) have also been able to capture other 

behavior of financial time series such as thick tails, leverage effects, serial correlation in 

volatility, and co-movements in volatilities. 

 

To forecast the conditional covariance using univariate GARCH models, individual variances 

of currency returns would have to be modeled and then the conditional covariance would be 

derived from 

 
     

2
,

xyhyhxh
yx ttt

t


 ,    (6) 

where the h ’s are variances forecast by the various GARCH models. Each of the variants 

from the GARCH family employed in this paper are now described. 

 

The GARCH(1,1) Model 

As mentioned above, rates of return are characterized by tranquil and volatile periods. To 

allow for such dependence, suppose the conditional mean to be 

ttx   ,       

where, ttt hz , )1,0(~ NIDzt . The conditional variance could then be modeled by the 

GARCH (1,1) model (Bollerslev, 1986), which is represented by 

1

2

1   ttt hh  ,     (7) 
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Asymmetric GARCH Models 

Although the GARCH model captures thick tailed returns and volatility clustering, it is 

unable to account for any asymmetric response of volatility to positive and negative shocks 

since the conditional variance in equation (7) is a function of the magnitudes of the lagged 

residuals and not their signs. However, it has been argued that a negative shock to financial 

time series is likely to cause volatility to rise by more than a positive shock of the same 

magnitude. In the case of equity returns, such asymmetries are typically attributed to leverage 

effects, whereby a fall in the value of a firm’s stock causes the firm’s debt to equity ratio to 

rise. This leads shareholders, who bear the residual risk of the firm, to perceive their future 

cashflow stream as being relatively more risky. Although asymmetries in currency returns 

cannot be attributed to changing leverage, there is equally no reason to suppose that such 

asymmetries do not exist. In fact, an application of the Engle and Ng (1993) size and sign 

bias tests (not shown due to space constraints but available from the authors upon request) 

showed evidence of asymmetries in the data analyzed here. Two popular asymmetric 

formulations are employed in this paper: the exponential GARCH (EGARCH) model 

proposed by Nelson (1991), and the GJR model, named after the authors Glosten, Jaganathan 

and Runkle (1993). 

 

The EGARCH(1,1) Model 

In the EGARCH(1,1) model, the natural logarithm of the conditional variance follows the 

process 

)2(lnln 111    tttt zzhh ,   (8) 

where  ,  ,  , and   are parameters. The motivations for the preference of the 

EGARCH(1,1) model over the GARCH(1,1) are that the latter model cannot explain the 

asymmetric behavior of the conditional variance in asset price returns, and for the conditional 
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variance of the GARCH model to be positive, its parameters have to be positive, which is not 

required in the EGARCH model. This implies that artificial non-negativity constraints may 

have to be applied to the former, but are not necessary for the latter.  

 

The GJR(1,1) Model 

The GJR model (Glosten, Jaganathan and Runkle, 1993) is effectively a GARCH formulation 

that also includes an additional term that captures asymmetry. The GJR(1,1) model is 

represented by 

11

2

1

2

1 



  ttttt hSh  ,    (9) 

where  ,  ,  , and   are parameters, and 

1tS  is an indicator function that takes the value 

of one when 01 t  and zero otherwise. To ensure an everywhere positive conditional 

variance, it is sufficient that 0 , 0 , and 0 . For the process t  to be 

stationary, it is sufficient that 1  . In the GJR model, the conditional variance 

follows one process when the innovations are positive and another process when the 

innovations are negative. 

 

The coefficients of the GARCH(1,1), EGARCH(1,1) and GJR(1,1) models are estimated by 

the maximum likelihood procedure using the algorithm of Broyden, Fletcher, Goldfarb, and 

Shanno (BFGS; Broyden, 1965, 1967, and Fletcher and Powell, 1963). Since tz ~  1,0NID , 

then the conditional distribution of tx  is normal: 
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The sample log likelihood function is then 
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where   denotes the model parameters to be estimated. 

  

The GARCH(1,1)-t Model 

The GARCH(1,1)-t model (Bollerslev, 1987) was developed with a “fat-tailed” conditional 

distribution, which might be superior to the conditional normal of the GARCH(1,1) model. 

Even though the unconditional distribution of the GARCH(1,1) with conditionally normal 

errors is leptokurtic, it is unclear whether the model sufficiently accounts for the observed 

leptokurtosis in financial time series. 

