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Abstract

The desire to create an environmentally friendly aircraft that is aerodynamically efficient

and capable of conveying large number of passengers over long ranges at reduced direct

operating cost led aircraft designers to develop the Blended Wing Body(BWB) aircraft

concept. The BWB aircraft represents a paradigm shift in the design of aircraft. The

design offers immense aerodynamics and environmental benefits and is suitable for the

integration of advanced systems and concepts like laminar flow technology, jet flaps and

distributed propulsion. However, despite these benefits, the BWB is yet to be developed

for commercial air transport. This is due to several challenges resulting from the highly

integrated nature of the configuration and the attendant disciplinary couplings. This

study describes the development of a physics based, deterministic, multivariate design

synthesis optimisation for the conceptual design and exploration of the design space of a

BWB aircraft. The tool integrates a physics based Athena Vortex Lattice aerodynamic

analysis tool with deterministic geometry sizing and mass breakdown models to permit a

realistic conceptual design synthesis and enables the exploration of the design space of this

novel class of aircraft. The developed tool was eventually applied to the conceptual design

synthesis and sensitivity analysis of BWB aircraft to demonstrate its capability, flexibility

and potential applications. The results obtained conforms to the pattern established from

a Cranfield University study on the BlendedWing Body Aircraft and could thus be applied

in conceptual design with a reasonable level of confidence in its accuracy.

v





Dedication

This thesis is dedicated to my late parents, Mr and Mrs Edwin Okonkwo who despite all

odds worked tirelessly to give me a decent life.

vii





Acknowledgements

I will like to specially appreciate my supervisor, Prof. Howard Smith, for his insight,

wisdom, patience and supervision. I also seize this medium to appreciate Petroleum

Technology Development Fund (PTDF) for funding this project. I am deeply indebted

to the Nigerian Air Force for releasing me to embark on this study. I also appreciate the

’GENUS skunkworks’ crew; Dr David Sziroczak and Squadron Leader Godwin Abbe for

the cooperation, technical assistance and the friendship developed over several late night

studies in the course of this research. I will also like to appreciate Dr Gareth Davies, Dr

Sola Adesola, Dr David Judt and Quintain Mecentenggart for their support with proof

reading my thesis and providing useful advice on ways to structure and improve the thesis.

My sincere thanks goes to Pastor Biyi Ajala and the entire Holding Forth the Word Min-

istry for their prayers and moral support. I also wish to thank all members of the Cranfield

Pentecostal Assembly for their prayers and support in the course of this academic pursuit.

My thanks also goes to my bosses Air Commodores CN Udeagulu and PO Jemitola for

all their assistance. To my friends; Commanders GM Ciroma and OB Ayoade (Nigerian

Navy), Wing Commanders PU Okwuego and IB Musa as well as Squadron Leader JK

Kalau and Major MU Ugbong, thanks for always been there for me and for your encour-

agements. It meant a lot.

I wish to thank my siblings, Priscilla, Hyacinth, Jude, Chinyere, Ifeoma and Tochukwu,

thanks a great deal for believing in me.

ix



x Acknowledgements

I reserve special mention for my wife, Tayo, for her prayers, unflinching love and pro-

visions throughout the period of the PhD as well as for her patience and exceptional

understanding with the extra hours I had to spend away from home. God bless you. To

my lovely kids, Maya and Michelle, thanks a great deal for brightening my world. Your

smiles and ’Daddy I love you’ were reinvigorating and gave me reasons to endure the days

of frustrations on the research.

Most of all, I will like to thank the Almighty God for the gift of life, wisdom and under-

standing to undertake this research. To God be the glory.

Cranfield, United Kingdom Paulinus Peter Chukwuemeka Okonkwo

May 19, 2016



Contents

Abstract v

Dedication vii

Acknowledgements viii

List of Figures xx

List of Tables xxii

Nomenclature xxiii

1 Introduction 1

1.1 Background and Motivation for Study . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Objectives of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 History of Tailless/Flying Wing Design . . . . . . . . . . . . . . . . . . . . 8

2.3 Potentials and Challenges of the BWB Design . . . . . . . . . . . . . . . . 21

2.3.1 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Flight Control and Stability . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Aero-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Propulsion Airframe Integration . . . . . . . . . . . . . . . . . . . 37

2.3.5 Safety and Environmental Consideration . . . . . . . . . . . . . . . 41

2.3.6 Handling and Ride quality . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.7 Marketing and Manufacturing Potential . . . . . . . . . . . . . . . 46

xi



xii Contents

2.3.8 Operations, Maintenance and Engineering Capacity . . . . . . . . 49

2.4 Optimisation in the Design of Blended Wing Body Aircraft . . . . . . . . 52

2.5 Identified Gaps in Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Methodology 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Evolution of Aircraft Design Philosophy . . . . . . . . . . . . . . . . . . . 56

3.3 Implementation of Disciplinary Modules . . . . . . . . . . . . . . . . . . . 60

3.3.1 Atmospheric Module . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Geometry Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Mass Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Propulsion Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.5 Aerodynamic Analysis Module . . . . . . . . . . . . . . . . . . . . 82

3.3.6 Packaging Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.7 Determination of the Aircraft Centre of Gravity . . . . . . . . . . 100

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Performance and Stability Analysis 111

4.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.1 Take-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.2 Take-off One Engine Inoperative . . . . . . . . . . . . . . . . . . . 115

4.1.3 En-route Climb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1.4 Cruise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1.5 Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.1.6 Landing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1.7 Diversion and Reserves . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.1 Static Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.2 Trim Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.3 Framework for Design Synthesis and Optimisation . . . . . . . . . 129

4.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Structure of the Multi-variate Design Synthesis Tool 131

5.1 Top Level Requirements for GENUS Aircraft Design Software . . . . . . . 131

5.2 Selection of a Suitable Programming Language for GMDSO Tool . . . . . 132

5.3 Overview of GMDSO Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 The Design Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 The GMDSO Tool GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 Data Flow in the GMDSO Tool . . . . . . . . . . . . . . . . . . . . . . . . 140

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



Contents xiii

6 Results, Discussions and Analysis 145

6.1 Quasi - validation of the GMDSO Tool . . . . . . . . . . . . . . . . . . . . 145

6.1.1 Geometry Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1.2 Mass Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1.3 Propulsion Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1.4 Aerodynamic Analysis Module . . . . . . . . . . . . . . . . . . . . 166

6.1.5 Stability Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.1.6 Performance Module . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3 Design Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3.1 Design Case 1 - Mass Minimisation Subject to Geometric Constraint185

6.3.2 Design Case 2 - Mass Minimization Subject to Stability Constraint 189

6.4 Exploration of the Design Space . . . . . . . . . . . . . . . . . . . . . . . 192

6.4.1 Sensitivity of Mach Number to Productivity, Aerodynamic Effi-
ciency and Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4.2 Sensitivity of Maximum Camber to Productivity, Aerodynamic Ef-
ficiency, Static Margin and Turbulence . . . . . . . . . . . . . . . . 196

6.4.3 Effect of Centre -Body Sweep on Aerodynamic Characteristics of
the BWB Centre - Body . . . . . . . . . . . . . . . . . . . . . . . . 199

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7 Conclusions and Recommendations for Further Work 203

7.1 Principal Findings From the Research Objectives . . . . . . . . . . . . . . 204

7.1.1 Develop Algorithms for the Estimation of Several Variables within
an Aircraft Design Synthesis . . . . . . . . . . . . . . . . . . . . . 204

7.1.2 Incorporate Packaging Module Early in the Conceptual Design Pro-
cess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.1.3 Create a multi-variate optimisation tool to rapidly perform the con-
ceptual design synthesis and analysis of the BWB commercial pas-
senger aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.1.4 Explore the design space of a BWB aircraft configuration . . . . . 205

7.2 Contributions to Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.3 Limitations of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.4 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . 206

7.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.5.1 Journal Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.5.2 Conference Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

References 209

A Atmospheric Model 219

B Steps to Compiling the Athena Vortex Lattice for Operations on Win-
dows 221



xiv Contents

C Process of Creating a Shared Library of FORTRAN Written AVL Codes
and JAVA Disciplinary Models 223

D Development of the GMDSO Tool 225

D.1 0 - Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

D.1.1 LiftingSurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.1.2 BodyComponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

D.1.3 Geometry Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

D.2 1-Mission Specification Module . . . . . . . . . . . . . . . . . . . . . . . . 233

D.3 2-Propulsion Specifications Module . . . . . . . . . . . . . . . . . . . . . . 234

D.3.1 Power - plant Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

D.3.2 3 - Mass Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . 237

D.4 4 - Aerodynamics Analysis Module . . . . . . . . . . . . . . . . . . . . . . 239

D.5 6 - Propulsion Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

D.6 Packaging and Centre of Gravity . . . . . . . . . . . . . . . . . . . . . . . 242

D.7 8 - Performance Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

D.8 9 - Stability and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244



List of Figures

1.1 Discrete BWB Airframe and the High By - pass Ratio Conventional Air-
craft Used in Noise Assessment. . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A Plan View of a Flying Wing Aircraft[6]. . . . . . . . . . . . . . . . . . . 2

1.3 A Plan View of the Blended Wing Body Aircraft[6] . . . . . . . . . . . . . 3

2.1 The D-8 Tailless Aircraft at the 1914 Farnborough Airshow [14]. . . . . . 8

2.2 Westland-Hill Pterodactyl V Aircraft with Fully Moving Wingtips[15]. . . 9

2.3 The Northrop Semi -flying Wing Aircraft (Source:Smithsonian NASA Mu-
seum). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 The Northrop N-1M Aircraft (Source:Smithsonian NASA Museum). . . . 10

2.5 The Northrop Northrop N-9M Aircraft(Source:Smithsonian NASA Museum). 10

2.6 Northrop XB - 35 Piston - engined Long - range Bomber (Source: Virtual
Aircraft Museum). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 ’B2-Spirit’ Stealth Bomber (Source: Xairforces Military Aviation Society). 11

2.8 Turbojet Powered Ho-229 Flying Wing Aircraft(Source:Military Factory). 12

2.9 BW - 17 Radio Controlled Model Aircraft(Source:Stanford University). . . 12

2.10 BWB - 450 Commercial Passenger Transport Aircraft(Source:NASA). . . 13

2.11 European Union Sponsored BWB - Related Research Programs [22]. . . . 14

2.12 Cranfield BW - 98 BWB Study [2]. . . . . . . . . . . . . . . . . . . . . . . 15

2.13 VELA 1 Baseline Concept (Source:DLR, Martin Hepperle 2005). . . . . . 15

2.14 VELA 2 Baseline Concept(Source:DLR, Martin Hepperle 2005). . . . . . . 16

2.15 3 - view Diagram of the European Commission Very Efficient Large Aircraft
(Source:DLR, Martin Hepperle 2005). . . . . . . . . . . . . . . . . . . . . 16

2.16 Surface Model of the NACRE PFW - 1 Aircraft [26]. . . . . . . . . . . . . 17

2.17 Surface Model of the NACRE PFW - 2 Aircraft [26]. . . . . . . . . . . . . 18

xv



xvi List of Figures

2.18 Cambridge MIT Silent Aircraft Concept(Source:The Cambridge-MIT In-
stitute). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.19 The ACFA BWB Configuration [22]. . . . . . . . . . . . . . . . . . . . . . 19

2.20 3 - view Diagram of the Russian TsAGI Integrated Wing Body Aircraft. . 20

2.21 Cranfield BWB Design showing the BLI Distributed Propulsion System.
(Source:Cranfield Aircraft Design Group). . . . . . . . . . . . . . . . . . . 21

2.22 Sketch of the CWB (left) and the BWB (right). . . . . . . . . . . . . . . . 22

2.23 Transformation of a 650m2 Ball into a Conventional and BWB Aircraft. . 23

2.24 Aerodynamic Shaping of the SAX - 40 Aircraft [27]. . . . . . . . . . . . . 24

2.25 Cross-sectional Area Distribution of a Sears-Haack Body [1, 42] . . . . . . 24

2.26 Variation of the BWB Plan - form,ML/D andMP/D with Mach Number
[1, 42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.27 Investigated Span - wise Lift Distribution [34] . . . . . . . . . . . . . . . . 27

2.28 Effect of Varying Outer Wing Sweep Angle on Aerodynamic Characteristics
of a BWB[45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.29 Comparison of Moment Arms and Pitch Control Effectiveness with Gears
on Ground and In-flight Between a Conventional Aircraft and a BWB [35]. 30

2.30 Pressure Fields Induced by Belly Flap on a BWB [35]. . . . . . . . . . . . 31

2.31 Comparison of the Aerodynamic and Inertia Load Distribution Between a
Conventional Aircraft Configuration and the BWB [1]. . . . . . . . . . . . 33

2.32 High Bending Stresses Resulting from the Effect of Pressure on the Box-like
Shape of the BWB [61]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.33 Liebeck’s Separate Pressure Shell Concept [1] . . . . . . . . . . . . . . . . 34

2.34 Liebeck’s Integrated Skin and Shell Concept [1] . . . . . . . . . . . . . . . 35

2.35 Nodal Von - Mises Stress Analysis of the NASA Multi-bubble BWB Fuse-
lage Structure Concept [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.36 Vaulted Shell Y - braced BWB Fuselage Structural Concept [61] . . . . . 36

2.37 CMBF Subjected to Pressure Loads and its Application to Passenger Trans-
port [55] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.38 Partially Embedded Propulsion System Showing Boundary Layer Ingestion
[72] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.39 Effect of Inlet Pressure Recovery on Thermal Efficiency for Three Fan
Pressure Ratios [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.40 Some Interior Arrangement of the BWB. . . . . . . . . . . . . . . . . . . . 42

2.41 Glide - path of an Aircraft in IFR Final Approach Showing Noise Measure-
ment Points. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.42 Comparison of Noise Produced at 3 Reference Points During Final Ap-
proach by B777 - 200 and a 300 - passenger BWB [5]. . . . . . . . . . . . 43

2.43 Emergency Egress Problem [78] . . . . . . . . . . . . . . . . . . . . . . . . 45

2.44 Liebeck Cabin Concept to Aid Emergency Evacuation[1] . . . . . . . . . . 45

2.45 Commonality of the BWB Aircraft [1] . . . . . . . . . . . . . . . . . . . . 48



List of Figures xvii

2.46 Evolution of Maximum Induced Velocity With Downstream Distance [85]. 51

2.47 Wing Loading versus Cruise Conditions for a BWB and Conventional Air-
craft [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Aircraft Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The Role of Synthesis and Analysis in the Aircraft Design Process . . . . 57

3.3 Coupling Between Highly Integrated Novel Configuration and Conventional
Aircraft [99]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 MVO Design Synthesis Framework [104] . . . . . . . . . . . . . . . . . . . 59

3.5 Definition of Wing’s Geometry Variables . . . . . . . . . . . . . . . . . . . 62

3.6 Position of Reference Chords. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Multi - crank Wing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Howe Idealisation of the BWB Geometry [19] . . . . . . . . . . . . . . . . 66

3.9 Wing Structural Planform Geometry [113] . . . . . . . . . . . . . . . . . . 70

3.10 Structural Semi-span [113] . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11 Hierarchy of Aerodynamic Solvers with Corresponding Complexity and
Computational Cost [121] . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.12 Framework for Integrating AVL into JAVA Using the JNI. . . . . . . . . . 88

3.13 Planform View of BWB Geometry showing the Parameters used in Cabin
Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.14 The BWB Cabin as a Ruled Surface . . . . . . . . . . . . . . . . . . . . . 94

3.15 Converting Seating Areas into Equivalent Bays. [63] . . . . . . . . . . . . 96

3.16 Common Internal Arrangements of a BWB Commercial Passenger Trans-
port Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.17 Parameters used in 3D Wing CST Derivation. [132] . . . . . . . . . . . . 105

4.1 Typical Main Mission Profile of a Commercial Transport Aircraft . . . . . 112

4.2 Typical Reserve Mission Profile of a Commercial Transport Aircraft . . . 112

4.3 Flight Characteristics in the Different Segments of the Enroute Climb Phase119

4.4 Forces and Moments acting on an Aircraft . . . . . . . . . . . . . . . . . . 127

4.5 Flow - Chart for a Conceptual Design Synthesis and Analysis of a BWB
Aircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.6 Framework for the Design Synthesis and Optimisation of a BWB Aircraft. 130

5.1 Data Flow for the GMDSO Tool. . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Interaction Between Modules in the GMDSO Tool . . . . . . . . . . . . . 137

5.3 Computer-based (top) vs Human Intuitive Design Process(bottom) . . . . 138

5.4 Selection of Modules in the GMDSO Tool. . . . . . . . . . . . . . . . . . . 139

5.5 Setting Inputs in the GMDSO Tool. . . . . . . . . . . . . . . . . . . . . . 139

5.6 Output Frame Showing Selection of Objective Function and Constraints
for Optimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.7 Optimisation Frame Showing Constraint Definition. . . . . . . . . . . . . 140

5.8 Flow of Data in the GMDSO Tool. . . . . . . . . . . . . . . . . . . . . . . 142



xviii List of Figures

6.1 BW -11 Tailless Aircraft Pre - coded in the GMDSO Tool Geometry Module.146

6.2 BWB Geometry with Winglets Pre - coded in the Geometry Module. . . . 148

6.3 A Conventional A320 Class of Aircraft Pre -coded in the Geometry Module.148

6.4 LSGRG2 Optimisation for Mass Estimation with the Howe Structural Mass
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 LSGRG2 Optimisation for Mass Estimation with the Bradley Structural
Mass Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6 Comparison of Mass Variation with Number of Iteration Using the LS-
GRG2 Optimiser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.7 GA Optimisation for Mass Estimation with the Howe Structural Mass
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.8 GA Optimisation for Mass Estimation with the Bradley Structural Mass
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.9 GA Result for Design Case 1 Highlighting the Randomness of the Technique.155

6.10 Hybrid Optimisation for Mass Estimation with the Bradley Structural
Mass Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.11 Hybrid Optimisation for Mass Estimation with the Howe Structural Mass
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.12 Variations of MTOM with Number of Iterations for Mass Estimation Using
the GA and Hybrid Optimisers. . . . . . . . . . . . . . . . . . . . . . . . . 157

6.13 Absolute Error Obtained with the Bradley Method. . . . . . . . . . . . . 158

6.14 Absolute Error Obtained with the Howe Method. . . . . . . . . . . . . . . 159

6.15 Variation of Thrust with Mach Numbers at Various Altitudes. . . . . . . . 161

6.16 Variation of SFC with Mach Numbers and Altitudes . . . . . . . . . . . . 162

6.17 Variation of SFC with Mach Numbers and Altitudes for the FJ442-A Tur-
bofan Engine [145] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.18 GA Result for Design Case 1 Highlighting the Randomness of the Technique.164

6.19 Comparison of the Combined Effect of Velocity and Altitude on Selected
Turbo - Fan Engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.20 Effect of Speed on Jet Engine Thrust. . . . . . . . . . . . . . . . . . . . . 166

6.21 Geometry Model obtained with the XFLR5. . . . . . . . . . . . . . . . . . 167

6.22 Polar Plots from XFLR5 Aerodynamic Analysis of Test Geometry. . . . . 168

6.23 Geometry Model Obtained with the AVL. . . . . . . . . . . . . . . . . . . 168

6.24 Graphical Relationship Between Aerodynamic Forces and Moments at Low
and High Subsonic Mach Numbers. . . . . . . . . . . . . . . . . . . . . . . 170

6.25 Polar Plots of Lift and Drag Coefficients at Low and High Subsonic Mach
Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.26 Sensitivity of Aerodynamic Forces and Moments to Mach Numbers. . . . 171

6.27 Plot of Trim Characteristic at Take-Off, Cruise and Landing. . . . . . . . 172

6.28 Determination of Balanced Field Length . . . . . . . . . . . . . . . . . . . 174

6.29 Payload Range Diagram for the BW - 11 Mission. . . . . . . . . . . . . . 177

6.30 An Airfoil Obtained with the CST Parameterisation Technique. . . . . . . 180

6.31 CST Description of the Test Geometry With Different Twist and Dihedral
Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.32 Comparison of Volume Constraint Handling with the Logarithmic and Co-
efficient Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



List of Figures xix

6.33 Volume Constraint Handling Using CST Parameterisation Technique. . . 183

6.34 Evolution of MTOM with Design Optimisation Iterations. . . . . . . . . . 186

6.35 Geometry Obtained from the Minimisation of MTOM . . . . . . . . . . . 187

6.36 Typical GMDSO Tool Output for the GA Optimisation of Design Case 1. 189

6.37 Geometry Obtained from Design Case 2 Using GA. . . . . . . . . . . . . . 191

6.38 Geometry Obtained from Design Case 2 Using LSGRG2. . . . . . . . . . . 191

6.39 Sensitivity of Mach Number to Productivity and Aerodynamic Efficiency. 194

6.40 Sensitivity of Mach Number to Turbulence Handling . . . . . . . . . . . . 194

6.41 Sensitivity of Mach Number to Static Margin . . . . . . . . . . . . . . . . 195

6.42 Comparison of the Static Margin of the F -14 A and F - 111 . . . . . . . 195

6.43 Sensitivity of ML/D and MP/D to Maximum Camber . . . . . . . . . . . 197

6.44 Sensitivity of Static Margin and Turbulence Handling Characteristics to
Maximum Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.45 Sensitivity of the Position of Maximum Camber on Aerodynamic Efficiency
and Aircraft Turbulence Handling Characteristic . . . . . . . . . . . . . . 199

6.46 Variation of Lift Coefficients with Sweep Angles at M0.85 and 0◦ AoA. . . 200

6.47 Variation of Drag Coefficients with Sweep Angles at M0.85 and 0◦ AoA. . 200

6.48 Variation of ML
D with Sweep Angles at M0.85 and 0◦ AoA. . . . . . . . . . 200

D.1 Overview of the GENUS Module Class. . . . . . . . . . . . . . . . . . . . 225

D.2 A Layout of the Geometric Module. . . . . . . . . . . . . . . . . . . . . . 226

D.3 Hierarchy of Geometric Parts in the Geometric Module. . . . . . . . . . . 227

D.4 XY - Plane View of a Lifting Surface Showing Definition of Properties. . . 228

D.5 YZ - Plane View of a Lifting Surface Showing Span Definition. . . . . . . 228

D.6 XZ - Plane View of a Lifting Surface Showing Span Definition. . . . . . . 228

D.7 Shape of the Nose Section with Zero Radius and Finite Length. . . . . . . 229

D.8 Shape of the Nose Section with Finite Radius and Finite Length. . . . . . 229

D.9 Blunt Nose Section with Zero Length and R > Ro. . . . . . . . . . . . . . 230

D.10 XZ-Plane View of the Fuselage Section. . . . . . . . . . . . . . . . . . . . 230

D.11 XY-Plane View of the Fuselage Section. . . . . . . . . . . . . . . . . . . . 230

D.12 YZ-Plane View of the Fuselage Section. . . . . . . . . . . . . . . . . . . . 230

D.13 The Process of Generating and Transfer of Geometry Formats Within the
GMDSO Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

D.14 Data Flow in the Mission Specification Module. . . . . . . . . . . . . . . . 234

D.15 Power - plant Types Implemented in the GMDSO Tool. . . . . . . . . . . 234

D.16 Operations in the Propulsion Specification Module. . . . . . . . . . . . . . 235

D.17 Operations in the Power - plant/Propulsion Module. . . . . . . . . . . . . 236

D.18 Logic Employed in Power - plant Evaluation. . . . . . . . . . . . . . . . . 236

D.19 Layout of the Mass Breakdown Module. . . . . . . . . . . . . . . . . . . . 237

D.20 Hierarchy of Mass Components and Sub-Classes in the GMDSO Tool. . . 238



xx List of Figures

D.21 Layout of the Aerodynamic Analysis Module. . . . . . . . . . . . . . . . . 239

D.22 Structure of the Coefficient Matrix in the GMDSO Tool. . . . . . . . . . . 240

D.23 Design of the Propulsion Module. . . . . . . . . . . . . . . . . . . . . . . . 242

D.24 Design of the Packaging and CG Module. . . . . . . . . . . . . . . . . . . 243

D.25 Design of the Performance Module. . . . . . . . . . . . . . . . . . . . . . . 244

D.26 Layout of the Stability and Control Module. . . . . . . . . . . . . . . . . . 245



List of Tables

3.1 List of Implemented Class II Weight Prediction Methods. . . . . . . . . . 80

3.2 Powerplant Thrust Parameter [110] . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Comparison of Some Open Source Windows Compatible Panel Methods
and VLMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Typical Lift Increments from Deploying Leading and Trailing Edge Flaps
[110] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Maximum Useful Length for Certain Number of Bays . . . . . . . . . . . 95

4.1 Definition of Climb Segments . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 2015 Top 10 Programming Languages . . . . . . . . . . . . . . . . . . . . 134

6.1 BW - 11 Semi - span Geometry Specification . . . . . . . . . . . . . . . . 146

6.2 Comparison of the GMDSO Tool Geometry Results with the AVL, XFLR5
and Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3 Comparison of the LSGRG2 Optimiser GMDSO Tool Weight Estimates
with the BW -11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 Comparison of GMDSO Tool BW - 11 Weight Estimates Obtained with
the GA Optimiser to Cranfield Study . . . . . . . . . . . . . . . . . . . . . 154

6.5 Comparison of GMDSO Tool BW - 11 Weight Estimates Obtained with
the Hybrid Optimiser to Cranfield Study . . . . . . . . . . . . . . . . . . . 157

