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ABSTRACT 

Engine fleet management has always been one of the most challenging tasks in 

any airline as it requires assuring reliability and cost effectiveness of engine 

operation at all times. The engine maintenance expenses are quite significant 

and accounts for about one third of the total aircraft maintenance costs. For all 

airlines with “Labour & Material” type of contractual arrangement with respective 

OEM / MRO provider, maximizing engine’s Time On-Wing (TOW) is extremely 

crucial to face lower maintenance costs, while at the same time abiding by 

governing airworthiness standards. Engine’s TOW is generally limited due to at 

least one of the following reasons: performance degradation reflected by lower 

Exhaust Gas Temperature (EGT) margin, hot section hardware life monitored by 

regular borescope inspections and Life Limited parts (LLP) expiry enforced by 

OEM or regulatory authority. 

After introducing relevant aero engine maintenance concepts and terminology, 

this thesis will serve to provide both qualitative and quantitative assessment of 

how certain operational factors of flight profile influence engine performance 

deterioration and maintenance costs. One such factor is the thrust rating of the 

engine. Higher thrust gives rise to higher internal temperatures, exposing engine 

hardware to greater mechanical and thermal stresses and therefore leading to 

faster rate of degradation and earlier engine removal. 

This thesis will be of interest to airlines having at least two different types of 

aircraft models in their fleet with different average flight profiles but powered by 

the same engine model with the required thrust variant. A particular engine may 

spend some time first on the aircraft that requires higher thrust rating before being 

switched to the aircraft that requires lower thrust rating or vice versa. This thesis 

will look into the feasibility of such an operational strategy through different 

aspects and discuss its effectiveness in retaining the engine performance for a 

longer time, thereby affecting the operating fuel costs and restoration costs per 

flying hour expected at the time of shop visit. 

Keywords: Gas Turbine, Turbofan, Soft Life, EGT Margin, Creep, Low Cycle Fatigue  
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1 INTRODUCTION 

1.1 Context 

One of the factors that influence engine operation and performance on-wing is 

the thrust rating of the engine and there are thrust management options available 

to enhance engine’s life on-wing and thereby reduce the overall maintenance 

costs. The project would perform the feasibility study of one such option that may 

be known in the airline and MRO industry but has not been yet discussed in 

academia to the best of the author’s knowledge.  This option involves splitting the 

engine usage between high thrust rated aircraft and low thrust rated aircraft 

before the engine undergoes heavy maintenance and overhaul. 

Although the expertise lie with the manufacturer of the engine, with moderate 

awareness of physics based lifing methods combined with the capability of 

performing empirical studies based on readily available engine performance data 

through diagnostic tools, the operator is able to more closely predict engine’s time 

on wing and prepare accurate engine removal forecast plans. In addition to the 

robust engine fleet management, this strategy would allow flexibility and 

confidence in making the operators take decisions themselves, rather than strictly 

following all the time, the recommendations and MRO solutions from OEMs and 

repair vendors, which may not serve the operator’s financial interest. 

1.2 Inspiration 

There exist several examples in civil aviation where one engine model in the 

market possesses options for multiple thrusts that meet the propulsion 

requirements of more than one similar aircraft type. The CFM56-7BE, for 

instance, is the exclusive engine for the Boeing Next-Generation single-aisle 

aircraft family (B737-600/-700/-800/-900/-900ER/ BBJ) [1]. The CFM56-5B is a 

powerplant for entire Airbus A320 family [2]. Rolls Royce Trent 500 can be 

installed on both A340-500 and -600 aircraft with different thrust ratings. The 

airline operators with such mixed fleets have a distinct commonality advantage 

and can appreciate operational, maintenance and provisioning synergies [3].  
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The thesis will conduct the study by considering the practical case of an airline 

that operates aircraft similar to two versions of Boeing 777 aircraft. One is B777-

300ER and the other is B777-200LR. Both aircraft types have the same GE90 

engine installed but with different thrust ratings. B777-300ER is powered by 

GE90-115B, while B777-200LR is powered by GE90-110B. Some of the 

questions that would be explored are as follows. How long can the engines on 

the two B777 variants continue flying before their next shop visit? Can a study be 

performed to analyse and determine the best possible usage of a new or an 

overhauled GE90 engine between two different B777 versions? In other words, 

will the strategy of using the engine with a high thrust rating initially on B777-

300ER and then with a lower thrust rating on B777-200LR be beneficial from the 

operational or maintenance cost perspective? If it exists, where exactly should be 

that point of switch between two thrust ratings in order to maximise the engine’s 

time on wing? 

 

Figure 1-1 B777 Thrust Rating Change 
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1.3 Aims & Objectives 

The main aim of this research is to examine the impact of thrust rating change on 

the engine’s life expectancy on-wing and its effect on operating costs and 

refurbishment costs incurred off-wing. To commence with, two baseline flight 

mission profiles are set up with identical specifications but with the appointment 

of two different aircraft variants with slightly different engine thrust ratings. For 

comparison purposes following objectives were set with regards to each of the 

flight missions. 

 To evaluate the mechanical and thermal stresses experienced by the 

engine’s High Pressure Turbine (HPT) Stage 1 blade during different 

phases of the flight.  

 To estimate the engine hardware life also called ‘soft life’ by performing 

physics based lifing analysis on the HPT Stage 1 blade.  

 To illustrate the performance of a clean versus degraded engine and to 

assess the impact of degradation on engine time on-wing (TOW)  

 To determine the limiting factor for engine time on-wing, Soft Life Expiry, 

or EGT Margin depletion. 

 To demonstrate the effect of maximizing or minimizing engine Time On-

wing on engine shop visit maintenance and engine operating fuel cost. 

 

1.4 Thesis Structure 

The present thesis is divided into nine main chapters where each chapter 

contributes towards achieving the main objectives. 

 

Chapter 2: Background & Literature Review 

This chapter provides theoretical concepts and background information relevant 

to this study. It discusses the factors that influence engine’s life on the aircraft 
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and the major causes of engine removal. The chapter also entails literature 

review on the lifing methodologies and the dominant failure modes in aero-

engines. 

Chapter 3: Methodology 

This chapter provides an overview of the multidisciplinary physics based 

approach adopted and used iteratively throughout the project to estimate engine 

Time On-Wing. 

Chapter 4: Engine Model Creation & Simulation 

This chapter demonstrates the use of Turbomatch software tool to create a 

baseline model for a high bypass turbofan engine similar to GE90 and select the 

engine thermodynamic cycle parameters for best design point performance. It 

also analyses the results from off-design performance simulations based on 

variations in mach number, altitude and outside air temperature. 

Chapter 5: Aircraft and Flight Mission Model 

This chapter explains the use of aircraft performance software tool, named 

Hermes, to create two reference flight mission profiles, one for each of the two 

aircraft variants with different thrust ratings. The engine operational data 

generated for the two missions through simulations is finally compared to 

understand the effect of thrust rating on severity of operation.  Also, the aircraft 

models built in Hermes are validated by means of Payload-Range diagram. 

Chapter 6: Engine HPT Blade Model 

This chapter reveals the geometry and material characteristics of the high 

pressure turbine (HPT) stage one blade chosen as the component for analysis to 

determine engine’s overhaul life. It mainly discusses the development and usage 

of stress and thermal models that actually translate the engine performance data 

into blade centrifugal stresses and metal temperatures, considered to be the 

primary ingredients of an overall lifing model. 
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Chapter 7: Engine Soft Life Estimation 

This chapter discusses the lifing theories for the two main HPT blade damage 

mechanisms considered in this thesis - Creep and Low Cycle Fatigue (LCF). It 

elaborates and demonstrates the use of associated physics and empirical based 

formulations to estimate the life for the respective failure mode, and then finally 

an appropriate cumulative damage rule to estimate the overall life of the 

component, also regarded as the engine soft life.  In this chapter the soft lives 

calculated for the engines flying the baseline missions do not take into account 

any effect of degradation.  

Chapter 8: Engine Time On-Wing Assessment 

This chapter first introduces a performance degradation profile and then re-

evaluates the engine soft lives to obtain more realistic figures. The chapter also 

explores the options an airline operator may exercise to influence the engine 

Time On-wing by sharing the engine life usage between the high thrust and the 

low thrust rated aircraft. Furthermore, it points out the expected economic 

implications of such options in terms of operational and maintenance cost. 

Chapter 9: Conclusions & Further Recommendations 

This chapter summarizes the main achievements of the research work and also 

highlights some of the limitations. Furthermore, it outlines few proposals for future 

work which would add refinements and perhaps lead to exploration of new 

aspects within the same research area. 

 





 

19 

2 BACKGROUND & LITERATURE REVIEW 

The purpose of this section is to offer a preliminary familiarization of the standard 

engine maintenance concepts and terminology used by the airlines, OEMs and 

MRO industry. It also provides theoretical background information and literature 

review performed relevant to the study.  

2.1 Civil Aircraft Gas Turbine Engines 

Turbofan is the most conventional gas turbine engine seen on commercial and 

business jet aircraft nowadays. The most distinguishing feature of a turbofan is 

the large fan, enclosed in the bypass duct right in front of the engine. The airflow 

that enters the engine splits into two air streams. The air entering the propulsor 

or core of the engine (core stream) is compressed along various stages of the 

compressor, until this highly pressurized air is mixed and burned with fuel in the 

combustor. Energetic hot gases produced as a result of combustion drive the 

turbine, which in turn rotates the compressor through a shaft, and also generate 

small percentage of thrust through exhaust. The airflow entering in the bypass 

duct (fan stream) is accelerated separately, providing majority of the thrust from 

the engine. Turbofan engines are fuel efficient, relatively quiet, and can provide 

higher thrust [4].  

 

Figure 2-1 GE90 Twin Spool Turbofan Engine [5] 
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Turbofans with twin-spool architecture include Low Pressure Compressor (LPC) 

fan and High Pressure Compressor (HPC) independently driven by Low Pressure 

Turbine (LPT) and High Pressure Turbine (HPT) respectively. Alternatively, triple 

spool architecture includes an additional independent shaft, coupled with 

intermediate pressure compressor (IPC) and intermediate pressure turbine (IPT). 

Although this design involves complex construction, it provides better operational 

stability [4][6]. 

The engine’s hot section, which comprises HPC, Combustor and HPT modules, 

is subjected to most severe conditions in terms of temperature, pressure and 

rotational speed and therefore experiences fast deterioration. The temperature is 

maximum at the face of the HPT, post combustor.  With turbine entry 

temperatures (TET) as high as above 1500oC [4], measurement of such high 

temperatures, even using the most sophisticated instrumentation, becomes 

impossible. The temperature at the engine exhaust (EGT), though relatively lower 

than TET, is a good reflection of the temperatures upstream. This is why EGT is 

one of the key operating parameters used for engine health monitoring [7]. 

 

Figure 2-2 Variation of the TET during a typical flight cycle of a civilian aircraft [8]  
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2.2 Major causes of Engine Removals 

Engine Condition Monitoring (ECM) and regular borescope inspections of the gas 

path help engineers predict the appropriate time for engine removal for shop visit. 

Generally there are three major causes that lead to engine removal: EGT margin 

deterioration, hardware degradation, and LLP expiry. It has been observed that 

the causes of engine removals depend heavily on the type of aircraft operation. 

Short haul sector removals tend to be due to EGT margin deterioration and LLP 

expiry, while medium to long-haul sectors removals are rather caused by 

hardware degradation and EGTM deterioration [4] [7]. 

EGT Margin Degradation  

Among the many reasons for the fall in EGTM is the rubbing wear that occurs in 

both engine components: compressors and turbines. Rubbing wear refers to the 

loss of material due to the contact between blade tips and static knife edge seals 

or shrouds around the casing [9]. This increases seal or tip clearances with time, 

which results in the leakage of working fluid, decreasing the efficiency of the 

respective component and consequently affecting the overall engine 

performance [7]. In order to maintain the same desired thrust level there is a rise 

in fuel burn and hence EGT. Ultimately, the engine will be planned for a shop visit 

when there is little or no EGT margin left.   

Some of the other important degradation mechanisms that lead to loss of EGT 

margin are as follows. Fouling is caused by airborne contaminants deposited on 

the airfoils and gas path annulus surfaces. Erosion involves wearing away of 

material from the airfoils and surfaces by small solid particles in the atmosphere. 

Corrosion also causes material loss and surface roughness due to the chemical 

reaction between flow path components and ingested contaminants through air, 

water and fuel. All the above mentioned mechanisms manage to change the 

airfoil shape profile, thereby affecting the flow capacity and efficiency of the 

respective engine component [9]. 
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Hardware Deterioration  

This relates to the general wear and tear of the engine gas path components, 

particularly the physical deterioration of the hot section modules (HPC, 

Combustor and HPT) which experience the highest mechanical and/or thermal 

stresses during engine operation. An HPT blade, for example, gets exposed to 

harshest conditions as it is subjected to extreme rotational speeds and high TETs, 

and therefore suffers from the following principal damage mechanisms: Creep, 

Fatigue and Oxidation. These mechanisms are responsible for the depletion of 

the hardware life and in worst case have the potential to cause catastrophic 

engine failures if not detected at earlier stages. 

Engine hardware failures due to such phenomena cannot be precisely predicted 

[7]. However, engine manufacturers, from their experience or after carefully 

studying the engine utilization and operational details, do recommend ‘soft life’, 

beyond which the operators are advised to remove the engine from the aircraft 

for overhaul.  In addition, borescope inspections carried out at regular intervals, 

as part of a conservative maintenance program, provide a good reflection of the 

engine’s health by spotting any signs of anomalies in the gas path such as cracks 

and/or missing material exposing the internal cavities of the blade. If the 

inspection results fall outside the limits of the manufacturer’s engine manual 

guidelines, the engine is soon called for removal. 

Creep 

Creep refers to the tendency of a material to undergo progressive deformation 

with time under the effect of high temperature and constant mechanical stress. 

Creep is said to be a time-dependent deformation. Under the influence of 

relatively high temperature, plastic deformation of a material is bound to take 

place even if the stress is smaller than the yield stress. This deformation is time-

dependent and is known as creep. Gas turbine engine on a civilian aircraft spends 

majority of its flight time in steady state cruise conditions and therefore sets an 

opportunity for creep to act on the HPT blade during that time period. Creep is 

highly sensitive to temperature and shows its significance when metal 

temperature reaches about 40% to 50% of the melting temperature [10]. The 
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cooling technology used in the HPT is always carefully and precisely designed. 

In the absence of appropriate cooling, the creep deformation may become large 

enough to cause a turbine blade to touch the casing, resulting in blade tip failure.  

The creep process can be represented by the following strain versus time curve. 

 

Figure 2-3 Strain vs Time Creep Curve [11] 

The slope of the curve is called strain rate or creep rate. Initially, there is always 

some instantaneous elastic strain εo immediately upon application of load. Then, 

in the primary stage, the high creep rate tends to drop with time as the material 

faces an increase in strain hardening due to the build-up of a large number of 

dislocations. Deformation then becomes relatively difficult as the material is 

strained. In the secondary stage the creep attains constancy while maintaining a 

balance between the two metallurgical processes of strain hardening and thermal 

recovery. It is this stage where the material spends most part of its creep life [10]. 

Lastly, in the tertiary stage the strain rate accelerates rapidly leading to ultimate 

failure known as rupture. This failure could be the result of reduction in cross 

sectional area often termed as necking, caused by micro structural changes such 

as coalescence of voids or cavities, formation of internal micro cracks, sliding of 

grain boundaries [12]. 
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Fatigue 

Fatigue refers to the tendency of a material to undergo progressive deterioration 

when subjected to conditions involving cycles of fluctuating stresses or strains. It 

is the repeated application of load that leads to localized plastic deformation and 

potential failure even though the maximum stress may still be less than the yield 

stress [11]. The applied stress could be in the form of axial tension/compression, 

flexural bending, or torsional twisting [13].  

The evolution of fatigue failure normally takes place in three main phases: crack 

initiation, crack propagation and final fracture. It starts with a minuscule crack that 

develops on the material surface at some local stress concentration caused by 

microscopic dislocation movement or slip. The effect of stress concentration 

increases after crack initiation, causing the crack to slightly grow and deepen first 

along the plane of high shear stresses and then elongate and propagate further 

across the grains and/or grain boundaries along the plane normal to high tensile 

stresses [10] [14]. The cross sectional area bearing the cyclic loading keeps on 

decreasing, until eventually it is no longer able to sustain the increasing load. At 

this instance there is a sudden failure which occurs without any prior warning. 

Gas turbine engine is susceptible to three main types of fatigue namely Low Cycle 

fatigue (LCF) High cycle fatigue (HCF) and thermo mechanical fatigue (TMF). 

LCF is mechanical fatigue characterized by relatively high stress cycles that make 

plastic deformation dominant compared to elastic deformation. Consequently the 

material has shorter life and survives less than 104 to 105 cycles to failure. In aero 

gas turbine engines, LCF is caused by recurrent loading cycles of transient 

operation including conditions during engine start, takeoff or shutdown. In 

contrast, HCF is mechanical fatigue characterized by relatively high number of 

low stress cycles which solely produce elastic deformation. The material therefore 

has longer life and is expected to experience stress cycles above 104 or 105 

before failure. The following are few reasons of HCF in turbomachinery operation: 

- mechanical vibration due to rotor imbalance, wake excitation in downstream 

blades and upstream stator vanes, and aeromechanical instability due to aerofoil 

vibration or flutter [11]. 
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Figure 2-4 Cycles to Failure for LCF and HCF [11] 

 

TMF is a form of fatigue which involves recurring thermal stresses in addition to 

the cyclic mechanical loading. TMF normally occurs during transient segments of 

engine operation when there are dramatic variations in temperature and load 

profiles, for example during engine start-up, takeoff acceleration or shutdown etc. 

The HPT blades for instance, with sophisticated and effective internal cooling 

system within their cavities, are able to face increasingly hot gas temperatures. 

Adversely, the resultant strong thermal gradients produced in the thickness of the 

blade surface, together with high mechanical stresses, induce localized transient 

strains which eventually cause TMF crack formation. Hence, ‘as greater 

performance is demanded of gas turbines, operating temperatures increase, 

rotational speeds increase, thermal transients intensify, and durability suffers 

[15]. 

Oxidation 

Oxidation is another time dependant complex damage mechanism, traces of 

which are widely seen in the hot components of the gas turbine engine where 

temperatures are above 500oC [16]. Turbine blades, in particular, made up of 

nickel based superalloys, experience surface deterioration due to the formation 
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of thin layer of nickel oxide, leading to erosion and spallation of blade material, 

thus affecting the mechanical integrity. 

 

LLP Replacement  

Life-Limited Parts (LLPs) designate specific rotating and static structural parts of 

an aero engine, of which the failure can be hazardous to the safety of the aircraft. 

These parts are declared to be life-limited by the manufacturer and regulatory 

authorities in relation to their time in service, i.e. they must be removed after a 

specified amount of time or cycles, even if they appear new. Rotational LLPs 

generally include disks, spools and shafts whereas static LLPs include high 

pressure cases [17] 

During flight, rotating LLPs in particular hold an amount of energy higher than 

what can be absorbed by the surrounding engine structure. Therefore, it is 

important to establish a time limit for such parts in a bid to prevent fatigue damage 

from initiating crack and/or from developing into uncontained failure [17].  

The life limit is normally specified by the number of flight cycles a LLP is allowed 

to be in service for. The operator is required to maintain an accurate history of 

the total flight cycles of operation for all LLPs and must ensure not to exceed their 

respective cyclic life limits. ‘Stub-Life’ is the terminology often used by operators 

to denote shortest life remaining of all LLPs installed on an engine. Once the 

engine has accumulated as many flight cycles as the stub-life, the engine has to 

be sent to the workshop or overhaul agency for replacement of the expired LLPs 

[4]. 

Unscheduled Events 

Engines may have to be removed due to unscheduled events, which can include 

engine system failures, engine vibration or foreign object damage (FOD). 

Engine system failures can be caused for instance by lubrication system 

problems, such as oil leaks or oil pump malfunctions [7]. High oil consumption by 
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the engine can indicate an internal deterioration of the lubricated mechanical 

parts or even of the whole engine.  

Vibrations caused by imbalance or misalignment can occur within the principle 

rotating system components of the gas turbine engine, such as the rotors, blades, 

discs, bearings or gears.  Undetected, these vibrations can progressively 

increase and result in catastrophic failures.  

Foreign objects that can result in engine FOD include birds, ice or ash as well as 

runway debris [4]. The ingestion of larger objects like birds can lead to 

significantly damage the fan- and the LPC blades, although it usually does not 

put a flight in danger [13]. The ingestion of foreign objects often has unobvious 

effects such as like minor cracks, which can however propagate by progressive 

engine wear. 

2.3 Relation between Time on-Wing and Maintenance Cost 

The amount of time an engine can stay on the aircraft before being removed for 

shop visit, commonly referred to as Time on Wing (TOW), directly influences the 

cost of a single shop visit, as well as the engine Direct Maintenance Cost (DMC) 

expressed in cost per flying hour (USD/EFH).  

In general, an increase of the TOW results in an increased deterioration of the 

engine, and thus in an increase of the required maintenance work performed at 

one shop visit.  

However, due to the extended intervals between two shop visits, this cost is 

compensated, which results in a decrease of the overall maintenance cost per 

flight hour, or Direct Maintenance Cost. 

In the long-term, however, when the TOW reaches a certain point, the engine 

deterioration accelerates, which results in a severe increase of shop visit cost 

and consequently an increase of the overall DMC per flight hour [7]. 

The task of the shop visit management is to find the optimal TOW that 

corresponds to the lowest DMC. The following figure illustrates the relationship 
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between the engine’s TOW and the DMC per flight hour, as well as the “target 

TOW”. 

 

Figure 2-5 TOW vs Maintenance Cost per Engine Hour[18]  [2] 

 

2.4 Factors influencing Time on Wing 

“An engine’s TOW is heavily influenced by the severity of the operating 

environment it is exposed to” [4]. Key factors influencing the TOW, briefly 

discussed below, include thrust rating, flight length, take–off derate, ambient 

temperatures and environment. 