 

The likelihood function formulation in equation (11) assumes that tz  has a normal 

distribution. Bollerslev proposed that tz  be drawn from a t  distribution with   degrees of 

freedom, where   is also a parameter to be estimated by maximum likelihood. The density 

function of t  is given by 
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where    denotes the gamma function. This density can be used in place of the Gaussian 

specification (10). The log likelihood function (11) will now be 
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subject to the constraint 2 . 
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The VECH Model 

The VECH model is very similar to the univariate GARCH(1,1) model except that its 

covariance also evolves over time. A common specification of the VECH model is 

     111     tttt vechBHvechACHvech    (14) 

 ttt HN ,0~1  ,       

where tH  is a 2 x 2 variance-covariance matrix, t  is a 2 x 1 innovation vector, 1t  

represents the information set at time 1t , C  is a 3 x 1 parameter vector, A  and B  are 3 x 3 

parameter matrices and  vech  denotes the column-stacking operator applied to the lower 

portion of the symmetric matrix. Given the model’s 21 parameters (C has 3 elements, A  and 

B  each have 9 elements), maximization of the log likelihood function is cumbersome. Hence 

the VECH model’s conditional variance-covariance matrix has been restricted to the form 

developed by Bollerslev, Engle and Wooldridge (1988) in which A  and B  are assumed to be 

diagonal. This reduces the number of parameters to be estimated to 9 (now A  and B  each 

have 3 elements) and the model, known as a diagonal VECH, is now characterized by 

1,1,1,,   tjtiijtijijijtij hh   for 2 ,1, ji ,   (15) 

where ijij  ,  and ij  are parameters. It estimates covariance as a geometrically declining 

weighted average of past cross products of unexpected returns, with recent observations 

carrying higher weights. A disadvantage of the VECH model is that there is no guarantee of a 

positive definite covariance matrix. 

 

The BEKK Model 

The BEKK model (Engle and Kroner, 1995) addresses and solves the issue of positive 

definiteness. It is represented by 
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BBAHAWH tttt 111       (16) 

where BAW ,,  are 3 x 3 matrices, with W  being symmetric and positive definite. The 

positive definiteness of the covariance matrix is ensured due to the quadratic nature of the 

second and third terms on the equation’s right hand side.  

 

As with the univariate GARCH models, the coefficients of the VECH and BEKK models are 

estimated by the maximum likelihood procedure using the algorithm of BFGS. The log 

likelihood function, under the assumption of conditional multivariate normality, is 

     







 




T

t

tttt HHTNL
1

1ln2ln5.0     (17) 

where t  is an N x 1 vector stochastic process, with  tttt EH  1 , being the N x N 

conditional variance/covariance matrix. 

 

To compare the forecast performance of each hedge model, a portfolio is constructed each 

day with the conditional hedge ratios and the returns of these portfolios over the out-of-

sample period are computed. As the various forecasts of hedge ratios are for horizons of one- 

and three-month, the portfolio returns should also be of these lengths, with the number of 

days in the respective horizons dependent upon the day count convention as discussed above. 

Hence a series of daily one- and three-month portfolio returns are generated. The 

performances of the various conditional hedge ratios are then evaluated by computing the 

percentage change in the volatility of the portfolio return compared with that of the no-hedge 

outcome (also taking into account the day count convention). Our study is similar to Baillie 

and Myers (1991) and Bera, Garcia and Roh (1997), in that we do not restrict the conditional 

covariance to be constant. A constant conditional covariance matrix is assumed in studies 
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conducted by Garcia et al (1995), Kroner and Sultan (1991, 1993), Lin, Najand and Yung 

(1994), and Park and Switzer (1995), among others. 

 

Multiple Day Forecasts 

To estimate the parameters of the various GARCH models, the first 1,000 data points are 

used as in-sample data, with the out-of-sample period running from 21 May 1997 to 8 June 

1999 (534 data points). In the case of univariate GARCH models, each of the three currency 

return variances is separately estimated as a univariate process and the conditional hedge 

ratio is determined using equations (6) and (1). In the case of the multivariate GARCH 

models, covariance and variance are jointly determined. Taking the GARCH(1,1) model as 

an example, once its parameters have been estimated during the in-sample period, future 

values of the conditional variance can be forecast recursively 

  1
ˆˆˆ

  ntnt hh      (18) 

where h  denotes the daily estimate of the conditional variance for day  . ̂ , ̂ , and ̂  

represent the estimates for parameters  ,  , and   respectively. Since variances are 

additive over time,   

T

n nth
1

 would be the variance forecast at time t  over the next T  days. 