6.6 Error Between Calculated and Estimated Masses for Bradley Method . . 158

6.7 Error Between Calculated and Estimated Masses for the Howe Method . 158

6.8 Validation of Aircraft Centre of Gravity in Cruise . . . . . . . . . . . . . . 160

6.9 Comparison of Aerodynamic Forces and Moments from AVL and the XFLR5
at M0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.10 Comparison of Aerodynamic Forces and Moments from AVL and the BW-
11 at M 0.85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.11 Result of the AVL Analysis of Test Geometry with NACA 4-digit Airfoils
Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xxi



xxii List of Tables

6.12 Trim Characteristic for the Test Aircraft in Different Flight Conditions . . 172

6.13 Trim and Stability Characteristics with GMDSO Tool Derived CG and ¯̄c . 173

6.14 Take - off and Landing Performance of the BW - 11 Aircraft . . . . . . . . 173

6.15 Balanced Field Length Calculations . . . . . . . . . . . . . . . . . . . . . 174

6.16 En - route Performance of the BW - 11 Aircraft . . . . . . . . . . . . . . . 175

6.17 Climb Gradients of the BW - 11 Aircraft for a 4 -engined Propulsion System
Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.18 Thrust Required at Different Flight Condition . . . . . . . . . . . . . . . . 176

6.19 Critical Payload Range Characteristics of the BW - 11 Aircraft . . . . . . 177

6.20 Fuel Reserves for the BW - 11 Aircraft . . . . . . . . . . . . . . . . . . . . 179

6.21 Seat Pitch and Number of Pax in the Different Classes . . . . . . . . . . . 179

6.22 Comparison of GMDSO Cabin Size With Test Geometry . . . . . . . . . . 179

6.23 Properties of the Obtained CST - Airfoil . . . . . . . . . . . . . . . . . . . 181

6.24 Design Variables and Constraints for Design Case 1 . . . . . . . . . . . . . 185

6.25 Variation of Geometric Variable for Design Case 1 . . . . . . . . . . . . . 186

6.26 Variation of Design Variables for Case 1 Using the GA Optimiser . . . . . 188

6.27 Comparison of the Baseline with Results Obtained Using GA for Design
Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.28 Comparison of the Baseline with Results Obtained Using LSGRG2 for De-
sign Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.29 Effect of Variations in Maximum Camber . . . . . . . . . . . . . . . . . . 196

6.30 Effect of Variations in the Position of 2% Maximum Camber . . . . . . . 198

D.1 Shape and Volume Dependent Inputs to the Mass Component . . . . . . . 239



Nomenclature

Latin Symbols

am Aircraft acceleration m/s2

CD Drag coefficient -

cr Root chord m

ct Tip chord m

distTO Total distance required for take-off m

e Oswald efficiency factor -

Emax Maximum endurance -

ft feet feet

g Acceleration due to gravity m/s2

hs Screen Height m

ht Height at the end of transition m

K Induced drag correction factor -

mAC Mass of Airconditioning System kg

mbgge Mass of baggages kg

mfuelTO Mass of fuel for take - off kg

mfurn Mass of furnishing kg

mhydr Mass of Hydraulic System kg

minst Mass of instruments kg

xxiii



xxiv Nomenclature

mnacgrp Mass of nacelle group kg

mpax Mass of passengers kg

mfcr Mass at the end of cruise kg

mfueldesc Mass of fuel required for descent kg

mfuelreg Mass of regulatory fuel kg

n Load factor -

neng Number of engines -

r Radius of Arc m

Rf Range function m

ss Distance to the screen height m

saccgo Accelerate - go distance m

saccstop Accelerate - stop distance m

sdesc Distance covered to decelerate m

sec Distance travelled during climb m

sFA Distance to the start of final approach m

sTMA Distance from the TMA to the touchdown point m

saland Air distance in landing m

sgs Ground distance from end of transition to screen height m

sgt Ground distance to transition height m

sgland Ground run distance in landing m

T Static thrust N

tc Time to climb to screen height s

tg Time for ground-roll s

ts Time required to reach screen height m

tt Time for transition s

Tdesc Thrust required to maintain ROD N

tec Time to climb to a given height s

Tid Idle thrust per engine N

TmaxCont Thrust at maximum continuous setting N

Treg Regulatory thrust N

tTMA Time in the TMA s

ui Relative speed -

V1 Critical engine failure speed m/s



Nomenclature xxv

V2 Take - off climb speed m/s

Vt Transition speed m/s

Vapp Approach speed m/s

Vcr Cruise speed m/s

VLOF Lift - off speed m/s

Vmdi Minimum drag speed m/s

VTAS True airspeed m/s

Vtd Touch - down speed m/s

wicr Mass at the beginning of cruise kg

Greek Symbols

ηf Fuel Efficiency %

ηth Thermal Efficiency %

γ Climb gradient %

λ Taper Ratio -

ω Fuel weight ratio -

σ relative density -

γht Heat capacity ratio = 1.4 -

Subscripts

app approach

cr cruise

desc descent

EAS equivalent airspeed

eng engine

FA final approach

id Idle

land landing phase

mean mean

reg regulatory

s screen height



xxvi Nomenclature

TAS true airspeed

td touch - down

TMA terminal manoeuvring area

t transition height

Abbreviations

AAA Advanced Aircraft Analysis

ACARE Advisory Council for Aeronautics Research in Europe

ACFA2020 Active Flight Control for Flexible Aircraft 2020

APU Auxiliary Power Unit

AR Aspect Ratio

ATC Air Traffic Control

AVD Aerospace Vehicle Design

AVL Athena Vortex Lattice

BFL Balanced Field Length

BLD Boundary Layer Diverter

BLI Boundary Layer Ingestion

CAE Computer Aided Engineering

CDE Computational Design Engine

CMBF Columned Multi Bubble Fuselage

CPU Central Processing Unit

CST Class Shape Function Transformation

CWB Carry - through Wing Box

DLL Dynamic Link Library

EAS Equivalent Air Speed

EPNL Effective Perceived Noise Level

ESDU Engineering Science Data Unit

EU European Union

FLOPS Flight Optimisation Software

FPR Fan Pressure Ratio

GA Genetic Algorithm

GD General Dynamics



Nomenclature xxvii

GMDSO GENUS Multi - variate Design Synthesis Optimisation

GUI Graphic User Interface

H2O2 Hydrogen Peroxide

IDEA Integrated Design and Engineering Analysis

IDE Integrated development Environment

IEEE Institute of Electrical and Electronics Engineers

IPPD Integrated Product and Process Development

IWB Integrated Wing Body

JNI Java Native Interface

KEAS Knots Equivalent Air Speed

kg Kilogram

km Kilometer

LAWGS Langley Wireframe Geometric Standard

LEthanol Liquid Ethanol

LFC Laminar Flow Control

LMethane Liquid Methane

LOX Liquid Oxygen

MBF Multi Bubble Fuselage

MDC McDonnell Douglas Corporation

MDO Multi Disciplinary Optimisation

MGC Mean Geometric Chord

MLG Mass of Landing Gears

MLM Maximum Landing Mass

MOB Multidisciplinary Optimisation of a Blended Wing Body

MTOM Maximum Take off Mass

MVO Multi-variate Optimisation

N2O4 Dinitrogen Tetroxide

NACRE New Aircraft Concept Research

nm Nautical Mile

OEM Operating Empty Mass

OS Operating System

PASS Program for Aircraft Synthesis Studies

PFW Passenger - driven Flying Wing



xxviii Nomenclature

PIO Pilot Induced Oscillations

PR Pressure Recovery

RFI Resin Film Injected

ROC Rate of Climb

ROD Average Rate of Descent

SAI Silent Aircraft Initiative

SFC Specific Fuel Consumption

SHABP Supersonic/Hypersonic Arbitrary Body Program

SI International System

SLS Sea Level Static

SP Structural Parameter

TAS True Air Speed

TMA Terminal Manoeuvring Area

TSFC Thrust Specific Fuel Consumption

UDMH Unsymmetrical Dimethylhydrazine Liquid Ethanol

US United States of America

VELA Very Efficient Large Aircraft

VLM Vortex Lattice Methods

ZFM Zero Fuel Mass

Other Symbols

2D 2 - Dimensional

3D 3 - Dimensional

¯̄c mean aerodynamic chord

c̄ mean geometric chord



Chapter 1

Introduction

1.1 Background and Motivation for Study

Before the renewed interest in unconventional aircraft configurations, the design of air-

craft had shifted from innovative exercise to merely seeking for potential improvement

in the efficiency of the conventional tube and wing design[1]. However, having reached

the limit of conventional design coupled with a growing demand for an environmentally

friendly, aerodynamically efficient aircraft that can carry large number of passengers over

long ranges at reduced direct operating cost[2], the BWB aircraft was conceptualised.

The BWB has low noise signature because it does not require flaps for take - off and

landing nor tailplane for pitch control. This eliminates the need for trailing edge and pos-

sibly leading edge devices. Furthermore, the BWB emits less pollutants due to reduced

fuel burn and propulsive efficiency in addition to a low noise signature. In a research

conducted by Mistry [3] to determine the airframe with the least noise characteristics

from a list of 96 aircraft configurations, the discrete BWB airframe, shown in Figure 1.1,

obtained the highest score of 64.3% compared to the most optimal high by - pass ratio

conventional aircraft, which got 58.7% of the total available points. The airframes were

assessed on 12 attributes with noise as the main objective function [3].

The BWB offers increased range and payload capacity due to 27% reduction in fuel burn

per seat leading to reduced direct operating costs [1, 2]. These advantages are enabled

by blending a lift generating centre - body housing the payload with conventional outer

wings, to obtain a compact aerodynamically efficient flying wing providing structural,

1
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(a) Discrete BWB (b) High By - pass Ratio Conventional
Aircraft

Figure 1.1: Discrete BWB Airframe and the High By - pass Ratio Conventional Aircraft
Used in Noise Assessment.

aerodynamic and payload synergy [4, 5]. The BWB however differs from a pure flying

wing in that a pure flying wing has straight leading and trailing edges with no definite

fuselage. Payloads in a flying wing aircraft are stored in the main wing structure. On the

other hand, a BWB consists of a flattened fuselage for accommodating payload [6]. A plan

- view of a flying wing showing the internal span - wise distribution of passenger and cargo

bays and the location of the mean aerodynamic chord (dashed line) and its quarter chord

point is shown in Figure 1.2. A perspective view of the BWB design is shown in Figure 1.3.

Figure 1.2: A Plan View of a Flying Wing Aircraft[6].

Other advantages of the BWB design includes 15 - 20 % increased lift to drag ratio (L/D)
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Figure 1.3: A Plan View of the Blended Wing Body Aircraft[6]

due to reduced drag resulting from a 33% lower wetted surface area compared to a conven-

tional tube and wing aircraft [1]. The effect of the foregoing is a 12% decrease in operating

empty weight and a lower acoustic signature [1, 4]. Despite these attractive potentials,

the BWB is yet to be developed into a commercial airliner due to several challenges. The

challenges include stability and control deficiencies, propulsion - airframe - aeroacoustic

integration issues and the intricacies of achieving optimal trade - offs from conflicting de-

sign requirements in a tightly coupled aircraft configuration. In order to minimise these

challenges, researchers have continued to apply different concepts and design techniques

in BWB aircraft design.

Traditionally, aircraft design is categorised into the conceptual, preliminary and detail

design phases. The conceptual phase identifies market requirements, decides on the most

appropriate configuration and conducts initial sizing of aircraft geometry. The prelimi-

nary phase employs intermediate fidelity tools to effectively assess the performance and

feasibility of the design before deciding whether to proceed to the detailed design phase.

In the detail design phase, the design is extended to such a level that it can be manufac-

tured and sold.

Within the traditional aircraft design phases, trade studies could be performed using car-

pet plots or the ’try and cut’ approaches. This is because conventional or ’Kansas type’

aircraft could easily be decomposed into different parts with distinct functions. This re-

duces number of variables that need to be manipulated to achieve a design aim. The case

is however different in unconventional configuration where tight disciplinary couplings
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and greater complexity does not allow for decomposition of airplane into distinct parts.

For instance, in a BWB, the wing is also the fuselage, an inlet for the engines and a pitch

control surface. Consequently, parametric trade studies with carpet plots are no longer

sufficient to handle resulting design trade - offs due to increased number of variables.

Hence, the need for multi - variate optimisation.

Optimisation is a methodology for design of complex engineering systems and subsystems

which coherently exploits the synergism of mutually interacting phenomenon[7]. In order

to formulate an optimisation scheme for this study, there is the need to develop a design

synthesis tool for conceptual design of the BWB.

1.2 Aim of the Research

The aim of this research was to develop a multi - variate design synthesis and optimisation

tool that enables a knowledgeable user to accurately and rapidly perform the conceptual

design synthesis as well as methodically explore the design space of the BWB commercial

passenger transport.

1.3 Objectives of the Research

The objectives of this research are:

1. To develop algorithms for the estimation of several variables within an aircraft de-

sign synthesis.

2. To incorporate packaging module early in the conceptual design process.

3. To create a multi-variate optimisation tool to rapidly perform the conceptual design

synthesis and analysis of the BWB commercial passenger aircraft.

4. To explore the design space of the BWB aircraft configuration.
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1.4 Structure of the Thesis

This thesis reviews evolving trends involving current state of the art methodologies and

techniques in the design of the BWB airplane in Chapter 2. Chapter 3 discusses the

methodologies and techniques developed for the design synthesis. This is followed by the

implementation and creation of the design tool in Chapter 4. Chapter 5 presents and

discusses some results obtained using the tool while Chapter 6 highlights major findings,

limitations and recommendations potential areas for future studies on the subject.





Chapter 2

Literature Review

2.1 Introduction

Interest in the design of the BWB has risen dramatically over the past few years following

the recognition of the huge potentials of the configuration over conventional fixed wing

aircraft. Consequently, there has been increased research activities to develop concepts,

design techniques and evolve technologies that will minimise the observed challenges and

facilitate the realisation of a BWB commercial passenger transport aircraft. However,

many of the findings have been documented in isolation because research evolves and has

often been conducted in parallel. Hence the need to carry out an exhaustive review of

the existing BWB research to identify existing gaps in knowledge.

The most prominent publications on the BWB airplane design are those by Liebeck [1]

and Martinez-Val et al.[8, 9]. Liebeck compiled Boeing researches on the BWB [1], while

Martinez-val et al.[8, 9] highlighted the prospects and challenges of a ’C’ and ’U’ types

flying wing airplanes. Despite these efforts, no comprehensive review of emerging trends

and concepts in BWB design has ever been undertaken. In this Chapter, relevant publi-

cations on the BWB is reviewed in order to identify state of the art concepts as well as

highlight challenges in BWB design. To this end, a brief history of the development of

the BWB is presented followed by discussions of multidisciplinary challenges, potentials

and proposed solutions to BWB design.In addition, the applications of multi - variate

optimisation in BWB design shall be examined.

7
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It is imperative to state that efforts have been made to separate the challenges and benefits

by disciplines. However, due to the strong inter-disciplinary couplings in BWB airplane

configuration, occasional disciplinary overlaps might be observed.

2.2 History of Tailless/Flying Wing Design

Recent resurgence in BWB research began in 1988 following Dennis Bushnell challenge

to academia and industry to develop innovative concepts for long-range passenger trans-

port [10]. However, the idea of a tailless flying wing airplane has been around for a long

time. The first recorded tailless flying wing aircraft was the D-8 aircraft designed by

John Dunne in 1911 [2, 11]. The D - 8, shown in Figure 2.1, is a tailless biplane with

swept wing and washout to prevent premature tip stall and improve pitch stability [11–13].

Figure 2.1: The D-8 Tailless Aircraft at the 1914 Farnborough Airshow [14].

In the years between 1924 and 1931 [11], Captain (Later a Professor) Hill designed a series

of tailless aircraft(Figure 2.2) known as the Hill’s Pterodactyl. These aircraft culminated

in the MK IV, the first tailless aircraft capable of looping and rolling manoeuvres [11].

The main features of the Pterodactyl series are its flight - controlled variable sweep, op-

erated to trim the aircraft at different loading conditions [11].

Convinced of the aerodynamic benefits of fewer non-lifting surfaces, Jack Northrop[12, 16]

established the Northrop’s Corporation in 1927 to explore the potentials of the flying wing

configurations. The Corporation developed a semi-flying wing aircraft in 1928 and the

N-1M pure flying wing in 1940 [12, 16]. The semi - flying wing aircraft shown in Figure

2.3 comes fitted with external control surfaces and curried outrigger twin booms [12, 16].
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Figure 2.2: Westland-Hill Pterodactyl V Aircraft with Fully Moving Wingtips[15].

Figure 2.3: The Northrop Semi -flying Wing Aircraft (Source:Smithsonian NASA Museum).

The N-1M ’pure’ flying wing aircraft, shown in Figure 2.4, incorporates ground -controlled

variable sweep, dihedral and control surfaces [12]. The aircraft can also change its centre

of gravity location and tip configuration while on the ground. Overall, the N-1M, with its

elevons and wing - tip drag rudders, performed creditably well and proved the possibility

of the flying wing concept. However, the engines hidden in the airfoil suffered from over-

heating while the drooped wing tips used for stability were found to be unnecessary[12].

Nonetheless, the performance was sufficient to convince the United States Air Force to

award Northrop Corporation the contract to assess the feasibility of a flying wing bomber

[12].

The N-9M (Figure 2.5) was developed as a scaled mock - up of the proposed bomber.

The N-9M is an 18 m span twin - engine aircraft with a take - off weight of 6326 kg [17].

This is approximately one - third the size of the subsequently developed long range heavy

bombers, the XB - 35 and YB - 35. The XB - 35 aircraft (Figure 2.6), which came into

service in 1946, is powered by four piston engines, each driving two contra - rotating four

- blade pusher propeller through a long shaft and gear box [17]. The YB - 35, on the

other hand, is powered by jet engines. Both the XB - 35 and the YB -35 were unstable
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Figure 2.4: The Northrop N-1M Aircraft (Source:Smithsonian NASA Museum).

Figure 2.5: The Northrop Northrop N-9M Aircraft(Source:Smithsonian NASA Museum).

with poor handling qualities [18]. Both design suffered from engine/gearbox problems.

Despite these defects, they provided practical knowledge on the design of flying wing

bombers which later proved useful in the development of the YB - 49 in 1947 and the

famous Northrop - Grumman B2 Spirit in 1981 [11, 12]. The success of the Northrop -

Grunman B2 - Spirit shown in Figure 2.7 spurred renewed interest in the BWB configu-

ration [19].

Other notable proponents of the flying wing concept were the Horten brothers. The

Horten brothers, Walter and Reiman Horten [12], worked on the flying wing concept

from 1931 until 1944. In the process they developed the Ho - series flying wing aircraft.

These aircraft incorporates inboard flaps, elevons and tip-mounted drag rudders [12]. The

Horten brothers are credited with the development of the world’s first turbojet - powered

flying wing aircraft, the Ho - IX [11, 12] shown in Figure 2.8.

The BWB aircraft, as it is known today, was conceptualised in 1988 by Robert Liebeck

of the then McDonnell Douglas Corporation (MDC) now Boeing Company [12, 16, 20].

The aircraft provides improved aerodynamic efficiency by merging the fuselage and wing

sections into a single lifting surface [12, 16, 20]. Subsequently, in 1997, the BWB con-
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Figure 2.6: Northrop XB - 35 Piston - engined Long - range Bomber
(Source: Virtual Aircraft Museum).

Figure 2.7: ’B2-Spirit’ Stealth Bomber (Source: Xairforces Military Aviation Society).

figuration was adopted in the design of a 17 ft span, radio - controlled model aircraft,

the BWB - 17 (Figure 2.9), by a combined team of researchers from MDC, NASA and

Stanford University.

Following the success of the BW - 17, NASA further explored the possibility of applying
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Figure 2.8: Turbojet Powered Ho-229 Flying Wing Aircraft(Source:Military Factory).

Figure 2.9: BW - 17 Radio Controlled Model Aircraft(Source:Stanford University).

the BWB tailless aircraft concept to commercial passenger transport. This led to the

birth of the BWB - 450 in 2003 [1]. The BWB - 450 (Figure 2.10), is a 450 passenger ca-

pacity commercial transport airplane incorporating an ultra - efficient engine technology

with Boundary Layer Ingestion (BLI) inlets and Active Flow Control [1]. The BWB - 450

design heralded several NASA programs that studied the feasibility of using the BWB
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concept for commercial passenger transport. The 450 - passenger capacity was selected

because it permits the validation of developed design tools and methods with the A380

conventional tube and wing aircraft [1].

Figure 2.10: BWB - 450 Commercial Passenger Transport Aircraft(Source:NASA).

The Quiet Green Transport study is a NASA Revolutionary Aerospace Systems Program

to assess potential technologies that could be implemented on the BWB commercial trans-

port in order to minimise noise and pollutant emissions [21]. The Quiet Green Transport

Aircraft is derived by integrating distributed liquid hydrogen fuel cell propulsion system

unto a BWB - 450 geometry [21]. This radically advanced propulsion system eradicates

toxic emissions and the formation of consistent contrails. In addition, the concept reduces

the areas exposed to noise level of 55 dBA or above, during take off and landing, by 10%

[21]. This minimises the noise available at FAA certification points by about 8 - 22 dB

Effective Perceived Noise Level (EPNL) [21]. However, a drastic technological advance-

ment would be required to realise the overall objectives of the Quiet Green Concept. This

is because the concept relies on the hydrogen - based fuel cell which is still much heavier

than conventional aircraft engines [21].

The anticipated benefits of the BWB concept spurred several organisations into researches

on various aspects of the aircraft. Notable among the researches is the European Union

(EU) 5 - tiered project to develop innovative, efficient, long - range, large - capacity,

passenger transport and cargo aircraft [22]. The project comprised 3 wholly funded EU



14 Literature Review

framework Programs and a program jointly funded by the EU and the United States

(Figure 2.11).

Figure 2.11: European Union Sponsored BWB - Related Research Programs [22].

The 3 EU Framework Programs are the 5th, 6th and 7th EU Framework Programs respec-

tively. The 5th EU Framework Program consists of the Multidisciplinary Optimisation

of a Blended Wing Body (MOB) and the Very Efficient Large Aircraft (VELA) projects.

The MOB project is a 3 year research project carried out in distributed environments

across 4 European countries [23]. The project involved 15 partners [23, 24]. This includes

3 aerospace companies, 4 research institutes and 8 universities [23, 24]. The aim of the

MOB project was to develop tools and methods that will enable distributed design teams

to create innovative and complex aeronautical products using either commercial off the

shelf methods or proprietary codes [23, 24]. Using, a modified Cranfield designed ”BW

- 98” airframe (Figure 2.12) as the baseline, the MOB project created a Computational

Design Engine (CDE) for the multidisciplinary design and optimisation of a BWB [25].

The CDE integrates multi - level disciplinary tools with multi - disciplinary optimisation

methodologies to determine the optimal range at constant maximum take off weight [25].

The VELA project was set up to develop the necessary skills set, capabilities and method-

ologies appropriate to the design and optimisation of Very Efficient Large Aircraft con-

cepts. The VELA project, which ran from 2002 - 2005, investigated 2 extremes of a BWB

configuration, in terms of the placement and blending of the outboard wing. This gave

rise to the 2 baseline concepts VELA 1 and VELA 2 shown in Figures 2.13 and 2.14

respectively.
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Figure 2.12: Cranfield BW - 98 BWB Study [2].

Figure 2.13: VELA 1 Baseline Concept (Source:DLR, Martin Hepperle 2005).

From the 2 baseline concepts, the VELA 3 configuration shown in Figure 2.15 was de-

rived. The VELA 3 is a 750 passenger capacity, 3 class cabin arrangement, very long -

range aircraft powered by 4 under the wing mounted engines. The VELA 3 is designed to

cruise at Mach 0.85 to a range of 7200 nm. The VELA 3 aircraft offers improved stability

and control issues together with a 4− 8% better L/D and a 10% savings in the maximum

take off weight [22].
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Figure 2.14: VELA 2 Baseline Concept(Source:DLR, Martin Hepperle 2005).

Figure 2.15: 3 - view Diagram of the European Commission Very Efficient Large Aircraft
(Source:DLR, Martin Hepperle 2005).

The 6th Framework Programme also known as the New Aircraft Concept Research

(NACRE) began in 2005 and was completed in 2009. The NACRE Integrated Project

was undertaken to integrate and validate technologies that enable new aircraft concepts

to be assessed [26]. The Project, which was led by Airbus, involved 36 partners from 13

European countries [22, 26]. The Project advanced the design of BWB aircraft through

its Passenger - driven Flying Wing (PFW) configuration. The NACRE - PFW version 1

(Figure 2.16) was derived by modifying the centre - body airfoil and applying outer wing

twist to the VELA 3 aircraft. This gives the NACRE - PFW1 a satisfactory aerodynam-
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ics, stability and control characteristics [26].

Figure 2.16: Surface Model of the NACRE PFW - 1 Aircraft [26].

Similarly, NACRE PFW2 shown in Figure 2.17 is derived from NACRE - PFW1 by

changing the location of the engines, kinematics and position of the main landing gear.

The engines were moved from under - to over - the - wing to minimise forward radiated

noise. The kinematics of the main landing gears which retracted sideways were made to

retract longitudinally and positioned beside instead of behind the cargo bay. Adjustments

were also made to the aisle widths, position, alignment and shapes in order to reduce the

evacuation time from 90 seconds to 84 seconds [26]. Further to this, the plan - form area

was reduced from 2050 m2 to 2000m2 resulting in increased aspect ratio, reduced wetted

surface area and an increase in the length of the centre - body. This lowers structural

mass and improved aircraft performance. Split aileron was also introduced to enhance

the handling quality as well as the stability and control of the NACRE - PFW 2. These

modifications, however, created compressibility challenges with a destabilizing effect on

the zero lift pitching moment, limited lift on the centre body due to cabin floor slope and

high induced drag resulting from loaded outboard lift distribution [26].