Thrust Rating 

A given engine can be operated at different thrust levels, in compliance with its 

variable power control setting. When operated at a higher thrust, the engine faces 

faster deterioration due to the increased thermal stress on the hardware, which 

leads to a lower EGT margin [7]. Reducing the engine’s thrust rating is therefore 

a way to slow down its hardware deterioration, and consequently to increase its 

TOW. Figure 2-6 illustrates the relationship between an engine’s thrust rating and 

its EGT Margin deterioration.  
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Figure 2-6 Engine Thrust Rating vs TOW [4] 

Average Flight Length 

The average flight length of an aircraft is an important factor influencing the 

engine’s need for maintenance. 

For short cycle flights, the engine spends most time using take-off and climb 

settings, and these are the phases in which an engine faces most stress and 

wear, and therefore more deterioration. This is why the TOW of engines operated 

on short cycle flights are measured in Engine Flight Cycles (EFC) rather than 

Engine Flight Hours (EFH). For medium to long-cycle flights, the TOW is usually 

calculated in EFH.  

Another way to measure TOW considering the flight length is by using the flight 

leg length, which is the ratio flight hour to flight cycle (FH:FC). 

As Figure 2-7 shows, a decrease in the average flight leg leads to shorter TOW 

and higher maintenance costs because the engine deteriorates faster. Shop Visit 

Rate, which is the number of shop visits per 1000 EFH (SV/EFH) behaves in a 

similar way [7]. 
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Figure 2-7 Effect of Engine flight length on SVR & DMC [7] 

 

Take-off Derate  

Take-off derate refers to setting the engine to a thrust below to its maximum level 

at the time of take-off. This can be done if the aircraft weight is below its 

maximum, in the case of lengthy runway, or in the case of relatively low ambient 

temperatures [7]. Usually the thrust derate falls 10-15% [7]. Take-off derate 

results in lowering take-off EGT, and consequently in lowering the engine 

deterioration, which results in lower maintenance costs. It is generally the first 5% 

of thrust derate that is most significant for the operational severity than the 

following levels [7] . 

 

Figure 2-8 Effects of Engine Derate [4] 
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Ambient Temperatures 

As demonstrated in Figure [] the EGT during take-off is directly influenced by the 

ambient air temperatures. In order to prevent the engine from operating at EGTs 

that could result in severe damage, the digital engine control keeps the EGT and 

EGT margin constant at all OATs above the corner point temperature, by 

reducing the engine’s thrust. However, at OATs below the corner point, the thrust 

is kept constant and the available EGT margin increases as the OAT decreases 

[25]. In other words, low ambient air temperature result in low gas path 

temperatures, which reduces the thermal loads on the engine’s hardware and 

thus prolongs engine time on-wing. 

Turbofan engines are normally flat rated to ambient air temperatures around 

International Standard Atmosphere (ISA) + 15°C, or sea level conditions. The 

turbine entry temperature at max take-off and max climb rating increase as 

ambient air temperature increases, up to their limit value. Therefore, an engine 

exposed to high ambient temperatures will experience greater performance 

degradation [4]. 

 

Figure 2-9 Relationship between Thrust, N1, EGT against OAT [19] 
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Environment 

There are some environmental factors that can contribute to engine deterioration 

and thus influence engines’ TOW. Air polluted with dust, sand, industry emission 

or volcanic ash can erode compressor and turbine blades, and block cooling 

holes. Salty air near the coast can accelerate corrosion and oxidation of engine 

parts [4].  

Engine Age 

First-run engines usually last considerably longer on wing than mature-run 

engines, sometimes up to 20-30 % longer [4]. This is because mature-run 

engines face more hardware deterioration and higher scrap rates. However, once 

an engine reaches maturity, which it can as early as after its first shop visit, the 

TOW and DMC stabilize to a relatively steady state [7].   

 

Figure 2-10 Effects of Engine Age [4] 

 

2.5 Significance of Thrust Rating on TOW 

From the earlier discussion it was noted that the operating conditions an engine 

experiences throughout a flight mission have a direct bearing on the shop visit 

rate, engine maintenance cost and engine operating cost.  If all other conditions 

are kept constant, then higher ambient temperatures will result in higher SVR, 

operating from higher altitude airports will cause higher SVR, operating within 
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shorter flight sectors will cause higher SVR than longer flight sectors, flying in a 

highly erosive environment will also cause higher SVR than a low erosion 

environment.  

All these flight conditions, whether adverse or beneficial, are to be found in 

airline’s pre planned route structure, and hence cannot be controlled. Thrust 

rating, however, is a factor that airlines have power over, to some extent. 

Therefore, managing the engine thrust rating is an option airline operators have 

the privilege to avail. In fact, thrust management can be deemed as the dominant 

strategy to sustain engine performance. 

Reducing the thrust of an engine, where applicable, implies a reduction of its peak 

rotational speed and TET, and hence a slower deterioration of the engine’s hot 

section components. Therefore, thrust rate reduction can increase not just an 

engine’s life, but also its TOW, and thereby result in reduced engine maintenance 

costs.    

Management of thrust rating can be categorized into three types. The first one is 

take-off derate, a common practice among pilots during take-off under favorable 

flight conditions. The second one, still under research, is variable rating control, 

where the thrust rate of the engine is being kept at its minimum required level, 

which varies throughout the flight cycle. The third one, the central idea of this 

thesis, is thrust rating change. Here the objective is to switch an engine from an 

aircraft requiring higher thrust to an aircraft requiring lower thrust. Each type will 

be briefly elaborated on as follows. 

2.5.1 Application of Derated Thrust 

Derating is recognized in the aviation industry as being considerate to engine life, 

although its utilization is at the discretion of the pilot.  Both engine manufacturers, 

GE and RR in their respective papers [20] and [21] have discussed in detail the 

potential benefits and limitations of adopting different derating philosophies 

during takeoff and climb in combination. Derating is possible in situations when 

the take-off weight is below the maximum take-off weight MTOW of the aircraft, 

there is availability of a long runway or the ambient temperature during take-off 
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is relatively low [7]. The derate ranges between 0-20%, and typically falls between 

10-15% [7]. It results in a lower EGT at take-off, as well as lower turbine inlet 

temperature and shaft speed of the mission profile, and thus a reduced rate of 

engine deterioration and prolonged time on-wing [7]. This strategy can be applied 

not only during the takeoff phase, but also during the climb phase of the flight 

mission. 

 

 

Figure 2-11 Effect of Derate on Shop Maintenance Cost [22] 

2.5.2 Introduction of Variable Rating Control 

Another option being considered, and still under research, is Variable Rating 

Control. The idea is to incorporate an automatic control system [23] that would 

continuously throughout the flight adjust the thrust rate and “limit the engine 

performance to its baseline requirement”, which varies according to the flight 

conditions. This means that where the flight condition allows, excess thrust will 

be reduced. 

Flight conditions that may allow for reduction of thrust rating include low payload, 

long runway, low OAT and low take-off altitude. Jiannan has investigated how 

these conditions affect the engine performance, and concluded that runway 
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length, TET and Take-off altitude can significantly lower the baseline required 

thrust. Reduced payload, on the contrary, “does not have significant effect on 

engine life” [24]. 

If implemented, such a system is expected to result in an increase of an engine’s 

life as high as 4 times [25], and also in prolonging the engine’s TOW. This is 

mainly because by reducing the engine thrust where possible, we reduce 

temperatures and pressure within the turbine’s gas cycle, which itself results in a 

slower deterioration of the engine parts [25].  

However, the option of variable rating control is far from being implemented in 

reality, as it involves sensitive safety issues, especially in case of emergencies, 

that need to be cleared first by civil aviation regulatory authorities. 

2.5.3 Thrust Rating Change Strategy 

In this thesis we are extending the concept of variable rating control to thrust 

rating change between two aircrafts. Airlines that have the advantage of 

possessing two different aircraft models with same engine type but different thrust 

ratings may adopt the strategy of replacing the engine from a higher thrust rated 

aircraft to a lower thrust aircraft with the following benefits: EGT Margin falls 

gradually, SFC is kept at low rate, better Engine performance retention, longer 

engine life on wing and lower Shop Visit rate. 

Figure 2-12 below, illustrates this concept: an engine first operates at a higher 

thrust rated aircraft for a number of flight cycles The EGT margin degradation 

evolves at a speed that is relative to the thrust rating. Once a given margin is 

reached, the engine can be transferred to a lower thrust rated aircraft. Here the 

EGT margin suddenly becomes higher, and, as the engine operates with the new 

thrust rating, the EGT margin drops at a relatively lower rate.  



 

36 

 

 

Figure 2-12 Engine Life Expectancy considering thrust rating change.  

Note: The above figure is for illustration purpose only. It by no means reflects the actual 

values. 

There are a few steps to be considered before switching the engine between two 

different aircraft type models: First, the engine nameplate has to be re-identified. 

Then, the corresponding rating plug has to be installed on the Electronic Engine 

Control or FADEC hardware [11]. The EEC is an engine computer that uses data 

from engine sensors and aircraft systems to control the engine operation. The 

engine rating plug selects the software in the EEC that corresponds to the thrust 

rating of the engine. 

2.6 Lifing 

2.6.1 Significance of Lifing 

 Lifing refers to predicting the life ahead of each gas turbine component. It is an 

integral concept for airlines adopting a condition-based maintenance policy as it 
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constitutes an important tool for their well management both from an economic 

perspective as well a safety perspective.  

From an economic point of view, an adequate lifing programme may help extend 

the lives of gas-turbines, and reduce the frequency of major capital expenditures.  

Also, because costs spent on replacement parts have escalated, there is a 

growing tendency of airlines to independently assess their components’ lives, 

rather than follow manufacturers’ recommendations for soft life which, 

sometimes, may either be too conservative or may not be “machine-specific” [14].  

From a safety perspective, airlines are and would always be interested in an 

engine life-assessment model to prepare engine removal forecast and avoid 

operational disruptions. 

Additionally, whereas some types of damage in engine components may be 

detected by visual borescope inspections, or through the EGT margin 

deterioration or high engine vibration, damages due to factors such as creep or 

fatigue usually cannot be detected in such ways. Therefore airlines need to carry 

out lifing for components to forecast engine removals. 

Turbine blades are the most crucial engine components that require lifing 

because they usually get exhausted first. Also, a failure in the blade can lead to 

“consequential damage of other components downstream and to catastrophic 

failure of the turbine” [14]. LLP parts, on the other hand, have a hard life fixed by 

the manufacturer; their lifing is therefore not carried out by airlines. 

2.6.2 Dominant Failure Modes for Aero-Engines  

The life of an aero gas turbine usually ends when a damage mechanism occurs, 

and the type of failure that ends an engine’s life strongly depends on the flight 

conditions:  

One factor is the average flight length. Engines operated in the short sector, i.e. 

may go through as many as 10 flight cycles a day, undergo the stretch between 

start up thrust and maximum thrust so often, and hence are most prone to low 

cycle fatigue [26]. 
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Another factor is the temperature. Figure 2-13 below shows how the dominant 

failure mechanism varies according to the temperature range the engine is 

exposed to. At temperatures below approximately 800 oC, mechanical fatigue is 

the dominant risk. When exposed to temperatures between 800 and 1000oC, 

failure can be caused by any of creep, oxidation or thermal fatigue. At more than 

1000oC creep becomes the major threat. The figure also shows how the number 

of engine life hours decreases for different damage mechanisms as the metal 

temperature increases [21]. 

 

Figure 2-13 Dominant failure mechanisms according to engine temperature range [21] 

2.6.3 LIFING Methodologies 

The challenge of life management is to find a reasonable compromise between 

“safe life” and maximum usage of engine parts to reduce costs [27]. To 

investigate the effect of two different thrust ratings engine time on-wing there was 

a need of appropriate lifing method that would be able to provide the remaining 

life of the hot section of the engine based on the chosen damage mechanism. 
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NDT Methods 

Non-Destructive Inspection NDI methods are very common in airline 

maintenance and MRO industry. These methods follow damage tolerance 

approach which assumes possible existence of defect in the component material. 

Hence, the engineer firstly declares a cyclic lifetime for each component, and 

after the declared life has been reached, the component may be cleared for 

further service after undergoing a programme of meticulous inspection. During 

this inspection, non-destructive tests (NDT) such as magnetic, dye penetrant 

eddy current, X-ray tomography and ultrasonic probe inspections are performed 

on the component to evaluate the presence of cracks [28].  The mentioned 

techniques are normally performed during engine overhaul when the engine is 

disassembled into piece parts. Borescope inspection, also an NDI method, is part 

of the engine’s on-condition maintenance program generally performed on-wing. 

The purpose of the scheduled inspection on-wing is to inspect the hot section; 

combustor and HPT for defects at regular time intervals and, if required, monitor 

them next under a reduced repeat inspection interval, repair them or remove the 

engine before the expected failure of the component. If no defects are found, the 

engine is considered serviceable. If defects are found, the maintenance manual 

has to be referred, to assess if the engine is serviceable, with or without cycle 

limitations. Destructive Test (DT) methods are also seldom employed to study the 

metallography but will not be discussed. 

 

Statistical Methods 

A few researchers have looked into the application of probabilistic/statistical 

theories in their empirical life studies while others have demonstrated component 

life estimation through soft computing methods such as fuzzy logic and neural 

networks [28]. Philip et al [27] have developed a neural networks engine model, 

combined with Monte Carlo simulation to predict Thermo mechanical fatigue TMF 

damage in a NASA aircraft engine simulator. Fahmi [28] has proposed and 

analysed three artificial neural network architectures to estimate creep life for gas 

turbines. 
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Physics Based Analytical Methods 

These methods mainly employ numerical and/or analytical relationships to 

estimate the component life. One of the contributors and users of physics based 

method is Tinga et al [29]. His life estimation tool for the military engine turbine 

blade incorporates many software tools along with physical and mathematical 

models used at National Aerospace Laboratory, The Netherlands. Firstly, flight 

conditions and crucial engine parameters monitored during the flight are 

downlinked directly from the aircraft through data acquisition system. Engine 

performance is then evaluated by a simulation program that calculates the 

thermodynamic properties of the fluid at relevant engine stations. A CFD model 

is used to determine the heat transfer from the hot gas stream to the film cooled 

turbine blade, based on which temperature distribution in the blade is evaluated 

with the help of a thermal FE model. A mechanical FE model is used to calculate 

the centrifugal and thermal stresses experienced by the blade. Finally, the 

temperature and stress distributions become the two key inputs to the life 

prediction model developed based on creep and fatigue damage mechanisms. 

Tinga uses Robinson’s rule for creep damage evaluation and Miner’s rule for 

fatigue damage evaluation and then adds the contributions from both to estimate 

the total/remaining life of the blade. 
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Figure 2-14 Tinga et al. Lifing Model [30] 

Hanumanthan et al., in their work of establishing a method to estimate engine 

severity, “a measure of relative damage” [20], adopt a similar lifing procedure like 

that of Tinga et al. The main difference is that while Tinga et al. use real flight 

operation data directly from the aircraft, Hanumanthan et al. develop a generic 

tool for generating the required data from aircraft-engine system using two 

indigenous university software tools – Hermes and Turbomatch. Some of the 

aspects and elements of physics based lifing methodology which will be adopted 

in this project will be discussed in the next main section, section 3. 
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3 METHODOLOGY 

3.1 Overview 

 

Figure 3-1 Methodology 

The diagram above presents a top level multidisciplinary physics based approach 

which will be used iteratively throughout the following project subtasks.  

 Estimation of engine TOW when operated with high thrust rated engine.  

 Estimation of engine TOW when operated with lower thrust rated engine. 

 Estimation of engine TOW when first operated with higher thrust rating for 

certain number of flight cycles and then with lower thrust rating until the 

shop visit. 
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 Parametric analysis to study the effect of shifting the point of thrust rating 

change on engine TOW and the effect of TOW on engine operating and 

maintenance costs. 

Comparing the results from these subtasks will make the reader observe the 

expected benefits of transferring the engine from a high thrust rated aircraft to a 

lower thrust rated aircraft at least once prior to its shop visit. It should be noted 

that such a strategy can be adopted only by those operators which operate two 

or more aircraft models with same engine type but different thrust ratings. 

In general, the methodology commences with the generation of engine 

operational data based on certain flight mission profile accompanied with 

arbitrary engine degradation characteristics. The data is then used in the 

estimation of mechanical and thermal loads the HPT blade is subjected to during 

engine operation. After the calculation of creep and LCF lives of the blade with 

the aid of well-established empirical relationships the engine soft life is computed. 

This soft life is solely considered to represent engine hardware life to failure as 

opposed to LLPs which have fixed hard lives. Concurrently, engine performance 

curve will be generated showing the decreasing trend of EGT Margin with time. 

The curve (EGTM vs flight cycles) is extrapolated to predict the number of flight 

cycles the degrading performance can be retained until the minimum allowable 

EGT margin is reached. This would provide the performance life of the engine. 

Thirdly, the lives of LLPs are considered to be fixed by the manufacturer. Since 

they generally expire at least after the first two shop visits they will not be 

considered for the purpose of this project. Any one of the three that expires first; 

soft life, performance life or LLP life, is considered engine TOW and the principal 

cause of engine removal.  Engine Operating Fuel cost and Shop visit direct 

maintenance cost are then calculated. Some elements of the methodology are 

discussed in further detail in the sections ahead. 
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4 ENGINE MODEL CREATION & SIMULATION 

This chapter demonstrates the use of Turbomatch software tool to create a 

baseline model for a high bypass turbofan engine similar to GE90 and select the 

engine thermodynamic cycle parameters for best design point performance. It 

also analyses the results from off-design performance simulations. 

4.1 Introduction to Model Engine 

GE90, manufactured by General Electric, is a dual rotor, separate exhaust, high 

bypass, civil turbofan engine installed on the wide body Boeing 777 aircraft [31].  

It is the largest thrust producing engine thus far and enjoys a credible standing in 

terms of both performance and reliability, which is why it is found to be operated 

by many major air transport carriers around the world. Like many other turbofan 

engine designs GE90 has a twin spool modular architecture where 1-stage Fan 

and 4-stage LP Compressor (booster) are driven via 6-stage LP Turbine, while 

9-stage HP Compressor is driven via 2-stage HP Turbine. Since the focus of the 

project is on the lifing analysis of primarily a large commercial jet engine, the 

baseline engine model is rationally chosen to be based on GE90 technical 

characteristics. The model engine will be addressed by the name TF90 in the 

thesis. 

 

Figure 4-1 GE90 Engine Cutout [31] 
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Table 4-1 GE90 Engine Data[31][32]  

TWO THRUST RATINGS    STAGE COUNT  
GE90-115B 115540 lbf / 514 kN   1-F/4-LPC/9-HPC 
Max TO Thrust (@ISA + 15C)    2-HPT/6-LPT 

     CYCLE DATA   

GE90-110B1 110760 lbf / 493 kN  BPR 7.1 
Max TO Thrust (@ISA + 18C)  OPR 42.2 
         

SIZE    RED LIMITS   
Engine Weight (Dry) 8761.1 kg  EGT (Max at TO) 1090 C (for 5 min) 

Length 7.3 m  N1 Speed (Max 110.5%) 2602 rpm 

Fan Blade Tip Diameter 3.25 m  N2 Speed (Max 121.0%) 11292 rpm 

 Mass Flow  1641 kg/s      

 
 

4.2 Engine Model Development in Turbomatch 

Turbomatch, indigenously developed by Cranfield University, is a gas turbine 

simulation software used for design point and off design performance analysis. 

The tool allows to build any GT engine model in a modular structure where 

different engine components represented as ‘bricks’, specified by their inherent 

set of features termed as ‘brick data’, are linked together by ‘station vectors’ that 

describe the gas state at each inlet and outlet station through a set of 

thermodynamic quantities. Outlet station vector from one brick is the input station 

vector of the following brick in series. In addition, a brick may take direct input 

from another brick which may not necessarily be the one just upstream in the 

program: such input and output data is grouped as ‘Engine Vector Data’ and 

‘Engine Vector Results’ respectively. In Turbomatch there also exists a library of 

built-in predefined component performance maps which are then scaled 

according to the component specifications used in the model. 

 

Once the model engine is assembled in the input data file, running the 

Turbomatch code returns values of the gas properties at all engine stations and 

computes the overall engine performance in terms of thrust, specific thrust, fuel 

flow and SFC etc., and finds the right operating point based on mass and energy 
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balances and rotational speed continuity between the interconnected 

components. 

 

Figure 4-2 Turbomatch GT Module Terminology 

Turbomatch was used to build the TF90 engine model and replicate aero 

thermodynamic behaviour of GE90 through performance simulation. Figure 4-3 

shows representation of the model with 20 designated stations while the brick 

data details of individual components can be referred in the Turbomatch input 

data file included in Appendix A. 

 

Figure 4-3 Layout of the TF90 engine model with Station designation 
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There were several considerations and assumptions taken into account with 

regards to the different model parameters especially those for which no data was 

available in open publications. 

 

Isentropic efficiencies for fan, LPC (booster), HPC, HPT and LPT were all 

selected close to the typical values known for technologically advanced 

components. Combustion efficiency was selected to be 0.999. 

Table 4-2 Component efficiencies chosen for the model 

Fan ηLPC(F) 0.90 

Booster ηLPC(B) 0.88 

HP Compressor ηHPC 0.88 

HP Turbine ηHPT 0.90 

LP Turbine ηLPT 0.90 

Combustion Eff. ηBUR 0.999 

 

The overall pressure ratio of 42.2 was carefully and rationally divided between 

the fan, the booster and the HP Compressor. Pressure ratio across the booster 

was arbitrarily chosen to be 1.54 while the pressure ratio across HPC was fixed 

at 16.6. The split was based on the fact that the HP compressor tends to have 

higher number of stages and is connected to HP turbine via HP shaft running at 

relatively higher rotational speed. The LP shaft on the other hand is connected to 

the fan, the booster and the LP turbine, and its rotational speed is limited by the 

fan blade tip speed, 443 m/s in the case of GE90 [32]. This in turn limits the 

compression capability of the booster resulting in lower pressure rise. 

 

Air bleed extraction does affect the overall engine performance and therefore was 

also accounted for in the model within allowable limits [11]. 1.2% bleed extraction 

was assumed at LPC exit. 7.0% bleed extraction was assumed from HPC for 

aircraft cabin pressurization, nacelle anti-icing and cooling of other hot section 
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areas other than HPT stage 1 NGVs and rotor blades. Additional 15.0% of the 

HPC discharge flow was explicitly reserved for the cooling of HPT Stage 1 NGVs 

and rotor blades, which is known to be a moderate figure for many modern gas 

turbine engines that run at high turbine entry temperatures. 