The same logic applies to covariance forecast. 

 

Multi-step ahead forecasts are constructed using each model for three-months (up to 69 days) 

following the 1,000-day in-sample estimation period. The sample is then rolled forward, the 

parameters re-estimated using observations 2 to 1,001, and forecasts again computed up to 3 

months hence. This procedure is repeated until the full sample is exhausted. 
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To obtain a starting value for the computation of the EWMA model, the 1,000 in-sample data 

points are used to calculate the initial variance, which is set as the statistical variance of those 

1,000 data points. Equations (4) and (5) are then imposed to obtain the covariance and 

variance respectively until the end of the in-sample period and subsequently to forecast 

conditional variances for the out-of-sample period. For the simple historical model, the 1,000 

in-sample data points are used for variance and covariance computation, which are then taken 

to be the one-day forecasts. In these cases, since covariance and variance are additive, the 

one-day forecast is simply multiplied by T  days to obtain the T  period covariance and 

variance respectively. 

 

RESULTS 

In-sample analysis 

The estimated in-sample model parameters for the VECH and BEKK models are presented in 

Tables I and II. It is worth noting that the assumption of constant conditional variances and 

covariances, which is an assumption underlying the OLS hedge ratio calculations, is easily 

rejected. The estimated VECH model appears to provide a good representation of the 

conditional variance of the data. The sum of the parameter estimates 11̂  and 11̂ , is close to 

unity, as is the sum of 22̂  and 22̂ , suggesting strong persistence in volatility. The 

covariance VECH parameters 12̂  and 12̂ , which account for the conditional covariance 

between the two currency returns, are positive and significant. This is suggestive of a strong 

interaction between the returns of the two currencies. Again, their sum is close to one in the 

cases of both the USD/DEM, USD/JPY and USD/GBP, USD/DEM currency pairings. The 

coefficients under the BEKK representation are more difficult to interpret, since the model is 

of a quadratic form. It is, however, again worth noting that almost all coefficients are 

significant, highlighting the time-varying nature of conditional variances and covariances. 
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Many early studies on hedging, such as Ederington (1979), Anderson and Danthine (1981), 

and Hill and Schneeweis (1981), assumed a constant OHR. Since the OHR depends on the 

conditional distribution of the currency movements, if the conditional distribution varies, as 

evidence suggests that it does, the assumption of a constant OHR is untenable. Figures 1 to 4 

provide the graphical support that OHRs are time varying and non-stationary. It is clear from 

all four figures that the multivariate GARCH model suggests optimal hedge ratios that vary 

considerably over time. In the case of the USD/DEM hedged with the USD/GBP, presented 

in Figure 1 for example, the OHR varies between -1.2 around mid-1995 and -0.2 at the end of 

1996. It is also noticeable that the BEKK hedge ratios are considerably less stable, varying 

more from one day to the next, than those of the VECH. 

 

There are essentially two shortcomings of the conventional hedge/simple historical model. 

First, it fails to account for the time varying nature of currency (and futures) distributions in 

the form of variances and covariances. Second, as a measure of risk, it employs the 

unconditional variances. Unlike conditional variances, unconditional variances comprise a 

systematic and a predictable component, which should not be considered as a measure of risk. 

A better measure of risk would be the conditional variance, that is, the variance of the 

unpredictable part of the series (Kroner and Sultan, 1991, p.400). 

 

As further evidence that OHR are time varying, the volatility change of a hedged portfolio 

over a no-hedge position is evaluated on an in-sample basis using the VECH, the naïve, and 

the conventional hedge/simple historical models. The model whose OHR results in the largest 

volatility reduction is considered the best model. The methodology described above is once 

again employed except that logarithmic returns are now daily. From Table III, it is of no 
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surprise that a no-hedge position has the highest volatility, and in terms of managing currency 

risk, hedged portfolios perform better. Consistent with the graphical representation that 

OHRs are time varying, the VECH hedge is shown to be the most effective since it accounts 

for conditional distribution of currency movements. This result corroborates those of Baillie 

and Myers (1991) and Kroner and Sultan (1991, 1993). 

