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[1] A method is presented to calculate the continuum-scale sea ice stress as an imposed,
continuum-scale strain-rate is varied. The continuum-scale stress is calculated as the area-
average of the stresses within the floes and leads in a region (the continuum element). The
continuum-scale stress depends upon: the imposed strain rate; the subcontinuum scale,
material rheology of sea ice; the chosen configuration of sea ice floes and leads; and a
prescribed rule for determining the motion of the floes in response to the continuum-scale
strain-rate. We calculated plastic yield curves and flow rules associated with subcontinuum
scale, material sea ice rheologies with elliptic, linear and modified Coulombic elliptic
plastic yield curves, and with square, diamond and irregular, convex polygon-shaped
floes. For the case of a tiling of square floes, only for particular orientations of the
leads have the principal axes of strain rate and calculated continuum-scale sea ice stress
aligned, and these have been investigated analytically. The ensemble average of calculated
sea ice stress for square floes with uniform orientation with respect to the principal
axes of strain rate yielded alignment of average stress and strain-rate principal axes and an
isotropic, continuum-scale sea ice rheology. We present a lemon-shaped yield curve with
normal flow rule, derived from ensemble averages of sea ice stress, suitable for direct
inclusion into the current generation of sea ice models. This continuum-scale sea ice
rheology directly relates the size (strength) of the continuum-scale yield curve to the
material compressive strength.

Citation: Taylor, P. D., D. L. Feltham, P. R. Sammonds, and D. Hatton (2006), Continuum sea ice rheology determined from

subcontinuum mechanics, J. Geophys. Res., 111, C11015, doi:10.1029/2005JC002996.

1. Introduction

[2] Sea ice, frozen seawater, forms in the cold polar
oceans of the Earth, may cover nearly 10% of the Earth’s
surface at its maximum extent, and plays an important role
in both polar and global climate. In particular, by virtue of
the high albedo of sea ice and snow-covered ice, variation in
the area-coverage of sea ice has a significant impact on solar
radiation absorbed by the ocean during summer. Sea ice is
fresher than the ocean water from which it forms; the
formation, movement and subsequent melt of sea ice con-
stitutes a substantial thermohaline forcing on the ocean. The
dense, salty water expelled during sea ice formation and
aging is thought to play a significant role in deep water
formation in both hemispheres.
[3] Global Climate Models (GCMs) typically contain

relatively complex representations of the thermal and mo-
mentum balances of sea ice. The momentum balance for sea

ice contains a representation of the sea ice forces, some-
times known as internal forces, that result from deformation
of the ice cover, i.e. sliding of floes past each other,
overriding and rafting of sea ice floes to form ridges, and
formation of linear regions of open water known as leads
(which quickly freeze over in winter). The relationship
between these internal forces to the deformation of the ice
cover and the properties of the ice cover is determined by
the rheology of sea ice, which is usually considered to have
a plastic character.
[4] GCMs use representations of sea ice rheology appro-

priate to their grid resolution. The grid resolution of GCMs
is typically large enough, e.g. 100 km, that sea ice may be
treated as a continuum and the sea ice rheology appropriate
to this scale is representative of the average over the variety
of ice types found in a region similar in size to a grid cell.
The procedure by which a characteristic of sea ice at a point
in a continuum model is related to the variety of values of
this characteristic in the region over which the continuum
assumption is invoked, e.g. the model grid cell, is known as
homogenization. Not surprisingly, there is typically no
unique homogenization procedure for a given characteristic.
In this paper, we propose and adopt a particular homoge-
nization methodology to determine a continuum-scale sea
ice rheology from consideration of the interaction of ice
types within a representative region. An example of an
alternative approach is that of Hopkins [1996] who has
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determined a plastic yield curve at the continuum-scale by
means of a discrete element simulation of the interaction of
floes using prescribed viscous-elastic-plastic force laws.
[5] In section 2, we describe in detail the homogenization

methodology we use to determine the continuum-scale sea
ice stress, and the particular material yield curves that we
investigate. In section 3, we describe results for the case in
which the sea ice floes are assumed to be squares as these
results are both representative of a more realistic geometry
and can be obtained largely analytically. In section 4, we
consider the cases in which the sea ice floes are all diamond
shaped or the individual floes have the shape of randomly-
determined, irregular convex polygons. In section 5, we
present an continuum-scale, lemon-shaped yield curve
obtained by averaging over many realisations of floe con-
figurations and using a viscous-plastic material rheology
that is suitable for direct inclusion into a GCM. Finally, in
section 6, we summarize and discuss our results in light of
their implications for high-resolution sea ice modeling.

2. Method for Determination of Continuum-Scale
Sea Ice Rheology

[6] In this section we introduce the method that is used to
determine the continuum-scale sea ice rheology from the
imposed subcontinuum scale material rheology and geom-
etry of our representative region. This method was first
discussed by Feltham et al. [2002] and is appropriate for
compact ice covers as are typical in the central pack for most
of the year; alternative approaches are appropriate for more
disperse ice covers as are seen in the marginal ice zone [e.g.,
Shen et al., 1987; Feltham, 2005]. In order to develop a
continuum-scale rheology, we consider a region R of
dimensions of 10 km � 10 km containing a collection of

ice floes (typical area of, say, 1 km2) separated by thin,
rectilinear regions of thinner ice (leads). The continuum-
scale rheology of this representative sea ice mixture is
determined by imposing certain strain rates on the region
R, and calculating the stress required to cause this defor-
mation. In order to do this, we use a kinematic model that
relates the deformation of the constituents inside R to the
deformation of the region as a whole [Moritz and Ukita,
2000]. Since the leads are weaker than the floes, these will
preferentially fail so that the composite strain rate of R is
(almost) entirely accomplished by deformation of the leads
(the floes are very nearly rigid [e.g., Gray and Morland,
1994]). From the strain rate in a lead, we use a material
rheology, or constitutive law, to determine the lead stress.
The material rheology corresponds to the rheology of sea
ice that would be measured in a laboratory or ice tank under
suitable conditions. The geophysical, continuum-scale,
mean stress field over the region R is then calculated from
the area-weighted sum of the local lead stresses. By varying
the imposed, continuum-scale velocity field u, we deter-
mine the continuum-scale constitutive behavior of the
composite sea ice.
[7] In this section, we first describe how we determine the

geometry of our representative region. Then, we describe
the kinematic model, which determines how the constituents
of the continuum element move relative to one another. We
then describe how we can use the kinematic model to
determine the continuum-scale stress using a given material
rheology. Finally, we describe the general form of the
material rheologies considered, with the particular rheolo-
gies used described in Appendix A.