 

Another important aspect of the model development was the selection and 

settlement of engine thermodynamic cycle parameters at the design point. This 

is discussed in the next section. 

 

4.3 Selection of Engine Cycle Parameters 

The design point of a civil aero gas turbine engine is traditionally taken as the 

operating point during the stable cruise phase of the flight where the engine 

spends most of its operating time. However, achieving the required thrust during 

takeoff is also extremely important. And because whatever limited GE90 data 

available in the public domain is mainly for takeoff condition, the design point of 

the model engine in this project was chosen to be the static takeoff condition at 

sea level, ISA + 15C, attaining maximum thrust of 514 kN. To meet this 

requirement, a series of iterative simulations were performed whereby the values 

of few model parameters, initially unknown in public domain and therefore 

assumed, were repeatedly altered until the performance output parameters such 

as thrust, specific thrust and SFC converged close to the actual published engine 

data.  

 

In addition to the component level parameters discussed already in the last 

section, the engine thermodynamic cycle parameters were also investigated. Out 

of the four turbofan cycle parameters the overall pressure ratio (OPR) and the 

bypass ratio (BPR) were obtained directly from the GE90 published data and 

hence were held fixed. For the turbine entry temperature (TET) and the fan 

pressure ratio (FPR), iterative simulations were performed in Turbomatch. To 



 

50 

start with, parametric study with arbitrary high TET values was considered with 

the objective of meeting the takeoff thrust. At each constant TET (i.e. fixed energy 

input), variations in specific thrust and SFC with respect to FPR were observed 

as shown in Figure 4-4. These trends can be explained as follows. At low FPR 

the fan bypass thrust is small as there is little energy extraction from the core 

(LPT) to drive the fan, leaving excessive core jet velocity to result in energy 

wastage, lower propulsive efficiency and therefore higher SFC. At higher FPR 

more energy is extracted to drive the fan than required resulting in lower core 

thrust but this time it is the rise in bypass jet velocity which is the cause for energy 

wastage and therefore higher SFC.  It is evident in the figure that for any value of 

TET there is an optimum value of FPR at which the overall energy conversion to 

thrust is maximized and this is indicated by the point of minimum SFC and 

maximum specific thrust. Furthermore, increasing the TET at fixed OPR and BPR 

increases the optimum FPR which can be explained due to the greater ability of 

the core (LPT) to drive the fan while maintaining the same core nozzle expansion. 

 

  Figure 4-4 Variation of Specific Thrust and SFC vs FPR 

 

Minimum TET of 1925 K and optimum FPR of 1.65 that provided the certified 

takeoff thrust of 514 kN (at sea level static condition, ISA + 15C) at minimum SFC 
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were finally selected. At optimum FPR SFC = 8.92 g/kN.s and Specific thrust = 

313.31 N/(kg/s) respectively. 

 

4.4 Design Point Performance Validation 

The final set of selected cycle parameters (TET=1925K, OPR =42.2, BPR=7.1, 

FPR=1.65) ensures the best design point performance. This can be verified with 

the following relation ( 4-1 ) derived in [34], in which the ratio of bypass jet velocity 

to core jet velocity equals the energy transfer efficiency only at optimum FPR. 

 

𝑉𝑗 (𝐵𝑦𝑝𝑎𝑠𝑠)

𝑉𝑗 (𝐶𝑜𝑟𝑒)

= 𝜂𝑡𝑟𝑎𝑛𝑠 ≅ 𝜂𝐿𝑃𝐶(𝐹) × 𝜂𝐿𝑃𝑇 ( 4-1 ) 

305.8 𝑚/𝑠

386.8 𝑚/𝑠
 ≅  0.9 × 0.9 ( 4-2 ) 

𝑉𝑗 (𝐶𝑜𝑟𝑒) = 1.265 × 𝑉𝑗 (𝐵𝑦𝑝𝑎𝑠𝑠) ( 4-3 ) 

Since the efficiency of the energy transfer between the core and the bypass 

streams is mainly the product of the individual fan and LP turbine efficiencies, 

where both of these are always less than 100%, the optimum core jet velocity is 

always higher than the optimum bypass jet velocity, by a factor of nearly 1.2 [35]. 

This is the condition met above in equation ( 4-3 ) where Vj(core) was found to 

be 1.265 times Vj(bypass), indicative of optimum design point performance. The 

output of simulation can be viewed in Appendix A which includes the snapshot of 

the gas properties at each of the model stations. 

 

To validate the baseline engine model TF90 for the selected design point, the 

estimated performance data from Turbomatch was finally compared with the 

limited published GE90 data from reliable public sources. The results obtained 

were found to be in harmony as shown in Table 4-3 and typical of large modern 

civilian high bypass turbofan engines like GE90 with high specific thrust and low 

SFC. 
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Table 4-3 Comparison of Turbomatch results with actual GE90 data  

 Units TF90 
Model  

GE90 
Engine  

% 
Deviation 

     

Net Thrust [kN] 513.83 514.00 0.03 

Specific Thrust [N/(kg/s)] 313.31 313.22 0.03 

SFC [g/kN.s] 8.92 9.21 3.06 

Fuel Flow [kg/s] 4.59 4.73 3.10 

Mass flow [kg/s] 1640 1641 0.06 

TET [deg K] 1925 - - 

OPR  42.2 42.2 0.00 

BPR  7.1 7.1 0.00 

FPR  1.65 - - 

 

4.5 Off Design performance 

Once the design point is established for an aero engine, it is required to 

demonstrate overall satisfactory performance for the rest of the operating points 

encompassed within the flight envelope and over a wide range of ambient 

conditions. This off-design analysis is vital from both economic and safety 

perspectives. For instance, the effect of ambient conditions can alter the runway 

length required and the payload accepted by the same aircraft taking off from 

different geographical locations around the world. 
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Figure 4-5 Subsonic Civil Turbofan Flight Envelope[36] 

 

 

Figure 4-6 Atmosphere conditions [37] 

In this project off-design simulations were performed to study the effect of varying 

flight speed, altitude and ambient temperature on the behaviour of the engine. 

The results and trends obtained were found to be in concurrence with physical 

explanation and typical of civilian turbofan engines, which further validated the 

accuracy of TF90 model built in Turbomatch. 

 

4.5.1 Effect of Mach No and Altitude 

Generally, as the flight speed varies, there are three key factors which influence 

the engine performance profile: momentum drag, ram compression and ram 

temperature rise [38]. The momentum drag (product of mass flow and flight 

velocity) increases with the flight velocity and hence reduces the net thrust. The 

momentum imparted to the flow in the gas path falls as the difference between 

the jet velocity and flight velocity continues to decrease with increase in flight 
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velocity. This effect increases propulsive efficiency. Ram compression effect on 

the other hand increases the pressure in the intake which raises the flow density 

and thereby increases the mass flow. In addition, it increases the nozzle pressure 

ratio, which increases the jet velocity and hence the gross thrust. This effect 

decreases the propulsive efficiency. The effect of ram temperature rise in the inlet 

due to increase in flight velocity is similar to the effect of increase in ambient 

temperature already discussed in previous section. 

 

To study the effect of flight speed and altitude on the model engine performance, 

off design analysis was performed for subsonic Mach number range 0 to 1.0 at 

constant TET of 1650 K and standard ISA conditions. Same was repeated for 

four different altitudes 0m, 4000m, 8000m and 12000m. These sets of operating 

points were carefully chosen to create similar conditions that cover the climb 

phase of the flight. The simulation results shown in Figure 4-7, Figure 4-8 and 

Figure 4-9 demonstrate the cumulative effect of all three factors (momentum 

drag, ram compression and ram temperature) on engine thrust, mass flow and 

SFC respectively.  

 

The overall effect of variation in flight speed can be explained as follows. Since 

the engine is a turbofan the momentum drag effect is most dominant due to lower 

jet velocity and thus results in continuous reduction in net thrust. However, at low 

speeds there is larger reduction in net thrust than at high speeds. This is because 

the subsonic airflow below Mach 0.3 is almost incompressible and the ram 

compression effect starts to be felt after Mach 0.3, increasing the mass flow and 

the nozzle pressure ratio, and opposing the effect of momentum drag. This 

counter effect gradually lessens the reduction of net thrust with Mach number. 

The effect of ram temperature rise is minimal and less obvious compared to the 

primary drivers; momentum drag and ram compression. 
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Figure 4-7 Net Thrust vs Mach No at climb Power Setting TET=1650K, ISA . 

 

Figure 4-8 Inlet Mass Flow Vs Mach No. at Climb Power Setting TET=1650K, ISA 
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Figure 4-9 SFC Vs Mach No. at Climb Power Setting TET=1650K, ISA 

Same plots in Figure 4-7, Figure 4-8 and Figure 4-9 also allow to observe the 

effect of increasing altitude at constant Mach number. With an increase in 

altitude, the static ambient pressure and the air density fall. At constant shaft 

speed this causes the air mass flow to drop and reduce the thrust. On the 

contrary, the ambient temperature which also decreases with increase in altitude 

tends to increase the mass flow and the thrust, partly offsetting the pressure 

effect. The net effect is that the engine actually generates less thrust as the 

altitude increases appreciating the dominant pressure effect. A decrease in thrust 

with an increase in flight velocity is more significant at lower altitudes. As the 

altitude increases the thrust variation due to airspeed tends to flatten. 

 

SFC is directly linked to the Mach number. The density experiences a rise just as 

the Mach number increases. The link between the SFC and the Flight velocity 

can explain this; as observed from the formula documented above, a rise in flight 

velocity, in concurrent to a dip in thermal efficiency causing the SFC to go higher. 

Subsequently, an increase in altitude helps improve the SFC due to the rise in 

thermal efficiency. Moreover, the compressor diagram can be used to analyse 
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this. As studied earlier, the temperature decreases and thus the non-dimensional 

constant shaft speed increases due to a rise in altitude. Hence the pressure ratio 

also experiences a rise due to an increase in the non-dimensional speed results. 

While the mass flow dips against an increasing altitude (directly relative to thrust), 

within the lower atmosphere, the increasing pressure ratio prevails (troposphere 

up to 11 km. The discussed rise in pressure ratio causes an increase in thermal 

efficiency and subsequently resulting in a dip in SFC.  

 

4.5.2 Effect of Outside Air Temperature 

Variation in ambient air temperature greatly influences the engine behaviour 

based on geographical location of engine operation, season of the year and time 

of the day. The off design performance was studied for an outside temperature 

range of -30 C to 50 C, at constant altitude of 50 meters, Mach number 0.15, and 

repeated for four different constant TET values 1300K, 1500K, 1700K and 1900K. 

These operating conditions were carefully chosen to create and simulate 

scenarios close to the takeoff and landing phases of the flight. The results of the 

simulation are shown in Figure 4-10, Figure 4-11 and Figure 4-12, demonstrating 

the effect of ambient temperature variation on engine thrust, mass flow and SFC 

respectively. 

 

On a relatively hot day, with an increase in ambient temperature the density of 

the air decreases, reducing the air mass flow entering the compressor(s) 

downstream. Since less power is now required for compression, the fuel flow is 

reduced to maintain constant engine rotational speed and/or TET. As a result the 

engine is subjected to operate at lower pressure and temperature ratio which 

reduces the overall engine thrust and the thermal efficiency. At an outside 

temperature of 45 C, average thrust loss of up to 17 % was observed with respect 

to ISA condition. 
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Figure 4-10 Net Thrust vs OAT at Altitude=50m, Mach 0.15 

 

Figure 4-11 Intel Mass Flow vs OAT at Altitude=50m, Mach 0.15 

Unlike the thrust and the mass flow, the relation between SFC and OAT as found 

in Figure 4-12 appeared to be less obvious. The trends are found to be dependent 

on the TET at which the engine operates. At lower constant TET the variation in 
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SFC with increase in ambient temperature is more sensitive than at higher TET. 

One way this can be understood is by looking further into the variation in thermal 

and propulsive efficiencies with respect to ambient temperature. Given the fact 

that thermal efficiency is directly proportional to the temperature ratio (TET/T1), 

this ratio is smaller at lower constant TET and it further drops with increase in 

outside temperature. Hence the reducing thermal efficiency, instead of increasing 

propulsive efficiency, becomes the dominant factor responsible for the rise in 

SFC. At lower constant TET there is greater reduction in the thrust than in fuel 

flow which gives rise in SFC with increase in ambient temperature. However, at 

higher constant TET, there is greater rise in fuel flow than in thrust which gives 

rise in SFC with decrease in ambient temperature.  

 

Figure 4-12 SFC vs OAT at Altitude=50m, Mach 0.15 
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5 AIRCRAFT & FLIGHT MISSION MODEL 

 

5.1 Introduction to Aircraft Performance 

A typical flight mission is divided into several phases: Takeoff, Climb, Cruise, 

Descent and Landing etc. Each phase can be analyzed in two ways: Point 

performance provides a snapshot of instantaneous aircraft performance at a 

particular moment in time (e.g. velocity, drag, fuel consumption etc.), while the 

path performance is the integral between two instances, evaluating performance 

over the flight segment (e.g. range and endurance etc.). 

The general 2D translational motion of an aircraft in accelerated flight is described 

by the following equations of motion in terms of four physical forces acting on the 

aircraft;  lift, weight, drag and thrust. 

 

Figure 5-1 Aircraft Free Body Diagram[39] 

 

𝑇 − 𝐷 − 𝑊 sin 𝛾 = 𝑚
𝑑𝑣

𝑑𝑡
 

 

( 5-1 ) 

 

𝐿 − 𝑊 cos 𝛾 = 𝑚
𝑣2

𝑟𝑐
 

( 5-2 ) 
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Where; 

Lift 𝐿, perpendicular to the flight path direction. 

Drag 𝐷, parallel to the flight path direction 

Thrust 𝑇, in line with engine centreline parallel to the flight path 

Weight 𝑊, vertical down towards the centre of the earth 

𝛾, flight path inclination angle with respect to horizontal 

Velocity v, along the flight path 

Radius of curvature 𝑟𝑐 for the centrifugal acceleration v2/ rc acting normal to the 

curved path. 

These four forces as well as the flight path inclination angle change during 

different flight phases. At the take-off phase the aircraft requires excess thrust to 

accelerate and then lift off. Same is true during climb. While descending the 

engine thrust is reduced to decrease the lift force in order to lower the aircraft 

altitude for landing.  

For steady, level flight in cruise condition the equations ( 5-1 ) and ( 5-2 ) are 

simplified to ( 5-3) and ( 5-4). 

𝑇 = 𝐷 ( 5-3) 

𝐿 = 𝑊 ( 5-4) 

 

To maintain certain flight condition at specific speed and altitude, enough thrust 

must be produced by the engines to overcome the aerodynamic drag and to keep 

the aircraft flying with enough lift against the weight. This thrust required, TR, is 

an airframe associated feature [38] which depends not only on velocity and 

altitude but also on aerodynamic size, shape and weight of the aircraft. 
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The parabolic drag polar encompasses the entire aerodynamics of an aircraft. It 

contains almost all the necessary aerodynamics for an airplane performance 

analysis. 

 

Parasite drag is that portion of the total drag associated with skin friction and 

pressure drag due to flow separation, integrated over the complete surface of the 

aircraft. It also includes the interference drag caused due to the mutual interaction 

of the flow fields around each component of the aircraft. 

Induced drag is the pressure drag due to the pressure imbalance in the drag 

direction caused by the induced flow (downwash) associated with the vortices 

created at the tips of the wings.  

Zero Lift drag is the parasite drag that exists when the airplane is at its zero-lift 

angle of attack i.e. when the lift of the airplane is zero. Drag due to lift is that 

portion of the total aircraft drag measured above the zero-lift drag. It consists of 

the change in parasite drag when the aircraft is at an angle of attack different 

from the zero-lift angle, plus the induced drag from the wings and other lifting 

components of the aircraft.  

 

Equation ( 5-10 ) 𝐶𝐷 = 𝐶𝐷,0 + 𝐾𝐶𝐿
2 is the drag polar of the aircraft where 𝐶𝐷 is the 

total drag coefficient, 𝐶𝐷,0 is the zero-lift parasite drag coefficient and 𝐾𝐶𝐿
2 term is 

the drag due to lift. K is the induced drag coefficient and an aerodynemic quantity 

which carries inherent characteristics of particular aircraft design. 

𝑇𝑅 = 𝐷 =
1

2
𝜌𝑣2𝑆𝐶𝐷 

( 5-5 ) 

 

𝐿 = 𝑊 =
1

2
𝜌𝑣2𝑆𝐶𝐿 

( 5-6 ) 
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Where 𝑪𝑳 is lift coefficient and 𝑪𝑫 is drag coefficient. 

S is the wetted surface area of the aircraft.  

Dividing equation ( 5-5 ) by equation ( 5-6 ) gives 

𝑇𝑅

𝑊
=

𝐶𝐷

𝐶𝐿
 

( 5-7 ) 

𝑇𝑅 =
𝑊

𝐶𝐿 𝐶𝐷⁄
=  

𝑊

𝐿 𝐷⁄
 

( 5-8 ) 

𝐶𝐿 =  
𝑊

1
2

𝜌𝑣2𝑆
 

( 5-9 ) 

𝐶𝐷 = 𝐶𝐷,0 + 𝐾𝐶𝐿
2 ( 5-10 ) 

 

Figure 5-2 Schematic of the components of the Drag Polar – Page 131 in [38] 

The TR obtained is the thrust required to fly at the specific velocity.TR is inversely 

proportional to L/D. Hence, minimum thrust required will be obtained when the 

airplane is flying at a velocity where L/D is maximum. The lift-to-drag ratio L/D is 

a measure of the overall aerodynamic efficiency of an airplane; it only makes 
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sense that maximum aerodynamic efficiency should lead to minimum thrust 

required [40]. 

Range and Endurance 

Few of the other important elements of aircraft performance are the aircraft range 

and endurance. Range R is the total distance travelled by the aircraft with certain 

quantity of fuel in the tank. Similarly, endurance E is the total time an aircraft 

remains airborne with certain quantity of fuel in the tank. To maximize range there 

are different parameters from those which maximize endurance Following are the 

respective equations in simplified form; derivation details of which can be referred 

in [40].  

𝑅 = ∫ √
2

𝜌𝑆

1

(𝑆𝐹𝐶)

𝐶𝐿
1/2

𝐶𝐷

𝑑𝑊

𝑊1/2

𝑊0

𝑊1

  =  2√
2

𝜌𝑆

1

(𝑆𝐹𝐶)

𝐶𝐿
1/2

𝐶𝐷
(𝑊0

1/2
− 𝑊1

1/2
) 

( 5-11 ) 

 

𝐸 = ∫
1

(𝑆𝐹𝐶)

𝐿

𝐷

𝑑𝑊

𝑊

𝑊0

𝑊1

  =   
1

(𝑆𝐹𝐶)

𝐶𝐿

𝐶𝐷
ln

𝑊0

𝑊1
 

( 5-12 ) 

 

Where,  

𝑑𝑊 is the incremental change in aircraft weight due to fuel consumption 

𝑊0 is the initial weight at distance = 0 or time = 0. 

𝑊1 is the final weight at distance = R or time = E 

 

Conditions to obtain maximum endurance as follows: 

 Minimum specific fuel consumption 

 Maximum fuel weight 𝑊𝑓 

 Maximum L/D or CL/CD 

 Maximum endurance is achieved when the aircraft flies at minimum thrust 

required which corresponds to flying at a velocity such that CL/CD is 

maximum. 
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Conditions to obtain maximum range are as follows: 

 Minimum specific fuel consumption 

 Maximum fuel weight 𝑊𝑓 

 Maximum CL
(1/2)/CD. For maximum range, aircraft must fly at a velocity 

such that CL
(1/2)/CD is maximum. 

 Maximum range is achieved when the aircraft flies at a velocity such that 

CL
(1/2)/ CD is maximum. 

 

5.2 Aircraft Model Development for Hermes 

Hermes is another tool developed by Cranfield University which is used in 

conjunction with Turbomatch for overall aircraft performance simulation. It 

employs principles of aerodynamics and aircraft performance to generate flight 

data for the entire flight mission defined. One of the key inputs required is the 

aircraft configuration data which includes the shape and geometry of the major 

aircraft components, such as fuselage, wings, tail, engine nacelle etc, as well as 

the general weight breakdown.  

 

Two aircraft models were created for the purpose of this study based on two 

different configurations of Boeing 777 series aircraft - B777-300ER and B777-

200LR. Both are wide body, twin-engine aircraft, quite well known in the aviation 

business for long range applications. Both of them are equipped with latest GE90 

powerplant, but with different thrust ratings. Engine, when operated on B777-

300ER at a higher thrust rating is considered as GE90-115B, and when operated 

on B777-200LR at a relatively lower thrust rating is considered as GE90-110B1. 

Throughout the study the aircraft models are named as A773ER and A772LR 

while their corresponding engine models are named as TF115 and TF110 

respectively. The technical characteristics of the two aircraft models are 

summarized below in Table 5-1. 
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. 

 

 

 

Figure 5-3 Boeing 777 dimensions [19] 
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Table 5-1 Aircraft Technical Data [11] [31][19]  

 

Both the configurations share the same basic aircraft design, from wing and tail 

geometry to high lift systems and landing gears. Only the fuselage differs in 

length. Each model, according to its fuselage length, has a different passenger 

and cargo capacity and thus a different aircraft MTOW, OEW, and maximum 

payload limitation. In both the models the average weight of a passenger was 

assumed to be 75 kg with a 30 kg baggage allowance. 

5.3 Hermes-Turbomatch Integrated Operation 

The joint utilization of Hermes and Turbomatch software tools allows computation 

of both aircraft and engine related operational parameters for all segments of the 
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flight mission profile and thus provides complete performance data for analysis. 

Figure 5-4 shows the basic data flow diagram for the Hermes-Turbomatch 

Integrated Operation. 