 

However, the evaluation of the VECH, naïve, and conventional hedge/simple historical 

models presented above is ex post. It is hardly surprising, therefore, that larger, more complex 

models are able to provide a better in-sample fit to the data, leading to better “in-sample 

hedging” effectiveness. An alternative measure of effectiveness is to use out-of-sample 

comparisons, based on hedge ratios derived from the forecasts of the various models. Such an 

evaluation would suggest which of the models genuinely provided optimal hedge ratios in a 

realistic setting. 

 

Out-of-sample analysis 

The in-sample analysis above illustrates the dynamic nature of the OHR. In the out-of-sample 

analysis, we include the full range of hedge models – the multivariate GARCH models 

(VECH, BEKK), the univariate GARCH models (GARCH, EGARCH, GJR, GARCH-t), the 

implied model, and the historical models (random walk, EWMA, conventional hedge/simple 

historical). The results for the one-month and three-month horizon are presented in Tables IV 

and V respectively. A test of the statistical significance of the reduction in portfolio volatility 

over the no hedge case is also conducted using an F-test comprising the ratio of the variances. 

The results for this test are presented in the form of p-values. 
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USD/DEM, USD/JPY 

For the out-of-sample hedge ratio forecasts concerning the USD/DEM and the USD/JPY, the 

EWMA is by far the best model. It ranks first in all cases. That is, hedging the USD/DEM 

with the USD/JPY for one- and three-month and hedging the USD/JPY with the USD/DEM 

for the same horizon, registering the largest reduction in volatility of the hedged portfolio 

over the no-hedge position. It also outperformed its competitors by a relatively wide margin. 

Overall, the VECH is the next best model, followed by the univariate GARCH model. At the 

other end of the spectrum, the naïve model is the worst performer, followed by the 

conventional hedge/simple historical and then the implied models. Modified GARCH models 

which capture additional stylized features of the data, such as the GARCH-t (fat tails), or the 

EGARCH and GJR (asymmetries) models perform reasonably, although they are not the best 

models. In particular, these results suggest that there seems little benefit in attempting to 

capture asymmetries in volatility if the objective is to hedge currency risk. However, it is also 

worth noting that there is little to choose between many of the models. This is indicated by 

the majority of the models having insignificant F-test values when the USD/DEM is hedged 

by the USD/JPY over both the one- and three-month horizons.  

 

USD/GBP, USD/DEM 

Regarding hedge ratio forecasts with USD/GBP and USD/DEM, the relative performances of 

the different models are not as distinct as in the previous case. Overall, the GARCH-t model 

appears best, followed by the EWMA model. The rest of the models are not as consistent in 

their performances. The VECH and the conventional hedge/simple historical models did 

reasonably well for the three-month horizon but less so for the shorter period of one-month. 

On the other hand, the random walk model does a better job for the one-month than the three-
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month period. The EGARCH and implied models perform poorly as does the naïve model. 

However, for the three-month horizon, the naïve model ranks first. 

 

Overall, the implied model has been a disappointment with regard to the forecast of the OHR. 

Existing literature has shown the implied volatility derived from the options market to be 

effective in forecasting realized volatility (Jorion, 1995; Amin and Ng, 1997; Christensen and 

Prabhala, 1998; Fleming, 1998) and correlation (Campa and Chang, 1998). There is also 

evidence to the contrary, suggesting that implied volatility is less useful than one may have 

anticipated. Canina and Figlewski (1993), for example, report that implied volatility does not 

incorporate information contained in realized volatility and hence has little predictive power 

for future volatility. Day and Lewis (1992) and Scott (1992) both find that implied volatility 

and forecasts from GARCH models have separate information that is useful for forecasting 

future volatility. It would appear that the effectiveness of the implied model is dependent on 

the criterion used. The majority of the papers listed above that argue for the superiority of the 

implied model over time series models employ the root mean squared forecast error 

(RMSFE) criterion to evaluate the forecasts. It is certainly not necessarily the case, as is 

observed here, that the same models are preferred in the context of hedging effectiveness.  

 

The results of this study do not contradict those of Siegel (1997), since the variance and 

covariance forecasts derived from traded options yield “better” hedge ratios than those based 

on OLS estimation. However, the findings of this paper do highlight other time series models 

that are superior to both. 

 

For both one-month and three-month hedging horizons, it would appear that hedging 

USD/DEM with USD/GBP (and vice versa) reduces portfolio risk by a wider percentage than 
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hedging USD/DEM with USD/JPY (and vice versa). This is probably due to the higher 

correlation between the returns of USD/DEM and USD/GBP as a result of the closer 

economic relationship between Germany and the United Kingdom. As a consequence, the 

reduction in volatility over the no-hedge portfolio is statistically significant for the majority 

of models. 