Cambridge and MIT investigated the feasibility of an ultra low noise, fuel efficient BWB,

dubbed the Silent Aircraft Initiative((SAI)). The SAI was an ambitious 3 - year project

by a team of 35 researchers, beginning in 2002. The research was aimed to design an

airplane that is radically quieter than current passenger transport aircraft. The result

of the SAI is the SAX - 40 BWB aircraft unveiled in September, 2006. The SAX - 40

BWB aircraft, shown in Figure 2.18, integrates novel and advanced noise minimising air-
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Figure 2.17: Surface Model of the NACRE PFW - 2 Aircraft [26].

craft systems with aerodynamic shaping of the airframe centre-body [27]. Implemented

systems include embedded boundary layer ingesting distributed propulsion system, de-

ployable drooped leading edge and faired under-carriage. Others are the combined use of

thrust vectoring and elevons for control in low speed approach. These features increased

the induced drag through in - efficient lift distribution thus providing the needed drag

for a quiet approach [27]. Additionally, The SAX - 40 aircraft incorporates variable area

exhaust nozzles to tune the engine for optimum cruise efficiency [28].

According to Hileman [27], a 215 passengers capacity SAX - 40 with a design range of

5000 nm and cruise speed of Mach 0.8 generates a far - field noise of 63 dBA [27]. This

is 25 dB lower than the noise produced by the Boeing 777 - 200 aircraft. Additionally,

since most of the features responsible for noise reduction also lower profile drag, the SAX

- 40 aircraft offers a 25% improved fuel consumption. This is achieved through improved

passenger miles per gallon, from 101 passenger - miles per gallon on the Boeing 777 to

124 passenger - miles per gallon [29] on the SAX - 40. According to Lee et al. [29], these

figures were derived with assumed passenger weight of about 110 kg/passenger for the

SAX and 100 kg/passenger for existing aircraft. Also, the specific fuel consumption of

0.49 Ib/Ib/hr used in the fuel burn prediction includes the effect of BLI [27]. Notable

challenges limiting the realisation of the SAX - 40 design, which is scheduled for entry

into service in 2030, are the manufacturing and scaling of the unique body shape which

changes over the entire fuselage, inlet distortion noise and forced vibration issues due to

non - uniform inlet flow [27].

The 7th Framework Programme focuses on the development of innovative active con-

trol concepts for advanced 2020 aircraft configurations. The project called Active Flight
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Figure 2.18: Cambridge MIT Silent Aircraft Concept(Source:The Cambridge-MIT Insti-
tute).

Control for Flexible Aircraft 2020 (ACFA2020) involves 13 partners from 11 European

countries [30]. The mandate for ACFA2020, which is derived from the strategic goal of

the Advisory Council for Aeronautics Research in Europe (ACARE), is the design of an

innovative ultra - efficient 450 passenger aircraft together with a robust, adaptive multi

- channel control architecture suitable for the aircraft. The result of the 7th Framework

Programme is a 450 capacity BWB aircraft with highly swept back centre - body and 2

podded turbofan engines as shown in Figure 2.19.

Figure 2.19: The ACFA BWB Configuration [22].

The TsAGI project was undertaken by Russia, in conjunction with Airbus and Boeing,

to compare 4 new large aircraft configurations based on the VELA configuration. This
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was necessary in order to asses the most critical issue affecting the design of the BWB.

The study identified 3 candidate concepts for analysis. These are the Integrated Wing

Body (IWB), lifting body configuration and a pure flying wing. With a 750 passenger

capacity, a range of 13700 km and a cruise M0.85, these concepts were compared with a

similarly designed conventional configuration in terms of the aerodynamics, weight and

fuel efficiency. The results found the IWB as the most optimal configuration with a L/D

ratio of 25 at a Mach 0.85. Additionally, it identified airworthiness requirement for emer-

gency egress as the most critical design issue [31].

Figure 2.20: 3 - view Diagram of the Russian TsAGI Integrated Wing Body Aircraft.

Following on from these projects, Cranfield University Aerospace Vehicle Design Group,

in 2011 conducted a preliminary design of a state of the art BWB ultra - high capacity

configuration with BLI distributed propulsion system consisting of 2 turbo - shaft engines

driving 14 electric fans [32] as shown in Figure 2.21. The foregoing studies highlighted

the enormous potentials and advantages of the BWB but also exposed several design

challenges which need to be addressed in order to realise the potentials of the BWB.
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Figure 2.21: Cranfield BWB Design showing the BLI Distributed Propulsion System.
(Source:Cranfield Aircraft Design Group).

2.3 Potentials and Challenges of the BWB Design

The BWB aircraft by virtue of its unique configuration and potential benefits is well suited

to the role of environmentally - friendly, long - range, high - capacity airliner. However,

issues of control and stability, cabin pressurisation and aircraft handling qualities amongst

others need to be addressed. Consequently, it was necessary to review the potentials and

challenges of the BWB airplane configuration with a view to identifying critical design

issues which needs to be addressed. To aid understanding, these issues have been organised

by disciplines.

2.3.1 Aerodynamics

The aerodynamic benefits of the BWB are derived from the integration of its ’fuselage’

and wings to obtain low wetted surface area to volume ratio and reduced interference

drag. This lowers total drag and provides higher L/D ratio compared to conventional

configuration [33–35]. However, the BWB fuselage has a low aspect ratio. This results in

a rapid increase in induced drag with lift coefficient thus generating a very low optimum

lift coefficient [22]. Kozek et al. [22] compared the L/D ratio and optimum lift coefficient

of a BWB and a Conventional aircraft with Carry - through Wing Box (CWB)(Figure

2.22). The study revealed that a BWB with 470 passengers has a L/D ratio of 24.2 and

an optimum lift coefficient of 0.25 while the CWB with 464 passengers has a L/D ratio of

21.7 and an optimum lift coefficient of 0.47 [22]. The higher optimum coefficient obtained

for the conventional aircraft is due to its high aspect ratio leading to a reduced induced

drag [22].

Similarly, Liebeck [1], compared the effect of reduced wetted surface area on the lift co-

efficient of an 800 - passenger BWB and a conventional tube and wing aircraft of same

capacity. This phenomenon was investigated by transforming a 650 square meter ball into

a cylinder and a lifting body and then sizing the streamlined options to accommodate

800 passengers (Figure 2.23). Subsequently, following the integration of the wing, empen-
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Figure 2.22: Sketch of the CWB (left) and the BWB (right).

nage and engines, Liebeck [1] showed that a conventional aircraft with 4 under the wing

engines has a wetted surface area of 4100 square meters while the BWB with trailing

edge BLI engines has only 2800 square meters for same passenger capacity. The 33%

reduction in wetted surface area, lowers the BWB profile drag thus increasing the L/D

by 10− 15% when compared to a conventional configuration. This result is supported in

separate studies by Statzer et al.[12] and Moreno et al. [36].

Stazer et al. [12] compared the minimum drag coefficients of the XB - 35 flying wing with

a wingspan of 52 m and the C - 5 conventionally configured military transport aircraft

with a a span of 68 m. The result indicate a 47% decrease in the zero lift drag from

0.023 for the conventionally configured C-5 aircraft to 0.012 for the XB - 35 flying wing

Bomber. Similarly, Moreno et al. [36] investigated the aerodynamic characteristics of an

800 passenger BWB aircraft and its conventional counterpart at Mach 0.82. The BWB

model gave anML/D of 17.6 compared to 15.6 for a conventional configuration[36]. How-

ever, due to the strong coupling between disciplines on the BWB, a careful aerodynamic

shaping of the BWB centre - body would be required in order to obtain the aerodynamics

gains and satisfy stability and cruise deck angle requirements [1, 27, 37–39].

The requirement for the BWB cruise deck angle demands the use of positive aft - cam-

bered centre - body airfoil in order to obtain the less than 3 degrees deck angle required
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Figure 2.23: Transformation of a 650m2 Ball into a Conventional and BWB Aircraft.

in cruise [1, 27, 38–41]. Positive aft - cambered airfoil however generates a nose down

pitching moment which increases the BWB trim requirement [1, 39]. Minimal aft-camber

on the other hand causes the aerodynamic centre of pressure to coincide with the air-

craft centre of gravity, thereby minimising nose-down pitching moment and enhancing

the BWB pitch - trim and static stability [1, 27, 38, 39, 41].

Minimal aft - camber airfoil also enhances external pre-compression of upstream flow

[27, 39] in BLI engine arrangement. This provides uniform flow at the engine inlet hence

reducing the aerodynamic challenge of integrating an embedded BLI propulsion system

[1, 27, 39]. Consequently, in order to satisfy the cruise deck angle, trim and engine-out

control requirements and still retain the aerodynamic gains of the BWB, a multi - variate

optimisation approach would be required to ensure conflicting constraints are satisfied.

An illustration of the aerodynamic shaping of a BWB geometry for SAX - 40 is given

in Figure 2.24. Unshaded area in the figure use airfoil interpolated from neighbouring

sections.

The BWB cross - sectional area, unlike the conventional MD - 11 aircraft, is uniformly

distributed along its span like a Sears - Haack body of minimum wave drag [1, 42] as

shown in Figure 2.25. According to Equation 2.1, wave drag varies proportionally to

the second derivative of the cross - sectional area. This suggests that a smooth, linear
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Figure 2.24: Aerodynamic Shaping of the SAX - 40 Aircraft [27].

variation of the cross - sectional area provides the least wave drag [42, 43]. Consequently,

since the BWB geometry is smoothly defined with uniform area distribution across either

sides of the centre-body, the BWB configuration is well suited for high speed flight. This

is because high Mach number can be obtained with the BWB without the added cost of

waist tailoring [1, 42, 43]. Nevertheless, higher Mach numbers increase installed engine

specific fuel consumption thus decreasing payload weight fraction [42]. This influenced

Liebeck [42] to investigate the effect of increasing Mach number on the aerodynamic effi-

ciency, ML/D, of a BWB. The study shows that M0.9 provides maximum aerodynamic

efficiency, ML/D. However, assessing the economic value of speed, in terms of MP/D,

where P is the payload weight, the study finds that maximum payload efficiency is ob-

tained at Mach 0.85. These phenomenon is illustrated in Figure 2.26.

Figure 2.25: Cross-sectional Area Distribution of a Sears-Haack Body [1, 42]
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S is the reference area.

Figure 2.26: Variation of the BWB Plan - form, ML/D and MP/D with Mach Number
[1, 42].

The BWB generates a near perfect elliptic span-wise lift distribution by combining re-

flexed centre-body airfoil for pitch-trim stability with outboard supercritical airfoils in

wash-out arrangement [1]. The supercritical airfoil moves the outboard wing loading be-

hind the aircraft centre of gravity counteracting the lift produced in the forward part of

the centerbody [39]. Nevertheless, the outboard wing loading creates an excessive shock

wave which increases the wave drag thus degrading aerodynamic efficiency [34]. Addition-

ally, outboard wing loading increases bending moment and hence the required structural

weight [34].

Liebeck [1] suggests the use of a moderately loaded outboard wing to optimise wetted

area and strength of the shock wave, while Qin et al.[34] propose inboard shifting of the

outboard wing loading. Shifting the outboard wing loading inboard alters the spanload

distribution and shifts the aerodynamic centre closer to the centre of gravity [34]. This



26 Literature Review

improves trim requirements and decreases the wing bending moment thus reducing the re-

quired structural weight [34]. Hileman et al.[39] on the other hand advocate for the use of

positive leading edge cambered airfoil with minimal aft-loading at the BWB centre-body

to provide pitch trim and reduce flow Mach number at the engine inlet thus increasing

the efficiency of BLI; minimal leading edge camber at the intersection of the centre-body

and middle wing to minimise loading at that junction; symmetric profile at the winglets

to minimise wave drag for winglets and supercritical airfoil with washout at the outboard

wing.

According to Green et al. [44], the maximum L/D ratio of an aircraft, in subsonic cruise

condition, is obtained from the ratio of the span and the square root of the product of

induced drag factor and the wetted surface area as defined in Equation 2.2. This provides

that the elliptic lift distribution provides the best L/D in cruise. However, it had earlier

been established that the BWB is well suited for operation in the transonic cruise regime.

Consequently,it is probable that the elliptic lift distribution which provides the least in-

duced drag factor in subsonic cruise might be less attractive in transonic flight condition.

This is because wave drag rather than induced drag is the main challenge in this regime.

In view of this, Qin et al. [34] conducted a study to determine the most efficient span -

wise lift distribution for the outer - wing of the BWB in transonic cruise condition.

(
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This is derived in level flight condition and with the value of dynamic pressure at maximum

L/D given by Equation 2.3.
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π × b2 × Sd0
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Where:

P = is static pressure in N/m2.

M = is the Mach number.

b = is the span in m.

W = is the maximum take-off weight of the aircraft in N .

AR is the Aspect Ratio.

Cd0 is the zero lift drag coefficient.

k = is the vortex or induced drag factor.

Sd0 = is the reference area at zero lift drag in m2.
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Figure 2.27: Investigated Span - wise Lift Distribution [34]

Adopting the EU MOB geometry with a span of 77.5 m as the baseline, the twist and

camber distributions are varied at the centre - body, inner and outer wings to obtain

the elliptic, triangular and elliptic/triangular span - wise lift distribution shown in Fig-

ure 2.27. Then using continuous and adjoint optimisation methods and optimising for

minimum total drag at M0.85, Qin et al.[34] find that elliptic lift distribution generates

strong shock wave at the outer wing due to high local lift. This results in wave drag which

diminishes aerodynamic performance. The averaged elliptic - triangular lift distribution,

on the other hand, offers the least total drag and minimum trim requirement resulting

in a 16% increase in L/D ratio compared to the baseline [34]. In terms of structural

consideration, high outer wing loading increases bending moment thus requiring stronger

and potentially heavier structures [1, 34]. Contrastingly, the triangular lift distribution

has the least bending moment and hence the least structural weight [34].

In a related development, Siouris and Qin [45] investigated the aerodynamic effect of

sweep on a BWB with constant twist and airfoil sections. The study varied the leading

edge sweep angle of the outer wing leading from - 40◦ (forward sweep) to 55◦ (backward

sweep). The geometry employed for this analysis is an optimised BWB with an aft sweep

angle of 38.6◦, span of 76m, an aspect ratio of 6.98, a mean chord length of 10m, a centre

of gravity from trailing edge of 18m and a trapezoidal area of 828m2 [45]. Analysis was

carried out in cruise condition at an altitude of 10000m and a cruising speed of Mach

0.85 [45]. The study finds that forward sweep reduces tip stall but increases wave drag

resulting in low L/D [45]. Additionally, forward sweep increases nose - up pitching mo-

ment leading to longitudinal instability [45].

Aft sweep increases tip stall but minimises wave drag. Additionally, aft sweep increases

nose - down pitching moment leading to enhanced longitudinal stability [45]. Varying aft -
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sweep angle between 20 and 40◦ increases L/D ratio by 80% at the optimised sweep angle

of 38.6◦ (Figure 2.28) due to a substantial reduction in wave drag [45]. Further increases

in aft-sweep angle, however, decreases L/D ratio and increases structural weight due to

increased bending moment and structural stressing [45]. Additionally, a large aft-sweep

angle displaces aircraft weight and centre of gravity creating adverse longitudinal moment

and correspondingly increased trim drag [45].

Figure 2.28: Effect of Varying Outer Wing Sweep Angle on Aerodynamic Characteristics
of a BWB[45]

The BWB tends to have poor departure characteristics due to its lower maximum lift

coefficient resulting from the absence of/or limited number of high lift devices [4]. Slats

and slots could be used to improve the low speed maximum lift coefficient and to provide

the desired angle of attack [4, 39]. However, stall recovery might be difficult because of

the hysteresis characteristics of slats and slots [4]. Consequently, Liebeck advocates the

use of outboard leading edge slats for low - speed stall protection [1]. Preferably, the

drooped outboard leading edge slats is proposed to aid noise reduction [27, 46].

In view of the strong disciplinary interaction on the BWB, different combinations of geo-

metric parameters produce desirable and undesirable characteristics in varying measures.

Therefore, in order to obtain a BWB aircraft with specific desired performance, there

is the need for a multidisciplinary study involving structural weight, aerodynamics and

flight control and stability as well as performance models. This is akin to developing a

design synthesis methodology to explore the design space of the BWB.
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2.3.2 Flight Control and Stability

The tailless nature of BWB makes it better suited to exploit revolutionary control con-

cepts like vectored thrust and active flight control [9]. Additionally, strong coupling of

inertial forces, aerodynamic loads, elastic deformations and flight control system responses

on the BWB also affect the performance and stability of the airplane [47]. For instance,

mounting the engine over the wing near the trailing edge centralizes the thrust axis and

brings the thrust vector closer to centre of gravity thereby producing less nose - down

pitching moment and engine out yaw [48, 49]. This alleviates the BWB trim problems

enabling the use of smaller control surfaces and reduced power demands [48, 49].

Trailing edge devices are not used as flaps because the BWB has no tail to trim out the

resulting pitching moment [1, 13, 38]. Consequently, the maximum lift coefficient of a

BWB is lower than that of a conventional configuration. Furthermore, due to the large

reference area provided by the absence of non - lifted surface and the lift generating centre

- body of the BWB, the configuration shows a lower wing loading compared to conven-

tional configuration [1, 9].

Low wing loading reduces take - off and landing speeds thus decreasing the required field

lengths. Also, it enables superior climb performance due to a higher rate of climb pro-

duced by the airplane. The increased rate of climb is derived from the much reduced

airspeed required to generate the additional lift needed to increase altitude with a low

wing loading. Furthermore, low wing loading enhances sustained turn performance. This

because the aircraft is able to generate more lift for a given quantity of engine thrust

compared to a conventional tube and wing aircraft. However, due to low wing loading,

the BWB will produce maximum lift coefficient at a relatively higher angle of attack than

a conventional aircraft. This leads to a high approach flight path. The attendant flight

path attitude coupled with the higher wing surface area increases the sensitivity of the

BWB to gust loads. This further increases the local angle of attack to near stall condi-

tions, thereby decreasing control surface effectiveness [13, 41].

The BWB pitch trim requirement can be reduced using a reflexed centre - body airfoil be-

cause they generate zero pitching moment about the aerodynamic centre [27, 38, 39, 41].

However, a reflexed airfoil requires large twist which reduces the effective lifting area thus

degrading cruise performance [27, 37–39, 50]. Additionally, a large twist entails large con-

trol surfaces and hence high control power to achieve rotation during take-off [27, 38, 39].

Valiyff [37] recommends the use of all-moving wing - tips to optimise lift distribution when

the use of active controls is not viable.
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The BWB has low pitch and yaw control authority due to its short moment arm [1, 51, 52]

(Figure 2.29). Hence, multiple, rapidly moving control surfaces are required to provide

sufficient control force for longitudinal and lateral control [1, 27, 35, 39]. Large down -

force generated by negative elevon deflection however creates substantial loss in lift caus-

ing the BWB to first plunge before pitching to the desired angle of attack [35, 53]. This

degrades flight path control especially during take-off rotation and landing flare. Further-

more, excessive power is required to actuate large multi-functional control surfaces with

high hinge moments [1]. This feature of the BWB increases the challenge of improving

lateral and longitudinal stability.

Figure 2.29: Comparison of Moment Arms and Pitch Control Effectiveness with Gears on
Ground and In-flight Between a Conventional Aircraft and a BWB [35].

Several concepts have been applied to improve the stability and control of the BWB.

These include thrust vectoring, aerodynamic shaping of the centre-body combined with

advanced airframe design as well as the intelligent combination of elevons and belly flaps.

Thrust vectoring generates the same pitching moment as a 10◦ elevon deflection [9]. How-

ever, while elevons unload the outer wings causing an increase in angle of attack, thrust

vectoring will maintain the cruise deck angle below 3 ◦ [27, 39]. Nevertheless, thrust

vectoring adds extra weight and complexity to the design [27, 39] as well as reduce the

net axial thrust [13]. Additionally, thrust vectoring increases specific fuel consumption.

Liebeck [1] proposes the use of elevons as primary pitch and roll control device while

Hileman et al.[27] suggest using thrust vectoring at take - off climb-out and combined

thrust vectoring and elevon deflection for take - off rotation.

Thrust vectoring is preferred at take - off climb - out because it improves climb - out

performance and minimises the loss in L/D ratio associated with elevons deflection [27].
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Nevertheless, by combining cambering and aerodynamic shaping of the BWB with elevons

deflection and thrust vectoring, pitch trim and static stability could be enhanced without

using a reflexed airfoil [27]. Other control device that could be used for pitch control is

the belly flaps.

Staelens et al. [35, 53] studied the effect of belly flaps on lift coefficient and pitching

moment of the BWB. The study shows that using belly flaps near the CG of the BWB

(Figure 2.30) increases the static pressure ahead of the CG and decreases it aft, producing

a pitch-up moment that helps to rotate the BWB during take - off and landing [35, 53].

Staelens finds that belly flap deployed to 90 ◦ increases the lift - off lift coefficient and

enhances pitching moment by 35% and 10% respectively with only 10% increase in lift -

off drag and a negligible loss in lift [35, 53]. Trimming the generated pitching moment

could be a major issue though.

Figure 2.30: Pressure Fields Induced by Belly Flap on a BWB [35].

The BWB is subject to high yaw rates and auto - rotation tumble [4, 51, 54]. This calls

for an effective means of providing sufficient yaw control and stability without a vertical

tail [54]. Wildscheck et al. [54] demonstrated that simple winglet flaps are insufficient

for yaw control especially in the one engine in - operative case because of their limited

height and total winglet area. Thus, they recommend the use of crocodile flaps as effective

yaw stabilization device [54]. This view is shared by Liebeck [1] who proposes the use of

winglet rudders as primary directional stability and control surface while split outboard

elevons are deployed in the low-speed engine - out condition.
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2.3.3 Aero-structures

The BWB provides efficient payload distribution and permits over the wing engine place-

ment. Additionally, the BWB centre - body generates lift due to its low aspect ratio

thereby reducing the wing load. These features minimise wing bending moment and

shear force, thus creating favourable inertia relief (Figure 2.31) and hence reduced struc-

tural weight[16, 40, 55–58]. Additionally, by blending the fuselage and outer wings, lower

wetted surface area is obtained. This translates to a higher wetted aspect ratio and hence

a structurally more efficient wing [40].

The box - shape nature of the BWB centre - body presents a structural design challenge.

Because passengers are accommodated within the centre-body, the cabin is subjected to

both pressure and span - wise bending loads [55, 56, 59–61]. The combined pressure

and bending loads create very high non - linear stresses as shown in Figure 2.32. The

non-linear stress arises because the BWB resists pressure loads by bending stresses un-

like the uniform stretching or hoop stress that occurs in the cylindrical pressure vessels

used in conventional aircraft. Under extreme manoeuvres or gusts, these non - linear

stresses produce severe deformations and increased stress levels that are difficult to pre-

dict [8, 55, 56, 58–60].

Several structural concepts have been proposed to handle the high, non - linear stresses

on BWB cabins. Among these concepts are the separate pressure shell (Also known as

the double - skin vaulted shell) and the integrated skin and shell concepts (sometimes

referred to as the thick flat sandwich shell) [1, 8].

The separate pressure shell concept shown in Figure 2.33 consists of a thin arched pres-

sure vessel above and below each cabin creating an inner and outer skins together with

inter-cabin walls [1]. The inner skin carries the pressure load in tension, the cabin walls

support the weight of the structure above the cabin bay while the outer panel takes the

bending loads and shear force due to aerodynamic loads acting on the aircraft [1, 2, 8].

The use of separate pressure vessel permits seamless integration of laminar flow control

thus decreasing skin friction drag [8, 9, 62]. Additionally, separate pressure shell prevents

fatigue crack propagation and increases bulking rigidity [8, 9]. Furthermore, separate

pressure vessels would guarantee a lighter structure with efficient load diffusion and fail-

safe characteristics [8, 9].

The major defect of the separate pressure shell, is that it requires the outer skin to be

sized to carry pressure load should there be a rupture of the inner skin thereby incurring
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Figure 2.31: Comparison of the Aerodynamic and Inertia Load Distribution Between a Con-
ventional Aircraft Configuration and the BWB [1].

extra weight [1]. Martinez-Val et al.[8] however argued that there would be no need to

over-size the outer skin if the inner skin is appropriately sized, since pressure loss from

rupture would then be minimal. Nevertheless, Bradley [63] suggests eliminating the dou-

ble skin concept and sufficiently strengthening the outer skin to cope with pressure loads

thus eradicating rupture concerns.

Bradley’s design [63] matches Liebeck’s second cabin concept[1] shown in Figure 2.34. In
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Figure 2.32: High Bending Stresses Resulting from the Effect of Pressure on the Box-like
Shape of the BWB [61].

Figure 2.33: Liebeck’s Separate Pressure Shell Concept [1]

Liebeck’s integrated skin and shell design[1], pressure, bending and torque loads are taken

by the thick sandwich structures at the top and bottom of the cabin [1]. The integrated

skin and shell concept is robust and does not yield additional design demands in case of

rupture [1, 63]. However, it is susceptible to non-linear stresses from the coupling of pres-

sure and bending loads. This adds structural weight and increases maintenance demands

[8, 61].