 

Figure 5-4 Basic Data Flow in Hermes – Turbomatch Integrated Operation 

The main input file required is divided into different parts. The first part covers the 

geometry and configuration of the aircraft. The second part contains information 

regarding the flight mission and aircraft weight breakdown. The following parts in 

the file exist to describe the flight phases, namely Takeoff, Climb, Cruise, Descent 

and Flight Idle etc and divide some of them into segments with atmospheric 

conditions and power settings specified. The structure of the two input files 

prepared for the purpose of this project can be viewed in Appendix B as 

examples. 
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TmatchCalls is an interface which when executed reads the input file containing 

the mission profile, different TET ranges, power settings and atmospheric 

conditions during the different segments of the flight phases, and prepares 

another input file for Turbomatch to run the engine model simulation at those off 

design conditions. TmatchCalls formats the output results from Turbomatch into 

a specific structure and builds a database encompassing the entire engine 

performance data required for the flight mission. This data is independent of 

correlations with the aircraft. 

 

Given the aircraft geometry and flight conditions as inputs, Hermes evaluates the 

aerodynamic characteristics of the complete aircraft in the form of zero-lift and 

lift-induced drag coefficients, the two terms of the parabolic drag polar. This 

information is used along with the engine performance database produced by 

Turbomatch and TmatchCalls to determine the overall performance of the aircraft 

at various segments of the mission profile. Typical output parameters include total 

fuel consumption, range and endurance of an entire flight mission, while lift to 

drag ratio (aerodynamic efficiency), engine SFC and rate of climb etc. are 

calculated for each mission segment. 

 

5.4 Payload-Range Diagram – Aircraft Model verification 

The purpose of the payload-range diagram is to reveal the maximum distance an 

aircraft can fly with a given payload under the authorized operational weight 

limitations, and also to illustrate the tradeoff relationships between the fuel weight, 

payload and range to allow for quantitative assessment of any deviation from the 

optimum operation of the aircraft. The unique shape of the aircraft’s payload-

range diagram is governed by its aerodynamic characteristics, structural design 

and engine technology etc [41] and that is why every aircraft type has its own 

corresponding payload-range diagram. To understand its dynamics it is first 

important to appreciate the terminology used for the conceptual breakdown of 

aircraft weights as mentioned in the chart shown in Figure 5-5. 
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Figure 5-5 Aircraft Weight Definitions[41] 

Figure 5-6 shows the construction of a payload-range diagram with Operator’s 

Empty Weight (OEW) being the datum. There are 4 crucial points in the diagram 

corresponding to the following respective conditions.  

A. Max. Payload + no Fuel wt.        (such that TO weight < MDTOW) 

B. Max. Payload + partial Fuel wt. (such that TO weight = MDTOW) 

C. Max. Fuel wt. + partial Payload (such that TO weight = MDTOW) 

D. Max. Fuel wt. + no Payload        (such that TO weight < MDTOW) 
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Figure 5-6 Payload-Range Diagram explained [41] 

In the first part of the payload-range diagram (A-B) the payload is maximum which 

is limited by aircraft Maximum Zero Fuel Weight (MFZW). The range of the flight 

mission increases upon increasing the fuel weight until point B where the 

Maximum Design Takeoff Weight (MDTOW) is achieved. In the second segment 

(B-C) the MDTOW is maintained, but to further increase the range the payload is 

reduced while the fuel weight is increased. This tradeoff between payload and 

fuel can only continue until point C which offers maximum operational range with 

full fuel tanks. The maximum fuel weight remains constant beyond point C and 

the only way to achieve the extra bit of range is by compromising the payload and 

thereby reducing the overall takeoff weight. The payload weight becomes zero at 

point D. Flying with such condition is economically unfeasible. This option is only 

used when the aircraft is newly delivered to the airline operator or when a non-

critical fault sanctions a one-off ferry flight without the passengers to return to 

home base for defect rectification. 
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The Payload-Range analysis was used as a means to validate the two aircraft 

model variants created in Hermes against the actual performance data of B777-

300ER and B777-200LR found in the public domain [42]. Flight mission 

simulations were performed with Hermes specifically at those four crucial points 

A, B, C and D that define the boundary of the payload-range diagram, determining 

the maximum operational limits in terms of range and payload. There are two 

ways of analyzing a mission in Hermes. The first method involves specifying the 

range of the mission as input and the code automatically calculates the total fuel 

consumption during the flight, while the second method lets the user fix the total 

fuel weight carried by the aircraft and the code determines the total flight range 

the aircraft can fly with that given amount of fuel.  In order to obtain the required 

data for the construction of payload-range diagram, the second method was 

adopted. Maximum mission ranges were calculated based on selected payloads 

and fuel weight allowance. Figure 5-7 shows the payload-range plots for the 

model airplanes and their respective counterparts all in one chart for comparison 

purposes. 

 

Figure 5-7 Payload-Range Diagram for A7773ER and A7772LR 
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Comparing the results obtained for the two models with respect to the actual 

aircraft in Table 5-2 and Table 5-3, there were slight deviations observed in 

maximum ranges calculated at boundary conditions B, C and D for the same 

payload. For A773ER, the largest deviation of 11.0% was found to be for the case 

when the aircraft takes off with MDTOW while carrying maximum payload. On the 

other hand, for A772LR, the largest deviation of 9.9% was found to appear when 

the aircraft takes off with MDTOW utilizing the full fuel capacity. 

 

Table 5-2 A773ER Range Deviations 

 

Table 5-3 A772LR Range Deviations 

  

These differences in the depicted payload-range plots can possibly be attributed 

to one or combination of the following factors.  

 Variation in flight mission specifications due to intricate details known only 

to the manufacturer, for instance step climb rate, the power extraction 

requirement, and the air conditioning bleed configuration etc.  

 Engine model used in the study is similar to actual engine but not exactly 

the same, for instance, due to different design point or different component 

efficiencies. 

 Computing code limitations of the Hermes and Turbomatch software 

versus the flight test experimental data from the manufacturer. 
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Nevertheless, considering the fact that there were no major deviations in 

maximum ranges and both models had similar trends when compared to actual 

aircraft, the models were deemed acceptable for further study work in this project. 

 

5.5 Baseline Flight Missions and Analysis 

After obtaining adequate familiarization of the integrated Hermes-Turbomatch 

performance tool the next step was to generate engine operational data through 

flight simulation and compare the severity of operation based on engine when 

operated with two different power setting schedules on two different versions of 

the same aircraft series. For this reason two reference flight mission profiles were 

selected, details of which were entered in two independent input files which can 

be referred in Appendix B. Mission 1 employs bigger version aircraft A773ER 

certified with higher engine thrust rating and mission 2 employs smaller version 

aircraft A772LR with lower engine thrust rating.  

 

The mission specifications are listed in Table 5-4. The overall range and 

endurance of the trips remain unchanged. The climb and descent segments are 

flown with adjusted engine power settings to ensure the respective climb and 

descent phase intervals last the same in both missions [43]. The cruise phase in 

both missions is split into two segments in which the aircraft flies at two different 

altitudes and Mach number. Apart from the aircraft size and the actual takeoff 

weight all the rest of the mission specifications were carefully chosen to be the 

same. This precisely allowed studying the impact of available thrust utilization on 

engine time-on-wing (TOW) without the influence of any other factor. A 

reasonable average range for the missions was selected considering the 

payload-range limitations of both the aircraft variants. Takeoff derate was set as 

10% of the original thrust ratings. 
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Table 5-4 Flight Mission Specifications 

 

 

 

Figure 5-8 Takeoff Derates 
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Flight simulation data obtained for the two reference missions include the 

variation of altitude, net thrust and many other aircraft-engine operational 

parameters against time. Simulation also facilitated calculation of time spent, 

distance travelled, and fuel consumed during each of the flight segments. 

The plot in Figure 5-9 illustrates the variation in altitude and net thrust during the 

entire flight mission while Table 5-5 reveals the time duration of each of the flight 

phases. These time intervals are the same for both missions. 

 

Table 5-5 Flight Phase duration 

 

Figure 5-9 Plot of Altitude & Thrust vs Time 
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Out of the many outputs the most essential parameters from the perspective of 

engine lifing study are the non-dimensional HP shaft rotational speed, the HPC 

discharge cooling air temperature and the turbine entry temperature (TET). 

Knowing the trends of these parameters is a prerequisite to the computation of 

mechanical and thermal stresses acting on the HPT Stage 1 blades during the 

flight. These stresses and their iterative patterns of occurrence eventually lead to 

engine soft life estimation. 

 

The plots in Figure 5-10, Figure 5-11 and Figure 5-12 compare the trends of TET, 

HP rotational speed, fuel flow and SFC obtained for the two reference missions. 

It is evident from the plots that the aircraft of greater size has a higher demand of 

thrust and fuel flow and therefore correspondingly higher TET and HP shaft 

rotational speed. SFC variation with time can be appreciated by revisiting the 

discussion on the effect of Mach No. and altitude on the SFC in the previous 

chapter. 

 

Figure 5-10 Turbine Entry Temperature vs Time  
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Figure 5-11 HP Rotor Speed vs Time 

 

Figure 5-12 Fuel Flow & SFC vs Time 
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6 ENGINE HPT BLADE MODEL 

Generally, an aircraft engine would last as long as its hot section would last. In a 

two spool engine, the hot section basically comprises of HPC, Combustor and 

HPT modules. These modules are subjected to extreme conditions and therefore 

have the tendency to show most failures and relatively earlier than others. In 

order to evaluate the engine soft life for overhaul, high pressure turbine stage one 

blade was chosen as the hot section part for analysis as it experiences the 

harshest environment inside the engine in terms of stresses and temperatures. 

We can therefore assume the engine time-on wing to be limited by HPT stage 

one blade life.  

 

For HPT blade life assessment, an integrated physics based lifing tool was 

utilized, suitable for the analysis of low cycle fatigue (LCF) and creep damage 

mechanisms. The tool had been previously adopted by many other researchers 

in their studies in different forms. What follows ahead is a brief discussion on 

each of the different components of this tool. To meet the conflicting 

requirements. 

 

6.1 HPT Blade Geometry 

An HPT blade has a very sophisticated and optimized design which necessitates 

compromise between different conflicting requirements from the perspective of 

aerodynamics, mechanical design, cooling technology and material selection. In 

this project the traditional analytical methods for turbine sizing were not pursued 

to acquire the gas path annulus and the blade details.  Instead, a real scrapped 

GE90 HPT stage 1 blade, acquired from an airline operator, was used to estimate 

some of the relevant geometrical data. In addition, the sizing of the HPT annulus 

with a constant mean diameter was carefully approximated by scaling of the 2D 

engine cross sectional view published in Jane’s Aeroengines [32]. 



 

82 

 

Figure 6-1 Cross section of GE 90 hot section  [44] [32] 

Knowing the actual fan case diameter (3.2512 m) from public literature and using 

the appropriate scale factor of the engine cross sectional drawing the radial 
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distance from engine centreline to the Tip Datum Station (TDS) of the unshrouded 

blade was estimated to be 0.465m and the rest 0.001m was left as tip clearance 

between the blade tip and the stationary shroud. The part of the blade exposed 

to the gas path measured 0.065m radially while the total height of the blade is 

0.11 m. 

 

Figure 6-2 GE90 HPT Stage 1 Blade Dimensions 

The blade was to be divided into 5 sections to find the trend of centrifugal stresses 

spanwise. The important information required in this regard was the aerofoil 

cross-sectional area of each of the sections, which in turn was to be used to 

calculate volume and mass of the respective blade section. Estimation of the 

cross sectional area of the HPT Stage 1 blade airfoil was possible due to the 

availability of another actual  GE90 HPT Stage 1 blade cut at half span, exposing 

the internal construction of the blade as shown in Figure 6-3. 
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Figure 6-3 Internal cross section of HPT Stage 1 Blade 

Great care was given to measuring dimensions that include the airfoil perimeter, 

the blade wall thickness, rib dimensions and coolant passage cavity dimensions 

at various points on the airfoil cross section. The airfoil was assumed to be 

divided into many smaller individual rectangles, triangles and circle. The areas of 

these simple shapes were finally added to arrive at an approximate value for the 

whole airfoil cross section. Since by visual examination the blade seemed to be 

rectangular with no considerable taper, the cross section was assumed to be 

uniform throughout the blade span from TDS to RDS. Table 6-1 provides a 

summary of the geometrical data important for the blade stress and thermal 

models. 
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Table 6-1 Dimensions of HPT Stage 1 Blade  

 

 

6.2 Material Properties & Selection 

Thermal efficiency of gas turbine engines depends significantly on the operating 

temperatures. Higher the TETs the engines are designed for higher the 

efficiencies achieved. Materials have always imposed great restraint to the 

maximum usable TET in a gas turbine since high TETs are often beyond the 

melting points of the materials themselves. The turbine blades work under very 

harsh environments with collective conditions of high temperature, stress, and 

corrosion. The materials for turbine blades are therefore required to possess the 

following principle properties: 

 Outstanding mechanical strength  High melting point 

 High temperature strength  Low density 

 Microstructure stability at high temperature  High stiffness 

 Good oxidation/corrosion resistance  Ease of manufacture 

In pursuit of achieving the best combination of such characteristics, Nickel based 

alloys have evolved over the years since the advent of gas turbine engines as 

the appropriate metallic materials for hot section components. More modern heat 

resistant super alloys used in the manufacture of turbine blades and vanes along 

with intricate cooling technologies adopted for internal convection cooling, 

external boundary layer film cooling and thermal barrier coating, have led the 

engines to operate at high temperatures with greater efficiencies and at the same 

time extend the immunity to failure modes such as creep, thermal fatigue and 

environmental attack. 

Section Avg Cross 

section Area 

(m2)

Section 

Height (m)

Section 

Volume 

(m3)

Section 

Mass (kg)

Distance: CG 

to Rotation 

axis (m)

Tip Cover to TDS 3.446E-04 0.0010 3.446E-07 0.0030 0.4645

3/4 height to TDS 1.845E-04 0.0160 2.952E-06 0.0255 0.4560

1/2 to 3/4  height 1.845E-04 0.0160 2.952E-06 0.0255 0.4400

1/4 to 1/2 height 1.845E-04 0.0160 2.952E-06 0.0255 0.4240

RDS to 1/4 height 1.845E-04 0.0160 2.952E-06 0.0255 0.4080

Shank Neck to RDS - 0.0200 1.234E-05 0.1065 0.3900

Shank Root to Neck - 0.0250 1.516E-05 0.1308 0.3675

Total - 0.1100 3.965E-05 0.3422 -
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Table 6-2 shows some of the different types of nickel based alloys that that have 

been commonly in use in the manufacture of turbine parts. 

Table 6-2 Compositions of commercial Ni-based superalloys[45]  

 

Detailed information on the physical and mechanical properties of much of the 

newer generation super alloys remains proprietary with the inventors and 

developers. Hence a great deal of time was spent to search for relevant material 

specifications for the purpose of this project. 

  

There are indications in the public literature from which it can be inferred that 

GE90 HPT stage 1 rotor blades are made of second generation, nickel-based  

super alloy, Rene N5, castable as single crystal [46], [6], [32]. ‘Rene N5’ is a 

trademark of General Electric Company. With limited information available in the 

public domain same material was selected and assumed to be the equivalent 

material for the HPT blades in the model engine. Rene N5, being a single crystal 

alloy possesses both satisfactory microstructural stability and excellent 

environmental resistance at high temperatures. It has a density of 8630 kg/m3 
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[46]. In addition to addressing temperature influenced failure modes Rene N5 

offers extended immunity to other failure mechanisms such as LCF and HCF [47]. 

Table 6-3 Rene N5 Alloy Composition[47] 

 

The composition of Rene N5 is shown in Table 6-3 by weight percentage. Each 

of these additional elements has been chosen to serve a particular purpose in 

optimizing the properties for high temperature application. For instance 

Chromium (Cr) is present to provide oxidation and sulfidation resistance. Yttrium 

also has exceptional oxidation resistance. High levels of Tantalum (Ta) are found 

to be benelicial to high temperature strength and castability .The chemical 

addition of aluminium promote the creation of the γ’ phase. Creep resistance is 

dependent on slowing the speed of dislocation motion within a crystal structure. 

In modern Ni based superalloys the γ’ intermetallic phase Aluminide Ni3Al  

present acts as a barrier to dislocation motion and diffusion processes at elevated 

temperatures. For this reason, this γ’ intermetallic phase, when present in high 

volume fractions, drastically increases the strength of these alloys due to its 

ordered nature and high coherency with the γ matrix. While the elements Hafnium 

(Hf), Carbon (C) and Boron (B) they are beneficial to improving the tolerance for 

casting defects, such as low angle grain boundaries. Addition of Rhenium 

provides improved creep strength; however, it can potentially cause the material 

to become microstructurally unstable, forming undesirable TCP (topologically 
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close packed) phases. TCPs are potentially damaging for two reasons: they tie 

up Gamma and Gamma' strengthening elements in a non-useful form, thus 

reducing creep strength, and they can act as crack initiators because of their 

brittle nature.[48]  Rene N6, a third generation Ni superalloy, addresses this issue 

where other relevant elements had to be carefully re-balanced with the addition 

of ruthenium to avoid this effect and provide good creep rupture strength as well 

as improve microstructural stability [46]. 

Some of the other material properties are described by the following charts and 

are considered as temperature dependent.   Figure 6-4 shows a plot of 

0.2 % Yield strength versus temperature.   Figure 6-5 is a plot of 

ultimate tensile strength (UTS) versus temperature. All these material properties 

were used in the calculations ahead. 

 

  Figure 6-4 Yield Strength vs Temperature [49] 
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  Figure 6-5 Ultimate Tensile Strength vs Temperature[49] 

 

6.3 Stress Model 

Stress model is important for evaluation of mechanical stresses acting on the 

turbine rotor blades during different phases of the flight mission. The stresses 

arise due to a variety of sources including centrifugal loads, gas bending loads, 

shear loads, thermal loads, and vibration loads, some being more significant than 

others in terms of meeting basic blade design and material strength requirements.  

 

 Centrifugal stress act in radially outward direction and is caused due to 

high speed rotation of blade mass (inertia). It is steady and tensile in nature 

and is the main cause of blade failure due to creep under the influence of 

high temperature. 
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 Centrifugal bending moment is produced by the centrifugal load acting at 

a point which, due to the slight lean in the blade, is not radially in line above 

the centre of gravity of the blade root datum section or any other reference 

section.  

 

 Gas bending moments (tangential and axial) are produced due to the 

change in momentum and pressure of the gas traversing through the 

blade. These moments result in the maximum bending stresses to occur 

at leading edge and trailing edge and convex surface back face. Due to 

the twist in the blade the stress values in each section vary from root to 

tip. 

 

 Shear stresses arise from the gas pressure distribution along the blade 

length and from the untwisting effect of the pre-twisted blade due to 

centrifugal loading. 

 

 Vibratory dynamic stresses develop when the blade is subjected to any 

resonant vibration, flutter or domestic object damage. Such stresses are 

vital for high cycle fatigue (HCF) analysis.  

 

 Thermal stresses are caused when the turbine blade experiences 3D 

temperature gradients along the blade span, across the blade profile and 

within the metal thickness of the blade wall. It becomes even more 

complex when there is variation in these thermal gradients due to gas 

temperature fluctuations caused by changes in power settings in an 

engine operating cycle. This potentially results in unequal deformation in 

the blade fibres which gives rise to compressive and tensile stresses in 

different areas of the blade.  
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Out of all the different types of stresses, the centrifugal stress generally 

dominates. According to [MDOT notes] about 50% to 80% of the blade material 

strength is used to overcome this stress. As far as gas bending moments are 

concerned their effect is partially neutralized by centrifugal moment that arises 

from the intentional slight leaning of the turbine blade in the direction of rotation. 

‘Leaning’ is a beneficial method of minimizing stresses in the blade and therefore 

it is a common design practice to lean the blade to counterbalance at least 75% 

of the gas bending moment at high power setting of an aero-engine [15]. Detailed 

calculations of gas bending stresses require considerable work and, like most 

design calculations, are computerized[50]. Would need advanced tools to 

determine the moment of inertia for aerofoil contours and the principal axis with 

respect to axial and tangential axes.  The resulting bending stress essentially 

cancels the gas bending stress at the blade root, and leaves only the centrifugal 

stress component. Comparing to centrifugal and gas bending stress, the shear 

stress in turbomachine blades is considerably smaller. The stresses arising from 

thermal gradients are very complex and detrimental, but difficult to calculate due 

to lack of data, so it is not calculated in the present study. It would require 

sophisticated tools to do the analysis concurrently with transient and heat 

soakage analysis. For the purpose of engine soft life estimation, only centrifugal 

load was considered in the stress model, while the rest of the types of stresses 

were ignored due to the reasons mentioned above. 

A 2-D centrifugal stress model is developed based on Cookson and Haslam 

notes[15] where centrifugal stress is calculated at each section along the blade 

span from root to tip given the HP shaft relative rotational speed PCN as an 

important input to the model. The cross-sectional area along the blade span was 

found to be quite uniform and therefore was assumed constant. Furthermore, 

there are gas bending moments that arise due to the velocity and pressure 

differences as the fluid flows over the blade. The stresses produced, in many 

blade designs, are offset by the geometrical leaning of the blades, thereby 

reducing the effect [15] [51]. Gas bending stresses, therefore, will not be 

considered in this project. 
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Figure 6-6 Centrifugal force acting on each blade section 

 

HP shaft relative rotational speed PCN is an important input data to the centrifugal 

stress model. Actual HP shaft rotational speed denoted as ‘N2’ is calculated in 

rpm by using PCN, followed by angular velocity ω. Centrifugal forces are 

calculated independently on all the six blade sections using equation ( 6-4 ). 

Cumulative centrifugal force is then calculated at each of the six blade stations – 

TDS, ¾, ½, ¼, RDS, and Shank neck - by summing all the individual centrifugal 

forces acting on the sections above the respective station. For instance, 

centrifugal force acting at ½ station is the accumulation of centrifugal forces 

acting on blade sections (½  – ¾), ( ¾ - tip cover) & (tip cover – TDS). Finally, the 

centrifugal stress is calculated by dividing the cumulative centrifugal force at each 

blade station by the blade cross sectional area. 