 

The length of the prediction period appears to affect adversely the forecasting models when it 

concerns currencies whose returns are not highly correlated; in this case, the USD/DEM and 

USD/JPY pair. Contrast hedging USD/DEM with USD/JPY for the one- and three-month 

horizons, the asymmetric GARCH models (EGARCH and GJR) increase, rather than reduce, 

portfolio risk for the latter period. For currencies that are highly correlated (e.g., the 

USD/DEM and USD/GBP pair), the forecasting models seem to perform much better for the 

longer period in terms of percentage reduction in portfolio volatility. 

 

SUMMARY AND CONCLUSION 

This paper has sought to provide a comprehensive review of the various models available for 

the formation of cross-currency hedge ratios, and their effectiveness. Eleven models are 

introduced for comparison, including the naïve, GARCH, EGARCH, GJR, GARCH-t, 

VECH, BEKK, random walk, EWMA, conventional/simple historical, and implied models. 

Although the use of futures will almost always provide a better hedge, many firms will have 

offsetting exposures in foreign currencies, which will provide some degree of “natural 

hedge”. Thus, this paper could be viewed as having provided evidence on the effectiveness of 

various models for determining the hedge ratio for this natural hedge. Also, a hedge model 

worthy of examination is the implied model. Based on the results of Siegel (1997), the 

implied model certainly appears promising and worthy of further research. The implied hedge 
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ratio could only be extracted if the hedging instrument is another currency, which precludes 

the examination of currency futures. For an implied model to be usable for deriving the 

correlation between two assets, there must be an asset whose price depends on both of the 

components assets. So, to use the implied model in the context of hedging with currency 

futures, an asset would have to exist whose price is dependent upon both the currency and the 

currency futures; to the authors’ knowledge, no such asset exists. 

 

 It is worth noting that all models suggest that the hedging ability of offsetting cross-currency 

exposures is limited. Even the highest ranked models for each currency pair lead to a modest 

reduction in volatility of the order of 8%-16%. The relatively poor performance of the cross-

currency hedge suggests that firms should not enter into new currency transactions for the 

sole purpose of a cross-currency hedge. Further, naïve cross-currency hedging can result in 

substantially greater volatility than no hedging at all. However, even though futures (readily 

available for the currencies and time horizons evaluated in this paper) provide a more 

effective hedging instrument than cross-currency positions, the latter will still be of 

importance to any firms with partially off-setting international exposures. 

 

The findings of this paper are suggestive of the need for firms to explore, if they have not 

already done so, the use of dynamic statistical hedge models rather than relying on either the 

conventional or the implied hedge model. The conventional OLS regression approach has 

been dismal in predicting the optimal hedge ratio. The implied model, despite being 

advocated as a potentially useful forecasting tool in the volatility and correlation arena, has 

not shown to be effective in predicting hedge ratios. Hence, there is a possibility that market 

expectations as determined from the options market may not be as efficient in forecasting 

volatility for determining hedge ratios as they are for forecasting the volatility and/or 
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correlation themselves. A plausible cause of the apparent failure of the implied model is a 

manifestation of what is known as the “peso problem”. Peso problems generally arise when 

the distribution of expected outcomes includes a low probability, usually catastrophic, event 

that generates extreme disutility to market participants. Due to the low probability, this event 

is unlikely to be observed in a given data sample but due to its catastrophic nature, the 

possibility that this event may occur substantially affects participants’ decisions, which in 

turn determines equilibrium prices and therefore implied volatilities. GARCH forecasts of 

volatility are not affected by the peso problem since they are computed with past returns, 

without any expectations from market participants. 

 

The length of the prediction period does not appear to have an adverse effect on the various 

hedge models when the currencies involved are closely related. The reduction of portfolio 

risk compared with no hedging, actually increases when the forecasting horizon increases. 

Especially for the GARCH models, this implies that time series models are just as useful for 

longer horizons, which is contrary to the general consensus thinking that they are suitable 

only for relatively short horizons. There is no reason why GARCH-type models should not 

continue to produce reasonably accurate volatility or correlation forecasts at longer time 

horizons, for the predictions from a (stationary) GARCH model will tend to the long term 

average volatility as the forecast horizon increases.  

