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[1] Several continuous observational datasets of Artic sea-
ice concentration are currently available that cover the period
since the advent of routine satellite observations. We report
on a comparison of three sea-ice concentration datasets.
These are the National Ice Center charts, and two passive
microwave radiometer datasets derived using different
approaches: the NASA team and Bootstrap algorithms.
Empirical orthogonal function (EOF) analyses were
employed to compare modes of variability and their
consistency between the datasets. The analysis was
motivated by the need for a reliable, realistic sea ice
climatology for use in climate model simulations, for which
both the variability and absolute values of extent and
concentration are important. We found that, while there are
significant discrepancies in absolute concentrations, the major
modes of variability derived from all records were essentially
the same. INDEX TERMS: 9315 Information Related to

Geographic Region: Arctic region; 1863 Hydrology: Snow and ice

(1827); 4540 Oceanography: Physical: Ice mechanics and air/sea/ice

exchange processes; 3360Meteorology andAtmospheric Dynamics:

Remote sensing; KEYWORDS: sea-ice, passive microwave,

algorithms, EOF analysis. Citation: Singarayer, J. S., and J. L.

Bamber, EOF analysis of three records of sea-ice concentration

spanning the last 30 years, Geophys. Res. Lett., 30(5), 1251,

doi:10.1029/2002GL016640, 2003.

1. Introduction

[2] Changes in Polar sea-ice strongly influence surface
albedo and air-sea fluxes, making it an important component
of climate variability on seasonal to decadal time scales.
There is now substantial evidence that the extent of Arctic
sea-ice is decreasing at a rate of roughly 3% per decade, and
thinning [Johannessen et al., 1999]. The precise cause of this
decline is unknown, as is its influence on ocean-atmosphere
feedbacks, due to a relatively poor understanding of the
interaction of sea-ice with the rest of the climate system. In
an attempt to address this gap in understanding, simulations
with a GCM will be undertaken using observational data of
Arctic sea ice coverage as an input.
[3] For such a study it is essential to employ reliable

datasets that provide consistent coverage over the longest
available time period. We have examined three datasets that
provide multi-decadal estimates of sea ice concentration.
The US National Ice Center (NIC) has released weekly
operational charts of sea-ice concentrations spanning 1972–
1994, providing complete coverage of the Arctic for lat-
itudes above 45�N, digitized from original hardcopy onto
grids of resolution, 25 km [Arctic Climatology Project,
2000]. Several sources of information were used to produce

each chart, largely from satellite data (AVHRR and OLS,
complemented with passive microwave radiometer (PMR)
data from SMMR and SSM/I), ship and aerial reconnais-
sance data. Having been manually compiled from several
sources by experienced analysts, this dataset may arguably
be one of the highest quality records over the satellite era.
However, changes in data sources and expertise may have
created biases that are difficult to quantify.
[4] In an attempt to obtain a long temporal record, it was

believed, initially, that the NIC data could be extended to the
present day using one of the two other datasets, both derived
purely from satellite PMRdata. Nimbus-7 SMMRandDMSP
SSM/I data were combined using two different algorithms to
provide daily sea-ice concentration. One dataset uses the
NASA team algorithm for the period Oct. 1978 to Dec. 2000
[Cavalieri et al., 2002]. The second uses the Bootstrap
algorithm from Oct. 1978 to Sept. 2001 [Comiso, 2002].
[5] The two algorithms use different combinations of

sensor channels, reference brightness temperatures and
weather filters, and have different sensitivities to physical
temperature [Comiso et al., 1997]. The NASA team algo-
rithm derives radiance ratios from brightness temperatures to
calculate ice concentrations, using 19V, 19H and 37V GHz
channels provided by SSM/I. The NASA team use of ratios
reduces errors from surface temperature flucations. The
Bootstrap algorithm uses 37V, 37H and 19V GHz channels
to derive ice concentrations. The differences in NASA team
and Bootstrap processing of PMR data result in large differ-
ences in ice concentrations. Consequently, although ice
extent is similar (max. 1% difference, calculated by Comiso
et al. [1997]) there are considerable differences in total ice
covered area between the two datasets.
[6] Here, we present the results of time-series and EOF

analyses used to investigate differences in the three records
in terms of absolute values and variability, both of which
may have significant effects on simulation results, when
used in a GCM. It is necessary, therefore, to examine how
the datasets differ and how crucial these differences are for
their use in modeling studies.