 

𝐻𝑃 𝑆𝑝𝑜𝑜𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑   𝑁2 = 𝑃𝐶𝑁 × 𝑁2_100% 
( 6-1 ) 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝜔 =
2𝜋𝑁2

60
 ( 6-2 ) 
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𝐶𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 𝑓𝑜𝑟𝑐𝑒   𝐶𝑓𝑠𝑒𝑐 = 𝑚𝑠𝑒𝑐 × 𝑟𝑐𝑔_𝑠𝑒𝑐 × 𝜔2 ( 6-3 ) 

𝐶𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 @ 𝑏𝑙𝑎𝑑𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛   𝜎𝑏𝑆𝑡 =
∑ 𝑎𝑙𝑙 𝐶𝑓𝑠𝑒𝑐 𝑎𝑏𝑜𝑣𝑒

𝐴𝑏𝑠𝑡
 

( 6-4 ) 

Figure 6-7 and Figure 6-8 show spanwise blade stress distribution at maximum 

power settings during each of the flight phases in mission 1 and mission 2 

respectively. The stress at the blade shank is a bit lower due to higher cross 

section area at that station. 

 

Figure 6-7 Blade Stress Distribution (Reference Mission 1) 
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Figure 6-8 Blade Stress Distribution (Reference Mission 2) 

 

6.4 Thermal model 

Thermal model is important for evaluation of blade metal temperature. HPT 

blades in modern-day large civilian engines such as GE90 use convection and 

film cooling along with thermal barrier coating to control the blade metal 

temperature from exceeding its material melting point.  

The blade temperature is calculated with the aid of overall cooling effectiveness 

ε[52], a technology factor that reflects the amount of coolant mass flow and the 

type of cooling used[24]. It is mathematically defined as follows: 

𝜀 =
𝑇𝑔 − 𝑇𝑏

𝑇𝑔 − 𝑇𝑐
   

( 6-5 ) 

 

Where, 

Tg = Free stream gas temperature 

Tb = Blade metal temperature 

Tc = Coolant temperature 
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The cooling effectiveness ɛ of existing modern civil engines range between 0.5 

and 0.7 [53]. GE90 engine being in the same category, ɛ values within the same 

range were chosen. A slight arbitrary linear variation of cooling effectiveness was 

assumed in this project, from 0.63 at the root to 0.59 at the tip considering the 

fact that this blade, being unshrouded, is prone to hot gas tip leakages resulting 

in slightly higher blade temperatures at the tip than at the root. 

 

Another important consideration taken into account is the pattern factor or radial 

temperature distribution factor (RTDF), which characterizes the profile of gas 

temperature distribution faced by the NGVs or turbine rotor blades. 

Mathematically, it is expressed as follows: 

𝑅𝑇𝐷𝐹 =
𝑇𝑚𝑎𝑥𝑜𝑢𝑡 − 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑜𝑢𝑡

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑜𝑢𝑡 − 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑛
 

( 6-6 ) 

 

Where, 

Tmaxout = Maximum profile temperature 

Taverageout = Temperature of the combustor/NGV exit 

Taveragein = Temperature of the combustor inlet 

 

 

The gas temperature profile formed at the annular combustor exit is not uniform, 

TET being lower at the walls and higher in the middle[54]. Same is the case with 

NGV exit traverse but with relatively lower intensity. To minimize the impact on 

the blade life, the radial position of the peak temperature in the profile is made to 

fall on the blade region experiencing less stress. Therefore, as a predominant 

design practice, the peak temperature is normally found in the upper half of the 

radial profile [53]. Generally, the RTDF values vary between 0.1 and 0.2 [8].  
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Figure 6-9 Effect of RTDF on the Gas Temperature Profile [28] 

For the purpose of this project, a triangular temperature profile [28] is selected 

between HPT Stage 1 NGVs and blades with RTDF=0.15 and maximum rotor 

inlet gas temperature (RIT) occurring at approximately 75% annulus span. 

Following are the notations and equations used to eventually find the blade metal 

temperature at each of the five radial stations. See Figure 6-10.  

 

 

Figure 6-10 RIT Profile faced by the HPT blade 

 

 T3 = HPC Discharge Temperature 
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 T4 = Turbine Entry Temperature / Combustor Exit temperature 

 T41 = Average Rotor Inlet Gas Temperature post NGV, calculated from Turbomatch 

simulation results. Note that out of 15% of HPC discharge air taken for cooling 9% is used 

for NGVs and the rest 6% is used for HPT Stage 1 blades. T41 is assumed to be T10–

9/15(T10–T11), where T10 and T11 are the temperatures at stations 10 and 11 in the 

Turbomatch model. T10 is TET while T11 is the resultant temperature after the mixture 

of primary core flow and the secondary coolant flow. 

𝑇𝑅𝑖𝑠𝑒 = 𝑇41 − 𝑇3 ( 6-7 ) 

𝑇41 𝑚𝑎𝑥 = 𝑇41 + (𝑇𝑅𝑖𝑠𝑒 × 𝑅𝑇𝐷𝐹) ( 6-8 ) 

𝑇41𝑚𝑖𝑛 = (
1

3
) (5𝑇41 − 2𝑇41𝑚𝑎𝑥) 

( 6-9 ) 

𝑇41,25% = 𝑇41𝑚𝑖𝑛 + (
1

3
) (𝑇41 𝑚𝑎𝑥 − 𝑇41𝑚𝑖𝑛) 

( 6-10 ) 

𝑇41,50% = 𝑇41𝑚𝑖𝑛 + (
2

3
) (𝑇41 𝑚𝑎𝑥 − 𝑇41𝑚𝑖𝑛) 

( 6-11 ) 

𝑇𝑏𝑇𝐷𝑆 = 𝑇41𝑚𝑖𝑛 − 𝜀 (𝑇41𝑚𝑖𝑛 − 𝑇3) ( 6-12 ) 

𝑇𝑏,75% = 𝑇41𝑚𝑎𝑥 − 𝜀 (𝑇41𝑚𝑎𝑥 − 𝑇3) ( 6-13 ) 

𝑇𝑏,50% = 𝑇41,50% − 𝜀 (𝑇41,50% − 𝑇3) ( 6-14 ) 

𝑇𝑏,25% = 𝑇41,25% − 𝜀 (𝑇41,25% − 𝑇3) ( 6-15 ) 

𝑇𝑏𝑅𝐷𝑆 = 𝑇41𝑚𝑖𝑛 − 𝜀 (𝑇41𝑚𝑖𝑛 − 𝑇3) ( 6-16 ) 

 

Figure 6-11 and Figure 6-12 show spanwise blade temperature distribution at 

maximum power settings during each of the flight phases in reference missions 

1 and mission 2 respectively. 
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Figure 6-11 Blade Temperature Distribution (Reference Mission 1) 

 

 

Figure 6-12 Blade Temperature Distribution (Reference Mission 2) 
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7 ENGINE SOFT LIFE ESTIMATION 

 

7.1 Creep Model and Life Calculation 

Creep refers to the tendency of a material to undergo progressive deformation 

with time under the effect of high temperature and constant mechanical stress. 

Creep is said to be a time-dependent deformation. Under the influence of 

relatively high temperature, plastic deformation of a material is bound to take 

place even if the stress is smaller than the yield stress. This deformation is time-

dependent and is known as creep. Gas turbine engine on a civilian aircraft spends 

the majority of its flight time in steady state cruise conditions and therefore sets 

an opportunity for creep to act on the HPT blade during that time period. Creep 

is highly sensitive to temperature and shows its significance when metal 

temperature reaches about 40% to 50% of the melting temperature [15]. The 

cooling technology used in the HPT is always carefully and precisely designed. 

In the absence of appropriate cooling, the creep deformation may become large 

enough to cause a turbine blade to touch the casing, resulting in blade tip failure.  

The creep process can be represented by the following strain versus time curve. 

 

Figure 7-1 Strain vs Time Creep Curve[5] 

The slope of the curve is called strain rate or creep rate. Initially, there is always 

some instantaneous elastic strain εo immediately upon application of load. Then, 
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in the primary stage, the high creep rate tends to drop with time as the material 

faces an increase in strain hardening due to the build-up of a large number of 

dislocations. Deformation then becomes relatively difficult as the material is 

strained. In the secondary stage the creep attains constancy while maintaining a 

balance between the two metallurgical processes of strain hardening and thermal 

recovery. It is this stage where the material spends most part of its creep life[15]. 

Lastly, in the tertiary stage, the strain rate accelerates rapidly, leading to ultimate 

failure known as rupture. This failure could be the result of reduction in cross 

sectional area often termed as necking, caused by micro structural changes such 

as coalescence of voids or cavities, formation of internal micro cracks, sliding of 

grain boundaries[8]. 

After determining the operating stresses and temperatures experienced by the 

HPT blade, it is possible to forecast the service life of the component. To estimate 

the cumulative creep life to failure, Larson-Miller Parameter is used followed by 

the application of Miner’s law to account for the separate creep effects due to 

different operating conditions in different phases of the flight mission cycle [15]. 

LMP is quite sensitive, i.e. a small change in blade temperature results in large 

variation in predicted life [8]. It is mathematically expressed as: 

𝑃 =
𝑇𝑏

1000
(log 𝑡𝑓 + 20) 

( 7-1 ) 

 

Where, 

P = Larson-Miller parameter (LMP) 

Tb = blade temperature 

tf = time to failure in hours 
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Figure 7-2 Approximate Relation between LMP and Stress for Rene N5 material 

[46] 

 

Time to failure tf is found by rearranging the above equation. 

𝑡𝑓 =  10
[(

1000
𝑇𝑏

)𝑃−20]
 

( 7-2 ) 

Palmgren-Miner law is eventually employed to estimate the cumulative creep life 

of the blade taking account of all separate creep effects due to different operating 

conditions in different flight mission segments. 

𝑡𝑓 =
1

∑
𝑡𝑑𝑖

𝑡𝑓𝑖

𝑛
𝑖=1

 
( 7-3 ) 

 

Where, 

n = number of flight segments 

tf = cumulative creep life in hours 

tdi = duration of the ith flight segment 
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tfi = time to failure for the ith segment 

Note: Creep life can also be calculated in cycles by simply 

dividing tf by the entire flight duration in hours. 

 

Following are the cumulative creep lives found for the two missions. The results 

are in accordance with expectations. Engine operated at higher thrust rating in 

flight mission 1 has a lower creep life than the engine operated at lower thrust 

rating in mission 2. 

Table 7-1 Creep Lives for Mission 1 and 2 

 

7.2 Low Cycle Fatigue Model & Life Calculation 

Fatigue is the deterioration of an engine that comes as a result of it being exposed 

to varying stress loads due to change in its operating conditions.  

The overall fatigue life of an engine is estimated in the following steps:  

- Description of the loading history of the turbine blade 

- Count of the reprisals of each type of load 

- Assessment of the damage caused by each particular load, using Stress-

based or Strain-based methods. 

- Combine the damage caused by the load application at each level, using 

additive rule.  

7.2.1 Rainflow Cycle Counting 

Because the amplitude of loads fluctuates, it was important to introduce cycle 

counting methods that would compare the deterioration that results from irregular 

load histories with the damage caused by sets of regularly repeated load cycles.  
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With their respective algorithms, these methods take an irregular load history and 

extract individual stress cycles in a manner more suitable for lifing analysis. Often 

four well-known cycle counting methods are found in the literature: the Race track 

method, Range mean method the Range Pair method and the Rainflow 

method[8]. Each method has its own advantage and disadvantages and all 

methods can lead to different predictions of the fatigue life. 

Rainflow counting, also known as ‘Pagoda Roof’ method, is considered to be the 

most reliable technique[55] because its fatigue life estimates are usually most 

conservative.Hence it was chosen to be used in the current thesis. 

The rainflow algorithm contains the following list of rules that can be seen applied 

in this thesis in section – see Figure 7-5. 

 The stress/strain time history is simplified to a sequence of peaks and 

valleys.  

 The stress/strain time history is then turned 90° clockwise, so the starting 

time moves at the top.  

 The peaks and valleys are considered to be a series of pagoda roofs.  

 Rainflow starts at the beginning and again at the inside of every peak or 

valley. 

 Rain flows down a pagoda roof and over the edge, where it falls vertically 

until it reaches a level opposite a maximum more positive (minimum more 

negative) than the maximum (minimum) from which it started.  

 Rain also stops when it is joined by rain from a pagoda roof above 

 The horizontal length of each rainflow is then counted as a half cycle at 

that stress/strain range.  

 A pair of half cycles found to be identical in magnitude but opposite in 

direction can be counted as one complete cycle. 

7.2.2 Damage or Life Estimation by Strain-Based Approach 

The strain-based approach calculates the life at the engine’s most critical phase, 

namely take-off, when it experiences the maximum TET [13]. Since Low cycle 

fatigue involves considerable accumulation of plastic strain energy, a strain 
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based approach is most suitable for evaluation of fatigue life. Therefore, a 

combination of Coffin - Manson method, along with Neuber relationship, will be 

used as it has been employed by Pascovici [56] and Suria [57] in their work. 

7.2.3 Damage or Life Estimation by Stress-Based Approach 

Normally, the S-N curve is a plot of fully reversed loading (with mean stress equal 

to zero) versus life cycles to failure. But sometimes the mean stress in loaded 

components is not equal to zero and hence needs to be translated to equivalent 

reversed stress cycles in order to obtain the life by conventional S-N curve [58]. 

There are a few methods that facilitate this transformation based on the empirical 

constant damage curves illustrated in Figure 7-3 to consider the effect of inherent 

mean stress. For many modern materials including nickel alloys the Goodman 

straight line relation has been considered to most appropriate. 

 

Figure 7-3 Constant Damage Curves: Soderberg, Goodman, Gerber [59] 

Figure 7-4 illustrates the usage of Modified Goodman diagram to obtain fully 

reversed stress cycles. Point D represents the ultimate tensile strength and zero 

alternate stress. Point B represents fully reversed effective stress amplitude with 

zero mean stress. So if the stress amplitude and mean stress are known at point 

C, then the intended point B can be obtained by use of similar triangles with 

equation ( 7-4 ). 
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𝜎𝑎

𝜎
+

𝜎𝑚

𝜎𝑈𝐿𝑇
= 1 

 

( 7-4 ) 

 

Where  

𝜎 = Stress amplitude with zero mean stress 

𝜎𝑎 = Stress amplitude with non-zero mean stress σm 

𝜎𝑚 = Mean stress 

𝜎𝑈𝐿𝑇 = Ultimate tensile stress 

 

Figure 7-4 Goodman Diagram 

To estimate the component’s fatigue life, the individual damages calculated from 

each of the loading cycles are combined in a certain way to get the total damage. 

Several cumulative damage theories have emerged in the literature but none 

besides Palmgren-Miner rule is found to be universally applicable to all scenarios 

[60][58][55].  Palmgren-Miner rule is a simple linear cumulative damage rule 

according to which if the component is subjected to k number of stress 

amplitudes, where each stress amplitude σi for ni cycles gives an average life of 

Ni cycles, then the failure is expected when the linear summation of all the 

individual damage fractions, ni/Ni, reaches close to unity. 

𝐷𝑓𝑎𝑡𝑖𝑔𝑢𝑒 = ∑
𝑛𝑖

𝑁𝑓𝑖

𝑘

𝑖=1

≈ 1 ( 7-5 ) 

 
 

 



 

106 

Where 

𝑛𝑖 is the number of applied cycles at ith stress range 

𝑁𝑓𝑖 is the number of cycles to fatigue failure for ith stress range 

𝑘 is the number of stress amplitudes/ranges/cycles. 

 

One major limitation of the Miner’s law is that it does not consider the sequence 

of the loading schedule, when in fact there are some cases where sequence 

effects are important. 

 

7.3 Low Cycle Fatigue Life Estimation for Baseline Missions 

Fatigue life calculation was performed for both flight missions 1 and 2 using the 

methods and algorithms discussed earlier. In this section the calculation process 

will be shown for mission 1 only but same was applied for mission 2 as well. 

Figure 7-5 shows the centrifugal stress history associated with flight mission 1, 

followed by identification of peaks and valleys. 
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Figure 7-5 Cycle Counting by Rainflow Method 

Since no finite element analysis was performed to find the stress concentration 

factor Kt, a reasonable value of 2.18 was assumed due to a potential stress raiser 

located at TDS of the blade. Together with notch sensitivity index q = 0.85, the 

fatigue concentration factor Kf was calculated using the equation ( 7-6 ) below. 

Kf = q(Kt − 1) + 1 ( 7-6 ) 
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Kf = 0.85(2.18 − 1) + 1 = 2.0 ( 7-7 ) 

Rainflow cycle counting method was applied to extract 8 reversals (half cycles). 

The corresponding full 4 stress cycles are indicated in Table 7-2. 

Table 7-2 Rainflow Cycle Counting applied to 4 stress cycles 

 

 

Strain Based Approach 

LCF life of the HPT blade was first tried to be determined by strain based method 

using Neuber’s local strain rule and Manson’s ‘Equal Slopes’ equation. To 

simplify the calculation process it was assumed that the Rene N5 material 

behaves ideally elastic and perfectly plastic during this process. During the whole 

flight profile, the maximum nominal stress within the blade occurs during the 

takeoff phase.  

Properties of Rene N5 at a temperature of 1263K during takeoff were found to be  

Elastic Modulus  𝐸 = 213 GPa, 

Ultimate Tensile Strength 𝜎𝑈𝑙𝑡  = 720 MPa, 

Yield Stress 𝜎𝑦 = 590 MPa 

 

Using the Neuber Diagram in Figure 7-6:  

Local stress at point A,  𝜎𝐴 = 𝐾𝑓 × 𝜎𝑁𝑜𝑚𝑖𝑛𝑎𝑙 =  2.0 × 311.18 = 622.36 𝑀𝑃𝑎 

Strain at point A,   𝜖𝐴 =
𝜎𝐴

𝐸
= 0.002926 
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Application of Neuber’s Rule:  (∆σ∆ϵ)𝐸𝑙𝑎𝑠𝑡𝑖𝑐 = (∆σ∆ϵ)𝑃𝑙𝑎𝑠𝑡𝑖𝑐 = σAϵA = σBϵB 

Stress at point B is equal to the yield strength,  𝜎𝐵 = 𝜎𝑦 = 590 𝑀𝑃𝑎 

Strain at point B,  𝜖𝐵 =
σAϵA

σB
= 0.003091 

Stress at point C, 𝜎𝐶 = 𝜎𝐵 − 𝜎𝐴 = 590 − 622.36 = −32.36 𝑀𝑃𝑎 , which is less than 

yield strength in compression. 

 

It was observed  that the stress cycle considered was not high enough for the 

yielding to take place in compression causing elastic shakedown i.e. the material 

would continue to oscillate along the elastic red line BC shown in Figure 7-6.  A 

minimum stress concentration factor of 4.3 was required for the material to follow 

a complete hysteresis loop with elastic and plastic regions in order to estimate 

the low cycle fatigue. But it is not normal to have such high values for stress 

concentration factors. Hence the strain based method to calculate the fatigue life 

was discontinued at this stage. The strain based method may be applied for 

rather larger components such as turbine disk involving higher levels of nominal 

stresses.  

 

Figure 7-6 Use of Neuber’s Rule to estimate total strain 
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Stress Based Approach 

Due to the elastic shakedown the strain based calculation was no longer pursued. 

Alternatively, Stress based method was initiated. Due to lack of material data 

available for Rene N5 in public domain, the S-N relationship was derived by 

taking 90% UTS at 1000 cycles and endurance strength to be 30% UTS at 

1,000,000 cycles and use a logarithmic relationship between these values. Such 

is the case for many non-ferrous materials. 

 

Figure 7-7 Derived SN Curve for Rene N5 

Combination of Goodman diagram and derived SN curve was then used to 

estimate the LCF life from the damaging cycles. All the stress cycles in Table 7-2 

are projected on to the y axis as fully reversed stress cycles at zero mean stress. 

Out of all the four only the first cycle was found to be damaging in nature, lying 

beyond the safe design limit represented by red line in the Goodman diagram, 

also known as ‘line of constant damage’. See Figure 7-8. 
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Figure 7-8 Combined S-N and Goodman Diagram 

The effective stress amplitude σ at zero mean stress for the 1st cycle was 

calculated by means of similar triangles; 

𝜎 − 0

𝜎𝑈𝐿𝑇 − 0
=

𝜎1𝑎 − 0

𝜎𝑈𝐿𝑇 − 𝜎1𝑚
 

 

( 7-8 ) 

 

𝜎 =
𝜎𝑈𝐿𝑇 × 𝜎1𝑎

𝜎𝑈𝐿𝑇 − 𝜎1𝑚
 

 

( 7-9 ) 

 

𝜎 =
720 × 311.18

720 − 155.6
= 397 𝑀𝑃𝑎 

 

( 7-10 ) 

 

When extended on to the S-N curve in Figure 7-8, the corresponding log Nf was 

estimated to be 4.34 which then provided 21800 cycles. Alternatively, 

intermediate number of cycles between N=103 and N=106 could also be obtained 

by means of similar triangles using Figure 7-7. 
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log(0.9 × 𝜎𝑈𝐿𝑇) − log 𝜎

log(𝑁𝑓) − log(103)
=

log(0.9 × 𝜎𝑈𝐿𝑇) − log(0.3 × 𝜎𝑈𝐿𝑇)

log(106) − log(103)
 

 

( 7-11 ) 

 

2.812 − 2.599

log(𝑁𝑓) − 3.0
=

2.812 − 2.334

6.0 − 3.0
 

 

( 7-12 ) 

 

log(𝑁𝑓) = 3.0 ×
2.812 − 2.599

2.812 − 2.334
+ 3 

 

( 7-13 ) 

 

log(𝑁𝑓) = 4.34   →   𝑁𝑓 = 21,797 𝑐𝑦𝑐𝑙𝑒𝑠 

 

( 7-14 ) 

 

If there were more than one damaging cycles Miner’s Law would have been used 

for the calculation of the total life taking into account effects from all damaging 

cycles. 

 

Similar process was employed to estimate the LCF life for baseline mission 2.  

Nf for mission 2 equals 44,113 cycles. 