NASA developed the Multi Bubble Fuselage (MBF) shown in Figure 2.35. The MBF

comprises 2 or more cylindrical fuselages sharing inter - cabin walls such that the inner

membrane stresses counteract inter-cabin walls tensile stresses while the outer shell takes

bending loads [61]. Additionally, the inter - cabin walls serves as the wing rib of the inner

wing [55, 56, 59, 61]. However, the MBF is difficult to manufacture [56, 59, 64], hence

the introduction of the Y - braced boxed fuselage [61].
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Figure 2.34: Liebeck’s Integrated Skin and Shell Concept [1]

Figure 2.35: Nodal Von - Mises Stress Analysis of the NASA Multi-bubble BWB Fuselage
Structure Concept [1]

The Y - brace shown in Figure 2.36 is designed with special Resin Film Injected (RFI)

carbon composite with foam core. The Y - brace fuselage concept is easier to manufacture

than the MBF [61]. Merits of the Y-brace include decreasing bending at the roof joints

and cabin walls [61]. Additionally, the Y - brace increases the flexural rigidity while the

RFI skin provides higher bending stiffness with minimal weight gain [61]. The Y - braced

boxed fuselage is suitable for passenger and commercial cargo but cannot carry bulk loads

[56].

Cho et al. [56, 59] investigated several structural concepts for the centre body of a BWB
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Figure 2.36: Vaulted Shell Y - braced BWB Fuselage Structural Concept [61]

military cargo aircraft. The study finds that the oval fuselage [56, 59] makes good use of

available space to ensure efficient cabin design. However, there is an increase in bending

stress and required structural weight due to decrease in curvature with growing oval ra-

dius [56, 59]. This led to the invention of the Columned Multi Bubble Fuselage (CMBF).

The CMBF shown in Figure 2.37 is obtained by replacing inter - cabin walls of a MBF

with chord - wise equidistant columns [55, 56, 59].

Figure 2.37: CMBF Subjected to Pressure Loads and its Application to Passenger Transport
[55]

The CMBF is subjected to chord - wise bending stress at the structural discontinuity of
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the cylindrical panels due to the absence of the inter - cabin walls [55, 56, 59]. However,

by incorporating chord - wise and span - wise curvature to the CMBF, membrane stress

offsets the tensile stress of the columns thus decreasing the stress level [59]. Consequently,

the CMBF shows a 50% more deformation to combined pressure and bending loads com-

pared to the MBF [59].

The severe CMBF deformation to combined pressure and bending loads influenced Cho

et al.[59] to create a BWB fuselage structure with separate inner skin and outer panel

to decouple the loads and provide buckling stability. The space between the inner and

outer walls was also filled with ambient pressure to insulate the outer walls from pressure

loads. This ensures the inner skin has sufficient stiffness to withstand cabin pressure

loads [55]. The CMBF resists pressure loads resulting from membrane stress of the inner

skin, while the bending load is taken by the outer walls [56]. This provides a lighter

solution and eliminates the complex non - linear stress behaviour experienced when the

skin is subjected to combined pressure and bending loads [19, 56, 59]. In addition, a carry

through structure is provided to ensure the aerodynamic efficiency of the outer panel is

not affected by the deformation of the inner membrane skin [55, 56].

Other structural consequences of the BWB concept are the issues of rotor burst and

structural fatigue. Over the wing distributed propulsion system increases the threat of

rotor burst due to proximity of engines to one another. Un - contained engine blade burst

could thus have severe impact on adjacent engines [49]. Similarly, frequent pressurisation

and de - pressurisation could lead to structural fatigue [49, 59]. In view of this, Liebeck

[1] recommends the use of composites for the centre-body structure due to its immunity

to fatigue and weight advantage.

2.3.4 Propulsion Airframe Integration

The engines on the BWB aircraft are often located over the wing, aft of the aircraft

centre-body. This arrangement helps to offset the weight of the payload, furnishing and

other systems thus ensuring a balanced airplane [65]. Over the wing mounting allows

higher by-pass ratio engines to be installed without the risk of violating ground clearance

limits [49, 66]. Furthermore, mounting jet engines above the wings takes advantage of the

Coanda effect to increase lift and improve short - field take - off and landing performance.

Over the wing engine placement also reduces the risk of foreign object damage as they

are less prone to sucking debris. However, over the wing engine mounting distorts lift

distribution creating poor cruise aerodynamics [49]. Nevertheless, the distortion could

be minimised through careful centre - body design to obtain a synergy between aero -
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structural and propulsion airframe integration.

Positioning the engine aft of the aircraft centre body moves the centre of gravity aft to

coincide with the centre of lift thereby minimising pitching moment and reducing trim

requirement [67]. Location of the engine aft of the centre - body also enhances laminar

flow thus reducing surface friction drag [19]. BLI is also more effective with aft - mounted

engines because boundary layer is fully developed in the aft region of the centre - body

[65]. Furthermore, aft engine mounting increases the range of options available for en-

gine installations [1]. The engine could be podded on pylon or embedded in a BLI or

Boundary Layer Diverter (BLD) arrangement [1]. However, podded installation creates

an unwanted nose - down thrust moment, increases weight and total wetted area thus

increasing drag [1, 66].

Embedded propulsion system, shown in Figure 2.38, enables better integration of the

propulsion system with the airframe minimising ram drag and decreasing the wetted

area. This improves cruise performance and lowers structural weight compared with a

podded system [46, 48, 49, 66, 68]. Additionally, embedded engines brings the thrust line

closer to the centre of gravity thereby reducing nose - down pitching moment [69]. This

also minimises trim problem together with control surface size and power requirements.

Also, embedded engines do not use pylons. This leads to a 20% decrease in weight com-

pared to podded engines [70].

Yang et al. [71] investigated the effect of embedding the inlet on the aerodynamic per-

formance of the BWB using CFD analysis. The study shows that embedding the inlet

improves flow separation at higher lift coefficient thereby increasing the maximum lift co-

efficient and stall angle [71]. However, embedded propulsion is prone to greater unsteady

forcing from inlet flow distortion thus increasing fan vibration which could lead to fan

blade and disk crack [48, 68, 69, 71]. The fans in an embedded engine arrangement must

therefore be designed to withstand inlet flow distortions and be compatible with a variable

exhaust. Furthermore, embedded propulsion involves complex aerodynamic design with

respect to surface integration. Embedded propulsion require an S - duct to guide the flow

into the engine. This creates extra frictional losses approaching the engine leading to a

reduction in pressure recovery [69].

A comparison of the pressure recovery (PR) of podded and embedded engines in cruise

condition indicates that podded engines have a PR of 0.995, while an embedded engine

with S - duct inlet has a PR of 0.95 [69]. According to Equation 2.4, a reduction in PR

decreases the thermal efficiency, ηth, thereby reducing the thrust from the engines. In
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Figure 2.38: Partially Embedded Propulsion System Showing Boundary Layer Ingestion [72]

view of the foregoing, embedded engines will produce less thrust compared to podded

engines.

The variation of ηth with inlet PR at 3 different ideal fan pressure pressure recovery

(FPR) is given in Figure 2.39. From the Figure 2.39, the effect of the reduced pressure

recovery of 0.95, due to inlet losses on a low pressure ratio fan, is an increase in Thrust

Specific Fuel Consumption (TSFC) by over 10% [69]. The variation of ηth with inlet PR

is obtained from Equation 2.4.

ηth =
FPR× PR(γht−1)/γht − 1

FPR(γht−1)/γht − 1
× ηf (2.4)

Where:

ηf is the fuel efficiency.

γht

BLI has lower ηth compared to the BLD. This is due to the decrease in the kinetic energy

of the flow entering the engine intake in a BLI. The reduction in kinetic energy leads to

further reduction in net thrust due to the additional inlet PR relative to the free stream

conditions. According to Hall [69], the PR for S - shaped inlet is 0.94 for BLI and 0.96 for

BLD. In view of this, the net thrust in a BLI engine is further reduced because of the need

to overcome the additional airframe drag resulting from boundary layer ingested into the

engine. However, propulsive efficiency is improved with BLI because of the reduction in

the jet velocity relative to flight speed.

BLD arrangement diverts the boundary layer flow coming from centre - body leading
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Figure 2.39: Effect of Inlet Pressure Recovery on Thermal Efficiency for Three Fan Pressure
Ratios [69]

edges away from engine intakes [66]. This differs from the BLI arrangement which pulls

boundary layer from the centre - body leading edge into the engine intakes thereby reduc-

ing ram drag and increasing thrust [65]. BLI decreases fuel burn and improves propulsive

efficiency [65, 66]. The distribution of a large number of small BLI engines along the trail-

ing edge to force sufficient boundary layer into engine intakes has also been advanced [68].

Distributed propulsion reduces engine - out over-sizing requirements and provides synergy

between aircraft aerodynamics, structures, controls and high lift devices [49, 73]. Addi-

tionally, distributed propulsion replaces separated trailing edge flow with exhaust jet thus

reducing induced drag and improving propulsive efficiency [10, 49, 74]. According to Ko

et al.[10], the combined effect of lower induced drag with improved propulsive efficiency

reduces take - off gross weight and fuel weight by 5.4% and 7.8% [74] respectively. Dis-

tributed propulsion can be used with thrust vectoring for control or as high lift devices

[2, 49]. Thrust vectoring decreases low speed airframe noise due to reduced trim drag

[49, 73].

Distributed propulsion engine arrangement decreases the amount of directional control

power required in critical engine out conditions due to much reduced asymmetric thrust

moment [49, 68]. Further to this, it redistributes engine weight over the airframe providing

passive load alleviation and reduced wing weight [10]. Consequently, distributed propul-

sion allows for a lighter wing and increase the L/D ratio compared to pylon-mounted

engines. They are however heavier with a higher specific fuel consumption due to the

scale effects of small engines used in distributed propulsion system [20, 68]. Scale effects

refers to decreasing engine performance with reduced engine size [68]. Smaller engines are
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subject to increased pressure and heat losses due to lower Reynolds number and a relative

increase of leakage flow [68]. Consequently, the use of embedded multiple fan propulsion

system was proposed [66, 75].

Embedded multiple fan uses a single core to drive multiple fans in separate ducts thereby

maintaining the benefits of a greater number of engines without a reduction in core size.

Embedded multiple fan propulsion system increases boundary layer ingestion, reduces

weight through span loading effect, improves fuel efficiency and lowers fan noise through

increased fan blade passing frequency and better liner attenuation [46, 75]. However,

multiple fan propulsion suffers from inlet distortion noise and forced vibration. This is

caused by distorted inlet flow and difficulty in designing a geared fan transmission system

that is compatible with the variable area thrust vectoring exhaust nozzles [27]. While

inlet flow distortion could be minimised with active flow control and vortex generators

among others, the design of engine fans, that can withstand inlet flow distortions and

permit variable exhaust, is still a challenge [1, 75, 76].

The external aerodynamics of the BWB is tightly coupled with the multiple fan engine

core distributed propulsion system. Hence, engine failure could reduce lift available at

the rear of the airplane thus deteriorating the stability of the airplane [64]. Additionally,

asymmetric drag and un - contained engine blade burst would have greater impact on

adjacent engines due to the proximity of the engines to one another[64]. Consequently,

the effect of a critical engine - out condition is more significant in the embedded multiple

fan propulsion system.

2.3.5 Safety and Environmental Consideration

The BWB is a highly integrated aircraft. Safety is enhanced by ensuring that internal

arrangement of components within the aircraft does not constitute potential hazards to

passengers. Some potential arrangements of the BWB interior is shown in Figure 2.40.

Placing the engines at the trailing edge behind the pressure vessel, minimises the risk of

injury to passengers in the event of un - contained engine failure as the pressure vessel

will help to keep shrapnel from the failed engine out of the cabin [40]. Also, cargo bays

are located between fuel tanks and the cabin in some configurations to shield the cabin

from any fire surge [40].

Compared to conventional cylindrical tube fuselages, the center body pressure vessel of a

BWB is much stronger. The cabin structure is strengthened to carry both pressure and
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(a) Option 1 (b) Option 2 (c) Option 3

Figure 2.40: Some Interior Arrangement of the BWB.

wing bending loads thus ensuring crash-worthiness [1, 40].

The BWB provides a lot of space underneath the cabin for the center tank. This can be

used to efficiently trim the aircraft in cruise flight. However, this makes the fuel system

safety critical because it must always be operational to keep the aircraft center of gravity

within an acceptable range. Fuel transfer between the central and outboard fuel tanks

could be used, in approach, to shift the center of gravity aft in order to align it with the

center of pressure without deflecting the elevon, so minimising trim drag. Therefore, its

crucial to ensure the fuel system is designed to cope with the centre of gravity variations

resulting from different payload level (baggage and passengers) and fuel volume on-board

a long the flight [22].

Environmentally, the BWB has reduced pollutant emission and a lower noise signature

due to lower installed thrust, reduced fuel burn, efficient aerodynamic configuration, use

of simple trailing edge devices and a lighter airframe [1, 5, 38, 66]. According to Liebeck

[1], the BWB offers 17% reduction in NOX emissions due to it lower fuel burn.

The absence of a horizontal tail and the effect of wing load alleviation offered by the

BWB’s span loading and efficient payload distribution yields a more compact and cleaner

aerodynamic configuration with a lighter airframe [17]. With a reduced empty weight

and a lower parasite drag, the BWB configuration is approximately 20% more efficient in

terms of lift-to-drag ratio. This translates to about 20 − 30% savings in fuel when com-

pared with a conventional aircraft of the same weight [1, 17]. Reduce fuel consumption

lowers pollutant emission.

Similarly, the BWB aircraft permits the use of laminar flow control (LFC) technologies

over the wing with correspondingly higher fuel savings. Applying LFC over easily lami-

narized areas reduces the fuel consumption to just 14.6 g/pax.km of fuel in a 10,000 km
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flight for a fully loaded 300 - seat BWB aircraft [5, 77]. This amounts to 46 g/pax.km of

CO2 which is approximately 40% lower than the C02 emitted from a conventional aircraft

of similar capacity and mission range [5, 77]. Optimal implementation of laminar flow

technology is, however, hindered by joint discontinuities and improper surface finish.

Using the Engineering Science Data Unit (ESDU) method, Matinez - Val [5] compared

the approach noise generated by B777 and a 300 capacity BWB at three reference points

of 1150m, 2300m and 3450m as shown in Figure 2.41. The noise produced in approach by

the 300 - seat BWB and the B777 - 200 is shown in Figure 2.42. The result reveals that

the BWB produces 7 - 10 dB less sound pressure level, at all frequencies, than the con-

ventional B777-200 aircraft. The EPNL obtained by integrating the sound pressure levels

over audible frequency is 79.6 dB for the 300 - seat BWB and 88.2 dB for the B777 -200 [5].

Figure 2.41: Glide - path of an Aircraft in IFR Final Approach Showing Noise Measurement
Points. [5].

Figure 2.42: Comparison of Noise Produced at 3 Reference Points During Final Approach
by B777 - 200 and a 300 - passenger BWB [5].
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Positioning engines over the wing shields the surface from forward radiated fan noise and

reflected jet noise [1, 49, 66]. Radiated jet engine noise, however still needs to to be

minimised [27]. Several measures have been proposed to minimise radiated jet engine

noise. These measures include moving the engine forward, use of fixed and retractable

aft fuselage extension, and thrust vectoring. Moving the engine forward is not viable be-

cause positioning of engine is set by the transonic line located at or about the 75% chord

[49, 73]. A fixed airframe aft extension minimises radiated jet noise and increases the

elevon moment arm thereby improving longitudinal control effectiveness [73]. However,

fixed airframe aft extension increases weight and skin friction drag thus decreasing mis-

sion range [49, 73]. Additionally, fixed airframe aft extension must be limited to below

3 engine diameters in order to prevent tail strike on take off [49, 73]. Retractable aft

extension on the other hand eliminates the cruise drag penalty associated with fixed aft

extension but incurs additional subsystem weight [49].

Thrust vectoring on its part enables a quiet approach by reducing turbulent noise mixing

at the trailing edge as well as eliminate the noise caused by cavities and edges of deflected

control surfaces [27, 38, 39]. Additionally, thrust vectoring provides quiet high lift devices

and enables longitudinal control [1].

Satisfying the emergency egress rule might pose a challenge for BWB designers especially

when the number of passengers is more than 400 [1]. This results from the unequal vari-

ation of payload capacity and available area for egress with length scale. This limits the

space available for exit placement [1, 2] as shown in Figure 2.43. Positioning of emer-

gency evacuation is affected by crowd behaviour [76] and the distance to emergency exits.

Liebeck [1] proposed a cabin design which gives passengers a direct view of one or more

exits from most locations in the cabin, without needing to make a 90ĉirc turn to reach

the door from the aisle [1]. This is obtained by positioning a main cabin door in front of

each aisle and an exit through the rear pressure bulkhead behind each aisle together with

4 span - wise aisles intersecting with longitudinal aisles as shown in Figure 2.44.

Liebeck’s [1] cabin design was validated by Galea [79] for a 1000+ seat BWB aircraft. The

study shows that improved visual access and awareness of the aircraft layout improves

emergency egress [40, 79]. It should be stated that Liebeck’s [1] cabin concept was for a

single deck BWB. Hence, issues of long slides, slides interference and over-wing exits do

not apply.
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Figure 2.43: Emergency Egress Problem [78]

Figure 2.44: Liebeck Cabin Concept to Aid Emergency Evacuation[1]

2.3.6 Handling and Ride quality

The BWB aircraft has large volumetric capacity and flexible cabin layout hence greater

passenger leg - room could be incorporated [16, 42]. However, it has few windows which

could affect passenger experience [4, 42]. Consequently, the use of multi - view liquid

crystal displays on every seat is advocated to provide passengers with a multi - dimen-

sional view of the cabin and external environment [1, 4, 40].

Besides, the issue of few windows, there is the added worry that the ride quality in the

outer segments of the ’fuselage’ could be degraded by the lateral offset of passengers from

the BWB centre of gravity [1, 40]. This prompted a comparison of worst seats on a BWB

and the B747 - 400 airplane (aft for the B747-400 and outboard and aft for the BWB).

The comparison, which was conducted using NASA Jacobsen ride quality model, shows

only a 4% decrease in ride quality on the worst seats on the BWB compared to the worst
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seat on the B747-400 [1, 42].

The longitudinal and lateral dynamics of the BWB are coupled thereby creating a ten-

dency for the airplane to get stuck in Dutch roll [80]. A high side - slip angle creates

pitch up movement which diverges Dutch roll motion setting up a destabilising couple

[80]. Also, it is difficult to achieve turn coordination due to a rapid increase of side - slip

angle [80]. This increases pilot workload, degrading handling quality. Furthermore, the

BWB has low natural frequency and Dutch roll damping [80]. Consequently, Dutch roll

control is difficult as a result of the long period of oscillation and insufficient damping

[80]. The long period of oscillation and insufficient damping is caused by short moment

arm and large moment of inertia of the BWB which leads to reduced yaw damping and

weathercock stability derivatives [80].

The BWB is prone to Pilot Induced Oscillations (PIO) due to slow response to control

inputs causing pilot’s to aggravate Dutch roll motion while trying to compensate for fast

build-up of the side - slip angle [80]. Slow response to control inputs is caused by large

control surfaces and associated moments of inertia [80].

The BWB Dutch roll characteristics and handling quality can be improved using active

control. According to an in - flight simulation by Ehlers et al. [80], active control system

increases the Dutch roll damping and natural frequency thus improving roll characteristics

and aircraft handling quality. Active control however does not prevent high side - slip

angles during turn initiation nor the slow response of the roll axis arising from high

moment of inertia about the aircraft centre line [80]. Hence, the need for dynamic surface

control allocation to support the control and stability augmentation system [80].

2.3.7 Marketing and Manufacturing Potential

The BWB provides aerodynamic advantage over a conventional tube and wing aircraft

leading to the reduction in fuel burn by 20 - 25%. This translates to 10 - 12% savings in

direct operating cost with a corresponding increase in revenue yielding payload [1]. Car-

rying out a multidisciplinary optimisation using the Boeing proprietary code, WingMOD

[1, 42, 81], Boeing engineers compared the fuel burn between the BWB - 450 and A380

- 700 for a payload capacity of 480 passengers, at Mach 0.85 and a range of 8700nm.

Results obtained showed the BWB - 450 has a 32% lower fuel burn per seat compared to

the A380 - 700 [1, 42].
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A related study carried out by Leifsson et al. [20, 74] at the Virginia Tech, reveals that

replacing over the wing podded engine with distributed propulsion system gives a 7.8%

reduction in fuel weight over the A380 - 700. This gain is due to the beneficial effect of

trailing edge jet on the induced drag and the overall aerodynamic/propulsion efficiency

[20, 74].

The BWB is simply a wing with no empennage [1, 48]. Hence there are no complex

wing/fuselage and fuselage/empennage joints, fillets or highly loaded structures at 90◦ to

one another [1]. In addition, the BWB trailing-edge control surfaces are hinged without

track motion, and there are usually no spoilers [1]. This leads to 30% fewer parts counts,

reduced manufacturing difficulties and lower manufacturing costs [1, 40, 42].

The BWB has a short centre - body, therefore loading and unloading could be accom-

plished in a shorter time [40]. Furthermore, the BWB can take off from a shorter runway

without the need for complicated high lift devices [40]. However, it requires a thick air-

foil centre - body section to accommodate passengers and payloads thereby creating the

challenge of manufacturing such airfoil and still maintain a low profile drag [40].

The BWB aircraft configuration is derived from a combination of distinct parts [1] no-

tably the centre - body passenger bays, outer wing panels and the nose section or cockpits.

While the outer wing panels and nose section are identical for any capacity of a BWB

airplane, the dimensions of the centre - body vary with payload capacity. In a study con-

ducted by NASA in conjunction with Boeing, it is stated that a family of BWB aircraft

could be manufactured to meet operators fleet mix demands by the span - wise addition

or removal of passenger bays to or from the centre - body [1, 42, 63] as shown in Figure

2.45. The study determined that the commonality offered by the BWB, in going from

250 to 450 passengers, decreases non - recurring cost by 23% and the recurring cost by

12% [42]. This study however did not consider the aerodynamic, structural and engine

changes which would likely accompany lateral expansion of the configuration to increase

passenger capacity.

In a bid to understand the effect of aircraft size on performance and thus determine the

limit size of aircraft, Kroo [82] conducted a quantitative evaluation of aircraft size on

performance. The study finds that while a variety of practical issues may limit the size of

aircraft, basic structural weight and aerodynamic performance considerations permit the

operation of aircraft with over 600 - 800 passengers. This is due to increased L/D with

increasing aircraft size resulting from Reynold’s number effects and low wetted surface

area to volume ratio. However, consideration needs to be given to the the requirement
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Figure 2.45: Commonality of the BWB Aircraft [1]

to ensure that the resulting aircraft fit into the 80m box specified for Class VI airports.

Another issue that could arise from growth in BWB family is the effect of the Square

Cube Law.

The Square Cube Law was first described in 1638 by Galileo Galilei [83]. The Law states

that when a physical object maintains the same density and is scaled up, its mass is

increased by the cube of the multiplier while its surface area only increases by the square

of the multiplier. This implies that when an object is increased at the same rate as the

original, more pressure will be exerted on the surface of the larger object. Consequently,

developing a BWB family concept will cause the mass to grow by Wb3/S (W is the

wing weight, b is the wing span and S is the wing area). This will increase the bending

moment and hence the structural mass leading to increased wing loading with negative

consequences on critical low speed performance [82]. There is also the added challenge

of propulsion and aerodynamics changes that will accompany any extension of the BWB

span due to growth in passenger capacity. In view of this, Bradley [63] recommends for

a maximum extension of a single deck cabin up to a capacity of 450 passengers and the

use of a double deck if number of passengers exceeds 450.

The span - wise extension of the centre - body increases the span and wing area as well

as permits high passenger carrying capacity with a minimal increase in root chord length

[42, 63]. However, lateral extension of the centre-body as a ruled surface while maintain-

ing aerodynamic efficiency and trim requirements is quite an intricate challenge [1, 42].

Furthermore, because the BWB cabin consists of chord - wise bulkheads representing dif-

ferent passenger bays across the fuselage, it cannot be converted easily from a passenger

to a cargo airplane [4].
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2.3.8 Operations, Maintenance and Engineering Capacity

The relative height of engines above the ground on a BWB poses a challenge due to

the sophisticated ground support equipment that would be required to carry out main-

tenance work on the engines [64]. Similarly, as a revolutionary concept, the BWB will

require radical changes in engineering, maintenance set - up and technician training to

realise and operate [18]. However, while the required technology is still being developed,

existing concepts and technologies need to be adapted in the rudimentary stage of the

BWB design process [2]. This entails modifying existing or creating new design tools

that has the flexibility to model non - conventional configurations [2]. Challenges with

manufacturing and ensuring the structural integrity of the BWB cabin pressure vessels

must also be addressed [27].

The vortex tube generated by aircraft in flight creates a swirling effect which results

in dangerous rolling moment for any aircraft in flight crossing the wake [84]. While

cruise encounters are easily managed because the aircraft has sufficient time to react and

regain control, the effect in landing and take - off is severe and could alter the flight

path of the follower aircraft leading to an accident [5]. According to Equation 2.5, the

maximum tangential velocity induced by the vortex tube, νθmax, or the intensity of wake

turbulence governing airport separation time and distance between leading and follower

aircraft depends on the downstream distance, x, flight speed, V , and overall aircraft

circulation, Γ0.