2.1. Geometry of Our Representative Region

[8] Consider a finite region of sea ice R assumed to
contain relatively thick ice floes separated by cracks or leads
containing relatively thin ice. The region R is partitioned
into a tiling of the plane consisting of convex polygons
formed by straight lines traversing the region R, as in
Moritz and Ukita [2000] (see Figure 1). There are J cracks
indexed by i = 1,. . .,J, and M floes indexed by m = 1,. . .,M
and there is a one-to-one mapping between pairs of floes
(m,n) and the ith crack, assuming (for definiteness) thatm < n
[Moritz and Ukita, 2000]. Each crack is assumed to have a
fixed width wi and is assumed to contain ice with a
thickness of hi. Let the length of crack i be li and let xm

and xn be the position vectors of the centroids of the convex
polygonal floesm and n respectively, associated with crack i.
We define n̂i to be the unit normal vector to crack i, such that
n̂i points from floe n toward floe m and k̂i is the vertical unit
vector pointing out of the tiling. On a given crack i, x(s) =
x0
i + s t̂ i (s 2 [0, li]) is the position of a point parameterized
by its distance s from one end of the crack xi0 in direction t̂ i,
where t̂ i is the unit tangent vector to crack i. If we define
{t̂ i ,n̂i, k̂i} to be a right-handed orthonormal basis, then the
direction of the tangent vector t̂ i is specified and the
location of x0

i is fixed.
[9] In this paper we consider several different tilings of

the plane: square tiles; diamond tiles; and a random tiling.
For a simple geometry (e.g. squares) the positions of the
lines is specified by the smallest positive angle b between
the x1-axis and a particular crack, and we assume that a
vertex of a square tile is located at the origin (see Figure 2).

Figure 1. Definition diagram for two adjacent floes, with
unit normal (n̂i) and tangent vectors (t̂ i) for crack i,
associated floe centroids with position vectors xm and xn

(m < n), and the position vector of the point on the crack
from which arc-length is measured x0

i. The length of the
ith crack is li.
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The orientation and position of the squares will influence
the number and shape of partial square floes in our square
domain, although this only has limited effect on the derived
results when there are a sufficient number of completely
square tiles within the domain. For a random geometry, we
use the Poisson line process to specify the set of lines, so
that the number of lines inside the region R is determined
by the mean of a Poisson distribution (which we take to be
10 for our 10 km2 standard domain); the location of a
particular point on the line is determined from a uniform
distribution on R, and the direction of each line is specified
by a uniform distribution on [0, p]. Once the lines in the
plane are specified, the tiling of the region R is specified by
those lines that are interior toR (in our case we use a square
region). The area of the floes in the region R is A(R) and
does not account for the area of the cracks, which we
specify separately.

2.2. Kinematic Model

[10] The kinematic model that we use is the same as that
used by Moritz and Ukita [2000] and relates the motion of
the constituents within our representative region to the strain
rate imposed on the region as a whole. Moritz and Ukita
[2000] used the kinematic model to estimate the ridging,
sliding, and opening coefficients that occur in the rate of
work equation that describes the rate of transfer of kinetic
energy to internal energy per unit area of the ice cover.
Estimating these coefficients enabled Moritz and Ukita
[2000] to calculate the yield curve using a technique of
minimization of maximum shear stress, and the same
principle has been employed when explicitly incorporating
the role of sliding friction between floes into basin-scale
simulations [Wilchinsky and Feltham, 2004a; Wilchinsky et
al., 2006]. We do not take this approach here and instead
use the kinematic model to determine the strain rate in the
leads separating floes and calculate the lead stresses from
these strain rates and a material rheology. For completeness,
we describe the kinematic model here.
[11] It is assumed that the continuum-scale motion of the

sea ice is defined by a continuously differentiable velocity

field uj ( j = 1, 2) [Moritz and Ukita, 2000]. The relative
motion of the sea ice in a small neighborhood of an arbitrary
origin is given by a Taylor series expansion of the velocity
field, neglecting second order and higher terms, so that

uj xkð Þ ¼ uj;kxk þ uj 0ð Þ; ð1Þ

where xk is the position vector, uj,k is the velocity
deformation tensor and the summation convention is used.
[12] The strain-rate is given by

_�jk ¼
uj;k þ uk;j

2
; ð2Þ

and the first and second invariants of the strain-rate are
given by _�I = _�ii, and _�II = (( _�11 � _�22)

2 + 4 _�12
2 )1/2. The

alternative pair of strain-rate invariants j _�j and q are related
to the first and second invariants of the strain-rate by _�I = j _�j
cosq and _�II = j _�j sinq. The parameter q parameterizes the
ratio of shear to divergence of the imposed global strain
rate, with q = 0 corresponding to pure divergence and q = p
corresponding to pure convergence.
[13] If the coordinate system is assumed to be aligned

with the principal axes of the strain-rate, the velocity
deformation tensor can be written as a linear sum of the
strain-rate and vorticity [Moritz and Ukita, 2000], of which
only the strain-rate affects instantaneous deformation. With-
out loss of generality we may set the vorticity equal to zero,
so that the components of the continuum-scale velocity field
that influence continuum-scale stress and the instantaneous
rate of ice deformation at any point x may be written as

u xð Þ � u 0ð Þ ¼ ruð Þx

¼ j _�j
2

cos qþ sin q 0

0 cos q� sin q

! 
x1
x2

!
;

 
ð3Þ

where x = (x1, x2)
T are coordinates with respect to the

principal axes of the strain-rate, and j _�j and q are strain-rate
invariants [Moritz and Ukita, 2000].
[14] Since we are considering a densely packed ice cover,

we suppose that the floes do not spin relative to the
representative region comprising the collection of floes. It
is possible that the representative region as a whole is
undergoing rigid body rotation but this does not affect the
estimate of continuum-scale stress.
[15] The translational velocity of a floe is equal to the

continuum-scale velocity evaluated at the position of its
centroid xm so that the velocity of the mth floe is given by

vm ¼ ruð Þxm: ð4Þ

The velocity jump across an individual crack Dvi is
required to determine the instantaneous rates of ice
deformation in the crack. At each point along the ith crack,
the velocity jump across the crack is

Dvi ¼ vm � vn; ð5Þ

where m and n refer to the floes either side of the crack.
Using the same notation as Moritz and Ukita [2000], we

Figure 2. Definition diagram for lead i, of length li and
width wi, oriented at bi relative to the principle axes of the
large-scale strain-rate.
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define the normal component of relative velocity of the ith
crack as

xi ¼ Dvi � n̂i; ð6Þ

and the tangential component of relative velocity of the ith
crack as

ci ¼ Dvi � t̂ i: ð7Þ

[16] The sea ice in each crack is assumed to deform
plastically, with no deformation of the floes, which are
treated as rigid. In the cracks at the rigid floe boundaries, the
plastically deforming ice is assumed to move at the same
velocity as the boundaries of the rigid floes. Therefore we
can use the relative normal and tangential velocities to
estimate the strain-rate in each crack. We use a crack
coordinate system which has axes aligned with the crack
(x̂1, x̂2), such that x̂1 is parallel to the unit tangent vector t̂i

and x̂2 is parallel to the unit normal vector n̂i. The compo-
nents of the strain-rate tensor in the ith crack _̂�jk

i are
estimated using the definition of the strain-rate (2) and are
given by

_̂�i11 ¼ 0: ð8Þ

_̂�i12 ¼ ci= 2wi
� �

; ð9Þ

and

_̂�i22 ¼ xi=wi; ð10Þ

where we have used the fact that the cracks are much longer
than they are wide, i.e. li � wi. The resulting first and
second invariants of strain-rate in the ith crack are

_�iI ¼
xi

wi
; and ð11Þ

_�iII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi
� �2þ cið Þ2

q
wi

; ð12Þ

and the alternative strain-rate invariant qi is given by

qi ¼ tan�1 sign xi
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ci

xi

� �2
s0

@
1
A; ð13Þ

which implies that jqij 
 p/4 because the square root term is
always at least unity. This has immediate implications for
any continuum-scale estimate of stress, since it implies that
pure divergence is not possible within cracks, and the
minimum value of jqij corresponds to uniaxial extension
across a crack.