 

Interestingly, this study finds that a simple exponential weighting scheme for variances and 

covariances produces hedged portfolios with the lowest variances. Such models are very 

simple, and can be estimated using only a spreadsheet, thus potentially rendering 

considerably more complex and cumbersome models such as multivariate GARCH hardly 

worth the additional effort. Hedging is essentially a forecasting exercise, and as in many other 
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instances, simple models often provide the most accurate predictions for they are better able 

to generalize and have not been over-fitted to features of the data that are specific to the in-

sample estimation period.  
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Table I: Estimation of the VECH model 

  ttttt yxrr , ;  

 ttt HN ,0~1   

     111  vech vechvech   tttt BHACH  

 USD/DEM, USD/JPY USD/GBP, USD/DEM 

 Coefficient t-statistics Coefficient t-statistics 

1̂  0.0107 0.7297 0.0006 0.0414 

2̂  0.0293 1.8551 0.0043 0.2020 

11̂  0.0069 2.0254 0.0044 0.5415 

12̂  0.0058 2.5534 0.0043 0.2675 

22̂  0.0165 1.9471 0.0158 0.4605 

11̂  0.9429 82.2485 0.9428 15.2336 

12̂  0.9347 59.4716 0.9306 9.9782 

22̂  0.8920 22.9255 0.8831 10.4952 

11̂  0.0360 4.4448 0.0382 1.9068 

12̂  0.0391 3.8042 0.0411 3.7227 

22̂  0.0714 3.0519 0.0581 1.5304 

     

 

Table II: Estimation of the BEKK model 

  ttttt yxrr , ;  

 ttt HN ,0~1   

BBAHAWH tttt 111    

 USD/DEM, USD/JPY USD/GBP, USD/DEM 

 Coefficient t-statistics Coefficient t-statistics 

1̂  0.0134 0.6873 -0.0001 -0.0117 

2̂  0.0289 1.7669 0.0039 0.2982 

11̂  0.0737 3.5334 0.0208 1.0592 

12̂  -0.0512 -1.5177 -0.0362 -2.2742 

22̂  -0.0583 -1.0807 0.0419 3.1896 

11̂  0.5644 13.2813 -0.5064 -10.0191 

12̂  1.2627 30.6448 0.7126 8.2388 

21̂  0.4916 10.5065 0.9592 21.7606 

22̂  -0.5029 -13.7630 0.5286 10.0572 

11̂  0.2094 9.5956 -0.0857 -2.9897 

12̂  0.0078 0.1775 0.1894 4.9249 

21̂  -0.0849 -4.7512 0.1700 7.0289 

22̂  0.2496 6.3329 0.0124 0.3767 
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Table III : Volatility of Hedged Daily Portfolio Returns, In-Sample 

 

  Daily Portfolio Returns (%)  

Hedge  USD/DEM USD/DEM USD/JPY USD/GBP  

With  USD/JPY USD/GBP USD/DEM USD/DEM  

       

Panel A: Daily Volatility of Portfolio Returns, In-Sample (%)  

No-hedge 0.6002 0.6002 0.6657 0.4621  

Naïve  0.5772 0.4593 0.5772 0.4593  

Simple Historical 0.4852 0.4540 0.5382 0.3496  

VECH  0.4761 0.4414 0.5308 0.3508  

       

Panel B: Daily Volatility Change (Percentage Volatility Change) of Portfolio 

Returns over No-hedge, In-Sample 

Naïve  -0.0230 -0.1408 -0.0885 -0.0028  

  (-3.8270) (-23.4673) (-13.2962) (-0.5987)  

Simple Historical -0.1149 -0.1461 -0.1275 -0.1125  

 (-19.1465) (-24.3506) (-19.1465) (-24.3506)  

VECH  -0.1241 -0.1588 -0.1349 -0.1113  

  (-20.6777) (-26.4593) (-20.2699) (-24.0825)  

Notes: In-sample period runs from 19 July 1993 until 20 May 1997. 
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TABLE IV: Volatility of Hedged 1-Monthly Portfolio Returns, Out-of-Sample 

 
  1-Month Portfolio  (%)    

Hedge  USD/DEM  USD/DEM  USD/JPY  USD/GBP  

With  USD/JPY  USD/GBP  USD/DEM  USD/DEM  

          

Panel A: Volatility of Portfolio Returns, Out-of-Sample (%) 
No-hedge 2.8964  2.8964  4.6050  2.1241  