νθmax =
Γ0

4πrc
=

20

π

√

V Γ0/x (2.5)

Aircraft circulation is determined from Equation 2.6. Looking closely at Equations 2.5

and 2.6, it could be seen that the main variable controlling the wake intensity is the span

- loading, W/b.

Γ0 =
4W

πρV b
(2.6)

Where:

W is the aircraft weight in N .

ρ is air density in kg/m3.

b is the wingspan in m.

The BWB has lower maximum weight and span loading compared to conventional air-

craft of same payload capacity. A comparison of the wake intensity generated by a 300
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passenger capacity BWB and the B777 provides that the BWB generates wake that is

20% and 25% less intense than the wake produced by the B777 in approach and take - off

respectively [5]. In approach, the B777 produces a maximum induced velocity of 12.6m/s

at 5nm, while the 300 passenger capacity BWB generates 9.4m/s [85]. In take - off, on

the other hand, the B777 generates a maximum induced velocity of 12.8m/s at 6nm while

the BWB generates 9.3m/s [85].

Further to the foregoing, Martinez - Val [5] finds that the 300 - passenger capacity BWB,

which could be classed as heavy aircraft, generated similar wake turbulence as the medium

category A320 or B737, with about 150 seats, in the approach and take - off flight phases

(Figure 2.46) [5, 85]. Therefore, it holds that the BWB could be given smaller separation

than a conventional aircraft of similar size. This would permit more and larger aircraft

operation without requiring huge investment in new runways and taxiways. However,

there would be the need for optimised ground traffic management to ensure that taxiway

capacity and terminal facilities are able to cope with the increased traffic of between 40

- 60 % more passengers [5].

Given that lift equals weight in cruise as defined in Equation 2.7 and the lift coefficient

in optimum range condition is derived from Equation 2.8. Combining Equations 2.7 and

2.8 and determining the static pressure gives Equation 2.9.

Wcr = L =
γPcrMcr

2CLcrS

2
(2.7)

Where:

Pcr is the static pressure.

Mcr is the cruise Mach number.

CLcr is the cruise Mach number.

S is the wing gross area.

γ, the air specific heat ratio.

CLcr =
√

βCd0πARφ (2.8)

Where:

β is a parameter related to the Mach number dependence of the specific fuel consumption.

It is taken to be around 0.6 for high bypass ratio turbo - fan engines.

AR is the Aspect ratio.
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Figure 2.46: Evolution of Maximum Induced Velocity With Downstream Distance [85].

φ is the induced drag factor = 1 for elliptical lift distribution.

pcr =
2

γ

Wcr/S

Mcr
2√βCd0πARφ

(2.9)

Now, applying Equation 2.9 to a BWB and a conventional aircraft and assuming both

are flying with same Mach number and βπARφ, the BWB due to its low profile drag

and wing loading will need to fly at a much higher altitude than conventional airplane

in order to be efficient (Figure 2.47). This has the benefit of freeing up lower congested

flight levels (9000 m -11000 m) while utilizing the unused flight levels around 13000 m -

15000 m.
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Figure 2.47: Wing Loading versus Cruise Conditions for a BWB and Conventional Aircraft
[5].

2.4 Optimisation in the Design of Blended Wing Body Air-

craft

Optimisation have been widely applied in the design of the BWB. Kuntawala [40] per-

formed aerodynamic shape design optimisation of a BWB using a high fidelity inviscid

Euler solver with adjoint based gradient evaluation and sequential quadratic programming

optimisation. The objective of the optimisation was to minimise the sum of induced and

wave drag of a BWB in transonic conditions by varying control points of B - spline geo-

metric parameterization of the BWB aerodynamic surface. The optimisation, performed

with both fixed and variable airfoil sections, shows significant reduction in drag compared

to the baseline geometry.

Antoine and Kroo [86, 87] coupled product and program design in a Multi Disciplinary

Optimisation (MDO) framework to explore the feasibility of reducing operating cost of a

commercial airline while satisfying noise and emission constraints. Using a non - linear

optimiser, the study recommends the BWB as the most environmentally benign configu-

ration due to its inherent low noise signature and reduced emissions [86].

The European MOB project [23, 25] performed a multi-level optimisation that coupled

aerodynamics, structures and flight mechanics disciplines on a BWB with a response sur-

face optimiser. The product of this combination is a CDE that maximises the range of

a BWB at constant take - off weight subject to controllability margin and stress level

constraints [23, 25]. This study was however performed in a distributed environment

across Europe and does not consider turbulence, packaging, propulsion and some other

disciplines affecting the design of a BWB.
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Diedrich et al. [65] applied MDO technique in the SAI program to obtain aerodynam-

ically efficient and economically competitive BWB with reduced noise signature. Using

WingMOD, a Boeing MDO code [81], this study reduced the aircraft noise level but could

not achieve the target set for the SAI. Nevertheless, the study reveals the risk of using

noise as the objective function in an MDO scheme. Consequently, Leifsson et al. [20]

suggest optimising for performance while ensuring that certain noise constraints are met.

Ko [10] performed a conceptual design of a BWB with distributed propulsion using MDO

technique. The study revealed increased control effectiveness and a 5.4% reduction in

take - off gross weight due to reduced induced drag and improved propulsive efficiency.

There was also a 3% reduction in required thrust and 7.8% fuel savings [10] with these

propulsion arrangement. This study is one of the most comprehensive undertaken for

the synthesis of the BWB. However, it does not consider handling or ride quality in the

problem formulation.

2.5 Identified Gaps in Knowledge

The BWB offers several advantages but also a lot of design challenges. To address these

challenges and investigate the effect of the integration of advanced systems and concepts

would require a multi - variate optimisation approach. This is due to the strong coupling

between various disciplines on the BWB. This review finds that designing the BWB with

noise reduction as the objective function could degrade the potential aerodynamic ben-

efits of the configuration and increase operating cost of the airplane. Since, safety and

profitability are the main concerns of commercial aviation, it is proposed that the BWB

should be designed to maximise productivity. Productivity in aircraft design involves

designing with the ultimate aim of maximising payload and minimising drag and opera-

tional cost. This will involve creating a BWB that is not just aerodynamically efficient

but also with minimal structural weight, good stability and trim characteristics. This is

necessary in order to minimise fuel burn thereby maximising payload as well as to enhance

controllability and improve passenger safety and comfort.

The BWB is a revolutionary concept whose design tools are still being created. Addi-

tionally, aspects of the disciplinary interactions are still being investigated. This review

established that current conceptual design tools employing empirical aerodynamics and

structural mass models based on conventional aircraft is not sufficiently accurate for the

design of the BWB. Consequently, there is the need for a design tool that integrates
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physics based aerodynamic model with a BWB - specific structural mass model in the

design synthesis models in order to allow for the rapid, accurate design and enable the

exploration of the design space.

The unique shape of the BWB structure due to its non - uniform cross - section also raises

a packaging problem which if not addressed early in the design process could constitute a

bigger challenge later in the design process. This review identified the need to integrate

a packaging module in the conceptual design synthesis of the BWB in order to reduce

costly geometry redesign later in the design process.

2.6 Chapter Summary

Research on the BWB has increased exponentially over the last few decades with ma-

jor industry players including universities and agencies undertaking studies on different

aspects of the BWB. This Chapter reviewed relevant publications on the BWB design

to establish emerging trends, concepts and challenges on the configuration. The review

highlights the enormous potentials of the BWB as well as the attendant design challenges

which have slowed its entry into market. From this, the author identified the need for the

development of a multi - variate design synthesis optimisation tool that enables a knowl-

edgeable to user rapidly design and explore the design space of the BWB as the main

gap in knowledge. To enhance its usefulness, the design synthesis tool should incorporate

packaging, handling and ride quality assessment.



Chapter 3

Methodology

3.1 Introduction

Aircraft design is a complex process involving the balancing of considerations from several

interacting disciplines. The complex and cyclic nature of the process increase the time

required for the design of new aircraft. With the growth in the aircraft industry in the

past few decades, pressure is increasing on manufacturers to review their design process

and strategies in order to reduce the development cost as well as the time-to-market for

new aircraft.

The BWB is a novel aircraft configuration. As such, knowledge of the concept and tools

required for its design are still being developed. This adds to the complexity of the design

as well as the challenge of reducing the time - to - market. As a novel unconventional

configuration, a suitable tool for the design of a BWB must be capable of distinguishing

and capturing the unique features of the design. This is necessary in order to identify

the inherent potential and highlight the limitations of the tool. Additionally, the tool

must be efficient in time and cost as well as capable of exploring the design space. This

Chapter discusses the design philosophy adopted in this work and the disciplinary models

implemented in the development of a conceptual design methodology for the Blended

Wing Body Aircraft.

55
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3.2 Evolution of Aircraft Design Philosophy

Aircraft design is continuously being challenged by the demands for increased efficiency

without compromising product quality. An analysis of the aircraft design industry in the

21st century suggests a paradigm shift from designing to improve performance to creating

a Leaner, Meaner, Greener [88] aircraft. With the increasing complexity of technically

advanced, environmentally friendly novel concepts, the need for a more efficient design

tool to reduce the time-to-market and cost of design while exploring the design space

has risen exponentially. Such tools require the intelligent use of computers in the design

process.

Traditionally, aircraft design proceeds through the conceptual, preliminary and detailed

design phases [89] as shown in Figure 3.1. The main aim of the conceptual phase is to

determine if an aircraft can be built which meets some given or assumed design require-

ments. Consequently, assuming basic mission requirements [90], conceptual design phase

applies simple and time - efficient methods to perform top - level exploration of the design

space [91]. This enables several concepts to be generated and evaluated. Subsequently,

the most feasible concept is selected for further analysis. Only limited details is required

at the conceptual phase. Hence, low fidelity and efficient disciplinary analysis tools are

employed as speed rather than accuracy is the focus of this phase.

In the preliminary design phase, selected concept(s) is/are matured and validated by

detailed analysis and computer simulations. The aim of this phase is to develop an opti-

mized configuration with sufficient details and potentials to proceed to the detailed design

phase. The detailed design phase is where all components and parts are defined in detail,

extensive validation is performed, manufacturing documentation is produced and prod-

uct is released for manufacturing. Accuracy rather than speed is the focus in this phase,

hence only high fidelity analysis tools are employed.

The design activities within each phase of the design process are classified into synthesis

and analysis [92]. Synthesis refers to the process of defining, refining and combining all

technical disciplines into an optimum solution [93]. On the other hand, analysis com-

prises the methods, tools and expertise used to generate data and evaluate concepts and

configurations. A detailed description of the roles of synthesis and analysis in the design

process is given in Figure 3.2.

Before 1960, the use of computers in the design of aircraft was limited to the execution of

self contained analysis programs in batch-mode operation [93]. The interchange of infor-
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Figure 3.1: Aircraft Design Process

Figure 3.2: The Role of Synthesis and Analysis in the Aircraft Design Process

mation between these stand - alone programs was nevertheless still a time consuming and

error prone manual process [93]. However, with the appreciable advances in interactive
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computer technology, computers has evolved into a powerful design tool. This initiated a

trend towards integrating self-contained programs into design systems through Computer

Aided Engineering (CAE).

Early applications of CAE in aircraft design iclude the NASA’s Integrated Design and En-

gineering Analysis (IDEA) [94], DARcorporations Advanced Aircraft Analysis (AAA) [95]

and the Stanford University’s Program for Aircraft Synthesis Studies (PASS) [96] among

others. Though these programs increased productivity and reduced design time, they did

not support innovation. This because they handle discipline sequentially. Novel aircraft

concepts by virtue of the strong inter - disciplinary couplings and interactions (Figure 3.3)

create conflicting demands which needs to be addressed simultaneously. Such conflicts

influenced aircraft designers to adopt the Integrated Product and Process Development

(IPPD) design approach.

The IPPD involves the concurrent investigation and analysis of the effect of different

disciplines and objectives early at the conceptual design stage of aircraft design[97, 98].

This permits design trade - off to be made early at the conceptual design phase thereby

reducing considerably the costly effect of altering a design later at the detailed phase

[92]. Additionally, it enables the determination of a globally optimal design, which may

not have been possible if disciplines are handled sequentially. The chief means of im-

plementing IPPD in aircraft design is through multidisciplinary design or multivariate

optimisation.

The multi-variate optimisation (MVO) is a design technique that is capable of rapidly im-

proving the design of complex novel aircraft configuration with cross - couplings and syn-

ergies between different disciplines [99]. As each discipline often have conflicting optimal

solutions, optimizing the disciplines separately would most likely lead to a sub-optimized

aircraft. Consequently, MVO framework combines several disciplinary models to obtain a

holistic perspective of the aircraft and achieve a balanced global optimal design [100, 101].

The MVO is defined as a methodology for the design of complex engineering systems

and subsystems that coherently exploits the synergism of mutually interacting phenomena

[102]. MVO allows for a systematic exploration of the design space [103] enabling a

designer to capture the relations and dependences between disciplines. A MVO process

is illustrated in Figure 3.4.
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Figure 3.3: Coupling Between Highly Integrated Novel Configuration and Conventional Air-
craft [99].

Figure 3.4: MVO Design Synthesis Framework [104]
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3.3 Implementation of Disciplinary Modules

This section describes the theory of various models implemented in the disciplinary mod-

ules of the developed multivariate optimisation tool for the conceptual design of a BWB

aircraft. The models include atmospheric, geometry, mass, propulsion, aerodynamics and

the packaging models. These models constitute the design synthesis segment of the de-

veloped tool. The analysis models comprising the performance and stability models are

treated differently in the next chapter.

3.3.1 Atmospheric Module

The atmospheric model is used to predict the value of atmospheric properties at differ-

ent altitudes. The model implements the 1976 United States of America (US) standard

atmospheric model [105]. The 1976 US standard atmospheric model divides the earth at-

mosphere into 5 segments based on similarity of properties within certain altitude ranges.

Only the first 3 segments are currently used for commercial aviation. These segments are

the troposphere which extends from 0 - 11 km; the lower stratosphere which goes from

11 - 20 km and the middle stratosphere which extends from 20-32 km.

Within the troposphere, the temperature lapse rate is -0.0065K/m. There is no change in

temperature in the lower stratosphere while temperature increases at the rate of 0.001K/m

at the middle stratosphere. The detailed description of the 1976 Atmospheric model is

given in Appendix A.

3.3.2 Geometry Module

The geometry module generates configurations and external dimensions using their geo-

metric properties. Aerospace components are often categorised into 2 main groups. These

are the lifting surfaces and the body components. Lifting surfaces are used to define lift

producing geometric parts such as the wings, vertical and horizontal tail plane. Body

components on the other hand describes non - lift generating components such as nacelle,

fuselage etc. Details of the modelling of the different geometric parts are given in Ap-

pendix D.

The BWB is defined in the developed tool’s geometry module using the lifting surface

geometry component. The module calculates the reference surface area of a straight
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tapered wing using Equation 3.1.

Sref =
b2

AR
(3.1)

The wetted surface area is obtained from Equation 3.2 as a function of the wing span, b,

taper ratio, λ, and root chord, cr.

Swet =
b2

2
× cr (1 + λ) (3.2)

The taper ratio, λ is the ratio of the tip chord, ct, to the cr. Accordingly, the taper ratio

is derived from Equation 3.3.

λ =
ct
cr

(3.3)

The mean aerodynamic chord for a straight tapered wing in terms of the root and tip

chords is obtained from Equation 3.4.

¯̄c =
2

3

(

cr + ct −
cr × ct
cr + ct

)

(3.4)

This translates, in terms of the reference surface area, aspect and taper ratio, to the

expression in Equation 3.5.

¯̄c =
4

3

(

Sref
AR

)0.5 [

1− λ

(1 + λ)2

]

(3.5)

The wing sweep is commonly referenced to the leading edge, trailing edge and the quarter

- chord locations as a ratio of the normalised chord (xc ). The sweep at each of these

locations is obtained from the AR and λ using Equation 3.6.

Λ2 = Λ1 + tan−1

[

4

AR
×
(

x

c1
− x

c2

)

× 1− λ

1 + λ

]

(3.6)

In a multi - kinked trapezoidal wing arrangement, the geometry variables are defined as

given in Figure 3.5.

The panels constituting the wing is indexed for k = 1 ≤ k ≤ N . Where N is the total

number of panels. Each panel is described by the cr and ct as well as their corresponding

span - wise locations (yr(k), yt(k)), local span, bi(k), area of the panel, Si(k), local sweep,
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Figure 3.5: Definition of Wing’s Geometry Variables

Λx
c
(k) and a dihedral or anhedral angle, Γi(k). Therefore, the effective total span of a

multi - panelled wing is obtained from Equation 3.7.

b =

N
∑

k=1

bi(k)× cos [Γ(k)] (3.7)

Similarly, the total planform area for a multi - panelled wing is obtained from Equation

3.8.

Sref =

N
∑

k=1

Si(k)× cos [Γ(k)] (3.8)

The aspect ratio is derived from Equation 3.9.

AR =

N
∑

k=1

bi(k)

2

N
∑

k=1

Si(k)

(3.9)

The MAC is the the sum of each panel’s MAC. Often, each panel’s MAC, ¯̄ck, is calculated

from Equation 3.10.

¯̄ck =
2

3

(

cr(k) + ct(k)−
cr(k)× ct(k)

cr(k) + ct(k)

)

(3.10)

The aerodynamic and geometric mean chords are often used as a reference length to non
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- dimensionalise pitching moment coefficients. They are usually positioned so that their

quarter - chord coincides. For a multi - kinked wing, this is illustrated in Figure 3.6.

Figure 3.6: Position of Reference Chords.

Similarly, the Mean Geometric Chord (MGC), c̄,, and the MAC, ¯̄c,, for a multi - kink

wing are evaluated from the geometric properties shown in Figure 3.7.

Figure 3.7: Multi - crank Wing.

According to the ESDU, the MAC of a multi - cranked flying wing configuration is derived
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from Equation 3.11 [106].

¯̄c =

m+1
∑

i=1

¯̄ciSi

m+1
∑

i=1

Si

(3.11)

This translates to the expression in Equation 3.12.

¯̄c =
2

3



























m+1
∑

i=1

ci−1
2
(

1 + λi + λi
2
)

ζi

m+1
∑

i=1

ci−1 (1 + λi) ζi



























(3.12)

In a similar way, the x - position of the quarter chord point of each panel of the MAC is

determined from Equation 3.13.

¯̄x1/4 =

∫ b/2

0

(

x0 +
c

4

)

cdy

∫ b/2

0
cdy (3.13)

Which leads to Equation 3.14.

¯̄x1/4 =

m+1
∑

i=1

¯̄x(1/4)i

m+1
∑

i=1

Si

(3.14)

Where :

¯̄x1/4i = x0(i−1) +
(

x0i − x0(i− 1)
) (1+2λi)

3(1+λi)
+

¯̄ci
4

and

Si =
ζib(1+λi)ci−1

4

ζi =
si−si−1

b/2

Si = ζi(b/2)c̄i
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The MGC, c̄i, is determined from Equation 3.15.

c̄ =

∫ b/2
0 cdy
∫ b/2
0 dy

(3.15)

Leading to Equation 3.16.

c̄ =

m+1
∑

i=1

∫ si

si−1

cdy

m+1
∑

i=1

∫ si

si−1

dy

(3.16)

Further manipulation of Equation 3.16 simplifies to the expression in Equation 3.17.

c̄ =

m+1
∑

i=1

ci−1 (1 + λi) ζi
2

(3.17)

3.3.3 Mass Module

Mass prediction is an essential part of the aircraft design process [107]. It affects cost

as well as performance characteristics of an aircraft [108]. Mass prediction can be cat-

egorised into finite element, empirical and the semi-empirical approach. Finite element

weight prediction provides accurate and reliable estimate of airframe mass but they are

problem specific; not readily generalised and would increase the computational cost of

an MVO scheme. Empirical methods are sometimes referred to as the Class II weight

estimation method. Class II weight approach estimates the mass of the aircraft main

component group using empirical equations that combine geometric parameters, aircraft

design speeds, load factor and statistically derived coefficients. Empirical methods are

easier to implement and more efficient than finite element approach. However, they are

of low fidelity.

Semi - empirical methods comprise analytically derived equations corrected with statis-

tical correlation from historical data [109]. The semi - empirical method is the most

suitable weight prediction method for conceptual design synthesis. This is because they

are fast and easy to implement as well as sufficiently accurate for the conceptual design

phase. This thesis implements the Class II empirical component weight estimation meth-

ods alongside the Bradley semi - empirical and the Howe empirically weighted theoretical

BWB airframe mass estimation approach.
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Howe Airframe Mass Prediction

The Howe airframe mass prediction is based on the models provided in Howe’s Blended

Wing Body Airframe Mass Prediction[19, 110] paper. The structural mass of a conven-

tional aircraft comprises the mass of fuselage, wing, control surfaces and the empennage.

For a BWB, however, the structural mass is idealised to the mass of the outer and inner

wings corrected for deviations from the ideal mass.

The MTOM is given by Equation 3.18 [40].

MTOM = me +mfuel +mpayload (3.18)

Where:

me is the empty mass.

mfuel is the mass of fuel.

mpayload is the mass of payload.

According to Howe[110], aircraft empty mass comprises the mass of structures, operational

items, system and power-plant. From [19], the structure is idealised to the inner and outer

wings.

Figure 3.8: Howe Idealisation of the BWB Geometry [19]

The mass of each of the idealised segments is derived from Equation 3.19. All variables
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used in this and subsequent equations are in the International System (SI) units.

mwing = mc +mr + fpen (3.19)

Where:

mc is the mass of covers and shear webs of the structural box.

mr is the mass of ribs.

fpen is the penalty factor due to the departures from the ideal and allowance for the

secondary structure.

The mass of covers and shear webs of the structural box mc is given by Equation 3.20.

mc = nult ×MTOM × b3r(e)(sec Λ0.25)(sec Λ0.5)
0.5 × ρ

Ā

cc
τ

0.25
× 10−5 (3.20)

Where:

nult is the ultimate load factor determined as 1.65nz .

r is the wing bending relief factor.

e is the ratio of the width of the structural box to the MAC.

Λ0.25 is quarter-chord sweep.

Λ0.5 is the mid-chord sweep.

Ā is the material allowable compressive stress factor.

cc is the root-chord of the wing.

τ is the maximum airfoil thickness to chord ratio.

ρ is the material density.

The mass of ribs mr is obtained from Equation 3.21.

mr = 4.4Sref (e)(cc × τ)0.5(1 + 0.35Λ0.5)ρ× 10−3 (3.21)

Where:

Sref is the reference area of the aircraft.

The penalty factor is given by Equation 3.22.

fpen = 0.1×MTOM ×
(

2Sfin
Sref0

)

(3.22)

Sref0 is the reference area of the outer wing.
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The mass of fin is defined by Equation 3.23.

mfin = 0.1× vdiv × S1.15
fin (3.23)

Where:

mfin is the mass of fin.

vdiv is the aircraft divergence speed in m/s.

vdiv=1.25 ×vcr [111].

vcr is the cruise speed in m.

Now, applying Equation 3.19 to the outer wing, the mass of covers is given by Equation

3.24.

mco = 0.85[NultMTOMb3roeosec Λ0.5sec Λ0.25yk
4(1 + 0.375 × yk)]

0.5

×
(

s′o
So

)(

ρof̄

Ā

)(

ck
τk

)

o

0.25

× 10−5 (3.24)

Where:

b is the total span.

τk is the thickness to chord ratio at the intersection of the inner and outer wing.

yk is the ratio of the outer wing span to the total span. It is expressed mathematically

by Equation 3.25.

yk =
bo
btotal

(3.25)

f̄ is the ratio of allowable compressive stress to the maximum upper limit [19]. It is

obtained from Equation 3.26.

f̄ =
fk
flimit

(3.26)

Where:
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fk = Ā× 10−5×

...

[

0.727n̄ ×MTOM ×ARo × ro (1 + λo) sec Λ0.25 × sec Λ0.5 × yk
2 ×

(

1 + 0.375yk
eo (ckτk)o

)1.5
]0.5

(3.27)

flimit = 350× 106.

and f̄ ≥ 1.

The mid-chord sweep, Λ0.5, is derived from the leading edge sweep by Equation 3.28 [112].

Λ0.5 = tan−1

(

tan ΛLE − 40.5

AR

(

1− λ

1 + λ

))

(3.28)

Similarly, the quarter-chord sweep is calculated in terms of the leading edge sweep from

Equation 3.29 [112].

Λ0.25 = tan−1

(

tanΛLE − 40.25

AR

(

1− λ

1 + λ

))

(3.29)

ro, the bending relief of outer wing is obtained from Equation 3.30.

ro = 1−
[

0.042 + 0.84Qo

(

0.1 + 2R × 10−5
)

+
4.55 ×mfin

MTOM

]

yk (3.30)

Here:

mfin is the mass of fins.

Qo is the proportion of fuel carried in the outer wing.

R is the mission range in km. eo is defined by Equation 3.31.

eo =
wwingbox

MAC
(3.31)

wwingbox is the width of the wing box. This is obtained from Equation 3.32.

wwingbox = rs × cos Λ0.25 (3.32)
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The structural chord, rs , is defined by Ardema et al. [113] in Equation 3.33.

rs = csr −
y

bs
(csr − cst) (3.33)

Where:

bs is the structural semi-span.

y = (1− 0.25)c .

csr and cst are the structural root and tip chords respectively.

The variables used in estimating the width of the wing box are shown in Figure 3.9 and

Figure 3.10.

Figure 3.9: Wing Structural Planform Geometry [113]

The structural semi-span is obtained from Equation 3.34.

bs =
b − wi

2 cos Λ0.5
[113] (3.34)

wi is the width of the inner wing which in most cases is the width of the cabin.