2.3. Calculation of Continuum-Scale Sea Ice Stress

[17] The kinematic model relates the continuum-scale
imposed strain-rate to the strain rate in each crack. We use

an imposed material rheology of the ice in the cracks to
determine the stress inside the cracks. These subcontinuum
stresses are related to the continuum-scale using an area-
weighted average in a manner similar toHibler and Schulson
[2000].
[18] The stress tensor in the ith crack in the crack

coordinate system is denoted by ŝjk
i , and in the continu-

um-scale coordinate system by sjk
i . The stresses in each

coordinate system are related by

si
jk ¼ Rbi ŝi

jkR�bi ; ð14Þ

where bi is the angle between the axes of the continuum-
scale coordinate system and the crack coordinate system
measured positive anti-clockwise, and Rbi is the two-
dimensional rotation matrix with rotation angle bi.
[19] The aim of our method is to estimate the continuum-

scale stress from the imposed continuum-scale strain rate. It
is the sum of stresses induced inside the plastically deform-
ing cracks that contributes to the continuum-scale stress.
This can be deduced using Signorini’s mean stress theorem
[e.g., Gray and Morland, 1994], since the tractions either
side of a crack cancel each other out when applying the
mean stress theorem to a region consisting of several floes.
To estimate the continuum-scale stress from the stresses
inside the cracks we use the formula

sjk
* ¼

XN

i¼1
wilisi

jk

A Rð Þ þ
XN

i¼1
liwi

; ð15Þ

which is simply the area-weighted average of the stress
inside the cracks as a proportion of the total area of the
region (sum of floe areas plus sum of crack areas).

2.4. Material Rheology

[20] We consider the sea ice stresses within the cracks to
be described using an isotropic plastic rheology and we use
three particular yield curves in our analysis: the elliptic yield
curve; a modified Coulombic elliptic yield curve [Hibler
and Schulson, 2000]; and a linear, Coulombic yield curve.
These yield curves are illustrated in Figure 3 and discussed
in Appendix A.
[21] The constitutive law for stress in the plastically

deforming ice inside the cracks is an isotropic tensor
function of the form

si
jk ¼ 2hi _�ijk þ z i � hi

� �
_�iIdjk �

Pi

2
djk ; ð16Þ

where z i and hi are the bulk and shear viscosities,
respectively, which can depend upon the first and second
strain-rate invariants _�I and _�II, and Pi is the pressure.
Equation (16) can be used to relate the first and second
invariants of stress to the first and second invariants of the
strain-rate so that

si
I ¼ z i _�iI �

Pi

2
; and ð17Þ

si
II ¼ hi _�iII ; ð18Þ
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where the stress invariants are defined analogously to the
strain rate invariants, sI

i = 1
2
skk
i and sII

i = ((s11
i � s22

i )2 +
4(s12

i )2)1/2.

3. Results for Regular Array of Square Floes

[22] Using the methodology described in the preceding
section, we relate the continuum-scale sea ice stress to the
assumed subcontinuum scale, material rheology. We con-
sider a representative region containing sea ice floes and
cracks determined by a checker board-like tiling of equal
sized squares separated by cracks of uniform thickness and
width. By restricting ourself to this particular geometry, it is
possible to derive analytical results. An average over an
ensemble of stress calculations with square floes oriented
uniformly with respect to the principal axes of strain rate
yields results similar to the average over an ensemble of
isotropic, random configurations of floes.

3.1. Results Independent of Material Yield Curve

[23] The cracks dividing the ice cover into square floes
consist of two sets of parallel cracks, denoted i and i?, with
an orientation relative to the principal axes of the continu-
um-scale strain-rate of bi and bi? = bi + p/2, respectively
(i.e. one set of cracks is perpendicular to the other). Using
(3) and (4), we calculate the relative velocity of the floe
centroids either side of a crack to be

Dvi;i? ¼ vmi;i? � vni;i? ð19Þ

¼ j _�jl
2

� cos qþ sin qð Þsinbi;i?

cos q� sin qð Þcosbi;i?

� �
; ð20Þ

where li = li? = l, so that the relative normal velocity and
relative tangential velocity are given by

xi;i? ¼ _�

2
l cos q� sin q cos 2bi;i?� �

; and ð21Þ

ci;i? ¼ � _�

2
l sin q sin 2bi;i?; ð22Þ

respectively. Equations (21) and (22) are independent of
position, which means that the relative velocities in all
parallel cracks are identical, so it suffices to examine only
two arbitrary cracks that are perpendicular to each other.
[24] The strain rates in two perpendicular cracks are

estimated using equations (8)–(10), (21) and (22), and then
converted to the continuum-scale coordinate system using
rotation matrices in the same manner as for the continuum-
scale stress (equation (14)). The resulting strain-rate tensors
expressed in the continuum-scale coordinate system are
given by

_�i11; _�
i?
22 ¼

j _�jl sin2 bi

2w
cos q� sin qð Þ; ð23Þ

_�i;i?12 ¼ � j _�jl sin 2bi

4w
cos q; and ð24Þ

_�i22; _�
i?
11 ¼ j _�jl cos2 bi

2w
cos q� sin qð Þ; ð25Þ

where wi = w is the crack width. The first and second strain-
rate invariants are given by

_�i;i?I ¼ j _�jl
2w

cos q� sin q cos 2bi
� �

; and ð26Þ

_�i;i?II ¼ j _�jl
2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2q cos 2bi

q
: ð27Þ

[25] The continuum-scale stress calculated for the square
tiling on the domain R is given by (15) to be

s*jk ¼
W*

2
si
jk þ si?

jk

� �
; ð28Þ

where

W* ¼
2
XN*

i¼1
liwi

A Rð Þ þ 2
XN*

i¼1
liwi

; ð29Þ

and N* is the number of pairs of orthogonal cracks inside
the domain R. Note that since wi = w, li = l, it follows thatPN*

i¼1l
i wi = N* lw. We are neglecting the contribution to the

continuum-scale stress estimate from cracks that do not
form orthogonal pairs, e.g. in the case when bi 6¼ jp/2 ( j =
0,1,2,. . .) there are nonsquare tiles in the domain. This is a
reasonable assumption since for sufficiently large domains
the overall stress will be dominated by the stresses from the
square floes.
3.1.1. Alignment of Continuum Stress and Strain
Rate Principal Axes
[26] Generally, the axes of continuum-scale sea ice stress

are not aligned with the axes of continuum-scale strain rate.