Naïve  4.2921  2.6460  4.2921  2.6460  

VECH  2.7137  2.5776  4.0655  1.9077  

BEKK  2.7538  2.5370  4.0825  1.9368  

GARCH  2.7132  2.5322  4.0656  1.8898  

EGARCH  2.7549  2.5395  4.0424  1.9275  

GJR  2.7387  2.5127  4.0939  1.8854  

GARCH-t  2.7028  2.4421  4.0939  1.8551  

Implied  2.7575  2.5498  4.1749  1.9015  

Random Walk 2.7181  2.4920  4.3162  1.8630  

EWMA  2.6749  2.4371  4.0473  1.8628  

Simple historical 2.8250  2.5982  4.1676  1.8987  

         

Panel B: Volatility Change (Percentage Volatility Change) of Portfolio Returns over No-hedge, 

Out-of-Sample, with Rankings Across Models; [p-Values for Test of Significance of Change in Volatility 

over No-Hedge]. 
Naïve  1.3957 11 -0.2504 11 -0.3129 10 0.5219 11 

  (48.1872)  (-8.6450)  (-6.7944)  (24.5718)  

  [1.0000]  [0.0185]  [0.0523]  [1.0000]  

VECH  -0.1827 4 -0.3188 9 -0.5395 3 -0.2164 8 

  (-6.3079)  (-11.0062)  (-11.7153)  (-10.1869)  

  [0.0664]  [0.0036]  [0.0020]  [0.0066]  

BEKK  -0.1427 7 -0.3594 6 -0.5225 5 -0.1872 10 

  (-4.9251)  (-12.4098)  (-11.3468)  (-8.8150)  

  [0.1220]  [0.0011]  [0.0028]  [0.0167]  

GARCH  -0.1832 3 -0.3642 5 -0.5394 4 -0.2342 5 

  (-6.3236)  (-12.5729)  (-11.7124)  (-11.0283)  

  [0.0659]  [0.0010]  [0.0020]  [0.0035]  

EGARCH  -0.1415 8 -0.3569 7 -0.5626 1 -0.1966 9 

  (-4.8838)  (-12.3232)  (-12.2170)  (-9.2558)  

  [0.1240]  [0.0012]  [0.0013]  [0.0126]  

GJR  -0.1578 6 -0.3837 4 -0.5110 7 -0.2387 4 

  (-5.4464)  (-13.2484)  (-11.0975)  (-11.2372)  

  [0.0982]  [0.0005]  [0.0034]  [0.0030]  

GARCH-t  -0.1937 2 -0.4543 2 -0.5111 6 -0.2690 1 

  (-6.6860)  (-15.6837)  (-11.0981)  (-12.6635)  

  [0.0552]  [0.0000]  [0.0033]  [0.0009]  

Implied  -0.1389 9 -0.3472 8 -0.4301 9 -0.2226 7 

  (-4.7959)  (-11.9889)  (-9.3390)  (-10.4811)  

 [0.1284]  [0.0016]  [0.0119]  [0.0053]  

Random Walk -0.1783 5 -0.4044 3 -0.2888 11 -0.2610 3 

  (-6.1568)  (-13.9608)  (-6.2709)  (-12.2895)  

  [0.0713]  [0.0003]  [0.0676]  [0.0013]  

EWMA  -0.2215 1 -0.4593 1 -0.5576 2 -0.2613 2 

  (-7.6486)  (-15.8561)  (-12.1095)  (-12.3020)  

 [0.0332]  [0.0000]  [0.0015]  [0.0012]  

Simple Historical -0.0714 10 -0.2982 10 -0.4374 8 -0.2254 6 

 (-2.4654)  (-10.2940)  (-9.4985)  (-10.6130)  

 [0.2823]  [0.0061]  [0.0107]  [0.0049]  

Notes: In-sample estimation period runs from 19 July 1993 to 20 May 1997. Out-of-sample period runs from 21 

May 1997 to 8 June 1999.  
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Table V: Volatility of Hedged 3-Monthly Portfolio Returns, Out-of-Sample 

 
  3-Month Portfolio Returns (%)    

Hedge  USD/DEM  USD/DEM  USD/JPY  USD/GBP  

With  USD/JPY  USD/GBP  USD/DEM  USD/DEM  

          

Panel A: Volatility of Portfolio Returns, Out-of-Sample (%) 