The structural root and tip chords, csr and cst are defined by Equation 3.35 and Equation

3.36 respectively.

csr = (1− cs1 − cs2 ) cr [113] (3.35)

cst = (1− cs1 − cs2 ) ct [113] (3.36)
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Figure 3.10: Structural Semi-span [113]

Where:

cs1 is the location of the front spar.

cs2 is the location of the rear spar.

cr is the root chord of the wing segment.

ct is the tip chord of the wing segment.

The mass of ribs in the outer wing is determined from Equation 3.24.

mr = 4.4soeo(ck τk)
0.5(1 + 0.35× Λ0.5)ρo × 10−3 (3.37)

The penalty factors for the outer wing is given by Equation 3.38.

fpeno = (0.02 + 0.007 + 0.003 + 0.0015 − 0.005)MTOM × yk + 0.002MTOM (3.38)

Therefore, total mass of the outer wing is given by Equation 3.39.

mwingo = mco +mro + fpeno (3.39)

The mass of the inner wing is determined in similar manner to the outer wing by applying

Equation 3.19 to the idealised dimensions of the inner wing. The mass of the covers of

the inner wing is obtained from Equation 3.40.
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mci = 1.52

(

nult ×MTOM × b3 ri × ei × secΛ0.25isecΛ0.5i

τ + 1

)0.5

×
[

(1− yk)− 0.46(1− yk )
2.5

]

× (1 + 0.53r̄)×
(

crt
τrt

)0.25
( π

Ā

)

× 10−5 (3.40)

Where :

τ̄ = τi
τo
.

The subscripts, i and o refers to the inner and outer wing respectively.

c represents centreline value,

rt is the root value,

k is kink station value and

j represents one of a number of items.

r̄ is defined as ri
ro
.

Where:

ri is derived from Equation 3.41.

ri = 1− [A+B] (3.41)

Where:

A = 0.12 + 0.114(1− 0.63yk ) + 2.27(1 − 0.63yk )(Qo +Qi)(0.1 + 2R × 10−5) + 4.55 mv

MTOM

B = 0.76(
mpayload

MTOM
)
[

cr t+2(ck )i
crt+(cki )

]

+ 4.55
(∑

pjYj

MTOM

)

However, ri ≥ 0.1.

Qi refers to the proportion of fuel contained in the inner wing.

pj refers to concentrated such as a power plant or landing gear unit.

The mass of inner wing ribs is calculated from Equation 3.42.

mri = 4.4siei(crtτrt)
0.5(1 + 0.35Λ0.5i)ρi × 10−3 (3.42)
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The penalty factors for the inner wing is then given by Equation 3.43.

fpeno = (0.02 + 0.007 + 0.003 + 0.0015 − 0.005)MTOM × (1− yk )

+ (0.0005 + 0.00025npplant)×MTOM + 0.004 × nMG ×MTOM (3.43)

As usual, total mass of the inner wing is given by Equation 3.44.

mwingi = mci +mri + Fpeni (3.44)

Combining the mass of the inner and outer wings gives the mass of the aircraft structures

in Equation 3.45

mstruct = mwingi +mwingo (3.45)

Bradley Prediction Model for Airframe Mass

Bradley mass prediction method is a semi - empirical structural mass model implemented

in the Flight Optimisation Software (FLOPS) [63]. The model idealised the structural

mass of the BWB to the mass of the centre-body consisting of the cabin and aft - cabin

corrected for engine placement, and the wing mass. According to Bradley [63], the mass of

the centre-body is obtained from a semi - empirical relationship between the MTOM, area

of the cabin and statistically derived coefficients. This relationship is given by Equation

3.46.

mcab = ks × 0.316422 ×MTOM 0.166552 × scabin
1.0161158 (3.46)

Where:

ks =
5.698865

450 × npax [63].

scabin is the area of the cabin in sq.ft .

mcab is the mass of the cabin in lbs.

The aft centre- body is assumed to also house the engines in a distributed propulsion

or boundary layer ingestion arrangement. Bradley [63] estimates the mass of the aft

centre-body maft by Equation 3.47.

maft = (1 + 0.05 × neng)× 0.53 × saft ×MTOM 0.2 × (λaft + 0.5) (3.47)

Where:

neng is number of engines.

saft is the area of the aft centre-body in sq.ft

maft is mass of aft centre-body in lbs.
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λaft is taper ratio of aft centre-body.

Outer wing mass is estimated using Howe’s [114] wing mass prediction method. Howe’s

outer wing model is selected because it contains most of the essential parameters driving

wing structural mass. Additionally, the parameters are available at the conceptual design

stage. Howe’s model was however for a metallic wing. Consequently, in order to apply it

to a BWB model, correction was made for potential weight reduction resulting from the

likely use of composites. Howe’s wing mass model corrected for use of composites is thus

redefined in Equation 3.48.

mwing = 0.8 × c1

[

(

bs

cos Λ0.25

)(

1 + 2λ

3 + 3λ

)(

MTOMn

s

)0.3
(vD
τ

)0.5
]0.9

(3.48)

Where:

c1 = 0.028 for long range transport aircraft [114].

b is the wing span in m.

mwing is wing mass in kg.

MTOM is maximum take off mass in kg .

τ is the average thickness to chord ratio.

λ is the wing taper ratio.

Λ0.25 is the quarter chord sweep angle in deg .

S is the wing area m2 .

n is design normal acceleration factor.

vD is the design dive speed in m/s EAS.

The design dive speed vD is determined in terms of the cruise speed, vcr, from Equation

3.49.

vD = 1.25× vcr (3.49)

Landing Gears

The mass of landing gears (MLG) is derived as a percentage of the MTOM [115] from

the expression in Equation 3.50.

mLG = 0.0445MTOM (3.50)
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Propulsion System

The mass of propulsion system consists of the mass of propulsion and nacelle group. The

propulsion group consists of the engine, engine exhaust, thrust reverser, starting, control,

lubricating and fuel system. According to Raymer [107], the mass of propulsion group is

estimated from the expression in Equation 3.51.

meng = 14.7 × TTO
1.1 × e−0.045×BPR (3.51)

Where:

meng is the mass of the engine in kg.

TTO is the take of thrust in kN .

Similarly, the mass of the nacelle group (mnacgrp) is also derived as a fraction of the mass

of the engines. According to Torenbeek [116], the nacelle group is about 5.5% of the mass

of the engines as given in Equation 3.52.

mnacgrp = 0.055 × TpTO × neng (3.52)

TpTO is the take - off thrust in pounds of force.

Combining the masses of the propulsion group and the nacelle group gives the mass of

the propulsion system, mpropsys, in kg, as found in the expression in Equation 3.53.

mpropsys = mnacgrp +mpropgrp (3.53)

Auxiliary Power Unit

The mass of the Auxiliary Power Unit (APU) is obtained from Kundu [117] as defined in

Equation 3.54.

mAPU = 0.001 ×MTOM (3.54)

Where:

mAPU is the mass of the APU in kg.

Where scabin is in sq.ft.
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Instruments

Instrument consists of all instrumentation, avionics and electronics. The mass of instru-

ments, (minst), is determined from the modified General Dynamics (GD) [118] method

given in Equation 3.58. The method groups instruments into flight, engine and other

instruments.The mass of engine instrument is calculated from Equation 3.55.

menginst = neng ×
(

5 +
0.006 × 2.2046 ×MTOM

1000

)

(3.55)

The mass of flight instrument is obtained from Equation 3.56.

mfltinst = 2

(

15 +
(0.032 × 2.2046 ×MTOM )

1000

)

(3.56)

The mass of other instrument is estimated from Equation 3.57.

motherinst =
(0.15 × 2.2046 ×MTOM )

1000
+ 0.012 × 2.2046MTOM (3.57)

Consequently, the total mass of instruments used on a commercial passenger transport

aircraft in kg is derived from Equation 3.58.

minst = 0.4536 × (menginst +mfltinst +motherinst) (3.58)

Hydraulic System

The mass of hydraulic system (mhydr) is calculated using the equation given in the Cran-

field lecture note [119]. The note expresses the combined mass of hydraulics and pneu-

matics with powered control by Equation 3.59. The equation is determined based on the

MTOM of the aircraft and hence does not require any additional factor or correction for

the number of redundant hydraulic system. It is assumed that the effect of redundant

systems is already incorporated into the MTOM.

mhydr = 3.2×MTOM0.5 [119] (3.59)

Where:

mhydr is the mass of hydraulic system in kg.
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Furnishing

The mass of furnishing comprises the masses of the seats, insulation, galley structure and

provisions, lavatory and associated systems, escape provisions, fire - fighting equipments,

sound proofing, instrument panel, control stands, lighting and wiring, oxygen and paints

[118]. For a commercial passenger aircraft, the modified GD model gives the mass of

furnishing (mfurn) by Equation 3.60.

mfurn = 0.4536
[

(55× nfdcrew) + (32× npax) + (15× nccrew) + klav(npax)
1.33

+kbuf(npax)
1.12 + 109

[(

npax
(1 + pc)

100

)]0.505

+

+0.771

(

2.2046 ×MTOM

1000

)]

(3.60)

Where:

pc is the design cabin pressure in psi.

klav = 1.11 for long range airplane.

kbuf = 5.68 for long range airplane.

npax is the number of passengers.

nccrew is the number of cabin crew. It is estimated at 1 cabin crew for every 30 passengers

onboard the aircraft.

nfdcrew is the number of pilots.

Air - conditioning

The mass of the air-conditioning (mAC) includes the masses of pressurisation, anti - icing

and de - icing systems. It is derived in terms of the cabin length using the Torenbeek

method [118] given in Equation 3.61.

mAC = 0.4536 ×
(

6.75 × 3.2808 × lcab
1.28

)

(3.61)

mAC is the mass of air - conditioning, pressurisation, anti - icing and de - icing in kg.

lcabin is the length of the passenger cabin in ft.

Payload

The mass of payload refers to the mass of passengers (mpax) and their baggages (mbgge).

The mass of each passenger is assumed to be equal to 83 kg [120]. Additionally, each



78 Methodology

passenger is entitled to a baggage weighing 30 kg. Subsequently, the overall mass of

payload is derived from the expression in Equation 3.62.

mpayload = npax (mpax +mbgge) +mcontainer (3.62)

Where:

mpayload is the mass of payload.

mpax is the mass of passenger.

mbgge is the baggage allowance per passenger.

mcontainer is the mass of the ULDs holding the baggages.

Operational Items

The mass of operational item refers to the masses added to the aircraft empty weight

to bring it to the operating empty condition. It consists of the masses of the crew and

associated personal items, safety and freight equipment, water and food. It is estimated

using the Howe model [110] expressed in Equation 3.63.

mops = 85× nfdcrew + (fop+ npax) (3.63)

Where mops is the mass of operational items.

fop is the operational factor. For long range airline fop = 16 [110].

npax is the number of passengers.

nfdcrew is the number of pilots.

Electrical

The mass of electrical equipment is obtained as a fraction of the MTOM using the ex-

pressions given in the Cranfield lecture note on mass of powerplants, equipment system

[119]. The model determines the mass of the electrical systems for a commercial aircraft

as a function of the MTOM as given in Equation 3.64.

melec = 0.75(MTOM )0.67[119] (3.64)

Flight Control

The mass of flight control system is derived as a percentage of the MTOM using Equation

3.65 obtained from the Cranfield Lecture Note [119].
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mfltcon = 0.11MTOM 0.8 (3.65)

Fuel

The mass of fuel required to accomplish the aircraft assigned mission is estimated as a

fraction of the MTOM as given in Equation 3.66. The derived mass is further compared

with the mission fuel to obtain the required fuel mass.

mfuel = fuelfrac ×MTOM (3.66)

Mass Groupings

Other mass quantities required in the conceptual design synthesis analysis are the Max-

imum Landing Mass (MLM), Zero Fuel Mass (ZFM) and the Operating Empty Mass

(OEM). The MLM is estimated from Howe [110] as a function of the MTOM and design

range. For short haul transports with design ranges between 1000 - 4500km, the MLM is

derived from Equation 3.67.

MLM =
(

0.98− 2(R − 1000) × 10−5
)

×MTOM (3.67)

For medium or long range aircraft, the MLM is given by Equation 3.68.

MLM =
(

1− 2(R − 1000) × 10−5
)

×MTOM (3.68)

The ZFM, as the name implies refers to the weight of airplane without any fuel. It can

be estimated from Equation 3.69.

ZFM = MTOM −mfuel (3.69)

The other mass quantity relevant to the design synthesis is the aircraft OEM. The OEM

is derived from the MTOM by Equation 3.70.

MZFM = MTOM −mfuel −mpayload (3.70)
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Summary of Implemented Mass Prediction Methods

This research adopts a class II weight estimation methods. The class II weight estimation

method predicts the weight of aircraft components using empirical equations that com-

bine geometric parameters, aircraft design speeds, load factor and statistically derived

coefficients from the mass breakdown of existing aircraft[121]. The list of the Class II

methods applied in this research is given in Table 3.1.

Table 3.1: List of Implemented Class II Weight Prediction Methods.

Components Model

Wing Howe/Bradley
Fuselage Howe/Bradley

Landing Gears Jenkinson
Engine Raymer

Nacelle Group Torenbeek
APU Kundu

Instrument GD
Hydraulics Cranfield Lecture Note
Furnishing GD

API Roskam
Electrical Cranfield Lecture Note

Flight Control Cranfield Lecture Note
Operational Items Howe

3.3.4 Propulsion Module

The propulsion model implemented in this thesis is derived from Howe [110]. The Howe

[110] propulsion model determines the thrust and Specific Fuel Consumption (SFC) of a

propulsion system given the flight speed, altitude, BPR and the sea level static thrust.

The model is particularly important in the conceptual design phase given that available

power - plant data are often inadequate to cover all the required flight conditions. Hence,

being able to calculate propulsion characteristics at any given flight condition improves

the accuracy of the conceptual design tool. The Howe [110] propulsion model accurately

determine vital power - plant characteristics at the different flight phases needed for

conceptual design synthesis. Using Howe [110] propulsion model, the available operating

thrust, T , at any given condition is obtained from Equation 3.71.

T = Tfac × Tstatic (3.71)

Where:

Tstatic is the sea level static thrust.
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Tfac , the thrust factor, depends on the flight speed, altitude and engine operating condi-

tions.

For a subsonic flight between Mach 0 and 0.9, Tfac is given by Equation 3.72.

Tfac = Fτ [k1τ + k2τ × BPR + (k3τ + k4τ × BPR)M ]σaltfactor (3.72)

altfactor is the Altitude factor. Above Mach 0.9, Tfac is derived from Equation 3.73.

Tfac = Fτ [k1τ + k2τ × BPR + (k3τ + k4τ × BPR) (M − 0.9)] σaltfactor (3.73)

Fτ = 1 in dry operating conditions.

However, when after - burning or reheat is used, Fτ is obtained from Equation 3.74.

Fτ =

(

Tw

TD

)

/ (1.32 + 0.062 × BPR) (3.74)

In Equation 3.73 and Equation 3.74:

BPR is the Bypass ratio.

Tw is the sea level static thrust in wet condition.

TD is the sea level static thrust in dry condition.

k1τ , k2τ , k3τ , k4τ and altfactor , the altitude factor, are constant for a given Mach number,

M , and operating condition. Typical values are given in Table 3.2.

Table 3.2: Powerplant Thrust Parameter [110]

BPR M Operating Condition k1τ k2τ k3τ k4τ altfactor

1 0-0.4 Dry 1.0 0 -0.2 0.07 0.8
or Wet 1.32 0.062 -0.13 -0.27 0.8
lower 0.4-0.9 Dry 0.856 0.062 0.16 -0.23 0.8

Wet 1.17 -0.12 0.25 -0.17 0.8
0.9-2.2 Dry 1.0 -0.145 0.5 -0.05 0.8

Wet 1.4 0.03 0.8 0.4 0.8

3 to 0-0.4 Dry 1.0 0 -0.6 -0.04 0.7

6 0.4-0.9 Dry 0.88 -0.016 -0.3 0 0.7

8 0-0.4 Dry 1 0 -0.595 -0.03 0.7

0.4-0.9 Dry 0.89 -0.014 -0.3 0.005 0.7

The altitude factor, altfactor , listed in Table 3.2 is valid up till an altitude of 11000m. At

higher altitude, the value is fixed to one. Similarly, the specific fuel consumption varies



82 Methodology

with altitude, bypass ratio and the Mach number, M , up to an altitude of 11000m as

given in Equation 3.75.

SFC = c′
(

1− 0.15 ×BPR0.65
) [

1 + 0.28
(

1 + 0.063 ×BPR2
)

M
]

σ0.08 (3.75)

The value of c′, the specific fuel consumption factor, varies with the BPR.

For supersonic engines with a BPR ≤ 1, c′ = 27mg/N/s.

For low bypass ratio subsonic engines, c′ = 24mg/N/s.

Large subsonic engines have a c′ = 20mg/N/s.

Equation 3.75 applies to dry engines without after - burning. When after - burning is

used, the specific fuel consumption is obtained from Equation 3.76.

SFC = 1.05

(

Tw
TD

)

(1 + 0.17M) σ0.08 (3.76)

3.3.5 Aerodynamic Analysis Module

The aerodynamic analysis model is an essential component of the conceptual design syn-

thesis tool. It provides the forces and moments for stability and control as well as propul-

sion and performance analyses. Hence, it is expedient to use appropriate aerodynamic

analysis model to enhance the efficiency and effectiveness of the conceptual design tool.

This demand is increased for a novel aircraft concept like the BWB aircraft. This is

because there is currently no commercial transport BWB in operation. Consequently,

efficient statistical or data-sheet aerodynamic analysis methods are either not available

or unreliable. This increases the need for the use of computational aerodynamic models

based on fluid mechanics theory. These models are often pre - coded, stand - alone tools

requiring some form of geometric input for aerodynamic analysis model.

Pre - coded, external stand - alone tools impose the challenge of integrating software

probably created in one programming language into a design synthesis models developed

in a different programming language. The conceptual design tool described in this research

is being developed on the JAVA programming language environment. Java was chosen for

this tool because it is platform independent and an open source software which could be

downloaded at no extra cost from the internet. Additionally, JAVA is easy to learn with

great community support. JAVA is equipped with several features and rich Graphic User

Interface design properties which increases the flexibility, robustness and appeal. The use



3.3 Implementation of Disciplinary Modules 83

of JAVA presents a challenge of integrating the pre - coded aerodynamic analysis code,

often programmed in legacy codes, into the design environment.

Selection of a Suitable Aerodynamic Analysis Tool

Several aerodynamic analysis solvers with different levels of complexity and fidelity can

be employed in the design synthesis of the BWB Aircraft. Ordinarily, it would have been

preferred to utilize the full viscous Navier - Stokes equations enhanced by the addition of

turbulence model for aerodynamic analysis. This is because the Navier - Stokes code pro-

vides the most accurate prediction of aerodynamic forces and moments around complex

geometry with separated flows which may occur at high angles of attack [122]). However,

Navier - Stokes solvers are generally difficult to implement and computationally inefficient

especially when used in a multi-variate design synthesis optimisation.

Efficient flight is achieved by the use of smooth, streamlined shapes which avoid flow

separation and minimize viscous effects [123]. Hence, neglecting the viscous and heat -

conduction effects (diffusion terms) from the Navier - Stokes equations yields the inviscid

Euler equations. The inviscid Euler equations permit the solution of rotational, non -

isentropic shocks flows. They are therefore sufficiently accurate for the prediction of wave

drags due to their ability to capture the correct position of shock waves. However, Euler

solvers cannot predict viscous drag. They are also computationally expensive due to the

need to solve at least five coupled first - order partial differential equations. Euler and

Navier - Stokes solvers are therefore not suitable for the conceptual design phase where

speed is the essential requirement rather than accuracy. This creates the need for lower

fidelity but faster non - linear and linear potential flow solvers. A summary of the level

of fidelity, computational cost and accuracy is given in Figure 3.11.

Non - linear potential methods or the full potential flow equations determines the veloc-

ity of a flow from the gradient of a scalar component, the velocity potential [92]. They

are derived from the inviscid Euler equations by assuming the flow is irrotational. Non-

linear potential methods can model transonic flows with weak shocks as all compressibility

terms are included. However, it can neither be applied to flows with strong shock nor

regions with large vorticity such as leading edge vortices because such flows or profiles

are rotational and not isentropic [121]. Neglecting compressibility in the full potential

flow equations and assuming small transonic perturbation yields the Prandtl - Glauert

equations or linear potential equations [124, 125].

Both the linear and full potential equations are solved by panel or vortex lattice methods.
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Figure 3.11: Hierarchy of Aerodynamic Solvers with Corresponding Complexity and Com-
putational Cost [121]

Panel methods calculate the strength of singularities distributed over the entire actual

surface of a geometry of interest. They provide approximate solution that is fast and

easy to implement. The accuracy of a panel method could be enhanced by the use of

higher order modelling, introduction of lifting capability, solution of unsteady flows and

the addition of boundary layer effects [126].

The VLM like the panel methods solve the Laplace equations by calculating the strength

of singularities placed on the mean surface of a geometry of interest. VLMs differ from

panel methods in that they are oriented towards thin lifting surface and does not model

thickness while panel methods models have no thickness constraints. Consequently, VLMs

are not capable of predicting the effect of thickness on pressure distribution. The main

advantage of VLMs over panel methods is that its solution inherently contains the lead-

ing edge suction force. This ensures that induced drag could be calculated without using

the Trefftz - plane Theorem [125]. VLMs and panel methods cannot handle turbulence,

viscosity and flow separation. However they are easy to use and implement as well as com-

putationally efficient. Hence, they are widely used in the aircraft conceptual design phase.

Several open source panel methods and VLMs were surveyed for use in this research work.

These included XFLR5, WINGBODY, PANAIR and the Athena Vortex Lattice (AVL).

A summary of the comparison of the panel methods and VLMs is given in Table 3.3.

WINGBODY is a panel method designed for the analysis of simple 3D geometry. It is
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Table 3.3: Comparison of Some Open Source Windows Compatible Panel Methods and
VLMs.

Analysis Type Program Availability Modelling Outputs

Tool Language Capability

WingBody Panel FORTRAN Free Limited suite Forces and moments.
of airfoils.

Cannot model No derivatives.
complex sections

AVL VLM FORTRAN Free All geometry Forces and moments.
variables. Aerodynamic and

Easily model control surfaces stability derivatives.

XFLR5 VLM C++ Free All geometry Forces and moments.
variables. Aerodynamic and

Difficulty modelling control surfaces No stability derivatives.

Panair Panel FORTRAN Open source All geometry Forces and moments.
requires a variables. No derivatives.

pre-processor.

Tornado VLM Matlab open source All geometric Forces and moments .
Requires Matlab variables. Aerodynamic and

stability derivatives.

Apame Panel FORTRAN Free limited suite Forces and moments.
of airfoils. No derivatives.

freely available but cannot model aerodynamic twist, nor complex geometries with many

sections. PANAIR is a higher order panel method for supersonic and subsonic aerody-

namics analysis of complex 3-dimensional geometries. The code is freely available and

could be remotely operated but it has only few aerofoils in its suite. Consequently, it

cannot be used to investigate the effect of aerodynamic twist. Furthermore, a commercial

pre-processor (geometric modelling tool) needs to be procured in order to model flight

control surfaces as this feature is not available in the open source software.

XFLR5 is an open source aerodynamic suite containing VLMs and 3D panel method.

XFLR5 is capable of modelling geometric and aerodynamic twists as well as dihedral at

different angles of attack. However, it requires complicated geometric manipulation in

order to model control surfaces on a BWB aircraft. Additionally, the XFLR5 does not

explicitly provide the derivatives required for stability and control analysis.

The AVL method was developed by Mark Drela at the MIT. It uses VLM for the aero-

dynamic analysis of simple and complex geometry at subsonic condition. The program

is freely available, supports remote operation which is essential for automation and it is
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capable of investigating geometry and aerodynamic twists as well as effect of control sur-

face deflection on aerodynamic forces and moments. Furthermore, AVL provides stability

and control derivatives without requiring further manipulation.

In view of the superior characteristics of the AVL over the other VLMs surveyed, the

AVL was selected as the most suitable aerodynamic analysis solver for the GENUS Multi

- variate Design Synthesis Optimisation (GMDSO) tool. This is because, just like the

XFLR5, it is fast and provides remarkable insights into wing aerodynamics and compo-

nent interactions which are essential in the conceptual design synthesis and exploration

of the design space of a BWB. Equally important and unlike the XFLR5, the AVL easily

models control surfaces and provides linear stability analysis without requiring compli-

cated geometric manipulations.

The AVL is a legacy code programmed in FORTRAN, in order to integrate it into the

GMDSO Tool design environment, it needs to be modified and recompiled for automated

operation on WINDOWS Operating System (OS) without graphics. The steps to accom-

plishing this are explained in Appendix B.

Procedure for Modifying AVL for Automated Operation Without an External

Text File

Being able to recompile the AVL source code to operate on WINDOWS operating system

without a graphics provides the capability to manipulate it to perform intended objec-

tives. The AVL source code contains 37 FORTRAN files. However, in order to enable

automated operation from the JAVA environment without an input file only AVL.f, AIN-

PUT.f, AOPER.f, and the ASETUP.f files needs to be to be modified. The AVL.f is

the main file. It contains the ’Program’ statement used at the start of every FORTRAN

program to indicate the main file. In modifying the file for automated operation, the

’Program’ keyword is replaced with the ’Subroutine’ keyword thus allowing the AVL to

be initiated from outside FORTRAN. The edited AVL.f thus becomes a subroutine where

all relevant flight conditions and subroutines required to model and analyse the aircraft

geometry are defined and invoked.