Figure 3. Yield curves at subcontinuum scale. Shown are
the elliptic, linear, and modified-elliptic yield curves. The
modified-elliptic yield curve consists of the linear yield
curve to the right of the points of intersection with the
ellipse, and the elliptical yield curve to the left of the
intersection points.
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In this case, as q is varied the continuum-scale sea ice stress
moves along a trajectory {s11* , s12* , s22* } and it is not
possible to represent the plastic behavior with a two-
dimensional yield curve. In this case, we have an aniso-
tropic continuum-scale sea ice rheology.
[27] However, it is possible to consider particular orien-

tations of the square floes with respect to the principal axes
of strain rate for which the principal axes of continuum-
scale stress and strain rate align, i.e. s12* = 0.
[28] From equation (28), we see this can occur in one of

two ways: Either each individual component of the shear
stress is zero (i.e. si12 = si?12 = 0), or if the components of
shear stress cancel each other out (i.e. s12

i + s12
i? = 0).

[29] Since the material rheologies we consider are of
Reduced Reiner-Rivlin form (equation (16)) so that s12 =
2h _�12, we see from equation (24) that the individual com-
ponents of shear stress in each orthogonal crack become
zero when bi = jp/4, for j = 0,1, 2,. . .. Therefore we have
two particular orientations that result in no shear stress at the
large-scale: the first is where the cracks are aligned with
principal axes of the strain-rate tensor; and the second is
where the cracks are aligned at p/4 to the principal axes of
the strain-rate tensor.
[30] We now consider the two cases in turn to determine

the relationship between the subcontinuum scale material
rheology and the continuum-scale material rheology.
[31] First, we consider the case when bi = p/4 + jp/2, for

j = 0,1, 2,. . .. In this case the strain-rates invariants in
perpendicular cracks are identical and from (26) and (27)
are given by

_�iI ¼ _�i?I ¼ j _�jl cos q
2w

and ð30Þ

_�iII ¼ _�i?II ¼ j _�jl
2w

; ð31Þ

so that hi = hi? and z i = z i?. Therefore, using equations
(23)–(27) it follows from (28), the global stress is given by

s*jk ¼ W*si
jkdjk : ð32Þ

[32] Using (17), (18), and (30)–(32), we can relate the
invariants of the continuum-scale sea ice stress to the
invariants of the lead stresses as

sI
* ¼ W*si

I ; and ð33Þ

sII
* ¼ �W*si

II sin q: ð34Þ

[33] For any material yield curve determining {sI
i, sII

i },
the continuum-scale maximum shear stress is zero in pure
convergence (q = p) and pure divergence (q = 0). Material
yield curves that are convex with the greatest value of sII

i in
pure shear (q = p/2) lead to convex continuum-scale yield
curves.

[34] Second, we consider the case when bi = jp/2, for j =
0,1, 2,. . .. In this case the strain-rate invariants in the cracks
are determined from equations (26) and (27) to be

_�i;i?I ¼ j _�jl
2w

cos q� �1ð Þj sin q
� �

; ð35Þ

_�i;i?II ¼ j _�jl
2w

j cos q� �1ð Þj sin qj: ð36Þ

Without loss of generality we can assume that the ith crack
corresponds to even values of j, so that the nonzero
components of global stress are given by

s*11 ¼ W*
j _�jl
4w

cos q� sin qð Þ z i � hi
� ��

þ cos qþ sin qð Þ z i? þ hi?
� ��

�W*
Pi

2
; ð37Þ

s*22 ¼ W*
j _�jl
4w

cos q� sin qð Þ z i þ hi
� ��

þ cos qþ sin qð Þ z i? � hi?
� ��

�W*
Pi

2
; ð38Þ

so that the global stress invariants are given by

s*I ¼ W*
j _�jl
4w

cos q� sin qð Þz i
�

þ cos qþ sin qð Þz i?
�
�W*

P

2
;

ð39Þ

s*II ¼ W*
j _�jl
4w

� cos q� sin qð Þhi
�

þ cos qþ sin qð Þhi?
�
: ð40Þ

3.1.2. Ensemble of Orientations
[35] We now consider a uniform ensemble of orientations

of the square tiles ranging from bi = 0 to bi = p/2 and define
the average continuum-scale stress to be

hsjk
*i ¼ 2

p

Z p=2

0

W*

2
si
jk þ si?

jk

� �
dbi; ð41Þ

which is simply the expected value of the continuum-scale
stress under the assumption that the orientation angle bi is a
uniform random variable on [0, p/2].
[36] The stress sjk

i depends on the orientation angle bi

through its relationship with the strain-rate _�jk
i . The strain-rates

in the ith crack are related to the strain-rates in the i?th crack
by _�ijk(b

i) = _�jk
i?(p/2 + bi), which implies that hi(bi) = hi?(p/2

+ bi), z i(bi) = z i?(p/2 + bi) and hence sjk
i (bi) = s jk

i?(p/2 +
bi). Thus

hsjk
*i ¼ 2

p

Z p=2

0

W*

2
si
jk bi
� �

þ si?
jk bi
� �� �

dbi

¼ W*

p

Z p=2

0

si
jk bi
� �

dbi þ
Z p=2

0

si
jk bi � p=2
� �

dbi

 !

¼ W*

p

Z p=2

0

si
jk bi
� �

dbi þ
Z p=2

0

si
jk �b*ð Þdb*

 !

where b* ¼ p=2� bi

¼ W*

p

Z p=2

0

si
jk b*ð Þ þ si

jk �b*ð Þ
� �

db*

 !
: ð42Þ
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[37] The definitions of the stress in the ith crack (16)
together with the definitions of the strain-rates and their
invariants for the square floes (23)–(27) can be seen to
yield the relationships: s11

i (b*) = s11
i (�b*); s22

i (b*) =
s22
i (�b*); and s12

i (b*) = �s12
i (�b*). It follows that

hs12*i = 0 and so the invariants of stress for the ensemble
average are given by

hsI
*i ¼ 2W*

p

Z p=2

0

si
Idb

i; ð43Þ

and

hsII
*i ¼ 2W*

p
j
Z p=2

0

si
11 � si

22

� �
dbij: ð44Þ

3.2. Results for Particular Yields Curves

3.2.1. Elliptic Yield Curve
[38] In the case of the elliptical yield curve with squares

oriented at p/4 + jp/2 to the principal axes of the continuum-
scale strain-rate it can be shown using (A2), (A3), (26) and
(27) that the bulk viscosity is given by

z i ¼ z i? ¼ P*w

j _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qþ 1=e2

p ; ð45Þ

where P* = P*i = P*i? and the shear viscosity is given by

�i ¼ �i? ¼ P*w

e2j _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 �þ 1=e2

p ð46Þ

so that, using (17), (18), (30), (31), (33) and (34), the global
invariants of the continuum-scale stress are given by

s*I ¼
W*P* cos q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qþ 1=e2

p �W*
P

2
; and ð47Þ

s*II ¼ � W*P* sin q

2e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qþ 1=e2

p ; ð48Þ

where P = Pi = Pi?.
[39] Eliminating the dependence on q between (47) and

(48) yields

2sI
*þW*P

W*P*i

� �2

1þ 1=e2
� �

þ 2esII
*

W*P*i

� �2

¼ 1: ð49Þ

[40] Therefore, when the floes are oriented at p/4, the
resulting yield curve at the continuum scale has the same
form as the yield curve at the subcontinuum scale (equation
(A1)) with the ratio of the major and minor axes of the
ellipse becoming