 

7.4 Cumulative Damage for Baseline Missions 

The cumulative damage due to Fatigue-creep life prediction can be dealt with in 

two methods. The first one is to determine the damage of creep and fatigue 

individually, and then by a linear damage summation rule, the damage of creep 

and fatigue are added together to give the total damage. This is known as the 

Damage Summation Method. The second one considers the damage of fatigue 

and creep together and uses the Strain Range Partitioning Technique or Strain 

Energy Partitioning Technique [61]. Among them, the linear accumulation of 

fatigue-creep damage is popular and simple. Hence in this study, same technique 
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is applied as demonstrated by Attah [17] to estimate the cumulative life of the 

HPT first stage blade which will be regarded as the soft life of the engine itself. 

Through the linear damage accumulation method, the total damage D is equal to 

the summation of the fatigue damage and creep damage, which are shown in 

equations below. 

𝐷 = 𝐷𝑓𝑎𝑡𝑖𝑔𝑢𝑒 + 𝐷𝑐𝑟𝑒𝑒𝑝 = ∑
𝑛𝑖

𝑁𝑓𝑖

𝑘

𝑖=1

+ ∑
𝑡𝑗

𝑇𝑐𝑗

𝑙

𝑗=1

 

( 7-15 ) 

Where 

𝑛𝑖 is the number of applied cycles at ith stress range 

𝑁𝑓𝑖 is the number of cycles to fatigue failure for ith stress range 

𝑘 is the number of stress ranges or cycles. 

𝑡𝑗 is duration of the jth flight phase  

𝑇𝑐𝑗 is the rupture time for the jth flight phase  

𝑙 is the number of different flight phases. 

 

Table 7-3 Cumulative HPT Blade Life 
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8 ENGINE TIME ON-WING ASSESSMENT 

The soft lives calculated in the previous chapter were for the baseline missions 

without taking into account the effect of progressive engine degradation. In reality, 

wear occurs with engine usage which affects engine performance, for instance, 

compressor and turbine blades erode, tip clearances increase, etc as discussed 

previously in chapter 2. In order to achieve the same level of thrust as in a new 

or an overhauled engine, a deteriorated engine has to run hotter and/or faster to 

compensate for the losses. Consequently, this is accompanied by an increase in 

engine fuel flow and specific fuel consumption which leads to an increase in TET 

and EGT. Such a shift in the parameters, when compared to nominal operation, 

increases with usage, and ultimately reaches the maximum allowable operational 

limits with regards to temperature and rotational speed. 

 

8.1 Engine Degradation Profile selection 

To implant the effect of engine performance deterioration into the model, a 

degradation table was generated where each degradation signature or level was 

defined in terms of percentage deviations in efficiencies and mass flow capacities 

of five major engine components (LPC-Fan, LPC-Booster, HPC, HPT, and LPT), 

and was made to follow an increasing trend with respect to flight cycles flown in 

service. The table is included in Appendix C whereas the corresponding 

component charts are illustrated in Figure 8-1 and Figure 8-2. The table was 

constructed based on the following considerations: 

 

 The relative contribution of each of the individual engine component (Fan, 

Booster, HPC, HPT, LPT ) parameters (efficiency  and flow capacity) in 

the degradation profile was taken from the results of the study done by 

NASA using the real historical data of another commercial turbofan engine 

JT9D used for B747, B767 and A310. References: NASA Contractor 

Report 135448, 1978. and NASA/TM—2003-212607[62]. The degradation 
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implanted is from mild to severe and signifies typical deteriorated curve 

encountered in large two spool turbofan engines. 

 

 The degradation table used in this project is an extended version of that in 

[62] and includes many additional degradation levels at different flight 

cycles where the parameter values were obtained simply by linear 

interpolation and extrapolation.  

 

 For each of the five components the ratio between the flow loss and 

efficiency loss was carefully maintained throughout the degradation levels 

with increasing flight cycles. The ratio of the values in every two 

successive degradation levels was also maintained across all the 

component parameters. This approach was chosen to ensure that the 

cumulative effect of all the degrading elements in the components 

matches typical shape of an overall engine performance deterioration 

profile reflected by continuously decreasing EGT Margin with time. 

 

Figure 8-1: Degradation Signatures for LPC and HPC 
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Figure 8-2 Degradation Signatures for HPT and LPT 

 

Where,  

ηLPC(F) = Fan Efficiency 

mLPC(F) = Fan Flow Capacity 

ηLPC(B) = Booster Efficiency 

mLPC(B) = Booster Flow Capacity 

ηHPC = HPC Efficiency 

mHPC= HPC Flow Capacity 

 

ηHPT = HPT Efficiency 

mHPT= HPT Flow Capacity 

ηLPT = LPT Efficiency 

mLPT= LPT Flow Capacity 

 

 For the sake of simplicity in the analysis, the degradation profile was 

assumed to be similar for both higher and lower thrust rated engines. i.e., 

the percentage shift in the engine parameters would be the same even 

though the actual values will offset depending on the thrust rating. 
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8.2 Effect of Engine Degradation on Performance 

The EGT Margin depletion profiles in Figure 8-3 obtained for the two thrust ratings 

of the engine model as a result of the degradation signatures introduced earlier 

were compared with the description provided by  Erkan , GE90 engine program 

manager at Turkish Technik in [63] and were found to be slightly severe but were 

accepted for the rest of the project analysis with the justification that such could 

be a typical deterioration profile expected of an engine operating in hot, harsh 

and sandy environment like the Middle East as compared to Europe. The TF115 

engine variant at installation provides EGTM of about 42 degrees initially and 

then loses about 20 degrees in the first 1000 cycles of rapid erosion and then 

maintains a steady loss of 7 degrees per 1000 cycles thereafter.TF110 on the 

other hand also follows the same trend but initially starts off with a higher EGT 

margin of 60 degrees.  

 

Figure 8-3 EGT Margin Deterioration 

 

Furthermore, it was observed that EGTM becomes zero at about 4000 cycles 

with TF115 high thrust variant and at about 6480 cycles with TF110. This means 

that the engines are likely to experience EGT exceedance at those respective 
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intervals which would then become the reason for their immediate removal out 

from service. The EGTM is therefore considered as the key engine health 

indicator which is continuously monitored. Later in this chapter, the hardware soft 

lives are re-evaluated taking into account the effect of degradation and only at 

that stage it would be possible to determine the limiting factor for engine removal 

whether engine soft life due to the HPT blade deterioration or the EGTM depletion 

to zero. 

 

Off design performance simulation was performed via Turbomatch with degraded 

components. The engine is caused to run less efficiently in generating the same 

level of thrust than the new or overhauled engine. Lower HPC and HPT 

efficiencies for instance, will demand more turbine work to compensate for the 

losses in compressor delivery pressure and flow capacity. This will result in an 

increase in engine fuel flow and SFC which in turn will give rise to TET and EGT. 

Following charts reflect the effect of degradation on a few of the parameters such 

as TET, Fuel flow and HP Shaft N2 speed. 
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Figure 8-4 TET, FF & N2 vs Flight Cycles 
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8.3 Effect of Engine Degradation on Soft Life 

Below is an outline of the procedure followed to estimate the soft life of the HPT 

blade considering progressive degradation. Flight mission 1 data is used for 

demonstration. Same process was used for flight mission 2.  

 Let the discrete degradation levels be defined from i = 0 to k where the 

severity of degradation increases along with number of cycles flown.  

 Let n be the number of flight cycles in service. The engine will experience 

ith degradation level at ni flight cycles. 

 Let Ni be the predicted life the engine would achieve with ith degradation 

signature only. 

 

Figure 8-5 Soft Life for each Degradation Signature 

Although the area under the curve in Figure 8-5 does not have a physical 

representation, it is rather understood as a mathematical formulation to calculate 

the average cumulative life CL taking into account the effect of progressive 

degradation the engine experiences during its operation. One method of 

approximating the desired area is to divide the time interval [n0, nk]  the engine 
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remains in service into subintervals and consider the trapezoids whose bases are 

these subintervals and whose heights are the lives estimated at particular 

degradation levels. This method is known as Trapezoidal Riemann approximation 

[64], a well-known mathematical technique from calculus used for numerical 

integration. 

Algebraic summation of all the trapezoidal areas is performed until the following 

condition is met i.e. cumulative life CL is less than or equal to actual cycles flown 

in service. 

𝐶𝐿𝑘 =  
1

𝑛𝑘
∑ [

1

2
(𝑁𝑖−1 + N𝑖)(𝑛𝑖 − 𝑛𝑖−1)]

𝑘

𝑖=1

≤ 𝑛𝑘 

 

( 8-1 ) 

 

As the engine experiences higher levels of degradation with increasing number of 

flight cycles the cumulative lives tend to decrease which can be viewed in  

Table 8-1 Accumulative Live Calculation 
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.  Finally, a theoretical point is reached where both of these trends intersect. It is 

this point of intersection which represents the estimated soft life of the engine. 

The engine is expected to be removed out of service after accumulating flight 

cycles equal to the estimated soft life SL. The accuracy could be increased by 

reducing the size of the intervals and defining more degradation levels in 

between. 

 

Table 8-1 Accumulative Live Calculation 

 

The soft life SL is determined using linear interpolation as follows: 

(𝑆𝐿 − 𝐶𝐿𝑘−1)

(𝑆𝐿 − 𝑛𝑘−1)
=

(𝐶𝐿𝑘 − 𝐶𝐿𝑘−1)

(𝑛𝑘 − 𝑛𝑘−1)
 

 

( 8-2 ) 

 

⇒  𝑆𝐿 =
𝑛𝑘𝐶𝐿𝑘−1 − 𝑛𝑘−1𝐶𝐿𝑘

(𝑛𝑘 − 𝑛𝑘−1) − (𝐶𝐿𝑘 − 𝐶𝐿𝑘−1)
 

 

( 8-3 ) 

 

𝑆𝐿𝑀𝑖𝑠𝑠𝑖𝑜𝑛 1 =
(3000)(2922) − (2500)(2762)

(3000 − 2500) − (2762 − 2922)
= 2820 𝑐𝑦𝑐𝑙𝑒𝑠 

( 8-4 ) 



 

124 

 
 

 

Table 8-2 Engine Soft Life for Mission 1 and 2 

 

So the soft life for mission 1 (high thrust) was found reduced by 48%, while the 

soft life for mission 2 (low thrust) was found reduced by 60% due to degradation. 

Soft life for both engine thrust variants is considered to be Engine TOW since soft 

life calculated is less than the time it takes for EGTM to become zero which was 

calculated in previous section. 

 

8.4 Effect on Engine Fuel Consumption 

It can be observed that fuel consumption has a close relationship with operation 

costs, hence it’s noticeable that commercial airlines always focus on the engine 

SFC. However performance degradation is inevitable with the increase in engine 

service life.  Through research, we can see the various component parameters 

(flow capacity and efficiency) degradation and the way they affect the engine SFC 

as well as Fuel flow. Later the difference between fuel consumption of clean and 

degraded engine can be analyzed for both missions through conducting a simple 

analysis.  

For each degradation signature ‘i’ the total fuel consumed during a single flight 

cycle was calculated by adding all the individual quantities consumed in each 

phase of the flight. Table 8-3 for example shows the total fuel consumption per 

flight cycle for the engine operated in reference mission 1 (with no degradation). 
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Table 8-3 Fuel Consumption – Reference Mission 1 (High Thrust, no degradation) 

  

Similar process was applied as in section 8.3 to estimate the average fuel 

consumption for the entire time period the engine stays on-wing (soft life).   

 

• Let the discrete degradation levels be defined from i = 0 to k where the 

severity of degradation increases along with number of cycles flown.  

• Let n be the number of flight cycles in service. The engine will experience 

ith degradation level at ni flight cycles. 

• Let FCi be the predicted fuel (kg/cycle) the engine would consume with ith 

degradation signature only.  

• Let AFCk be the average fuel consumption (kg/cycle) until nk cycles flown. 

𝐴𝐹𝐶𝑘 =  
1

𝑛𝑘
∑ [

1

2
(𝐹𝐶𝑖−1 + 𝐹𝐶𝑖)(𝑛𝑖 − 𝑛𝑖−1)]

𝑘

𝑖=1

 

 

 

( 8-5 ) 
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As the engine experiences higher levels of degradation with increasing number 

of flight cycles, the fuel consumption FCi tends to increase which can be viewed 

in Table 8-4. 

 

Table 8-4 Fuel Consumption – High Thrust Mission 1 (with degradation) 

 

Average fuel consumption per cycle is determined using linear interpolation as 

follows: 

(𝐴𝐹𝐶 − 𝐴𝐹𝐶𝑘−1)

(𝑆𝐿 − 𝑛𝑘−1)
=

(𝐴𝐹𝐶𝑘 − 𝐴𝐹𝐶𝑘−1)

(𝑛𝑘 − 𝑛𝑘−1)
 

 

( 8-6 ) 

 

⇒  𝐴𝐹𝐶 =
(𝐴𝐹𝐶𝑘 − 𝐴𝐹𝐶𝑘−1)(𝑆𝐿 − 𝑛𝑘−1)

(𝑛𝑘 − 𝑛𝑘−1)
+ 𝐴𝐹𝐶𝑘−1 

 

( 8-7 ) 

 

𝐴𝐹𝐶𝑀𝑖𝑠𝑠𝑖𝑜𝑛 1 =
(30893.2 − 30854.6)(2820 − 2500)

(3000 − 2500)
+ 30854.6 = 30879.3 𝑘𝑔  

 

( 8-8 ) 

 

 



 

127 

The values found for both missions were compared to the GE90 Fuel burn 

Performance analysis in [65] and were found to be in close proximity to the Block 

Fuel estimates for both aircraft variants B777-300ER and B777-200LR for the 

respective trip length. 

Table 8-5 Average Fuel Consumption for Mission 1 and 2 

 

So, the average fuel consumption for mission 1 (high thrust) was found increased 

by 1.51%, while for mission 2 (low thrust) was found increased by 2.39% due to 

degradation. 

The average fuel consumption was then multiplied by the life calculated earlier to 

give total fuel consumption for the entire period the engine stays on wing. Dividing 

it by number of flying hours gave the fuel burn (kg per hour). To evaluate the fuel 

operating cost of the engine by hour the price of Jet A-1 fuel was taken as $74 

per barrel as of 26th June 2015 from reference [66]. The density of Jet A-1 fuel 

was taken to be 820 kg/m3 in accordance with World Jet Fuel Specifications 

published by ExxonMobil Aviation [67]. With the required unit conversions the 

average fuel cost per hour (FCPH) was finally estimated to be $3462.25 per hour 

for mission 1 and $3078.47 per hour for mission 2. 

 

8.5 Effect on Engine Maintenance Cost 

The engine maintenance cost structure highlighted in Figure 8-6 figure is widely 

known in the aviation and MRO industry. In this structure the engine MRO cost is 

split into DMC - direct maintenance cost and IDMC - indirect maintenance 

cost[68].  
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Engine DMC, also called shop visit DMC, generally includes expenditures related 

to labour, repair schemes, parts replacement and testing, required to make the 

engine serviceable for operation with desired performance and reliability. Often 

for convenience, engine DMC is further separated into two elements: one element 

for performance restoration by itself and the other for LLP replacement. Engine 

DMC or SVDMC can also be calculated in terms of dollars per flight hour by 

dividing total shop visit cost of an engine by its time on-wing. According to 

Seemann [68], unlike restoration costs, LLPs normally have hard lives which are 

fixed by the manufacturer and co-endorsed by regulatory authorities and 

therefore must be strictly respected.  

Engine IDMC, on the other hand, deals with maintenance burden overheads, 

representing charges for indirect non-operational affairs related to maintenance; 

such as upgrading workshop facilities, training staff and providing administrative 

services etc. For the purpose of this project, only engine DMC will be considered 

as it represents much greater portion and more importantly, holds the 

characteristic of being directly affected by aircraft operation [68]. 

Most airlines nowadays get their engines overhauled by MRO service providers. 

A common type of contract is the Time and Material contract, where the airline 

pays according to the arranged labour rates and material costs, against a 

guarantee by the MRO for a certain minimum time on wing of the engine after its 

overhaul. 
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Figure 8-6 Engine Maintenance Cost breakdown [14][23][68]  

For the purpose of this study following reasonable assumptions were made after 

reviewing the analysis of GE90 engine family maintenance costs seen in the 

MRO industry[63]. 
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Average Shop Visit Restoration Cost = $7.0 million 

Maintenance Reserve for the engine LLPs = 432.0 $/cycle = 432.0/6.75 (hr/cycle) 

= 64.15 $/hr 

Normalizing any cost per flying hour helps in the visualization of cost distribution 

and often serves as a comparison tool to evaluate the operating economics of 

the engine at two different thrust ratings. 

𝑆ℎ𝑜𝑝 𝑉𝑖𝑠𝑖𝑡 𝐶𝑜𝑠𝑡 (𝑆𝑉𝐶)  =  𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 +  𝐿𝐿𝑃 𝐶𝑜𝑠𝑡 ( 8-9 ) 

𝑆ℎ𝑜𝑝 𝑉𝑖𝑠𝑖𝑡 𝐷𝑀𝐶 ($ ℎ𝑟)⁄ =
𝑆𝑉𝐶

𝑇𝑖𝑚𝑒 𝑂𝑛𝑊𝑖𝑛𝑔
 

( 8-10 ) 

 

Since the direct maintenance cost depends on engine TOW, and the severity of 

operation based on parameters such as flight length, ambient conditions, TO 

derate and thrust rating  is already inherent in the estimation model of engine soft 

life (or engine TOW) the DMC is in fact able to predict costs for any operational 

scenario.  

 

Below are the engine maintenance costs estimated for mission 1 and mission 2 

type operations. 

Table 8-6 Direct Maintenance Cost for TF115 and TF110 
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8.6 Implementation of Thrust Rating Change Option 

The tools developed and utilized throughout this project allow us to conclude how 

thrust rating change influences an engine’s life expectancy on-wing, as well as 

its operating and maintenance costs, as shown in Figure 8-7. 

An engine operated at low thrust only has longest TOW. An engine operated at 

high thrust only has the shortest TOW. Between these two extremes, an engine’s 

life expectancy on-wing can vary, when it is operated first at high thrust, then at 

low thrust.  

The second part in Figure 8-7 shows the impact of thrust rating change on the 

engine’s fuel consumption: at only low-thrust rating the fuel consumption per hour 

is minimal, at only high-thrust rating the fuel consumption per hour is maximal, 

while the average fuel consumption per hour gradually varies in accordance with 

the fraction of time it spends at each, high, then low thrust.   

For the engine’s maintenance cost per hour, we have a similar scenario: At only 

low thrust it is minimal; at only high thrust it is maximal.  

However, it can be observed that the total shop visit costs slightly tend to increase 

as TOW increases.  
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Figure 8-7 Engine Time On-Wing and Total Cost per hour considerations 

 

The reader can observe the expected benefits of transferring the engine from a 

high thrust rated aircraft to a lower thrust rated aircraft at least once prior to its 

shop visit. However, the most interesting part of finding where the optimal shifting 

point lies can be done only by individual airline operators as a parametric analysis 

which takes into account the actual fleet. It should be noted that such a strategy 

can be adopted only by those operators which operate two or more aircraft 

models with same engine type but different thrust ratings.
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9 CONCLUSIONS & FURTHER RECOMMENDATIONS 

This chapter summarizes the main achievements of the research work and also 

highlights some of the limitations. Furthermore, it outlines few proposals for future 

work which would add refinements and perhaps lead to exploration of new 

aspects within the same research area. 

9.1 Conclusions 

The purpose of this project was to study the effect of the thrust rating change on 

the engine’s life on a large civil aircraft and its repercussions on the maintenance 

and operating costs. Hence, this thesis is well suited to airline operators who 

manage a minimum of two or more aircraft variants from among the same series 

in their fleet. This will enable engine changeability across those aircraft variants; 

hence will facilitate the swap of engines from a high thrust configuration to a low 

thrust configuration to get benefit from extended time on-wing. 

In summary the study proceeded as follows: 

After obtaining adequate familiarization of Turbomatch Engine Performance 

Simulation tool, baseline engine model was created for a high bypass turbofan 

engine (similar to GE90). Design Point was chosen to be at Takeoff condition with 

highest thrust rating. Engine Cycle parameters were selected for best DP 

performance and optimum fan pressure ratio identified. Engine Off Design 

performance was studied. Engine behaviour with respect to change in Mach 

number, Altitude and OAT was found satisfactory. 

 

After obtaining adequate familiarization of Hermes Aircraft Performance 

Simulation tool, two reference flight missions were established and modelled for 

two different versions of the same aircraft type (similar to B777-300ER and B777-

200LR).  Mission 1 employed aircraft certified with higher engine thrust rating and 

mission 2 employed aircraft with lower engine thrust rating. Both aircraft models 

were validated through the Range Payload Diagram.  
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The aircraft engine performance data generated for the two missions by the joint 

Turbomatch-Hermes simulation was compared. Variation in engine Thrust, 

Turbine Entry Temperature (TET) and HP Shaft Rotational Speed during the flight 

were specifically observed. 

 

In order to evaluate the engine soft life for overhaul, high pressure turbine (HPT) 

blade was chosen as the component for analysis as it experiences the harshest 

environment inside the engine, and really determines the engine life on-wing. For 

this project, the HPT blade geometry was approximated using a scrapped GE90 

Engine HPT Blade. 

 

Stress model was developed to find the centrifugal stresses acting at different 

points along the HPT blade span. History of the HP Shaft relative rotational speed 

during different phases of the flight missions was used as an input to the model. 

 

Thermal Model was developed to find the blade metal temperature along the 

blade span, employing technology parameters such as cooling effectiveness ɛ 

and radial temperature distribution factor RTDF. HPC discharge temperatures 

and turbine entry temperatures obtained from Hermes & Turbomatch simulation 

results are used as inputs to the model. 

 

Creep model was created to forecast the creep life of the HPT blade. The model 

used the Larson Miller parameter chart for Rene N5 material. The blade stresses 

and temperatures computed by the stress and thermal models at different 

segments of the flight were inputs to the model and hence provided different times 

to failure for different segments.  Palmgren-Miner law was eventually used to 

estimate the creep life of the blade taking account of all the individual fractional 

damages caused in each of the flight segments. 
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LCF analysis was performed to forecast the fatigue life of the HPT blade. First, 

stress range cycles were extracted through Rainflow counting method applied on 

simplified flight mission load history. Then Neuber notch strain based method was 

tried but because the stress cycles were not high enough for the yielding to take 

place in compression (causing elastic shakedown) this strain based method was 

discontinued. Alternatively, Stress based method was employed. Due to lack of 

material data available for Rene N5 in public domain, the S-N relationships was 

derived by taking 0.9xUTS at 103 cycles and 0.3xUTS at 106 cycles and use a 

logarithmic relationship between these values. Combination of Goodman 

diagram and derived SN curve was used to estimate the LCF life from the 

damaging cycles.  