The ’subroutine input’ within the AINPUT.f file is also edited to accept arguments directly

from JAVA by replacing the read statement requesting for user intervention with direct

substitution of required variables. With the input arguments and parameters set, the

AINPUT.f creates the aircraft geometry ready for aerodynamic analysis in the OPER.f.
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The ’subroutine OPER’ found within the OPER.f file is used for processing and aerody-

namic analysis of the geometry. Usually, it consists of a series of commands which are

usually triggered via an interactive prompt from a FORTRAN Compiler. However, in

order to allow for remote operation, the interactive process is edited to directly trigger

the execution of commands required to calculate the required aerodynamic forces and

moments as well stability and control derivatives. Subsequently, once the ’call OPER’ is

invoked from the AVL.f file, it will perform all necessary analysis, select and determine the

stability axis and derivatives as well as sends relevant output to the JAVA environment

without user intervention or input.

Critical to the execution of commands within the ’subroutine OPER’ are ’call exec’ and the

’call DERMATS’ commands. These commands activate the processes for the aerodynamic

analysis. Additionally, they initiate the transfer of aerodynamic forces and moments

as well as stability derivatives to the design environment. Originally, the forces and

moments are sent to a text file outside the operating environment. However, following

the modifications made to the source code, the desired outputs are relayed to the JAVA

programming environment via C++.

Integrating AVL into the Multi - variate Design Synthesis Optimisation Frame-

work

Integrating AVL aerodynamic analysis software into the multi - variate design synthesis

optimisation framework involves adapting AVL subroutines to allow for direct aerody-

namic analysis without request for an external geometry input file. This involves linking

the FORTRAN written AVL codes with the JAVA developed multi - variate conceptual

design synthesis models. Since, JAVA has no direct interface to FORTRAN, they are

linked through the Java Native Interface (JNI) using C++ programming language inter-

face as shown in Figure 3.12. The JNI is a set of tools/code used to call native methods

from JAVA [127].

Data, variables and arguments are transferred from JAVA to FORTRAN in the order

GUI → JavaCode → JNI → C++Code → FORTRANCode. The result from FORTRAN

is returned to JAVA environment in the reverse order. To permit interaction between

the codes, the JAVA code must contain a native method with a static call to a shared

library through the ”System.loadLibrary (”system library name”)” command. The ”sys-

tem library name” of shared library is platform dependent. In Windows, it is the name

given to the compiled and linked C++/FORTRAN file without the .dll extension. For

instance, given a compiled and linked C++/FORTRAN shared object file named ”cppFor-
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Figure 3.12: Framework for Integrating AVL into JAVA Using the JNI.

tranLinked.dll”, the ”system library name” defined above would be ”cppFortranLinked”.

The process of creating a shared object file for JAVA and FORTRAN codes are detailed

in Appendix C.

Determining Lift and Drag Coefficient Increments

Total drag consists of the profile and friction drag, wave drag and lift induced drag. The

AVL can only predict lift induced drag. Additionally, manipulating the AVL source code

to calculate lift and drag increments due to flap deflections at different phases of flight is

not trivial. Hence, a means of calculating zero - lift drag and increments to aerodynamic

forces due to deployments of the aircraft control surfaces needs to be provided. This is

required in order to accurately estimate the aerodynamic forces needed for performance

analysis. The aerodynamic forces determined in this way are the zero lift drag, wave drag

due to compressibility effects as well as the lift and drag increments due to deployment

of leading and trailing edge devices in different phases of flight.

According to Howe [110], zero lift drag, consisting of the profile, friction and wave drag due

to the volume of the aircraft, is a function of the Mach number and geometric parameters

such as the quarter chord sweep, aspect ratio and wing reference area. Accordingly, the
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zero lift drag is calculated from Equation 3.77.

Cdz = 0.005

(

1− 2cl
Rw

)

τ̄



1− 0.2MN + 0.12

{

MN (cos Λo.25)
0.5

(Af − t/c)

}20


RwTfS
−0.1 (3.77)

Where:

Af is the aerofoil factor which depends on the design of the aerofoil. Howe[110] estimates

this value to be approximately equal to 0.93 for specially designed advanced aerofoil and

0.75 for aerofoil designed for incompressible flow conditions.

MN is the Mach number.

cl is the fraction of chord over which the flow is laminar.

S is the reference area of the wing.

Λ0.25 is the sweep of the quarter chord.

t/c is the thickness to chord ratio.

Rw is the ratio of weighted area to reference area. Howe[19] estimate it to be 5.5 for

airliners.

Tf is the type factor which provides for the departure of the shape from the ideal. It

ranges between 1.1 - 1.2 [110] for jet airliners and executive jets.

S0.1 ranges from 0.5 - 0.58 for airliners.

τ̄ is the wing thickness correction factor. τ̄ is determined from Equation 3.78.

τ̄ =

[

(Rw − 2)

Rw
+

1.9

Rw

{

1 + 0.526

(

t

c
/0.25

)3
}]

(3.78)

τ̄ is often close to unity [110].

Wave drag is divided into two component, zero lift wave drag and wave drag due to lift.

Zero lift wave drag is already estimated in Equation 3.77, leaving only wave drag due to

lift. Wave drag due to lift is given by Equation 3.79.

CwL
= 0.12M6Cdi (3.79)

Here Cdi is the induced drag.

CwL
is lift dependent wave drag.

Drag and lift increments due to deployments of the control surfaces depends on the flight

profile and the extension and retraction of control surfaces and landing gears. With

the landing gears retracted and high lift devices deployed in take off setting, the drag
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increment due to the deployment of high lift devices in take off setting, Cdt, is obtained

from Equation 3.80.

Cdt = (0.03FF − 0.004) /A0.33 (3.80)

Here:

FF depends on the type of trailing edge device employed. According to Howe [110].

FF=1.0 for single slotted trailing edge flaps.

1.2 for double slotted trailing edge flaps.

1.5 for triple slotted or fowler flaps.

and 0.133 when there are no flaps. The drag increment for an extended landing gear is

0.03. For flaps at landing setting, the drag coefficient is estimated from Equation 3.81.

Cdland = 0.15FF /A
0.33 (3.81)

Similarly, maximum lift coefficient is approximated by adding empirically derived lift

increments due to the deployment of leading and trailing edge devices in landing and

take - off setting to the AVL produced lift coefficient of the clean configuration. The lift

increments in the landing setting is derived from Equation 3.82.

CLmax = CLAVL + (∆LEL +∆TEL) cos Λ0.25 (3.82)

CLAVL is the lift coefficient derived from AVL at the landing speed.

∆LEL is the lift increment due to the deployment of leading edge device in the landing

setting. It is typically taken as 0.65 when leading edge devices are deployed and zero in

the absence of leading edge devices [110].

∆TEL is the lift increment due to the deployment of trailing edge devices in the landing

setting. Its value depends on the type of trailing edge device deployed. Typical values

are listed in Table 3.4.

In the landing approach condition, the total lift coefficient is estimated from Equation

3.83 by adding the lift increments, due to the deployment of leading and trailing edge

devices in the landing setting, to the lift coefficient obtained from the AVL with a clean

configuration of the aircraft at a speed 1.3 times the stalling speed.

CLapp = CLAVLapp + 0.6 (∆LEL +∆TEL) cos Λ0.25 (3.83)
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Table 3.4: Typical Lift Increments from Deploying Leading and Trailing Edge Flaps [110]

Type of Flap Lift Coefficient Increments
∆TET ∆TEL

Plain 0.3 0.6

Single slotted 0.5 1.0

Double slotted and Fowler 0.7 1.35

Triple slotted 0.8 1.55

Similarly, in the take-off configuration, the total lift coefficient in take - off, CLTO, is

calculated from Equation 3.84.

CLTO = CLAVLTO + 0.8 (∆LET +∆TET ) cos Λ0.25 (3.84)

Where:

CLAVLTO is the lift coefficient derived from AVL at the take - off speed.

∆LET is the lift increment due to the deployment of leading edge devices in take - off

setting.

Typical value of ∆LET is 0.4 when leading edge devices are deployed in take-off setting

and zero when there are no leading edge devices [110].

∆TET is the increment due to the deployment of trailing edge devices in the take of

setting. Typical values of ∆TET are given in Table 3.4.

3.3.6 Packaging Module

Packaging is an essential module in the conceptual design synthesis of the BWB. It is

necessary for the determination of the centre of gravity of an aircraft which subsequently

affects the stability and control of the configuration and to ensure that internal object are

well contained within the geometry. Ensuring items are completely contained within the

geometry is critical in the design of the BWB due to the configuration’s non - uniform

cross - section. Packaging ensures there is sufficient internal space to fit all components
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within the confines of the geometry. The packaging module consists of sizing, estimation

of the centre of gravity, geometry parameterization and volume constraint handling.

Sizing

Sizing models determine the dimensions of major aircraft components. The aircraft com-

ponents sized in this thesis are the cabin, engines, landing gear and baggage compartment.

The cabin is sized from the Bradley cabin sizing method while the engine(s) is/are rubber-

scaled from selected nominal engine based on the desired thrust. Landing gear sizes were

developed from the maximum landing weight while the baggage compartments is derived

from the standard dimensions of conventional unit loading devices.

Cabin Sizing. The BWB passenger cabin is sized following the Bradley [63] sizing

method. This method first calculates the total length required as if to fit everything

into one bay before determining the appropriate number of bays. The Bradley [63] sizing

method proposes for lateral expansion of the BWB centre-body in order to maximise the

number of passengers that could be airlifted with minimal increase in root chord length.

In developing this methodology, Bradley selected a 3 × 3, 3 × 2 and 2 × 2 seating ar-

rangement in tourist, business and first class respectively. This arrangement was chosen

in order to maximise the number of passengers with the least width. Now, assuming a

nominal bay width of 12ft, to allow for wider seats and aisle widths beyond the current

maximum seat and aisle widths of approximately 18 inches and 20 inches respectively,

the total length required is determined from Equation 3.85.

lreq = (nfrws · fpch) + (nbrws · bpch) + (ntrws · tpch) + ((ngly + nlav)36) + (nclst · 12) (3.85)

Where:

lreq is length required [in] .

fpch is the pitch of first class seats [in].

bpch is the pitch of business class seats [in].

tpch is pitch of tourist class seats [in].

The the number of seat rows in the first class, nfrws, is calculated from Equation 3.86.

nfrws =
nfpax
nfabr

(3.86)

nfpax is the number of passengers in the first class.

nfabr is the number of seats abreast in the first class.
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Similarly, the number of seat rows in the business and tourist classes are determined from

Equation 3.87 and Equation 3.88 respectively.

nbrws =
nbpax
nbabr

(3.87)

nbpax is the number of business class passengers.

nbabr is the number of seats abreast in the business class.

ntrws =
ntpax
ntabr

(3.88)

ntpax is the number of passengers in the Tourist/Economy class passengers.

ntabr is the number of seats abreast in the Tourist class.

The number of galleys, ngly, number of lavatory, nlav, and number of closets, nclst, are

given by Equation 3.89, Equation 3.90 and Equation 3.91.

ngly = 1 +
nfpax + nbpax + ntpax

100
(3.89)

nlav =
(

1 +
ntpax
100

)

+

(

1 +
nfpax + nbpax

60

)

(3.90)

nclst = 1 +
nfpax
30

+
nbpax
45

+
ntpax
60

(3.91)

In determining the appropriate number of bays, the maximum length of the cabin outer

wall needs to be estimated. Knowing a BWB cabin blends into the outer wing, the root

chord of outer wing must be equal to the minimum chord of the outer ribs enclosing

the passenger compartment. Assuming a maximum thickness to chord ratio of 15 − 17%

in order to provide sufficient cabin height as well as ensure acceptable transonic perfor-

mance, a minimum outer rib chord length of 55ft(16.764m) is specified [63]. This yields

a depth of 8.2ft(2.5m). This depth provides sufficient internal space to accommodate the

upper and lower skin surfaces, passenger decks, internal furnishings and more than 95th

percentile of standing height of male passengers [63].

The BWB cabin extends from the leading edge to about 70% chord as shown in Figure

3.13. Hence, the specified minimum outer rib chord of 55ft would provide a useful cabin
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length of 38.5ft. Taking the centre - body as a linearly ruled surface, every 6ft increase

in length creates a correspondingly 12ft increase in span or an additional bay as shown

in Figure 3.14. Though this lateral expansion could be continued indefinitely, Bradley

[63] limits the number of bays in a single deck to 5 and set the maximum length of cabin

outer wall to 44.5ft. This is necessary in order to ensure that the resulting aircraft fits

within the 80 m limit for Class VI airport.

Figure 3.13: Planform View of BWB Geometry showing the Parameters used in Cabin Sizing

Figure 3.14: The BWB Cabin as a Ruled Surface

With the basic dimensions of the cabin determined, the maximum length for various num-

ber of bays at any given sweep angle can be calculated from Equation 3.92.



3.3 Implementation of Disciplinary Modules 95

ltot = nlw +
w

2
tanΛfuse

n
∑

i=1

(i− 1) [63] (3.92)

Where:

i is the number of bays.

lw is the maximum length of the outermost wall = 44.5ft.

ΛLE is the sweep angle of centre - body leading edge.

For instance for a cabin with a sweep angle of 45◦, the calculated maximum useful length

for various number of bays is listed in Table 3.5.

Table 3.5: Maximum Useful Length for Certain Number of Bays

Number of Bays Maximum Length (ft)

1 44.5
2 95.5
3 151.5
4 214.0
5 282. 5

Matching the values of total length required to the maximum length for various number

of bays, the appropriate number of bays is determined. From the number of bays and the

nominal width of each bay, the width of cabin is calculated as given in Equation 3.93.

wcabin = wbay · nbay[63] (3.93)

Where:

wcabin is the width of cabin .

wbay is the width of each bay .

nbay is the number of bays.

The actual length of the outermost wall of the pressurised cabin is derived by replacing

ltot in Equation 3.92 with lreq and solving for lw. This yields Equation 3.94.

lwactual
=









lreq − wea

2 tan Λfuse
n
∑

i=1
(i− 1)

n









[63] (3.94)
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Where:

lwactual
is the length of the outermost wall of the pressurised cabin.

The walls of each bay are of different length. Breaking each bay into 2 columns, the

length of each column represents the length of the outboard wall of each bay. Since there

are always 2 columns of equal length by symmetry, columns of equal lengths can be re-

combined into equivalent bays as shown in Figure 3.15. Subsequently, the lengths of the

centreline and outer - walls of each column are calculated.

Figure 3.15: Converting Seating Areas into Equivalent Bays. [63]

The length of BWB cabin centreline is a function of the number of bays, leading edge

sweep angle of the centre - body, length of outer - wall and the width of each bay. It is

determined from Equation 3.95.

xlp = lwactual
+
wea
2

tan Λfusenbays[63] (3.95)

Now, assuming the outer walls of the columns are numbered consecutively from the cen-

treline, q = 0 to q = nfuse outwards, the length of the outer wall of each column xlea, is

obtained from Equation 3.96.

xlea = xlp − q
(wea

2
· tanΛfuse

)

(3.96)
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Engine Sizing. The engine is rubber scaled from a reference engine to determine the

dimensions required to provide the desired thrust. Rubber scaling involves calculating

the thrust required for efficient performance of the aircraft and then scaling an already

existing engine by a scale factor to dimensions required to provide the desired thrust [107].

Scale factor is obtained from Equations 3.97.

TSF =
Treq

neng · TengRef
[128] (3.97)

Where:

TSF is the thrust scale factor.

neng is the number of engines.

Treq is the thrust required.

TengRef is the reference engine thrust.

Length and diameter of engines are calculated from Equations 3.98 and 3.99 respectively.

leng = lengRef · T 0.4
SF [128] (3.98)

Where:

leng is the length of engines.

lengRef is the length of reference engine.

diaeng = diaengRef · T 0.5
SF [128] (3.99)

Where:

diaeng is the diameter of engines.

diaengRef is the diameter of reference engine.

Landing Gear Bay. The landing gear is another very important component affecting

the packaging of BWB. The landing gear is sized as a function of the MLM as given in

Equation 3.100.

lLG =

(

MLM

kc2LG

)kexpc2LG

(3.100)

Where:

MLM is the Maximum Landing Mass.

lLG is the total length of landing gear.
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kc2LG is a constant in correlation to landing gear length.

kexpc2LG is the exponential constant in relation to landing gear length.

Subsequently, the length of nose gear, lNG , and main landing gears lMG are determined

as a function of statistically determined ratios of nose gear to main gear and main gear

to nose gear as given in Equations 3.101 and 3.102 respectively.

lNG =
(ltLG · rNG2MG)

(rNG2MG + 2)
(3.101)

Where:

rNG2MG is the ratio of nose gear to main gear.

lMG = 0.5 · (ltLG − lNG) (3.102)

The diameter and width of main and nose wheel are important parameter in the estimation

of the length, height and width of landing gear bays. The diameter of main and nose wheel

is estimated by Equations 3.103 and 3.104.

diamwl = fc2mwl ·MLM + kc2mwl (3.103)

Where:

diamwl is the diameter of main wheel.

fc2mwl is the factor in correlation to main wheel.

kc2mwl is constant in correlation to main wheel.

dianwl = fc2nwl ·MLM + kc2nwl (3.104)

Where:

dianwl is the diameter of nose wheel.

fc2nwl is factor in correlation to nose wheel.

kc2nwl is the constant in correlation to nose wheel.

The width of nose wheel is taken as 0.432m, while the width of main wheel is determined

from Equation 3.105.

wmwl = fc2mwl ·MLM + kc2wmwl (3.105)



3.3 Implementation of Disciplinary Modules 99

Where:

wmwl is the width of main wheel.

fc2mwl is factor in correlation to main wheel.

kc2wmwl is the constant in correlation to width of main wheel.

The length of main bay, lmbay , and nose bay, lnbay , are determined from Equations 3.106

and 3.107 respectively.

lmbay = 0.5 · diamwl + lMG (3.106)

Where:

diamwl is the diameter of main wheel.

lMG is the length of main gear.

lnbay = 0.5 · dianwl + lNG (3.107)

Where:

dianwl is the diameter of nose wheel.

lNG is the length of nose gear.

Similarly, the width of main bay, wmbay , and nose bay, wnbay , could be determined by

Equations 3.108 and 3.109 respectively.

wmbay = fmwlwklr · wmwl (3.108)

Where:

fmwlwklr is the clearance factor in relation to main wheel.

wmwl is the width of main wheel.

wnbay = fnwlwklr · wnwl (3.109)

Where:

fnwlwklr is the clearance factor in relation to nose wheel.

wnwl is the width of nose wheel.

The height of the main bay, hmbay , and nose bay, hnbay are then determined by Equations

3.110 and 3.111.

hmbay = fmwldklr · diamwl (3.110)
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Where:

fmwldklr is the main wheel diameter clearance factor.

diamwl is the diameter of main wheel.

hmbay = fnwldklr · dianwl (3.111)

Where:

fnwldklr is the nose wheel diameter clearance factor.

dianwl is the diameter of nose wheel.

3.3.7 Determination of the Aircraft Centre of Gravity

In order to determine the centre of gravity of the whole aircraft, the location of the centre

of gravity of major aircraft components needs to be calculated. For most components,

the centre of gravity is located at the centre of the component. However, the mass of the

structure of the BWB is assumed to act at the centre of volume of the wing [129]. The

centre of volume is defined as the distance aft of the x - position of the mean quarter

chord point, ¯̄x1/4, as a fraction of the MAC.

According to Lovell [130], the centre of gravity location as a fraction of the wing root

centre - line chord, for each panel of a multi - crank wing, is determined from Equation

3.112.

cgp =

[

1

56

{

13−
(

27λ2 + 1.75AR(1 − λ2)
(

1 + 4λ+ λ2
)

tanΛ0.25

)

(1 + λ+ λ2)2

}]

(3.112)

Where :

cgp is the centre of gravity location of each panel in a multi - kinked wings.

For a multi - kinked wing, this fraction is combined with the weighted area of each panel

as given in Equation 3.113 to obtain the location of the centre of gravity of a multi - kink

wing.

cgw =
m+1
∑

i=1

Sicgpi−1

Si
(3.113)

Where: cgw is the location of the centre of gravity of a multi - cranked wing.

Si is the total surface area of each trapezoidal panel.
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i is the index of panels, starting from the outer panel.

m is the number of kinks.

Converting the location of the wing centre of gravity location to a fraction of the MAC

gives Equation 3.114.

cgmac =
(cgw × cr)− ¯̄x1/4

¯̄c
(3.114)

With the masses and sizes of major aircraft components determined, the centre of grav-

ity of the complete aircraft is estimated by dividing the pitching moment with relevant

weights of the aircraft. However, the pitching moment can only be determined when the

positions of items within the geometry are known. The 3 common internal arrangements

proposed for the BWB commercial passenger transport is shown in Figure 3.16.

Figure 3.16: Common Internal Arrangements of a BWB Commercial Passenger Transport
Aircraft

With the foregoing arrangements, the total pitching moment from aircraft nose with

empty mass is found as given in Equation 3.115.

MOMmtom = (meng × [0.65c0 + 0.5 × leng])+
(

(mfuse +mwing)
[

¯̄x1/4 + (cgmac × ¯̄c)
])

+

((mLG +mhydr) [0.6× ¯̄c]) + (mpayload [0.25c0 × (0.5× lcabin)]) +

([mIAE +mAPI +mAPU +mfltcon]× (0.5 × 0.25c0))+

((mops +mfurn)× [0.25c0 + 0.5lcabin]) + (melec × [0.25 × c0])+

(mfuel × [0.25c0 + 0.5lcabin]) (3.115)

c0 is the wing centre - line chord.

Hence, the distance of the aircraft centre of gravity from the aircraft nose with MTOM
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is given by Equation 3.116.

cgmtom =
MOMmtom

MTOM
(3.116)

Similarly, the the distance of the aircraft centre of gravity from the aircraft nose with

OEM is given by Equation 3.117.

cgoem =
MOMoem

OEM
(3.117)

The total pitching moment from the aircraft nose with OEM, MOMOEM is obtained

from Equation 3.115 by removing contributions from payload and fuel. This leads to the

expressions in Equation 3.118.

MOMoem = (meng × [0.65c0 + 0.5× leng]) +
(

(mfuse +mwing)
[

¯̄x1/4 + (cgmac × ¯̄c)
])

+

((mLG +mhydr) [0.6× ¯̄c]) +

([mIAE +mAPI +mAPU +mfltcon]× (0.5 × 0.25c0))+

((mops +mfurn)× [0.25c0 + 0.5lcabin]) + (melec × [0.25 × c0]) (3.118)

The aircraft centre of gravity from the nose with zero fuel mass is derived from Equation

3.119.

cgzfm =
MOMzfm

ZFM
(3.119)

The moment from the nose of the aircraft with ZFM is derived from Equation 3.118 by

adding the contributions of the total pitching moment of the payload. This yields the

expression given in Equation 3.120.

MOMoem = (meng × [0.65c0 + 0.5× leng]) +
(

(mfuse +mwing)
[

¯̄x1/4 + (cgmac × ¯̄c)
])

+

((mLG +mhydr) [0.6× ¯̄c]) +

(mpayload [0.25c0 × (0.5 × lcabin)])+

([mIAE +mAPI +mAPU +mfltcon]× (0.5 × 0.25c0))+

((mops +mfurn)× [0.25c0 + 0.5lcabin]) + (melec × [0.25 × c0]) (3.120)

The results from Equations 3.116, 3.117 and 3.119 gives the centre of gravity range for
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the aircraft with the minimum being the forward CG and the maximum value being the

aft CG.

Geometry Parameterisation

Geometry parameterisation provides a mathematical description of the aircraft geome-

try. Parameterisation is used in the conceptual design synthesis of the BWB in order

to generate a polynomial representation of the geometry. This permits the detection

and avoidance of interference between internally placed components and the external ge-

ometry early in the conceptual design phase. According to Kulfan [131, 132], a good

parameterisation technique must provide smooth and physically realisable shapes using

computationally efficient and numerically stable process that is accurate and consistent.

The technique should also be intuitive to permit the manipulation of a geometry using

few design variables [131, 132].

Kulfan and Bussoletti [131] reviewed several parameterisation techniques for shape design

optimisation including the discrete, polynomial and spline, Bezier curve, orthogonally de-

rived basis function and free-form deformation techniques. The study finds neither of these

methods appropriate for a shape design optimisation because they are either computa-

tionally expensive or incapable of smoothly modelling complex geometries. Consequently,

they developed the Class Shape Function Transformation (CST) [131–133] technique. The

CST parameterisation technique consists of 2 functions; the Class function and the Shape

function. The class function defines the general class of geometry while the shape function

ensures an analytically well - behaved mathematical function [132].

The Class function is defined by Equation 3.121.

c
N1

N2
(ψ) = (ψ)N1(1− ψ)N2 (3.121)

Where N1 = 0.5 and N2 = 1 for the round nose and aft pointed airfoil [131–133].

ψ is the non dimensional airfoil coordinate.

ψ ranges from 0 to 1.

The shape function can be implemented using either the Bernstein polynomial or B-spline

functions. Using Bernstein polynomial, the shape function is a product of the summation

of unknown coefficients, Ai, and Bernstein polynomial terms. For a 2 - Dimensional (2D)
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airfoil with upper and lower curves, the shape function for the upper curve , Sui, is defined

by Equation 3.122.