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2Þ=e4

p
. This can be thought of as a

kind of conditional scale invariance.
[41] In the case of the elliptical yield curve with squares

oriented at jp/2 to the principal axes of the continuum-scale

strain-rate the viscosities can be shown using (A2), (A3),
(26) and (27) to be

z i;i? ¼ P*w

j _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1ð Þj sin 2q

q ; ð50Þ

and

hi;i? ¼ P*w

j _�jle2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1ð Þj sin 2q

q : ð51Þ

[42] Therefore, from (39) and (40), the global invariants
of the stress are given by

s*I ¼ W*P*

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2

p h qð Þ þ g qð Þf g �W*
P

2
; ð52Þ

s*II ¼
W*P*

4e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2

p �h qð Þ þ g qð Þf g; ð53Þ

where h(q) and g(q) can be written explicitly as

h qð Þ ¼ cos q� sin qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2q

p ¼
1 q 2 � 3p

4
� jþ 1ð Þp;p

4
� jp

� �
�1 q 2 p

4
� jp;

p
4
� j� 1ð Þp

� �
8><
>:

ð54Þ

and

g qð Þ ¼ cos qþ sin qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2q

p ¼
1 q 2 �p

4
� jþ 1ð Þp;�p

4
� jp

� �
�1 q 2 �p

4
� jp;�p

4
� j� 1ð Þp

� �
8<
:

ð55Þ

where j = 0, 1, 2,. . ..
[43] Using the definition of h and g, we see that the global

invariants of the stress yield four discrete points given by

sI*; sII*ð Þ ¼

W*P*
2
ffiffiffiffiffiffiffiffiffiffiffi
1þ1=e2

p �W* P
2
; 0

� �
q 2 � p

4
; p
4

� �
�W* P

2
; W*P*
2e2

ffiffiffiffiffiffiffiffiffiffiffi
1þ1=e2

p
� �

q 2 p
4
; 3p
4

� �
� W*P*

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ1=e2

p �W* P
2
; 0

� �
q 2 3p

4
; p

� �
and q 2 � 3p

4
;�p

� �
�W* P

2
;� W*P*

2e2
ffiffiffiffiffiffiffiffiffiffiffi
1þ1=e2

p
� �

q 2 � p
4
;� 3p

4

� �
:

8>>>>>>>>>><
>>>>>>>>>>:

ð56Þ

[44] Figure 4 shows the yield curves for the two particular
orientations of the square sea ice floes. For the square
domain R of side 10 km with crack widths w = 10 m,
and crack lengths l = 1000 m, the weighting factorW* is set
to a constant 0.0157. When the square floes are aligned with
the continuum-scale strain-rate principal axes the yield
curve consists of only four individual points, but we have
shown it here to be interconnected by lines for ease of
presentation.
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[45] Considering the ensemble average of orientations
using the subcontinuum scale elliptic material rheology,
and substituting for sijk, using (17), (18), (A2), (A3), and
(23)–(27), in equations (43) and (44) yields

hsI*i ¼
W*P*

p

Z p=2

0

cos q� sin q cos 2biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2ð Þ 1� sin 2q cos 2bi

� �
þ sin2 q 1� cos2 2bi

� �q dbi �W*
P

2
; ð57Þ

and

hsII*i ¼
W*P*

2pe2

Z p=2

0

sin qþ cos q cos 2bi � sin q cos2 2biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2ð Þ 1� sin 2q cos 2bi

� �
þ sin2 q 1� cos2 2bi

� �q dbi: ð58Þ

[46] Figure 5 shows the yield curve obtained using
equations (57) and (58) with a weighting factor of 0.0157
as was used previously. The shape of the yield curve is
described as a lemon shape, which remains similar in shape
to the underlying elliptic material rheology. Also shown on
the yield curve are the strain-rate vectors, which are seen to
be almost normal to the yield curve.
3.2.2. Linear Yield Curve
[47] In the case of the linear yield curve with squares

oriented at p/4 + jp/2 to the principal axes of the continuum-
scale strain-rate the viscosities are given by (A2), (A3),
(A8), (26) and (27) as

z i ¼ z i? ¼ P*w

j _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qþ 1=e2

p ; ð59Þ

which is the same as for the elliptic yield curve, and

hi ¼ hi? ¼ 2Pw

abj _�jl �
P*w cos q

bj _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qþ 1=e2

p : ð60Þ

[48] Therefore the global invariants of the stress are given
by (33) and (34) to be

s*I ¼ W*P* cos q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qþ 1=e2

p �W*
P

2
and ð61Þ

s*II ¼ �W*
P sin q
ab

� P* sin q cos q

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qþ 1=e2

p
 !

: ð62Þ

[49] Eliminating the dependence on q in (61) and (62)
yields

sII* ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W*P*ð Þ2� 1þ 1=e2ð Þ 2sI*þW*Pð Þ2

W*P*ð Þ2� 2sI*þW*Pð Þ2

s

� �sI*

b
þW*P

b
1

a
� 1

2

� �� �
: ð63Þ

The resulting shape of the yield curve for the continuum
scale is not the same as the yield curve for the
subcontinuum scale except when e becomes very large. In
the limit e ! 1, we see that the linear yield curve is
recovered with crack pressure P replaced by the continuum-
scale pressure W*P (see equation (A7)).
[50] In the case of the linear yield curve with squares

oriented at jp/2 to the principal axes of the continuum-scale

strain-rate the viscosities are given by (A2), (A3), (A8), (26)
and (27) to be

z i;i? ¼ P*w

j _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1ð Þj sin 2q

q ; ð64Þ

Figure 5. Yield curve and flow rule for uniform ensemble
of realisations of the square geometry and elliptic material
rheology.

Figure 4. Yield curves in stress invariant space for two
orientations of the square floes relative to the principal axes
of the continuum-scale strain-rate (bi = 0, p/4), obtained
using the elliptic material rheology. The yield curve at bi = 0
consists of four discrete points that are shown as joined
lines.
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and

hi;i? ¼ 2Pw

abj _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1ð Þj sin 2q

q
�

P*w cos q� �1ð Þj sin q
� �

bj _�jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2

p
1� �1ð Þj sin 2q
�� �� : ð65Þ

[51] From (39), (40), (54), (55), (64) and (65) it can be
shown that the global invariants of the stress yield four
discrete points given by

sI*; sII*ð Þ ¼

P*W*
2
ffiffiffiffiffiffiffiffiffiffiffi
1þ1=e2

p �W* P
2
; 0

� �
q 2 � p

4
; p
4

� �
�W* P

2
; PW*

ab

� �
q 2 p

4
; 3p
4

� �
� P�W*

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ1=e2

p �W* P
2
; 0

� �
q 2 3p

4
; p

� �
and q 2 � 3p

4
;�p

� �
�W* P

2
;� PW*

ab

� �
q 2 � p

4
;� 3p

4

� �
:

8>>>>>>>><
>>>>>>>>:

ð66Þ

[52] Figure 6 shows the yield curves for the two particular
orientations of the square sea ice floes. When the square
floes are aligned with the continuum-scale strain-rate prin-
cipal axes the yield curve consists of only four individual

points, but we have shown it here to be interconnected by
lines for ease of presentation.
[53] The ensemble-averaged yield curve for the linear

material rheology was determined numerically (see
Figure 7). The linear material rheology is interesting since
at the subcontinuum scale for pure convergence the maxi-
mum shear stress is large, whereas at the continuum scale
under pure convergence the maximum shear stress is zero.
Also shown on the yield curve are the strain-rate vectors,
which in this case are not normal as expected.
3.2.3. Modified Elliptic Yield Curve
[54] The resulting yield curve at the two particular ori-

entations of bi = 0 and p/4 are shown in Figure 8. Since the
modified elliptic yield curve consists of the composition of
the linear yield curve and the elliptic yield curve, the results
for the modified elliptic yield curve are similar to the
combination of the results for the elliptic and linear yield
curves.
[55] The ensemble averaged yield curve for the modified

elliptic material rheology was also determined numerically
(see Figure 9). The strain-rate vectors are also shown, and
again are not normal.

3.3. Anisotropic Results for Square Floes

[56] Here, we consider the situation of a regular array of
square floes in which the ice in one set of parallel cracks is a

Figure 8. Yield curves in stress invariant space for two
orientations of the square floes relative to the principal axes
of the continuum-scale strain-rate (bi = 0, p/4), obtained
using the modified elliptic material rheology. The yield
curve at bi = 0 consists of four discrete points that are
shown as joined lines.

Figure 7. Yield curve and flow rule for uniform ensemble
of realisations of the square geometry and linear material
rheology.

Figure 6. Yield curves in stress invariant space for two
orientations of the square floes relative to the principal axes
of the continuum-scale strain-rate (bi = 0, p/4), obtained
using the linear material rheology. The yield curve at bi = 0
consists of four discrete points that are shown as joined
lines.

Figure 9. Yield curve and flow rule for uniform ensemble
of realisations of the square geometry and modified elliptic
material rheology.
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factor of m 6¼ 1 times the thickness of the ice in the
perpendicular set of parallel cracks. The factor of m does
not affect the strain rates in the cracks but does affect the
stresses.
[57] We illustrate the role of anisotropy by considering

the case in which the cracks are oriented at p/4 to the
principal axes of strain rate for all q. In this case, z i? = mz i

and hi? = mhi for all the material yield curves, so that from
equation (16) sjk

i? = (�1 + 2djk)msjk
i . Therefore, analogous

to equation (32), the continuum-scale stress is given by

s*jk ¼ W*
1þ 2djk � 1

� �
m

2

� �
si
jk ; ð67Þ

where W* is given by (29). (Equation (67) reduces to (32),
upon setting m = 1.) Using (15)–(18) and (30), (31), we see
that the average normal continuum-scale stress p* and half
the difference between the normal continuum-scale stresses
q* are given by

p* ¼ W*
1þ m
2

si
11 þ si

22

2
¼ W*

1þ m
2

si
I ; and ð68Þ

q* ¼ W*
1þ m
2

si
11 � si

22

2
¼ �W*

1þ m
2

si
II sin q; ð69Þ

and the shear stress is given by

s12* ¼ W* 1� mð Þ
4

si
II cos q: ð70Þ

The projections onto the p* � s12* plane and the q* � s12*
plane satisfy

p* ¼ 2
1þ m
1� m

z i

hi
s12* �W*

1þ m
2

Pi

2
; and ð71Þ

2q*

1þ m

� �2

þ 4s12*

1� m

� �2

¼ W*si
II

� �2
: ð72Þ

[58] In the case that z i/hi is independent of the continuum-
scale alternative strain-rate invariant q, which is true for the
elliptic yield curve but not the linear yield curve or the
linear portion of the modified elliptic yield curve, the
projection onto the p* � s12* plane is a straight line.
Equation (72) tells us that the projection onto the q* �
s12* plane is given by points (parameterized by q) that lie
on ellipses centered on the origin with varying major and
minor axes, whose ratio of major to minor axes remain
constant.
[59] Figure 10 shows the results at the special orientation

of bi = p/4 with m = 1/2 for the linear material rheology. It
can be clearly seen that the minimum value of the average
normal stress is given by (1 + m)/2 times the isotropic case.
As the anisotropy parameter tends to unity the shape of the
plot of shear stress (s12* ) versus average normal stress (p*)
tends toward a straight line coincident with the p* axis. As
m is increased above unity, the shape of the plot is reflected
about the p* axis, although the minimum average normal
stress decreases.

4. Results for Diamond and Random Geometries

[60] We designed an algorithm using Mathematica that
could accept arbitrary tilings of the plane, arbitrary yield
curves and could impose continuum-scale strain-rates to
numerically calculate the resulting continuum-scale stress.
The results were found to have good agreement with the
analytical calculations depending on the orientation of the
square floes. Departures from analytical calculations were
because the domain of interest was defined to be square
with sides of length 10 km, so that there could be nonsquare
floes inside the domain affecting the overall stress.
[61] Satellite observations of sea ice reveal that diamond-

shaped floes are common [Marko and Thomson, 1977;
Erlingsson, 1988]. Calculations using diamond-shaped floes
(with smaller apex angle of 30 degrees and boundary
lengths 1000 m) yielded results similar to those with square
floes. However, the only orientations of the diamond
geometry for which the continuum-scale shear stress
becomes zero are when the diamond diagonals are parallel
to the continuum-scale strain-rate principal axes. This is
equivalent to the case of the square sea ice floes at p/4 to the
principal axes of continuum-scale strain rate, and in both
cases the reason that the continuum-scale shear stress is zero
is because the shear stress between pairs of nonparallel

Figure 10. Yield curve projections onto p* � q* and p* �
s12* planes for square geometry oriented at p/4 to the
principal axes of the continuum-scale strain-rate and linear
material rheology in the anisotropic case (anisotropy fact
m = 0.5). The flow rule is also shown because the flow
rule will be aligned with the p* � q* plane.
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cracks cancel. For more typical orientations of the dia-
monds, the continuum sea ice stress is not isotropic. A
model treating the sea ice cover as a collection of diamonds
that may be anisotropically distributed is described by
Wilchinksy and Feltham [2006b]. An ensemble of realisa-
tions of the diamond geometry with uniform distribution of
orientation leads to a yield curve for which the principal
axes of continuum-scale stress and strain-rate are aligned
(Figure 11).
[62] We also considered a random geometry generated

using the Poisson line process [cf. Thorndike, 1987]. This
produces an isotropically distributed pattern of cracks. The
Poisson line process uses three independent distributions:
The number of points inside the domain R is determined
using the Poisson distribution; the location of each point is
determined using a uniform distribution over R; and the
angle of the line that intersects each point relative to a fixed
coordinate system is determined using a uniform distribu-
tion on [0,p]. For our 10 km � 10 km region R we used a
mean of 10 points in the domain. An example of the random
geometry is shown in Figure 1. For a large sample of cracks
from repeated realisations on the domain the continuum-
scale shear stress becomes approximately zero, and the yield
curve obtained from a large ensemble of realisations is
similar to the yield curve obtained using the ensemble of
realisations of the square geometry (see Figure 12 for an
example using the elliptic yield curve, see Figure 5). For a

particular randomly-determined pattern of cracks, the cal-
culated continuum-scale stress has a shear component in the
coordinate system of the continuum strain rate that is of
similar magnitude to the normal stresses, i.e. the stress law
is not isotropic.
[63] The kinematic model affects the size and position of

the yield curve in stress invariant space leading to a
continuum-scale average normal stress that is marginally
less than zero for continuum-scale pure divergence. This is
because for a given crack the vector between the floe
centroids (associated with the crack) are not necessarily
orthogonal to the crack.