 

Miner’s law was reused to get the cumulative fatigue-creep life of the blade. This 

was considered to be  the soft life of the engine. Expiry of the soft life is often the 

reason of engine removal. Hence soft life was basically taken as Engine Time 

On-Wing. 

 

The soft lives calculated so far were for the baseline missions without taking into 

account the effect of degradation. To incorporate engine performance 

deterioration, a few degradation levels were defined, gradually increasing with 

accumulation of more and more flight cycles to match the typical shape of a 

continuously increasing EGT profile. The degradation levels were defined in 

terms of flow and efficiency losses in major components (Fan, Booster, HPC, 

HPT, and LPT), values for which were carefully selected to reflect a trend that 

initially starts with mild degradation and gradually becomes severe with flight 

cycles. 
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The soft lives were revaluated for high and low thrust engines using the same 

procedure as above taking into account the progressive degradation. Different 

options are explored which an airline operator may exercise to influence the 

engine Time On-wing by sharing the engine life usage between the high thrust 

and the low thrust rated aircraft. The expected economic implications of such 

options are analyzed in terms of operational and maintenance costs. 

9.2 Further Recommendations 

The reference flight missions considered in this project lasted for about 7 hours 

per flight for both high and low thrust rated aircraft. Similar analysis could be 

performed for both aircraft variants on a 2 hours short haul route and a long haul 

12 hours route. There are two elements that contribute to the overall hardware 

damage [9], the cyclic portion due to low cycle fatigue and the time dependent 

portion due to creep. The damage pattern i.e. the relative contribution of these 

two elements is expected to change based on the flight length. This perhaps 

would add another dimension to the study, to realize which aircraft variant is best 

suitable for the selected route from the perspective of engine TOW. 

 

Although, rationally, it seems ineffective for an engine to first operate on a lower 

thrust rated aircraft and then further on a higher thrust rated aircraft at later stages 

when engine has already suffered a great deal of degradation, nevertheless it 

would still be worth examining such a strategy to see its impact on engine TOW; 

in other words an analysis on the difference if the engine first operates at high 

thrust for certain cycles and then at lower thrust compared to when the engine 

operates for the same number of cycles at a lower thrust and then at higher thrust. 

 

The study observed that the swapping of the thrust rating could be an effective 

fleet management strategy to some of the operators; adding operational 

efficiency as well as productivity. The precise point of change needs to be 

analysed by weighing in many other factors of significance, and that calls for a 

separate study in itself. The implementation of such a strategy in a fleet of aircraft 
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depends on a variety of factors. Some of the most important ones include the 

number aircraft of a particular model in the fleet as well as the number of available 

spare engines for rotation. Moreover, the choice of option also depends on the 

no of higher thrust rated aircraft in the fleet vs lower thrust rated aircraft. 

Furthermore, the availability of engine spares is also a significant factor to weigh 

in. The study can be extended further by estimating the revenue generated per 

flying hour from larger models of aircraft, having more seating capacity versus 

smaller models, and to consider fuel burn per available seat mile. And then 

perhaps revisit optimization of engine utilisation to maximize profit to the airline 

operator. 

Accuracy of the life prediction relies on the use of sophisticated physical model 

backed by real time flight data. Operators are hence invited to invest time and 

effort to make smarter use of the real flight data they have access to, through 

diagnostics tool and the experience with the routine bore scope inspection 

results, to complement, enhance and facilitate the lifing model to be able to make 

more accurate predictions through correlations. Real time flight data can be of 

significant use to these operators; the type of information that can provide 

analytical knowledge to be later reformed into implementation. 
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APPENDICES 

 

Appendix A Engine Model (Turbomatch) 
 

  TURBOMATCH SCHEME - Windows XP version (July 2009) 

 

 LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector 

 15 BD Items printable by any call of:- 

 OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV 

 

  Input "Program" follows 

 

 !TURBOMATCH SCHEME - Windows XP version (July 2009)                              

                                                                             

 

 !LIMITS:100 Codewords, 800 Brick Data Items, 50 Station Vector                   

 

 !15 BD Items printable by any call of:-                                          

 

 !OUTPUT, OUTPBD, OUTPSV, PLOTIT, PLOTBD or PLOTSV                                

                                                                            

 

 !Input "Program" follows                                                         

 

                                                                                  

 

 !High Bypass Turbofan Engine (2-spool, Seperate Exhaust)                         

 

 !Configuration Similar to Engine Type: GE90-115B/110B                            

 

 !Model Name: GE90code.dat                                                        

 

                                                                                  

 

 !Modeled by: Syed Atif Shafi                                                     

 

 !Date: 01-09-2013                                                                

 

                                                                                  

 

 !Design point:                                                                   

 

 !Certified Maximum Takeoff Thrust Rating                                         

 

 !Thrust: 115,540 lbf (514 kN) @ Sea Level Static , ISA + 15 deg C                

 

 !FPR=1.657, BPR=7.1, OPR=42.2, TET=1925K, Mass Flow 1640 kg/s                    

 

                                                                                  

 

 !Other data                                                                      

 

 !Fan RPM 100%: 2,355                                                             
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 !Core RPM 100%: 9,332                                                            

 

 ___________________________________________________________                      

 

                                                                                  

 

 ////                                                                             

 OD SI KE VA FP 

  -1 

  -1 

INTAKE   S1,2          D1-6               R300 

COMPRE   S2,3          D7-18              R305      V7    V8 

PREMAS   S3,15,4       D19-22                       V19 

DUCTER   S15,16        D23-27             R310 

NOZCON   S16,17,1      D143,144           R351 

COMPRE   S4,5          D33-44             R320      V33 

PREMAS   S5,19,6       D77-80 

COMPRE   S6,7          D53-64             R335      V53   V54 

PREMAS   S7,20,8       D97-100 

PREMAS   S8,18,9       D101-104 

BURNER   S9,10         D105-112           R350 

MIXEES   S10,18,11 

TURBIN   S11,12        D113-127                     V114 

TURBIN   S12,13        D128-142                   V129 

NOZCON   S13,14,1      D145,146           R355 

PERFOR   S1,0,0        D147-150,355,300,350,351,0,0,0,0,0 

CODEND 

 

                                                                                                                                                             

 

 BRICK DATA////                                                                   

                                                                                  

 !INTAKE ===================================================== 

 1 0                 ! Altitude 

 2 15                ! Deviation from ISA temperature 

 3 0                 ! Mach number 

 4 -1                ! Pressure recovery 

 5 0                 ! Deviation from ISA pressure [atm] 

 6 0                 ! Relative humidity [%] 

                                                                                  

 !FAN ======================================================== 

 7 0.85              ! Surge Margin 

 8 1.035             ! DP Relative rotational speed PCN (N1) 

 9 1.65              ! DP Fan Pressure ratio 

 10 0.9              ! DP Isentropic efficiency 

 11 0                ! Error selection 

 12 1                ! Compressor Map Number 

 13 1                ! Shaft number 

 14 1                ! Scaling Factor of Pressure Ratio - Degradation 

factor 

 15 1                ! Scaling Factor of Non-D Mass Flow - Degradation 

factor 

 16 1                ! Scaling Factor of Isentropic Efficiency - 

Degradation fact 

 17 -1               ! Effective component volume [m^3] 

 18 0                ! Stator angle (VSV) relative to DP 

                                                                                  

 !BYPASS (PREMAS) ============================================ 

 19 0.877            ! LAMDA W BYPASS (Wout/Win) BPR = 7.1:1 
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 20 0                ! DELTA W 

 21 1                ! LAMBDA P 

 22 0                ! DELTA P 

                                                                                  

 !FAN DUCT (DUCTER) ========================================== 

 23 0                ! No Reheat 

 24 0.015            ! Total pressure loss = 1.5% 

 25 0                ! Combustion efficiency 

 26 100000           ! Limiting value of Fuel Flow (=100000 if not 

needed) 

 27 -1               ! Effective component volume [m^3] 

                                                                                  

 !BOOSTER (LP COMPRESSOR) ==================================== 

 33 0.85             ! Surge Margin 

 34 1.0              ! DP Relative rotational speed PCN (N1) 

 35 1.5407           ! DP Pressure ratio 

 36 0.88             ! DP isentropic efficiency 

 37 1                ! Error selection 

 38 1                ! Compressor Map Number 

 39 1                ! Shaft number 

 40 1                ! Scaling Factor of Pressure Ratio - Degradation 

factor 

 41 1                ! Scaling Factor of Non-D Mass Flow - Degradation 

factor 

 42 1                ! Scaling Factor of Isentropic Efficiency - 

Degradation fact 

 43 -1               ! Effective component volume [m^3] 

 44 0                ! Stator angle (VSV) relative to DP 

                                                                                  

 !BOOSTER DISCHARGE BLEED (PREMAS) =========================== 

 77 0.012            ! LAMDA W 

 78 0                ! DELTA W 

 79 1                ! LAMBDA P 

 80 0                ! DELTA P 

                                                                                  

 !HP COMPRESSOR ============================================== 

 53 0.85             ! Surge Margin 

 54 1.175            ! DP Relative rotational speed PCN (N2) 

 55 16.6             ! DP Pressure ratio 

 56 0.88             ! DP isentropic efficiency 

 57 1                ! Error selection 

 58 3                ! Compressor Map Number 

 59 2                ! Shaft number 

 60 1                ! Scaling Factor of Pressure Ratio - Degradation 

factor 

 61 1                ! Scaling Factor of Non-D Mass Flow - Degradation 

factor 

 62 1                ! Scaling Factor of Isentropic Efficiency - 

Degradation fact 

 63 -1               ! Effective component volume [m^3] 

 64 0                ! Stator angle (VSV) relative to DP 

                                                                                  

 !HPC CUSTOMER BLEED (PREMAS) ================================ 

 97 0.070            ! LAMDA W 

 98 0                ! DELTA W 

 99 1                ! LAMBDA P 

 100 0               ! DELTA P 

                                                                                  

 !HPC BLEED FOR COOLING ====================================== 
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 101 0.15            ! LAMDA W (9% for NGV, 6% for HPT Stage 1 Rotor) 

 102 0               ! DELTA W 

 103 1               ! LAMBDA P 

 104 0               ! DELTA P 

                                                                                  

 !BURNER ===================================================== 

 105 0.05            ! Total pressure loss = 5% 

 106 0.999           ! Combustion efficiency 

 107 -1              ! Fuel flow (If -1, FF depends on the stated 

output TET) 

 108 0               ! (>0) Water flow [kg s-1 or lb s-1] or (<0) 

Water to air ra 

 109 288             ! Temperature of water stream [K] 

 110 0               ! Phase of water (0=liquid, 1=vapour) 

 111 1               ! Scaling factor of combustion efficiency – 

Degradation fact 

 112 -1              ! Effective component volume [m^3] 

                                                                                  

 !HP TURBINE ================================================= 

 113 0               ! Auxiliary Work 

 114 0.9             ! DP Relative ND massflow 

 115 0.8             ! DP Relative ND speed 

 116 0.90            ! DP isentropic efficiency 

 117 -1              ! DP Relative speed PCN (-1 for compressor 

turbine) 

 118 2               ! Shaft Number (Spool #2) 

 119 5               ! Turbine map number 

 120 -1              ! Power law index "n" (POWER = PCN^n) If n=-1, 

auxilary work 

 121 1               ! Scaling factor of TF (ND inlet mass flow) – 

Degradation fa 

 122 1               ! Scaling factor of DH (enthalpy change) – 

Degradation facto 

 123 1               ! Scaling factor of isentropic efficiency - 

Degradation fact 

 124 155.53          ! DP Rotor rotational speed [RPS] 

 125 30              ! Rotor moment of inertia [kg.m^2] 

 126 -1              ! Effective component volume [m^3] 

 127 0               ! NGV angle, relative to DP 

                                                                                  

 !LP TURBINE ================================================= 

 128 0               ! Auxiliary Work 

 129 0.9             ! DP Relative ND massflow 

 130 0.8             ! DP Relative ND speed 

 131 0.90            ! DP isentropic efficiency 

 132 -1              ! DP Relative speed PCN (-1 for compressor 

turbine) 

 133 1               ! Shaft Number (Spool #1) 

 134 5               ! Turbine map number 

 135 -1              ! Power law index "n" (POWER = PCN^n) If n=-1, 

auxilary work 

 136 1               ! Scaling factor of TF (ND inlet mass flow) – 

Degradation fa 

 137 1               ! Scaling factor of DH (enthalpy change) – 

Degradation facto 

 138 1               ! Scaling factor of isentropic efficiency - 

Degradation fact 

 139 39.25           ! DP Rotor rotational speed [RPS] 

 140 150             ! Rotor moment of inertia [kg.m^2] 
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 141 -1              ! Effective component volume [m^3] 

 142 0               ! NGV angle, relative to D.P. 

                                                                                  

 !BYPASS NOZZLE ============================================== 

 143 -1              ! Swich set (= "1" if exit area "floats", "-1" if 

exit area 

 144 -1              ! Scaling factor 

                                                                                  

 !CONVERGENT NOZZLE ========================================== 

 145 -1              ! Swich set (= "1" if exit area "floats", "-1" if 

exit area 

 146 -1              ! Scaling factor 

                                                                                  

 !ENGINE SIMULATION RESULT (PERFOR) ========================== 

 147 -1              ! Power output - Power or Power turbin 

 148 -1              ! Propeller efficiency (= -1 for 

turbojet/turbofan) 

 149 0               ! Scaling index ("1" = scaling needed, "0" = no 

scaling) 

 150 0               ! Required DP net thrust (Turbofan) 

                                                                                  

                                                                                  

 -1 

 1 2 1640            ! DP Mass flow (kg/s) 

 10 6 1925           ! DP TET (K) 

 -1 

 

 Number of Variables calculated by Appendix 4 Procedure 

 (excluding any Splitters and/or Compressors on same Shaft)     =  8 

 Number of obligatory Errors calculated by Appendix 4 Procedure =  6 

 

                                                   Processor time 

23:10:08 

 

 *********************************************** 

 

 

 

                  The Units for this Run are as follows:- 

 

 Temperature = K   Pressure = Atmospheres   Length = metres 

 

 Area = sq metres  Mass Flow = kg/sec       Velocity = metres/sec 

 

 Force = Newtons   s.f.c.(Thrust) =  mg/N sec   s.f.c.(Power) = mg/J     

 

 Sp. Thrust =    N/kg/sec     Power =   Watts    

1 

 

      ***** DESIGN POINT ENGINE CALCULATIONS ***** 

 

 

 

 ***** AMBIENT AND INLET parameters ***** 

 Alt. =      0.0      I.S.A. Dev. =   15.000       PDev. =    0.000 

 Mach No. =  0.00     Etar = 1.0000        Momentum Drag =      0.00 

 Rel.Humidity =  0.00 

 

 ***** COMPRESSOR  1 parameters *****  
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 PRSF =  0.14833E+01     ETASF =  0.10527E+01     WASF =  0.26679E+01 

 DGPRSF =  0.10000E+01   DGETASF =  0.10000E+01   DGWASF =  

0.10000E+01 

 Z = 0.85000             PR =   1.650             ETA = 0.90000 

 PCN =   1.0350          CN = 1.03500             COMWK =  0.86392E+08 

 STATOR ANGLE =   0.00 

 

 ***** CONVERGENT NOZZLE  1 parameters ***** 

 NCOSF =  0.10000E+01  DGNCOSF =  0.10000E+01 

 Area =  4.1649          Exit Velocity =  305.82  Gross Thrust = 

439849.27 

 Nozzle Coeff. =  0.10000E+01 

 

 ***** COMPRESSOR  2 parameters *****  

 PRSF =  0.12339E+01     ETASF =  0.10293E+01     WASF =  0.21527E+00 

 DGPRSF =  0.10000E+01   DGETASF =  0.10000E+01   DGWASF =  

0.10000E+01 

 Z = 0.85000             PR =   1.541             ETA = 0.88000 

 PCN =   1.0350          CN = 1.03500             COMWK =  0.10877E+08 

 STATOR ANGLE =   0.00 

 

 ***** COMPRESSOR  3 parameters *****  

 PRSF =  0.15635E+01     ETASF =  0.10808E+01     WASF =  0.71192E+00 

 DGPRSF =  0.10000E+01   DGETASF =  0.10000E+01   DGWASF =  

0.10000E+01 

 Z = 0.85000             PR =  16.600             ETA = 0.88000 

 PCN =   1.1750          CN = 1.17500             COMWK =  0.11420E+09 

 STATOR ANGLE =   0.00 

 

 ***** COMBUSTION CHAMBER parameters ***** 

 ETASF =  0.99900E+00  DGETASF =  0.10000E+01 

 ETA = 0.99900           DLP = 2.1100       WFB =   4.5853       WWB = 

0.00000 

 

 ***** TURBINE  1 parameters ***** 

 CNSF =  0.93697E+02     ETASF =  0.10579E+01     TFSF =  0.81870E+00 

 DHSF =  0.30967E+05 

 DGETASF =  0.10000E+01   DGTFSF =  0.10000E+01   DGDHSF =  

0.10000E+01 

 TF =  245.041            ETA = 0.90000            CN =  2.600 

 AUXWK =  0.00000E+00     NGV ANGLE = 0.00 

 

 ***** TURBINE  2 parameters ***** 

 CNSF =  0.91209E+02     ETASF =  0.10577E+01     TFSF =  0.32508E+01 

 DHSF =  0.35861E+05 

 DGETASF =  0.10000E+01   DGTFSF =  0.10000E+01   DGDHSF =  

0.10000E+01 

 TF =  244.954            ETA = 0.90000            CN =  2.600 

 AUXWK =  0.00000E+00     NGV ANGLE = 0.00 

 

 ***** CONVERGENT NOZZLE  2 parameters ***** 

 NCOSF =  0.10000E+01  DGNCOSF =  0.10000E+01 

 Area =  1.1520          Exit Velocity =  386.79  Gross Thrust =  

73463.95 

 Nozzle Coeff. =  0.10000E+01 

 

 

 Scale Factor on above Mass Flows, Areas, Thrusts & Powers =     

1.0000 
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 Station  F.A.R. Mass Flow   Pstatic    Ptotal Tstatic  Ttotal     Vel    

Area     W.A.R.    X    

     1   0.00000  1640.000   1.00000   1.00000  303.15  303.15     0.0  

******   0.00000  0.000 

     2   0.00000  1640.000    ******   1.00000  ******  303.15  ******  

******   0.00000  0.000 

     3   0.00000  1640.000    ******   1.65000  ******  355.19  ******  

******   0.00000  0.000 

     4   0.00000   201.720    ******   1.65000  ******  355.19  ******  

******   0.00000  0.000 

     5   0.00000   201.720    ******   2.54216  ******  408.21  ******  

******   0.00000  0.000 

     6   0.00000   199.299    ******   2.54216  ******  408.21  ******  

******   0.00000  0.000 

     7   0.00000   199.299    ******  42.19977  ******  940.78  ******  

******   0.00000  0.000 

     8   0.00000   185.348    ******  42.19977  ******  940.78  ******  

******   0.00000  0.000 

     9   0.00000   157.546    ******  42.19977  ******  940.78  ******  

******   0.00000  0.000 

    10   0.02910   162.131    ******  40.08978  ****** 1925.00  ******  

******   0.00000  0.000 

    11   0.02474   189.934    ******  40.08978  ****** 1793.02  ******  

******   0.00000  0.000 

    12   0.02474   189.934    ******   8.66032  ****** 1318.27  ******  

******   0.00000  0.000 

    13   0.02474   189.934    ******   1.35327  ******  891.43  ******  

******   0.00000  0.000 

    14   0.02474   189.934   1.00000   1.35327  826.24  891.43   386.8  

1.1520   0.00000  0.000 

    15   0.00000  1438.280    ******   1.65000  ******  355.19  ******  

******   0.00000  0.000 

    16   0.00000  1438.280    ******   1.62525  ******  355.19  ******  

******   0.00000  0.000 

    17   0.00000  1438.280   1.00000   1.62525  309.00  355.19   305.8  

4.1649   0.00000  0.000 

    18   0.00000    27.802    ******  42.19977  ******  940.78  ******  

******   0.00000  0.000 

    19   0.00000     2.421    ******   2.54216  ******  408.21  ******  

******   0.00000  0.000 

    20   0.00000    13.951    ******  42.19977  ******  940.78  ******  

******   0.00000  0.000 

 

 

  Gross Thrust = 513313.23 

 Momentum Drag =      0.00 

    Net Thrust = 513313.23 

     Fuel Flow =    4.5853 

        s.f.c. =   8.93276 

    Sp. Thrust =   312.996 

     Sim. time =   0.0000     

           Time Now 23:10:08 

 

 *********************************************** 
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Appendix B Flight Mission Specifications (Hermes) 

B.1 Flight Mission 1 – A773ER 
!Input file for the geometric, mission and engine specifications of the 

aircraft Boeing777-300ER; Engine:GE90-115B 

ENGINE_SPEC:GE90code.dat!programmed in Turbomatch 

!GEOMETRIC DETAILS 

! Wing Geometry           

436.8         ! AcWingAInit - Wing area  

9.69          ! AcWingAspr - Aspect ratio 

0.155         ! AcWingCThir - Thickness chord ratio  

31.64         ! AcWingSwpa - Sweep angle (in degrees) 

0.205         ! AcWingTpr - Taper ratio  

0.165         ! AcWingRtThir - Root thinkness ratio  

0.145           ! AcWingOtThir - Outer thikness ratio  

! Tailplane Geometry =horizontal plane 

84.40         ! AcTailAInit - Tailplane area   

4.50          ! AcTailAspr - Aspect ratio  

0.105         ! AcTailCThir - Thickness chord ratio  

35.00         ! AcTailSwpa - Sweep angle (in degrees)  