No-hedge 4.6382  4.6382  8.0934  2.4131  

Naïve  7.5896  3.4346  7.5896  3.4346  

VECH  4.5056  3.7250  7.0895  1.7700  

BEKK  4.6536  3.7150  7.3134  1.8291  

GARCH  4.5318  3.7609  7.1832  1.8544  

EGARCH  4.6461  3.7628  7.2280  1.9040  

GJR  4.6648  3.7342  7.2717  1.8597  

GARCH-t  4.5394  3.6831  7.1626  1.8279  

Implied  4.6250  3.7481  7.3237  1.9278  

Random Walk 4.4609  3.8916  7.1785  1.8930  

EWMA  4.3806  3.7000  7.0092  1.8234  

Simple Historical 4.8230  3.7024  7.4463  1.7557  

          

Panel B: Volatility Change (Percentage Volatility Change) of Portfolio Returns over No-hedge, 

Out-of-Sample with Rankings Across Models; [p-Values for Test of Significance of Change in Volatility 

over No-hedge]. 

Naïve  2.9514 11 -1.2036 1 -0.5038 11 1.0216 11 

  (63.6319)  (-25.9493)  (-6.2250)  (42.3350)  

  [1.0000]  [0.0000]  [0.0691]  [1.0000]  

VECH  -0.1326 3 -0.9132 6 -1.0039 2 -0.6431 2 

  (-2.8580)  (-19.6893)  (-12.4040)  (-26.6498)  

  [0.2517]  [0.0000]  [0.0011]  [0.0000]  

BEKK  0.0154 8 -0.9232 5 -0.7800 8 -0.5840 5 

  (0.3315)  (-19.9049)  (-9.6372)  (-24.2003)  

  [0.5304]  [0.0000]  [0.0097]  [0.0000]  

GARCH  -0.1064 4 -0.8773 9 -0.9101 5 -0.5587 6 

  (-2.2930)  (-18.9139)  (-11.2454)  (-23.1519)  

  [0.2962]  [0.0000]  [0.0030]  [0.0000]  

EGARCH  0.0079 7 -0.8754 10 -0.8654 6 -0.5091 9 

  (0.1700)  (-18.8731)  (-10.6927)  (-21.0965)  

  [0.5156]  [0.0000]  [0.0046]  [0.0000]  

GJR  0.0267 9 -0.9040 7 -0.8217 7 -0.5533 7 

  (0.5746)  (-19.4897)  (-10.1526)  (-22.9311)  

  [0.5526]  [0.0000]  [0.0068]  [0.0000]  

GARCH-t  -0.0988 5 -0.9551 2 -0.9308 3 -0.5851 4 

  (-2.1292)  (-20.5920)  (-11.5010)  (-24.2491)  

  [0.3097]  [0.0000]  [0.0024]  [0.0000]  

Implied  -0.0132 6 -0.8901 8 -0.7697 9 -0.4852 10 

  (-0.2837)  (-19.1904)  (-9.5105)  (-20.1092)  

 [0.4739]  [0.0000]  [0.0106]  [0.0000]  

Random Walk -0.1773 2 -0.7466 11 -0.9149 4 -0.5201 8 

  (-3.8221)  (-16.0972)  (-11.3044)  (-21.5521)  

  [0.1843]  [0.0000]  [0.0028]  [0.0000]  

EWMA  -0.2576 1 -0.9382 3 -1.0841 1 -0.5897 3 

  (-5.5545)  (-20.2275)  (-13.3955)  (-24.4378)  

 [0.0937]  [0.0000]  [0.0005]  [0.0000]  

Simple Historical 0.1848 10 -0.9358 4 -0.6471 10 -0.6574 1 

 (3.9842)  (-20.1757)  (-7.9955)  (-27.2425)  

 [0.8163]  [0.0000]  [0.0273]  [0.0000]  

Notes: In-sample estimation period runs from 19 July 1993 to 20 May 1997. Out-of-sample period runs from 21 

May 1997 to 8 June 1999.  
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FIGURE 1. VECH AND BEKK IN-SAMPLE OPTIMAL HEDGE RATIO FOR USD/DEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIGURE 2. VECH AND BEKK IN-SAMPLE OPTIMAL HEDGE RATIO FOR USD/GBP 
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 FIGURE 3. VECH AND BEKK IN-SAMPLE OPTIMAL HEDGE RATIO FOR USD/JPY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIGURE 4. VECH AND BEKK IN-SAMPLE OPTIMAL HEDGE RATIO FOR USD/DEM 
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