5. Continuum, GCM-Scale Rheology Derived
From Ensemble Averaging

[64] An isotropic sea ice rheology has emerged from the
results deduced using the ensemble average of both the
square sea ice floes and the ensemble average of the random
geometry. For computational convenience, a simple expres-
sion for this yield curve was determined using a least
squares fit to the yield curve in Figure 5 given by

s2
II ¼ K2 sin � psI

P*cs

� �
; ð73Þ

where

K ¼ 0:9815K e2= 1þ e2ð Þð ÞW*P*iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�2

p
pe2

: ð74Þ

where K(m) is the Complete Elliptic Integral of the First
Kind, and all other terms are as defined earlier. The flow
rule for this yield curve can be approximated using the
normal flow rule (see Figure 5). A comparison of this
approximate yield curve with the exact yield curve is shown
in Figure 13. The compressive strength of the sea ice at the
continuum scale P*cs (where cs stands for continuum scale)
is related to the compressive strength at the subcontinuum
scale P*i by P*cs = W* P*i (see equations (15) and (29)),
and we estimate W* to be 0.0157, which is true for square
floes of length 1 km with crack width of 10 m. To achieve
values of P*cs at the continuum scale that are consistent
with a recent estimate, �5000 N/m2, determined from a

Figure 11. Yield curve and flow rule for ensemble of
realisations of the diamond geometry using the elliptic
material rheology.

Figure 12. Yield curve and flow rule for ensemble of 100
realisations of the random geometry using the elliptic
material rheology.

Figure 13. Comparison of yield curve obtained from
ensemble average of square geometry (Figure 5) and yield
curve obtained from the analytical approximation
(equation (73)).
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comparison of sea ice model simulations with a range of
satellite data [Miller et al., 2006], we have set P*i = 0.32 �
106 N/m2, which is of the correct order of magnitude [Cox
and Richter-Menge, 1984; Weeks, 1983]. This relationship
between continuum-scale and subcontinuum scale ice
strength is useful in extrapolating from laboratory-deter-
mined estimates of P* [e.g., Sammonds et al., 2005]. The
continuum, lemon-shaped plastic yield curve may be
considered to be an alternative to commonly-adopted yield
curve shapes, such as the ellipse [Hibler, 1979], Coulombic
ice-cream cone [Tremblay and Mysak, 1997] or modified
Coulombic ellipse [Hibler and Schulson, 2000].

6. Summary and Discussion

[65] The method described in this paper allows us to
calculate the continuum, GCM-scale sea ice rheology using
the subcontinuum, material rheology of sea ice for a
particular geometry of the arrangement of floes and leads.
[66] Our results showed that the principal axes of contin-

uum-scale stress and strain-rate were generally not aligned
except for specific arrangements of the floes and leads. By
contrast, the principle axes of the averaged continuum-scale
stress determined from averaging over an ensemble of either
regular, or randomly-determined, geometrically isotropic
geometries, were aligned with the principle axes of contin-
uum-scale strain rate. These calculations revealed notable
similarity between the yield curves for an ensemble of
squares and irregular, convex polygons and these yield
curves are similar to those obtained previously. For exam-
ple, Ukita and Moritz [2000], who used a technique that
minimizes maximum shear stress, found that when they
neglected contributions from sliding of adjacent floes the
yield curves for both an ensemble average of a random
geometry and an ensemble average of a square geometry
[Moritz and Ukita, 2000] were of a sine-lens shape, which is
quite similar to the lemon-shaped yield curve (Figure 5) we
determined for an ensemble average of the square geometry
for the elliptic material rheology.
[67] Our calculations revealed a qualitative difference

between the yield surfaces at different orientations of the
square geometry with respect to the principle axes of
continuum-scale strain rate; ranging from discrete points
when the square floe boundaries aligned with the principal
axes of the continuum-scale strain rate to a smooth yield
curve, which was similar to the yield curve at the subcon-
tinuum scale, when the square floe boundaries were aligned
at p/4 to the principal axes of the continuum-scale strain-
rate. This behavior contrasts with that observed for square
floes by Moritz and Ukita [2000] who found yield curves
that were qualitatively similar to one another as the orien-
tation angle varied.
[68] An advantage of our homogenization methodology is

that the steps by which the continuum-scale rheology is
derived are explicit and transparent. The calculation of
continuum-scale stress with ensemble-averaging of either
a uniform distribution of square floes or an unbiased
random tiling led to a rheology similar to that in current
common usage, namely an isotropic plastic rheology with
normal flow law. Although the lemon-shaped yield curve
shape we obtained is suitable for direct inclusion into sea ice
and climate models, we do not consider this to be the

principal outcome of our analysis. Our homogenization
procedure has enabled us to explore scaling relations
between the subcontinuum and continuum scales and indi-
cate the limitations of using a continuum isotropic, plastic
rheology: (i) For square floes oriented at p/4 to the principal
axes of strain rate, the calculated continuum-scale rheology
was isotropic with a yield curve that had features in
common with the material yield curve shape. For example,
with the elliptical material yield curve, the continuum yield
curve assumes an elliptical shape with altered aspect ratio.
This can be thought of as a kind of conditional scale
invariance. For more typical orientations of the floes in
our continuum element, there is no obvious link between the
material and continuum stress orientations. Probably a more
useful scaling relation is that between the magnitude of
stresses at the material scale (characterized by the ice
strength parameter) and the magnitude of stresses at the
continuum scale; (ii) Although we have presented particular
geometries of the floe arrangement that lead to an isotropic
continuum rheology, it is important to note that for typical
floe arrangements the continuum-scale rheology is far from
isotropic. Our averaging region was 10 km by 10 km, and
our typical floe dimension was 1 km, so that typically our
continuum region contained about 100 floes. It was only by
averaging over approximately 100 different random realisa-
tions of the floe geometry that isotropy was obtained. This
is equivalent to increasing the size of our averaging area to
100 km � 100 km and indicates that the application of an
isotropic rheology below grid sizes of 100 km (for our floe
size) is valid only in a statistical sense. The concept of an
isotropic, continuum rheology valid only in an averaged
sense over a sufficiently large continuum element was
central to the development of the original AIDJEX model
[Coon et al., 1974] and has been noted by, among others,
Overland et al. [1995]. It is only in recent years that
advances in computer technology have enabled models to
be run at sub-100 km resolutions. An anisotropic model
designed for application to sub-100 km lengthscales has
been developed by Wilchinsky and Feltham [2004b, 2006a,
2006b] and associated frictional sliding in leads formed in
an ice tank measured by Sammonds et al. [2005]. Although
the adoption of an isotropic rheology at sub-100 km
resolutions may be suitable for climate prediction (in which
the results are averaged over an ensemble), our calculations
indicate this is not useful for detailed prediction of ice
dynamics, e.g. the formation and evolution of linear kine-
matic features.