0.350         ! AcTailTpr - Taper ratio  

0.12          ! AcTailRtThir - Root thinkness ratio  

0.1           ! AcTailOtThir - Outer thikness ratio  

! Fin Geometry= vertical tail 

44.40         ! AcFinA - Fin area  

9.80          ! AcFinSpan - Span  

0.120         ! AcFinCThir - Thickness chord ratio  

40.0          ! AcFinSwpa - Sweep angle (in degrees)  

0.300         ! AcFinTpr - Taper ratio  

0.145         ! AcFinRtThir - Root thinkness ratio 

0.120         ! AcFinOtThir - Outer thikness ratio 

! Fuselage Geometry 

6.20          ! AcFusDia - Diameter  

72.87         ! AcFusLen - Length  

! Landing Gear Characteristics 

2                 ! AcLGTyp1 - Landing gear type ***0=default, 1=Bogie, 

2=Small twin wheel*** 

1          ! AcLgTyp2= 0,1,2 

1          ! AcLgTyp3= 0,1,2 

-1          ! AcLgTyp4= 0,1,2,-1 *** -1=if the aircraft only has 

3 LG -1 has to be declared 

-1          ! AcLgTyp5= 0,1,2,-1 *** for the last 2 values 

2          ! AcLGDepl - Number of segments with LG down for 

descent 

! High lift systems 

1          ! AcFlapSegTo -Number of Segments with flaps 

deployed during TO 

3          ! AcFlapSegApp - Number of Segments with flaps 

deployed for approach 

2          ! ACFlapSegLand - Number of Segments with flaps 

deployed during Landing 

1.10       ! AcExtSrTo - Wing area extension ratio TO 

1.15       ! AcExtSrApp - Wing area extension ratio approach 

1.20       ! AcExtSrLand - Wing area extension ratio Landing 

5.0       ! AcFlapAngleTo - Flap Angle TO IN DEGREES 

20.0       ! AcFlapAngleApp - Flap Angle Approach 

30.0       ! AcFlapAngleLand - Flap Angle Land 
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2       ! AcFlapSlots - Number of Flap Slots (1-3) 

! Engine Geometry 

4.10          ! EngNacDiaInit - Diameter  

6.3           ! EngNacLenInit - Length  

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!MISSION/WEIGHT SPECIFICATION DATA 

149957        ! AcAfrWtInit - Airframe weight (OEW = 167829 kg (Source: 

Boeing Company) minus Engine Wt) 

2             ! AcEngNb - Number of Engines  

8936          ! EngWtInit - Engine weight,  (kg/engine) 

65000         ! AcPldWt - Payload weight, (kg) [(360 seats x (75+35) 

kg/pax) + 25400 kg Cargo] 

60000         ! AcFuelWtInit - Fuel weight,  (kg)  

69853         ! AcPldWtmax  - Maximum payload weight, kg 

145538        ! AcFuelWtmax - Maximum fuel weight,  kg 

251290        ! AcLandWtmax - Maximum landing weight, kg  

351535        ! AcToWtmax - Maximum take-off weight, kg (Source: Boeing 

Company) 

0.0           ! DVFuelRatio - Diversion fuel weight to total fuel weight 

(%) 

0.15          ! AcFuelContpc - Relative contigency fuel to remain after 

landing (%)   

5750          ! AcRng - Range to be flown (km)       ! Mission (2) 

200.          ! AcRngdv - Diversion Range to be flown (km) 

2             ! AcMisType - Mission to be flown (1-fixed fuel get range) 

or (2-fixed range for given Pload get fuel) 

1             ! DvMission - specify if diversion mission is to be run 

(1- NO diversion mission) or (2- YES to diversion mission) 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!CRUISE MAIN/DIVERSION AND HOLDING DATA 

2             ! number of cruise altitudes and Mach numbers 

1       ! number of cruise Temperature Deviations from ISA day (the 

trip is splitted equally into this number of parts. Every part has the 

respective DTisa) 

1             ! number of diversion cruise altitudes 

200.           ! Cruise small segment time Interval in (min). This value 

affects the accuracy of the calculations, so keep it small. 

10058, 11583. ! Cruise altitudes in [m] (WARNING: THE ALTITUDES CANNOT 

BE THE SAME!!!!!!!!!!)  

0.83,0.85     ! Cruise Mach numbers, the same number with cruise altitudes 

5.       ! Cruise ambient temperature deviation from ISA, in [K] 

6096.         ! Diversion cruise altitudes (m) 

0.45          ! Diversion cruise Mach numbers,  

7.            ! Diversion cruise ambient temperature deviation from ISA, 

in [K] 

762.0         ! Holding altitude (m) 

15.           ! Hold Time in (min) 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!CLIMB DATA 

20  ! Climb segments Number 

! Altitudes(m) | DTisa(K) | EAS(knots) | Power(0.-1.) 

557.20 15. 230. 1. 

900.00 14. 230. 0.995 

1500.00 13. 240. 0.99 

1981.20 12. 240. 0.985 

2438.40 11. 250. 0.98 

2743.20 10. 250. 0.975 

3048.00 9. 250. 0.97 

3657.60 9. 260. 0.97 
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4267.20 8. 270. 0.965 

4876.80 8. 280. 0.965 

5486.40 7. 290. 0.96 

6096.00 6. 300. 0.96 

7620.00 5. 310. 0.96 

8077.20 5. 320. 0.95 

9144.00 5. 320. 0.95 

10058.00 5. 320. 0.95 

10668.00 5. 320. 0.95 

10972.00 5. 320. 0.94 

11227.00 5. 320. 0.94 

11887.00 5. 320. 0.94 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!DESCENT DATA 

11  ! Descent segments Number 

! The altitudes are dependant on the final cruise altitude. So they are 

calculated inside the code. 

! DTisa(K) | TAS(knots) | Power(0.-1.) ****Note: the last 3 power 

settings use the Approach rating 

5. 245.0 0.8    ! Flight Idle Rating 

6. 240.0 0.8    ! Flight Idle Rating 

7. 230.0 0.8                            ! Flight Idle Rating 

7. 220.0 0.8    ! Flight Idle Rating 

9. 210.0 0.8    ! Flight Idle Rating 

9. 200.0 0.8    ! Flight Idle Rating 

11. 185.0 0.8    ! Flight Idle Rating 

13. 140.0 0.8    ! Flight Idle Rating 

13. 105.0 1           ! Approach Rating 

15. 85.0 1    ! Approach Rating 

15. 80.0 0.8    ! Approach Rating 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!LANDING DATA 

0.01      ! Note: Do not put final landing altitude = 0.0, use a very 

small value instead.  

80    ! Approach speed (TAS), in [m/s] 

15.00      ! Deviation from standard atmosphere for Landing in [K] 

1.5      ! Duration of Landing phase in [min] 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!TAXI and TAKE-OFF DATA 

0.02      ! AcTaxiCf1 - Runway Friction Coefficient 

0.3       ! AcTaxiCf2 - Runway Friction Coefficient,BREAKES-OFF 

10.0      ! AcTaxiTime - Taxi time in [min] (12mins for LR, 9mins for 

SR) 

1.2       ! AcToTime - Take-off time in [min] 

0.00      ! AcToALT - Take-off altitude in [m] 

15.00   ! Take-off temperature deviation from ISA in [K] 

0.1   ! TakeOff Derate (Real Values from 0 to 1, 0.0->100% of Maximum 

Thrust, 1.0->0% of Maximum Thrust) 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!NUMERICAL TOLERANCES AND INITIAL GUESSES 

1.D-11    ! Climb and Descent internal loops 

relative accuracy 

1.D-09    ! Main mission range relative accuracy 

1.D-09    ! Diversion mission range relative 

accuracy 

1.D-07    ! Fuel weight outer iteration loop 

relative accuracy 

480.D00    ! Main mission duration guess 1 (for 

secant method, modify it only if there is a convergence problem) 



 

159 

260.D00    ! Main mission duration guess 2 (for 

secant method, modify it only if there is a convergence problem) 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!TMATCHCALLS SPECIFICATIONS (*****HERMES DOES NOT READ THIS PART*****) 

!---------------------------------------------------------------------

----- 

!Number of points in the Engine Design Point input file to be skipped 

!before the mission profile starts (including the design point) 

1 

!---------------------------------------------------------------------

----- 

!Burner exit station number 

10 

!---------------------------------------------------------------------

----- 

!ENGINE TET RANGE FOR EACH PHASE 

20    ! TET number for Take Off 

20    ! TET number for Climb 

2    ! TET number for Main and Diversion Cruise 

10    ! TET number for Flight Idle(Descent) and Ground 

Idle 

10    ! TET number for Approach 

5.    ! TET step change in [K] for Take Off 

5.    ! TET step change in [K] for Climb 

5.    ! TET step change in [K] for Main and Diversion 

Cruise 

5.    ! TET step change in [K] for Flight 

Idle(Descent) and Ground Idle 

5.    ! TET step change in [K] for Approach 

1925.   ! Max TET in [K] for Take Off 

1720.   ! Max TET in [K] for Climb 

1580.   ! Max TET in [K] for Main Mission Cruise 

1280.   ! Max TET in [K] for Flight Idle(Descent) and Ground 

Idle 

1410.   ! Max TET in [K] for Approach 

!---------------------------------------------------------------------

----- 

!ADDITIONAL ENGINE PERFORMANCE STATION VECTOR DATA (STATION, ITEM) 

4    ! Number of additional engine performance 

station vector data 

!Station | Item 

9 6 

10 6 

11 6 

12 6 

!---------------------------------------------------------------------

----- 

!ADDITIONAL ENGINE PERFORMANCE BRICK DATA (DESCRIPTION, BRICK NO, ITEM) 

3    ! Number of additional engine performance brick 

data 

!Description | BrickNo | Item (WARNING: The BrickNo is defined according 

to the tabular output file of turbomatch ) 

LPC_PCN 2 2 

HPC_PCN 7 2 

FF 14 7 

!---------------------------------------------------------------------

----- 

!ADDITIONAL OFF DESIGN ENGINE CONFIGURATIONS (LIKE BLEEDS etc.) 
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!Specify additional off design specification for each flight phase (e.g. 

for brick data 26 "26 0.95") 

1    ! Number of additional off design specifications 

for each flight phase 

!You have to specify the same number of additional specs for all the 

phases, i.e. if you specify something you have to do it for every flight 

phase 

!---------------------------------------------------------------------

----- 

!TAKE OFF SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!CLIMB SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!CRUISE SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!FLIGHT/GROUND IDLE SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!APPROACH SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!INPUT AND OUTPUT FILE PATHS 

!Engine Design Point Specification file (input to Hermes) 

GE90code.dat 
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B.2 Flight Mission 2 – A772LR 
!Input file for the geometric, mission and engine specifications of 

the aircraft Boeing777-200LR; Engine:GE90-110B 

ENGINE_SPEC:GE90code.dat!programmed in Turbomatch 

!GEOMETRIC DETAILS 

! Wing Geometry           

436.8         ! AcWingAInit - Wing area    

9.69          ! AcWingAspr - Aspect ratio 

0.155         ! AcWingCThir - Thickness chord ratio  

31.64         ! AcWingSwpa - Sweep angle (in degrees) 

0.205         ! AcWingTpr - Taper ratio  

0.165         ! AcWingRtThir - Root thinkness ratio  

0.145         ! AcWingOtThir - Outer thikness ratio  

! Tailplane Geometry =horizontal plane 

84.40         ! AcTailAInit - Tailplane area   

4.50          ! AcTailAspr - Aspect ratio  

0.105         ! AcTailCThir - Thickness chord ratio  

35.00         ! AcTailSwpa - Sweep angle (in degrees)  

0.350         ! AcTailTpr - Taper ratio  

0.12          ! AcTailRtThir - Root thinkness ratio  

0.1           ! AcTailOtThir - Outer thikness ratio  

! Fin Geometry= vertical tail 

44.40         ! AcFinA - Fin area  

9.80          ! AcFinSpan - Span  

0.120         ! AcFinCThir - Thickness chord ratio  

40.0          ! AcFinSwpa - Sweep angle (in degrees)  

0.300         ! AcFinTpr - Taper ratio  

0.145         ! AcFinRtThir - Root thinkness ratio 

0.120         ! AcFinOtThir - Outer thikness ratio 

! Fuselage Geometry 

6.20          ! AcFusDia - Diameter  

62.94         ! AcFusLen - Length  

! Landing Gear Characteristics 

2                 ! AcLGTyp1 - Landing gear type ***0=default, 

1=Bogie, 2=Small twin wheel*** 

1          ! AcLgTyp2= 0,1,2 

1          ! AcLgTyp3= 0,1,2 

-1          ! AcLgTyp4= 0,1,2,-1 *** -1=if the aircraft only 

has 3 LG -1 has to be declared 

-1          ! AcLgTyp5= 0,1,2,-1 *** for the last 2 values 

2          ! AcLGDepl - Number of segments with LG down for 

descent 

! High lift systems 

1          ! AcFlapSegTo -Number of Segments with flaps 

deployed during TO 

3          ! AcFlapSegApp - Number of Segments with flaps 

deployed for approach 

2          ! ACFlapSegLand - Number of Segments with flaps 

deployed during Landing 

1.10       ! AcExtSrTo - Wing area extension ratio TO 

1.15       ! AcExtSrApp - Wing area extension ratio approach 

1.20       ! AcExtSrLand - Wing area extension ratio Landing 

5.0       ! AcFlapAngleTo - Flap Angle TO IN DEGREES 

20.0       ! AcFlapAngleApp - Flap Angle Approach 

30.0       ! AcFlapAngleLand - Flap Angle Land 

2       ! AcFlapSlots - Number of Flap Slots (1-3) 

! Engine Geometry 

4.10          ! EngNacDiaInit - Diameter  
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6.3           ! EngNacLenInit - Length  

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!MISSION/WEIGHT SPECIFICATION DATA 

127278        ! AcAfrWtInit - Airframe weight (OEW = 145150 kg 

(Source: Boeing Company) minus Engine Wt) 

2             ! AcEngNb - Number of Engines  

8936          ! EngWtInit - Engine weight,  (kg/engine) 

59100         ! AcPldWt - Payload weight, (kg) [(270 seats x (75+35) 

kg/pax) + 29400 kg Cargo] 

54000         ! AcFuelWtInit - Fuel weight,  (kg)  

63957         ! AcPldWtmax  - Maximum payload weight, kg 

145538        ! AcFuelWtmax - Maximum fuel weight,  kg 

223168        ! AcLandWtmax - Maximum landing weight, kg  

347452        ! AcToWtmax - Maximum take-off weight, kg (Source: 

Boeing Company) 

0.0           ! DVFuelRatio - Diversion fuel weight to total fuel 

weight (%) 

0.15          ! AcFuelContpc - Relative contigency fuel to remain 

after landing (%)   

5760          ! AcRng - Range to be flown (km)       ! Mission (2) 

200.          ! AcRngdv - Diversion Range to be flown (km) 

2             ! AcMisType - Mission to be flown (1-fixed fuel get 

range) or (2-fixed range for given Pload get fuel) 

1             ! DvMission - specify if diversion mission is to be run 

(1- NO diversion mission) or (2- YES to diversion mission) 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!CRUISE MAIN/DIVERSION AND HOLDING DATA 

2             ! number of cruise altitudes and Mach numbers 

1       ! number of cruise Temperature Deviations from ISA day 

(the trip is splitted equally into this number of parts. Every part 

has the respective DTisa) 

1             ! number of diversion cruise altitudes 

200.           ! Cruise small segment time Interval in (min). This 

value affects the accuracy of the calculations, so keep it small. 

10058.,11583. ! Cruise altitudes in [m] (WARNING: THE ALTITUDES CANNOT 

BE THE SAME!!!!!!!!!!)  

0.83,0.85     ! Cruise Mach numbers, the same number with cruise 

altitudes 

5.       ! Cruise ambient temperature deviation from ISA, in [K] 

6096.         ! Diversion cruise altitudes (m) 

0.45          ! Diversion cruise Mach numbers,  

7.            ! Diversion cruise ambient temperature deviation from 

ISA, in [K] 

762.0         ! Holding altitude (m) 

15.           ! Hold Time in (min) 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!CLIMB DATA 

20  ! Climb segments Number 

! Altitudes(m) | DTisa(K) | EAS(knots) | Power(0.-1.) 

557.20 15. 230. 1 

900.00 14. 230. 0.995 

1500.00 13. 240. 0.99 

1981.20 12. 240. 0.985 

2438.40 11. 250. 0.98 

2743.20 10. 250. 0.975 

3048.00 9. 250. 0.97 

3657.60 9. 260. 0.97 

4267.20 8. 270. 0.965 

4876.80 8. 280. 0.965 
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5486.40 7. 290. 0.96 

6096.00 6. 300. 0.96 

7620.00 5. 310. 0.96 

8077.20 5. 320. 0.95 

9144.00 5. 320. 0.95 

10058.00 5. 320. 0.95 

10668.00 5. 320. 0.95 

10972.00 5. 320. 0.94 

11227.00 5. 320. 0.94 

11887.00 5. 320. 0.94 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!DESCENT DATA 

11  ! Descent segments Number 

! The altitudes are dependant on the final cruise altitude. So they 

are calculated inside the code. 

! DTisa(K) | TAS(knots) | Power(0.-1.) ****Note: the last 3 power 

settings use the Approach rating 

5. 245.0 0.75    ! Flight Idle Rating 

6. 240.0 0.75    ! Flight Idle Rating 

7. 230.0 0.75                           ! Flight Idle Rating 

7. 220.0 0.75    ! Flight Idle Rating 

9. 210.0 0.75    ! Flight Idle Rating 

9. 200.0 0.75    ! Flight Idle Rating 

11. 185.0 0.75    ! Flight Idle Rating 

13. 140.0 0.75    ! Flight Idle Rating 

13. 105.0 1           ! Approach Rating 

15. 85.0 1    ! Approach Rating 

15. 80.0 0.75    ! Approach Rating 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!LANDING DATA 

0.01      ! Note: Do not put final landing altitude = 0.0, use a very 

small value instead.  

77.5      ! Approach speed (TAS), in [m/s] 

15.00     ! Deviation from standard atmosphere for Landing in [K] 

1.5       ! Duration of Landing phase in [min] 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!TAXI and TAKE-OFF DATA 

0.02      ! AcTaxiCf1 - Runway Friction Coefficient 

0.3       ! AcTaxiCf2 - Runway Friction Coefficient,BREAKES-OFF 

10.0      ! AcTaxiTime - Taxi time in [min] (12mins for LR, 9mins for 

SR) 

1.2       ! AcToTime - Take-off time in [min] 

0.00      ! AcToALT - Take-off altitude in [m] 

15.00   ! Take-off temperature deviation from ISA in [K] 

0.1418   ! TakeOff Derate (Real Values from 0 to 1, 0.0->100% of 

Maximum Thrust, 1.0->0% of Maximum Thrust) 

!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!NUMERICAL TOLERANCES AND INITIAL GUESSES 

1.D-11    ! Climb and Descent internal loops 

relative accuracy 

1.D-09    ! Main mission range relative accuracy 

1.D-09    ! Diversion mission range relative 

accuracy 

1.D-07    ! Fuel weight outer iteration loop 

relative accuracy 

480.D00    ! Main mission duration guess 1 (for 

secant method, modify it only if there is a convergence problem) 

260.D00    ! Main mission duration guess 2 (for 

secant method, modify it only if there is a convergence problem) 
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!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

!TMATCHCALLS SPECIFICATIONS (*****HERMES DOES NOT READ THIS PART*****) 

!---------------------------------------------------------------------

----- 

!Number of points in the Engine Design Point input file to be skipped 

!before the mission profile starts (including the design point) 

1 

!---------------------------------------------------------------------

----- 

!Burner exit station number 

10 

!---------------------------------------------------------------------

----- 

!ENGINE TET RANGE FOR EACH PHASE 

20    ! TET number for Take Off 

20    ! TET number for Climb 

2    ! TET number for Main and Diversion Cruise 

10    ! TET number for Flight Idle(Descent) and 

Ground Idle 

10    ! TET number for Approach 

5.    ! TET step change in [K] for Take Off 

5.    ! TET step change in [K] for Climb 

5.    ! TET step change in [K] for Main and 

Diversion Cruise 

5.    ! TET step change in [K] for Flight 

Idle(Descent) and Ground Idle 

5.    ! TET step change in [K] for Approach 

1925.   ! Max TET in [K] for Take Off 

1640.   ! Max TET in [K] for Climb 

1580.   ! Max TET in [K] for Main Mission Cruise 

1280.   ! Max TET in [K] for Flight Idle(Descent) and Ground 

Idle 

1380.   ! Max TET in [K] for Approach 

!---------------------------------------------------------------------

----- 

!ADDITIONAL ENGINE PERFORMANCE STATION VECTOR DATA (STATION, ITEM) 

4    ! Number of additional engine performance 

station vector data 

!Station | Item 

9 6 

10 6 

11 6 

12 6 

!---------------------------------------------------------------------

----- 

!ADDITIONAL ENGINE PERFORMANCE BRICK DATA (DESCRIPTION, BRICK NO, 

ITEM) 

3    ! Number of additional engine performance 

brick data 

!Description | BrickNo | Item (WARNING: The BrickNo is defined 

according to the tabular output file of turbomatch ) 

LPC_PCN 2 2 

HPC_PCN 7 2 

FF 14 7 

!---------------------------------------------------------------------

----- 

!ADDITIONAL OFF DESIGN ENGINE CONFIGURATIONS (LIKE BLEEDS etc.) 

!Specify additional off design specification for each flight phase 

(e.g. for brick data 26 "26 0.95") 
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1    ! Number of additional off design 

specifications for each flight phase 

!You have to specify the same number of additional specs for all the 

phases, i.e. if you specify something you have to do it for every 

flight phase 

!---------------------------------------------------------------------

----- 

!TAKE OFF SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!CLIMB SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!CRUISE SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!FLIGHT/GROUND IDLE SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!APPROACH SPECIFICATIONS 

!---------------------------------------------------------------------

----- 

142 1200. 0. 0. ! BDnum TET ValueBelowTET ValueAboveTET 

!---------------------------------------------------------------------

----- 

!INPUT AND OUTPUT FILE PATHS 

!Engine Design Point Specification file (input to Hermes) 

GE90code.dat 
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Appendix C Engine Degradation Signatures 

 