2. Initial Dataset Comparisons

[7] In Figure 1, example monthly mean concentrations
for September 1994 for each of the sea-ice records are
compared. The NIC and Bootstrap records show high
concentrations with little deviation in the high Arctic,
whereas there is much more variation in the NASA team
dataset. The NIC data include some PMR data using,
mainly, the CAL/VAL algorithm [Hollinger et al., 1991].
This algorithm is optimized for the ice edge and is espe-
cially effective for thin ice. However, application in the high
Arctic tends to produce artificial saturation due to the
inability of the algorithm to detect small changes in con-
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centration in regions of near complete ice cover [Meier et
al., 2001]. As a result, the spatial variability of the NIC
record in the high Arctic may be unrealistic.
[8] The NASA team algorithm conversely has consider-

able drawbacks in the marginal ice zone, being insensitive
to thin ice. Additional biases are introduced from the
inability to distinguish summer surface melt from open
water, for example. In the summer months the NIC total
ice-covered area is �23% higher than the NASA team data
due to the influence of ice melt areas being interpreted as
low concentrations in the NASA team algorithm. This
difference is large enough to have a measurable impact on
ocean-atmosphere exchanges in GCM simulations [Parkin-
son et al., 2001]. A new NASA team algorithm is being
developed (the NT2 [Markus and Cavalieri, 2000]) that
overcomes the problems of low ice concentration biases
whilst not saturating at high concentrations. No NT2 time
series is currently available, however.
[9] An inherent assumption in the Bootstrap algorithm is

that there are large regions in the Central Arctic during
winter with ice concentrations of 100%. It produces high
concentrations in the inner ice pack similar to the NIC data.
The Bootstrap algorithm is more sensitive to thin ice than
the NASA team, but less so than the CAL/VAL.
[10] Time-series of the summer mean, ice-covered area,

(Figure 2a), illustrate the magnitude of the absolute differ-
ences between the datasets. Despite these differences, trends
in the time-series are highly correlated (r2 = 0.87 for NIC
and NASA team, calculated with anomalies for 1979–1994;
and r2 = 0.9 for NIC and Bootstrap, both significant at the
99.9% level). The winter mean time series show propor-
tionately less difference between the datasets (Figure 2b).
The correlation is lower (r2 = 0.6 for NIC/NASA, r2 = 0.62
for Bootstrap/NIC), but still significant at the 99% level.

[11] That the largest differences occur during summer
suggests that the effect of summer melt areas on PMR
retrieval is one of the most important causes of the dataset
discrepancies, particularly affecting NASA team concentra-
tions. Given the differences seen in Figures 1 and 2, EOF
analyses were used to assess how consistent spatial/tempo-
ral modes of variability were between the datasets.

3. EOF Analysis

[12] In EOF analysis, 3-dimensional data (varying in
position and time) undergo orthogonal decomposition of
the space-time matrix. The result is a set of 2D eigenvector
elements that can be plotted on a map (EOF) in the same
locations as the original data, and corresponding 1D principal
components (PC) that are a function of time. The spatial
EOFs depict locations contributing most strongly to the
respective PC. The highest EOFs are sometimes interpreted
as uncorrelated physical modes of variability of the field
under examination, although, care should be taken to avoid
misinterpreting noise for variability. The datasets span a
relatively short time period, which may limit identification
of lower frequency modes (quasi-decadal oscillations such as
the NAO). However, one of the motivations for using an EOF
analysis is to allow a comparison of variability between the
datasets rather than assigning a physical meaning to the PCs.
[13] EOF analysis was performed on monthly sea-ice

concentration anomalies. The method was applied to the
datasets for the period of overlap (Jan 1979– Dec 1994). The
leading four EOFs are displayed in Figure 3 (positive
anomalies in orange, negative anomalies in blue, when the
PC time series is positive), as are the percentages of the total
variance explained by each. Only�20% of the total variance
is explained by the first four EOFs from the NIC dataset,

Figure 1. Maps of percentage sea-ice concentration
averaged for September 1994 for three datasets: (A) NIC
charts, (B) NASA team record and (C) Bootstrap record.
For the satellite PMR data, the gap over 84� lat. is filled
with 95% ice concentration, similar to the NIC records at
high latitudes. All data have been converted to EASE grid
projection.