Appendix A: Material Yield Curves

A1. Elliptic Yield Curve

[69] The continuum-scale, viscous-plastic sea ice rheolo-
gy with elliptic yield curve and normal flow rule introduced
by Hibler [1979] has been widely used in sea ice simu-
lations since its introduction. This rheology is appropriate to
sea ice treated as a continuum on a large scale, e.g. 100 km,
but it has also been suggested that this rheology is appro-
priate as a description of the material behavior of sea ice on
much smaller, laboratory, scales [e.g., Hibler and Schulson,
2000], although with a slightly modified ice strength and
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yield curve aspect ratio. For this reason, we consider a
material rheology given by the elliptic yield curve and flow
rule described in Hibler and Schulson [2000], which allows
the possibility of tensile stress. For the ith crack, the yield
curve in stress-invariant space is given by

2si
I þ Pi

� �2
P*i
� �2 þ

2esi
II

� �2
P*i
� �2 ¼ 1; ðA1Þ

where Pi is the pressure in the ith crack, P*i is the
compressive strength of plastically deforming sea ice and is
given by P*i = P*hi, where P* ’ 0.197 � 106 N/m2 and the
aspect ratio of major to minor axes of the elliptic yield curve
is given by e =

ffiffiffiffiffiffiffiffiffi
1:91

p
. The bulk and shear viscosities are

given by

z i ¼ P*i

2Di
and hi ¼ z i

e2
; ðA2Þ

respectively, where

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�iIð Þ2þ

_�iII
� �2
e2

s
; ðA3Þ

and _�I
i and _�II

i are the first and second invariants of the strain-
rate in the ith crack.
[70] The compressive ice strength in the ith crack P*i is

related to the pressure Pi, by

Pi ¼ kP*i ¼ 2kDiz ðA4Þ

[Hibler and Schulson, 2000], where k is a positive, real
number less than unity.
[71] The value of the alternative strain-rate invariant in

the ith crack qi = tan�1 ( _�II
i / _�I

i) for which sI
i = 0 can be

straightforwardly calculated using (17) to be

qi ¼ tan�1 e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p

k

 !
: ðA5Þ

Since it was shown in section 2.2 that jqij 
 p/4, we set our
value of k so that sI

i = 0 at qi = p/4 (uniaxial extension
across a crack) yielding k = e/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p
= 0.81.

A2. Modified Coulombic Elliptic Yield Curve

[72] Hibler and Schulson [2000] introduced a modified
elliptic yield curve that was mainly Coulombic (linear)
under divergence and elliptic under convergence, and was
based on biaxial compression experiments on brittle sea ice.
The resulting yield curve is the shape of a full ice cream
cone. The flow law is associated on the elliptic part of the
yield curve but nonassociated (the strain-rate is not normal
to the yield curve) in the Coulombic regime. To obtain the
modified Coulombic elliptic yield curve, the shear viscosity
of the elliptic yield curve (equation (A2)) is modified so that

hi ¼ min
z i

e2
;
1

b _�iII

Pi

a
� z i _�iI

� �� �
; ðA6Þ

where a and b are constants that determine the gradient and
position of the Coulombic section of the yield curve, which
is given by

si
II ¼ �si

I

b
þ Pi

b
1

a
� 1

2

� �
: ðA7Þ

We follow Hibler and Schulson [2000] and take a = 1.8 and
b = 1.4.

A3. Linear Yield Curve

[73] We consider a linear material yield curve given
simply by the Coulombic portion of Hibler and Schulson’s
[2000] modified Coulombic elliptical yield curve so that the
shear viscosity is given by

hi ¼ 1

b _�iII

Pi

a
� z i _�iI

� �
; ðA8Þ

with a = 1.8 and b = 1.4 as above. The flow rule for this
yield curve is nonassociated with the value of stress varying
smoothly along the yield line from low to high values of jsIj
as qi varies from p/4 to p (uniaxial extension to pure
convergence), where the minimum value of qi arises
following the discussion in section 2.2.
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collisions in sea ice rheology, J. Geophys. Res., 92, 7085–7096.

Thorndike, A. S. (1987), A random discontinuous model of sea ice motion,
J. Geophys. Res., 92(C6), 6515–6520.

Tremblay, L. B., and L. A. Mysak (1997), Modelling sea ice as a granular
material, including the dilatancy effect, J. Phys. Oceanogr., 27, 2342–
2360.

C11015 TAYLOR ET AL.: CONTINUUM SEA ICE RHEOLOGY CALCULATION

13 of 14

C11015



Ukita, J., and R. E. Moritz (2000), Geometry and the deformation of pack
ice: II. simulation with a random isotropic model and implication in sea-
ice rheology, Ann. Glaciol., 31, 323–326.

Weeks, W. F. (1983), The variation of ice strength within and between
multi-year pressure ridges in the Beaufort Sea, paper presented at Third
International Symposium on Offshore Mechanics and Arctic Engineering,
New Orleans, La., 12–17 Feb.

Wilchinsky, A. V., and D. L. Feltham (2004a), Dependence of sea
ice yield curve shape on ice thickness, J. Phys. Oceanogr., 34(12),
2852–2856.

Wilchinsky, A. V., and D. L. Feltham (2004b), A continuum anisotropic
model of sea ice dynamics, Proc. R. Soc. A, 460(2), 2105–2140.

Wilchinsky, A. V., and D. L. Feltham (2006a), Anisotropic model
for granulated sea ice dynamics, J. Mech. Phys. Solids, 54(6),
1147–1185.

Wilchinsky, A. V., and D. L. Feltham (2006b), Modelling the rheology of
sea ice as a collection of diamond-shaped floes, J. Non-Newtonian Fluid
Mech, 138, 22–32.

Wilchinsky, A. V., D. L. Feltham, and P. A. Miller (2006), A multi-thick-
ness sea ice model accounting for sliding friction, J. Phys. Oceanogr, 36,
1719–1737.

�����������������������
D. L. Feltham and P. D. Taylor, Centre for Polar Observation and

Modelling, Department of Earth Sciences, University College London,
Gower Street, London WC1E 6BT, UK. (dlf@cpom.ucl.ac.uk)
D. Hatton and P. R. Sammonds, Mineral, Ice and Rock Physics

Laboratory and Centre for Polar Observation and Modelling, Department of
Earth Sciences, University College London, Gower Street, London WC1E
6BT, UK.

C11015 TAYLOR ET AL.: CONTINUUM SEA ICE RHEOLOGY CALCULATION

14 of 14

C11015