Figure 2. (A) Times series of summer (JAS) mean total
ice-covered area for each of the datasets, and (B), time
series of winter (JFM) mean ice-covered area. Ice-covered
area is defined as integrated ice concentration.
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compared to �31% in the PMR records. The majority of the
variance is not explained in the four leading modes. Since
daily and weekly variations have been averaged out it is
suggested that there is substantial variation in spring and
autumn anomalies not associated with the most significant
EOFs (K. Partington et al., The late twentieth century North-
ern Hemisphere sea-ice record from US National Ice Center
ice charts, submitted to Journal of Geophysical Research,
2002, hereinafter referred to as Partington et al., submitted
manuscript, 2002). Higher variance is explained by the EOFs
in the PMR data compared with the NIC. Possibly this is due
to the single data source, as opposed to the various sources
compiled in the NIC over time that may produce additional
uncorrelated noise.
[14] In the determination of the number of principal

components to retain in order to separate meaningful
signals (highest EOFs) from noise (lower EOFs) we exam-
ined scree plots [Wilks, 1995] of eigenvalues vs. EOF

number (Figure 3, lower plots). Theory suggests that the
steep slope represents signal and the shallow slope noise
and that the latter will decay exponentially. An exponential
fit to the shallow slope in the scree plot for the NASA data
has been plotted and suggests that the first 4 EOFs contain
meaningful variability.

4. Discussion

[15] Encouragingly, despite the large differences in abso-
lute values examined in section 2, EOFs 1 to 4 (Figure 3)
describe the same modes of variability, in each of the records.
Small differences in the patterns are observed, however,
which increase in their extent towards the lower EOFs.
[16] EOF1 describes the largest variance, and is the most

similar in the datasets. There are strong negative centers of
activity in the Greenland Sea, the Barents Sea and Sea of
Okhotsk of opposite sign to those in the Labrador and
Bering Seas (Figure 3 shows location of Seas). Figure 4
shows the corresponding PC1, which has a period of �9
years (determined using an autocorrelation function). PC1
from the NIC and Bootstrap data, for their whole duration,
are superimposed to demonstrate the persistence of this
periodicity for the last 30 years. Standard deviations of
PC1 for each month show EOF1 is a winter phenomenon.
This is the time of year when concentration are closest in the
datasets (Figure 2).
[17] Partington et al. (submitted manuscript, 2002) found a

high correlation between EOF1 and the winter North Atlantic
Oscillation (NAO) index from the previous year; a findingwe
confirm. They suggested the delay indicates the impact of
NAO driven anomalies on multi-year ice, influencing mar-
ginal Arctic seas after one year. Advection of sea-ice anoma-
lies in the Greenland and Barents Seas into the Labrador Sea
takes�4 years (half the period of this mode), resulting in the
opposing sign in this area in the EOF pattern.
[18] The EOF2 patterns are similar in the three records,

but display small differences (e.g. magnitude in the Labra-
dor Sea). Based on the standard deviation of PC2, this
component is a predominantly summer phenomenon, the
time of year when the datasets show the largest discrep-
ancies. In spite of this, the spatial variability of this mode is
not significantly affected. The PC2 time series shows
periodicity of over 10 years. Partington et al. (submitted
manuscript, 2002) found that this EOF also related to the
NAO from the previous year and suggested that winter sea

Figure 3. The first four EOF patterns for the three sea-ice
datasets. The percentage variance described by each EOF is
given in the corner of each sub-plot. Eigenvalue vs. EOF
no. is plotted (lower) for each dataset. In NIC EOF1
numbers given indicate locations of: (1) Bering Sea (2) Sea
of Okhotsk (3) Chukchi Sea (4) East Siberian Sea (5)
Laptev Sea (6) Kara Sea (7) Barents Sea (8) Greenland Sea
(9) Labrador Sea (10) Beaufort Sea.

Figure 4. PC1 time series for the NIC and Bootstrap data.
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level pressure anomalies cause ice export from the East
Siberian and Laptev Seas (during positive NAO phase) and
import/build-up of ice in the Kara Sea, preconditioning
summer ice anomalies. Analysis of sea-ice motion data by
Rigor et al. [2002] has directly shown stronger advection
away from the East Siberian and Laptev seas during high-
index phase Arctic Oscillation (related to the NAO), which
opens up leads in winter, enhancing formation of thin ice.
The winter advection pattern resulted in lower sea-ice
concentrations and thinner ice-cover in the East Arctic in
the subsequent summer.
[19] The EOF3 patterns are similar in areas of strongest

activity, but there are more differences between the records
than in the higher EOFs, especially in the East Siberian Sea,
where the spatial extent of the pattern is larger in the PMR
records than the NIC.
[20] In EOF4, larger differences were observed, the sign

of the EOF pattern in the Sea of Okhotsk and the magnitude
in East Siberian Sea being the main discrepancies. EOF4
has been related to centers of freshwater inflow/outflow in
the Arctic (EOF2 in Partington et al. (submitted manuscript,
2002)), which have a significant effect on circulation.

5. Conclusions

[21] The analysis presented here was intended to assess
the similarity of three Arctic sea-ice concentration records
that will potentially be used in conjunction with GCM
simulations. A dataset that describes the real variability is
essential. Significant differences rise in the datasets due to
differences in source and processing methodologies. In
general, the NASA team data produce lower ice concen-
trations than the Bootstrap, and the NIC record shows
higher concentrations than both of these. In the high Arctic
large areas of near-saturated concentrations are observed in
the NIC and Bootstrap records, whereas the NASA team
shows more variation.
[22] The magnitude of absolute differences implies that

combination of the datasets to obtain a consistent 30-year
record will not be straightforward. Nevertheless, given that
the major modes of variability, derived from EOF analysis,
show relatively long periodicities, a dataset of at least this
length would be preferable. Despite the differences in sea
ice area equivalent modes of variability are obtained from
all three datasets. Small discrepancies occur in the less
significant modes. In general the PMR datasets produce
more widespread EOF patterns when compared with the
NIC record.
[23] The coincidence of the most significant modes of

variability makes the choice of dataset for modeling studies
less critical if variability is more important than absolute
magnitude. It has not been possible to identify one dataset
as being more reliable or realistic than another, although the
strengths and weaknesses of the algorithms used to generate
them are well known. For example, Comiso et al. [1997]
compared Bootstrap and NASA team with SAR and
AVHRR data, but neither proved to be ‘‘better’’ than the
other overall.
[24] Ice concentration and ice area are important variables

in climate modeling since areas of open water are of major

significance for the ocean-atmosphere exchange of heat and
moisture. Heat flux from the ocean to the atmosphere within
leads and thin ice can be two orders of magnitude greater
than through the ice cover, even though being only a few
percent of the surface area of ice [Maykut, 1978]. Therefore,
the differences between the datasets may have a measurable
effect on simulation results. In a study to examine the
sensitivity of climate simulations (GISS GCM) to pre-
scribed sea-ice concentrations Parkinson et al. [2001] found
that uniform biases of ±7% could affect regional temper-
atures by over 6�C, and global surface air temperatures by
0.27�C. However, open water is most important for heat
exchange during winter, which is when the datasets display
the greatest similarity (5–10% difference in ice-covered
area between NIC and NASA team data compared with up
to 23% in summer). Thickness of sea-ice, which has not
been considered here, is an equally important parameter.
Rapid decreases in exchange rates occur as ice forms in
open water, but even 0.5m ice allows net heat loss an order
of magnitude larger than thick multi-year ice [Maykut,
1978]. Consequently, the insensitivity of the NASA team
algorithm to thin ice, partly responsible for the lower ice-
covered area obtained from this algorithm, may be less
important given the similarity of exchanges through thin ice
and open water.
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