Sui(ψ) =
N
∑

i=1

Aui · Si(ψ) (3.122)

Where:

Si is the Bernstein polynomial terms given by Equation 3.123 as:

Aui is the upper curve coefficient.

Si = kiψ
i(1− ψ)N−i (3.123)

Where:

N is the order of the Bernstein polynomial,

and ki =
N !

i!(N−i)! [131].

Combining the class and shape function, the equation for the upper curve of a 2D airfoil

is given in Equation 3.124.

ζu(ψ) = c
N1

N2
(ψ)Sui(ψ) + ψ∆ζupper (3.124)

where ζupper, is the upper curve trailing edge thickness defined by ∆zuTE

c .

The CST for a 3 - Dimensional (3D) wing is derived from the 2D form by distributing

airfoil sections across the wing span [132] and supplementing the class and shape functions

for 2D airfoil with twist and local wing shear variables. The parameters used in deriving

the CST of a 3D wing are shown in Fig 3.17.

The parameters are applied to the design of an arbitrary wing upper surface by Equation

3.125.

ζu(ψ, η) = c
N1

N2
(ψ)

Nx
∑

i

Ny
∑

j

[Bui,jSyj(η)Sxi(ψ)]

+ ψ [ζT (η)− tanαT (η)] + ζN (η) (3.125)

Where:

The stream - wise shape function Sxi(ψ) is defined by:
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Figure 3.17: Parameters used in 3D Wing CST Derivation. [132]

Sxi(ψ) = kxiψ
i(1− ψ)Nx−i for i = 0 to Nx

Nx is the order of the Bernstein polynomial in the stream - wise direction.

kxi, the stream - wise binomial coefficient, is given by:

kxi =
Nx!

i!(Nx−i)! .

The span - wise shape function, Syj(η) is derived from:

Syj(η) = kyjη
j(1− η)Ny−j for j = 0 to Ny

With kyj , the span - wise binomial coefficient given by:

kyj =
Ny!

j!(Ny−j)! ,

and Bui,j, the matrix of upper surface coefficient.

Similarly, the wing lower surface is defined by Equation 3.126.

ζL(ψ, η) = C
N1

N2
(ψ)

Nx
∑

i

Ny
∑

j

[Bli,jSyj(η)Sxi(ψ)]

+ ψ (ζT (η)− tanαT (η)) + ζN (η) (3.126)
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These matrices of upper and lower surface coefficients are used as design variables which

are determined from optimisation routines.

Where :

Bli,j is the matrix of lower surface coefficients.

ψ is the wing non - dimensional local chord x-coordinate derived from Equation 3.127.

ψ ranges from 0 to 1.

ψ =
x− xLE(η)

c(η)
(3.127)

Where:

xLE(η), is the local leading edge coordinate at each span - station.

and c(η), is the local chord length at each span - station.

η, the non - dimensional half - span station which also ranges from 0 to 1.

η is determined from Equation 3.128.

η =
2y

b
(3.128)

Non - dimensional upper surface coordinate, ζu(η) is defined by Equation 3.129.

ζu(η) =
zu(η)

c(η)
(3.129)

While, ζN (η), the non - dimensional local wing shear is obtained from Equation 3.130.

ζN (η) =
zN (η)

c(η)
(3.130)

ζT (η), is the local wing trailing edge thickness.

αT (η), is the local wing twist angle.

To ensure the continuity of surface around the leading edge, Kulfan[132] proposed that

Bl0,j = Bu0,j.

The physical x, y and z - ordinates of a wing are subsequently obtained by:
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y = bη
2

x = ψcloc(η) + xle(η)

zu(x, y) = ζu(ψ, η)cloc(η)

zl(x, y) = ζl(ψ, η)cloc(η)

Volume Constraint Handling

Volume constraint can be handled either by interference detection and correction or by

curve fitting.

Interference detection and correction. The interference detection method detects

collision by comparing the physical z − coordinates, zi(pxi, pyi), of the CST curves ob-

tained using the x and y vertices, (pxi, pyi), of internal objects with the z − coordinate,

that is the pzi of the object.

Assuming internal objects are enclosed in a rectangular bounding box to reduce complex-

ity, interference detection is implemented by converting physical coordinates, pxi, pyi,

of all vertices of the bounding boxes into its non - dimensionalised values ψ, η. These

values are then used to generate the CST polynomial functions ζi(ψ, η) of the upper and

lower surfaces. The ζi(ψpxi , ηpyi) representing the wing surfaces at all span stations are

subsequently converted into the physical z − coordinate, zi(xi, yi), and compared with

corresponding objects z − coordinates, pzi to assess interference. If the CST derived up-

per surface physical z − coordinates, zi(x, y), is greater than the objects z − coordinate,

pzi, the item is inside the geometry, otherwise it is interfering with the boundaries of the

external geometry at such position(s). The reverse is the case with the lower surface.

For instance, given an object with vertices (pxi, pyi, pzi), the object is properly enclosed

if zupperi(pxi, pyi) is greater than pzi at the point of interest on the surface of the ge-

ometry and less than zloweri(pxi, pyi). Conversely, objects are outside the geometry if

zupperi(pxi, pyi) is less than pzi at determined point on the surface of the geometry and

greater than zloweri(pxi, pyi).

It is imperative to note that the interference detection described here detects only internal

objects violation on the vertical or normal axis z − axis. Longitudinal(stream-wise) and

lateral(span-wise) interference detection is done using the chords and span of the airplane

respectively. Additionally, since it would be computationally expensive to parametrically

define all curves at every possible span stations on the wing, intersection of objects lying

between 2 span stations are determined by interpolating the curves bounding the affected
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span station. Notwithstanding, in order to improve accuracy, it is essential for the greatest

distance between parameterised span stations to be less than the least width of internal

objects within the geometry. In this way only one side of any object can lie between 2

span stations at any time rather than the complete object.

Interpolation between 2 span stations is implemented by determining the physical z-

coordinate of the bounding span stations zi(px
∗, pyi) and zi+1(px

∗, pyi+1) and then ap-

plying the linear interpolation theorem stated in Equation 3.131 to determine the over-

lapping object, z∗. The z∗ obtained is then compared with the actual z-coordinate of the

object, pz∗ to determine if object interferes with geometry or is well enclosed.

z∗ = zi +
(zi+1 − zi)(y

∗ − yi)

yi+1 − yi
(3.131)

Knowing that a CST parameterisation is given in terms of ψ and η, the physical coordi-

nates or vertices of internal objects is converted to the non - dimensionalised form required

for CST parameterisation by first converting pyi and pxi into η and ψ using Equations

3.132 and 3.133 respectively.

η =
2pyi
b

(3.132)

ψ =
pxi − xLE(η)

clocal(η)
(3.133)

where :

The local leading edge x-coordinate is a function of the sweep angle and obtained as:

xLE(η) = η × tanΛLE

b is the wing span.

The η and ψ obtained are subsequently substituted into Equations 3.134 and 3.135 to

determine the physical upper and lower surface z − coordinates, zupperi(xi, yi) and

zloweri(xi, yi), respectively required for interference detection.

zu(x, y) = ζu(ψ, η)cloc(η) (3.134)

zl(x, y) = ζl(ψ, η)cloc(η) (3.135)
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Curve fitting. Curve fitting is performed by scaling a curve with the right shape to

ensure that it goes through the vertices of the bounding boxes of the internal geometry.

Generating a curve with the right shape could be done by either the variation method or

the use of coefficients. Assuming the coordinates of the 2 upper vertices of a bounding

box enclosing an internal object are given by (ψ1,ζ1) and (ψ2,ζ2), the method of variation

involves varying the N1 exponent of the class function and keeping the N2 exponent

constant to obtain Equation 3.136.

ψ1
N1fit(1− ψ1) =

ζ1
ζ2
ψ2

N1fit(1− ψ2) (3.136)

Solving for N1fit gives Equation 3.137.

N1fit =
log

[

ζ1(1−ψ2)
ζ2(1−ψ1)

]

log
(

ψ1

ψ2

) (3.137)

Applying the value obtained from Equation 3.137 gives the generalised class function

given in Equation 3.138. This generalised class function is then used to creates a curve

with the right shape.

(ψ1)
N1fit(1− ψ1)

N2 (3.138)

The method of coefficients involves scaling the class function with two coefficients a and

b as given in the simultaneous equations in Equation 3.139.







(ψ1)
N1(1− ψ1)

N2 · [a(1− ψ1) + bψ1] = ζ1

(ψ2)
N1(1− ψ2)

N2 · [a(1− ψ2) + bψ2] = ζ2
(3.139)

Solving the simultaneous equations and applying the obtained coefficients to a generalised

class function, creates a curve with the right shape using Equation 3.140.

(ψ)N1(1− ψ)N2 · [a(1− ψ) + bψ] (3.140)

Having obtained the curves with the right shape, the curves are made to go through the

vertices of the bounding box by scaling it using ζbb/zetagen.

Where:

ζbb is the non - dimensionalised value of z at the vertices of the box bounding the internal

objects.
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ζgen is the non - dimensionalised value derived from the generalised form of the curve

fitting equation.

This research applied the curve fitting volume constraint handling method for packaging

because they directly ensure that internal objects are well contained without first checking

for interference detection.

3.4 Chapter Summary

This Chapter describes the theories of disciplinary models used in the developed synthesis

and optimisation tool. The GMDSO Tool couples a Class II component weight estimation

method incorporating the Bradley and Howe BWB structural mass estimation models

with a vortex lattice aerodynamic analysis model and CST parameterisation packaging

module to create a synthesis model for the fast, accurate design and analysis of the BWB.

This ensures that items are well fitted and positioned within the confines of the geometry

to provide an appropriate centre of gravity.



Chapter 4

Performance and Stability Analysis

The performance and stability analysis are conducted to investigate the stability, control-

lability and flying qualities as well as assess if an aircraft is sufficiently able to fulfil the

mission for which it was designed. The stability analysis implemented in this research

evaluates the static margin and trim characteristics of the aeroplane. The performance

analysis on the other hand consists of point and mission performance. The point per-

formance assesses the ability of the aircraft to perform required manoeuvres during its

mission. Point performance calculations performed in the GMDSO Tool includes field

performance, climb gradients and thrust required at various mission segments. Mission

performance on the other hand determines the bulk fuel as well as the ability of the

aircraft to achieve a specific range. The mission performance is used to determine the

distance travelled during a mission, duration required and the fuel burnt during that

mission. This Chapter will discuss the algorithms employed in calculating various perfor-

mance and stability characteristics of a BWB in the development of the multi - variate

design synthesis tool.

4.1 Performance Analysis

A typical mission profile for a commercial air transport consists of the main mission and

a reserve mission. The main mission consists of the take-off, climb, cruise, descent and

landing as shown in Figure 4.1. The main mission is the typical mission profile of a

commercial aircraft under normal conditions without delays or any incidents. However,

due to unforeseen circumstances, traffic congestion or weather related incidents, etc, a

commercial flight may deviate from its intended mission to an alternate aerodrome. The

111
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reserve mission profile comprises all the flight phases described in the main mission,

however, the cruise range is limited and its often flown at 10000 ft. In this thesis, the

reserve mission consist of missed approach, climb to diversion cruise altitude of 10000 ft,

cruise for a range of 200 nm, hold at 5000 ft, descent to 1000 ft, approach and landing as

shown in Figure 4.2.

Figure 4.1: Typical Main Mission Profile of a Commercial Transport Aircraft

The reserve mission profile determines the reserve and regulatory fuel need

Figure 4.2: Typical Reserve Mission Profile of a Commercial Transport Aircraft
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4.1.1 Take-off

In analysing the field performance, the mass of fuel consumed, time spent and distance

travelled within each phase are determined. The manoeuvres during take - off consists of

the ground roll, transition to climb and climb to 1500 ft. The ground roll measures the

distance from the start of take - off to the point of lift - off. It is estimated by Equation

4.1.

sg =
1

2gKA
ln

[(

KT +KA × V 2
LOF

)

/KT

]

[115] (4.1)

Where :

g is the acceleration due to gravity in m/s.

KA =
ρ(−(a+bCL

2)+µCL
2)

2MTOM/Sref
[115]

KT = T
MTOM×g − µ [115]

µ, the runway coefficient of friction.

µ = 0.02 for paved runway. [115]

ρ is the density in kg/m3.

VLOF is the lift off speed in m/s. VLOF = 1.1Vstall.

(a+ bCL
2) = CD.

CL is the lift coefficient.

T is the thrust in N .

The transition to climb refers to the portion of the take-off manoeuvre during which the

aircraft accelerates from lift - off speed(VLOF ) to the Take - off Climb Speed(V2) [115].

The transition speed(Vt) is given as the average of lift-off speed and the take-off climb

speed. This is expressed mathematically in Equation 4.2.

Vt = 0.5× (VLOF + V2) [115] (4.2)

The aircraft is assumed to fly with a lift coefficient equal to 0.9×CLmax and a load factor

(n), given by Equation 4.3.

n = 1 +
V 2
t

rg
[115] (4.3)

The radius of arc(r) is determined from Equation 4.4.
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r =
V 2
t

[g(n − 1)]
[115] (4.4)

The height at the end of transition(ht) is calculated from Equation 4.5.

ht = r × γ2/2 [115] (4.5)

where:

γ is the flight path angle.

If the ht is greater than the screen height(hs) then the distance to the screen height (ss),

is calculated from Equation 4.6.

ss =
[

(r + hs)
2 − r2

]0.5
[115] (4.6)

Where:

subscript s is the screen height.

subcript t denotes transition height.

Subsequently, the total distance required for take-off(distTO) is obtained from Equation

4.7. The factor of 1.15 is included in the equation to account for pilot and operational

variations [115].

distTO = 1.15× (sg + ss) [111] (4.7)

If ht less than the hs, then the total take-off distance is derived from the summation of

the ground roll distance, distance in transition and climb distance multiplied by a factor

of 1.15 as given in Equation 4.8.

distTO = 1.15 × (sg + st + sc) [111] (4.8)

The ground distance to transition height(sgt) is calculated from Equation 4.9.

sgt = r × γ (4.9)
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The ground distance from end of transition to screen height (sgs) is determined from

Equation 4.10.

sgs =
(hs − ht)

tan γ
[115] (4.10)

Where:

ht is greater than hs, then the ts is given by Equation 4.11.

ts =
2ss

VLOF + V2
[115] (4.11)

After transition, the aircraft enters the take - off climb also known as the initial climb.

The take-off climb profile is often split into 4 main segments. These are the 0 - 35 (ft),

35 - 400ft, 400ft, 400+ft and 1500 ft. The definition of the various segments including

the operating conditions and required gradients are given in Table 4.1.

Table 4.1: Definition of Climb Segments

Gradient (%) number of engines

Segment Height(ft) Flap LG Ratings 2 3 4

1st 0-35 TO Down TO +ve 0.3 0.5
2nd 400 TO Up TO 2.4 2.7 3.0
3rd 400+ variable Up Max. cont. level acceleration
4th 1500 En-route Up Max. cont. 1.2 1.5 1.7

The take-off climb of civil transport aircraft is often defined by the second segment climb

requirements. In the second segment climb, the aircraft must demonstrate the the ability

to achieve the minimum climb rate specified in Table 4.1 at a speed equal to or greater

than 15 percent above the stall speed with one engine inoperative.

4.1.2 Take-off One Engine Inoperative

Take-off performance analysis in the one engine inoperative condition is undertaken to

asses the runway length required for safe manoeuvre of the aircraft in the case of en-

gine failure during take-off. Usually, pilot could, subject to the time of occurrence of

the failure, either continue the take-off and fly away on the remaining engines or apply

emergency braking and bring the aircraft to a stop. These are the ’accelerate - go’ and

’accelerate - stop’. The common distance at which the ’accelerate - go’ distance equals

the ’accelerate - stop’ distance is referred to as the Balanced Field Length (BFL).
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The BFL is calculated using exactly same equations as the all engine operative condition

up to the point of engine failure. Subsequently, using a pilot reaction time of two seconds

and accounting for the expected increase in drag due to the failed engine in the ’accelerate

- go’ condition as well as the performance and limitations of the braking system in the

’accelerate - go’ condition, the BFL is calculated from a range of speeds at which the

engine fails.

In this research, the engine failure speed used ranged from V1 to V2. The critical engine

failure speed (V1), is taken as v1 = 0.8VS while V2 = 1.2VS . Applying Equation 4.1 to

the engine failure speed range, the distances to each engine failure speed are determined.

Giving a typical pilot reaction time of 2s, the distance travelled in the reaction time is

obtained through the relationship given in Equation 4.12.

s2s = V1 × 2 (4.12)

Next, the distance from the end of reaction time to lift off speed is calculated. This is

obtained by first estimating the mean speed during transition for each of the assumed

critical engine speed using Equation 4.13.

Vmean = (V1 + VLOF ) /2 (4.13)

The am is obtained from Equation 4.14.

am = (T/W − µ) + (ρ/(2MTOM × g/Sref ))
[

(CD − µCL)× Vmean
2
]

[115] (4.14)

Where:

The drag coefficient (CD) consists of the asymmetric and wind - milling drag in addition

to the induced and profile drag. The profile drag must account for the increments in

take-off configuration.

The asymmetric drag coefficient or windmill drag, cdassy, is obtained from Equation 4.15.

cdassy =
0.3 × (0.0254 × ((0.037 × (mflow × 2.21)) + 32.2))

Sref
[115] (4.15)

Now, dividing the difference between lift - off speed and each of the critical engine speeds



4.1 Performance Analysis 117

by the associated aircraft acceleration, as given in Equation 4.16, the change in time is

obtained.

dt = (VLOF − v1)/am (4.16)

The distance travelled within this time, dt, is calculated from Equation 4.17.

∆s = dt× Vmean (4.17)

The distance covered during transition from lift - off to climb and from transition to

screen height are determined in the same way as the all engine condition.

The accelerate - go distance(saccgo) is thus given by Equation 4.18.

saccgo = sgoei + s2s +∆+sToei + ssoei (4.18)

The subscript, oei denotes one engine inoperative. This indicates that the variable is

determined in the one engine inoperative condition using the specific engine failure or

mean speed as required.

The accelerate - stop distance (saccstop) is derived from Equation 4.1 for the different

critical speeds within the chosen failure speed range.

Having determined the ’accelerate - stop’ and ’accelerate - go’ distances, the BFL is ob-

tained by plotting these distances against the square of the engine failure speeds. The

point where the 2 curves intersects gives the BFL on the distance axis and the critical

speed on engine failure speeds axis.

Other variables determined in take-off analysis are the time used and mass of fuel con-

sumed. The time used for take-off is determined from Equation 4.19.

t = dist/speed (4.19)

tg is given by tg =
2sg

VLOF
.

tt is given by tt =
2st

VLOF
.

tc is given by tc =
2sc

VLOF+V2
.
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The mass of fuel used for take - off (mfuelTO), is determined from Equation 4.20.

mfuelTO = T × SFC × t (4.20)

Where:

T is the thrust at the given condition.

SFC is the specific fuel consumption.

t is time used in seconds.

4.1.3 En-route Climb

Aircraft rarely climb directly from take-off to cruise altitude due to air traffic control

restrictions and to enable a good rate and gradient of climb. Often, climb is split into

several parts. The main parts are the 1500 - 10000 ft and from 10000 ft to the cruise

altitude. In this research, the en-route climb is extended to include climb to the following

segments: 35 - 1500 ft, 1500-5000 ft, 5000 - 15000 ft calculated at a mean height of

10000 ft, 15000 - 25000 ft calculated at a mean height of 20000 ft and 25000ft - cruise

altitude. The flight characteristics during the take - off and each segment of the en -route

climb phase are shown in Figure 4.3.

Within each of the climb segment, the time, distance and mass of fuel used are calculated.

The distance travelled during climb(sec) is determined from Equation 4.21.

sec = VTAS × tcl (4.21)

Where:

tec is calculated from tcl =
hcl
ROC .

hcl is the climb height.

ROC is estimated from ROC = VTAS × sin γ.

VTAS is the true airspeed.

γ the climb gradient is derived from:

γ = T
MTOM×g −

CD

CL

The thrust at maximum continuous setting(TmaxCont) is calculated from Equation 4.22.

TmaxCont = T × σ0.8 (4.22)

Where:

The subscript, maxCont, denotes maximum continuous rating.
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Figure 4.3: Flight Characteristics in the Different Segments of the Enroute Climb Phase

σ is the relative density.

T is the static thrust.

The mass of fuel at any flight condition is determined from the product of static thrust,

specific consumption and time as given in Equation 4.23.

mfuelcon = T × SFC × t (4.23)

4.1.4 Cruise

The cruise phase is a crucial part of an civil transport aircraft mission profile. This is

because the aircraft usually spends the most time in cruising flight. The ability to assess

the cruise performance of an aircraft is therefore vital to assessing the performance of an

aircraft.

Aircraft can cruise in 3 different ways. These are the constant angle of attack - constant

Mach number cruise; constant angle of attack - constant altitude cruise; and the constant
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altitude - constant Mach number cruise. The constant angle of attack - constant Mach

number cruise, also known as the cruise - climb technique, requires the aircraft to climb

during the cruise in order to maintain the power/thrust to weight ratio. The cruise - climb

method gives the best range for a given mass of fuel [134]. However, due to Air Traffic

Control (ATC), constraints and the need to provide vertical separations between aircraft

in different directions, aircraft cannot be allowed to change direction indiscriminately in

flight [134].

Cruising at constant angle of attack, constant altitude gives maximum range but increases

the need to continuously reduce the airspeed to compensate for the decrease in aircraft

weight [134]. This cruise approach tends to increase the time of flight which could nul-

lify any advantage the method may have [134]. Nonetheless, this method is suitable for

surveillance operation where endurance is more important than distance travelled [134].

In the constant altitude, constant Mach number cruise, the angle of attack is decreased

with decrease in weight in order to maintain the weight to lift ratio. This is the preferred

method for commercial airline operation. The range flown by aircraft using this method

is derived from Equation 4.24.

R =

[

Vmdi
SFC

Emax

]

2ui

{

tan−1

[

1

ui2

]

− tan−1

[

1

ωui2

]}

[134] (4.24)

Where:

R is the cruise range.

Emax is the maximum endurance.

ui is the relative speed.

The relative speed, ui, is the ratio of the cruise speed to the minimum drag speed as

expressed in Equation 4.25.

ui =
Vcr
Vmdi

(4.25)

Where:

Vmdi is the minimum drag speed.

Vcr is the cruise speed.
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Hence, taking an optimum relative speed of 1.316 [134], the minimum drag speed is

calculated from Equation 4.26.

Vmdi =
Vcr
1.316

(4.26)

Maximum endurance, Emax is derived from Equation 4.27.

Emax =
1

2(Cd0K)
1

2

(4.27)

Where:

Cd0 is the zero lift drag coefficient.

K is the induced drag correction factor.

The induced drag correction factor, K, is inversely proportional to the wing aspect ratio,

AR, and the Oswald efficiency factor,(e). The induced drag corrector, K, is obtained

from Equation 4.28.

K =
1

πeAR
(4.28)

The Oswald efficiency factor, e, varies with the AR and the leading edge sweep angle.

According to Sadraey [135], the e is determined from Equation 4.29.

e = 4.61
(

1− 0.045AR0.68
)

[cos (ΛLE)]
0.15 − 3.1 (4.29)

Substituting into Equation 4.24, the fuel weight ratio, ω, in cruise is estimated in terms

of the range function, (Rf ), by Equation 4.30.

ω =
1

tan
[

tan−1
[

1
ui2

]

− R
Rf×2ui

]

ui2
[134] (4.30)

The range function, Rf , is obtained from Equation 4.31.

Rf =
VmdiEmax
SFC

(4.31)

According to Eshelby [134], ω equal 1.5 for very long range aircraft, 1.3 for medium range

aircraft and 1.1 for short range aircraft. Knowing the fuel weight ratio, ω, and the mass of
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the aircraft at the beginning of cruise, wicr, the mass of the aircraft at the end of cruise,

mfcr, is calculated from Equation 4.32.

wf =
wi
ω

(4.32)

Subsequently, the weight of fuel consumed in cruise is derived from Equation 4.33.

wfcr = wi − wf (4.33)

The time required for cruise is calculated from Equation 4.34.

t = R/VTAS (4.34)

4.1.5 Descent

The descent from cruise to landing consists of 3 phases. The en-route descent, descent in

the terminal area and the final approach. A requirement in descent is that the aircraft

must not descend at a rate that could increase cabin pressure beyond 300 ft/min [134].

Consequently, given that the cabin of a civil transport aircraft is pressurised to 8000 ft

pressure height. Assuming the pressure is increased from 8000 ft in cruise to 1000 ft at

the terminal boundary, the minimum time in descent is determined from Equation 4.35

to obtain 23.3 min.

tmintd =
8000 − 1000

300
(4.35)

Therefore, the average Rate of Descent (ROD), from cruise altitude to 25000 ft calculated

at the mean altitude is given by Equation 4.36.

ROD =
dH

tmintd
(4.36)

Given the descent speed and knowing the ROD and aircraft mass in that stage of descent,

the gradient of descent is obtained from Equation 4.37.

sin γ =
dH/dt

VTAS
(4.37)
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The Tdesc is derived from Equation 4.38.

Tdesc =

(

CD
CL

+ sin γ

)

×mh × 9.81 [134] (4.38)

mh is the mass at the given height.

The time required for descent is subsequently determined from Equation 4.39.

tdesc =
dH

ROD
(4.39)

Distance flown in the descent stage is determined from Equation 4.40.

sdesc = VTAS × tdesc × cos γ [134]. (4.40)

The mass of fuel required for descent, mfueldesc, for each stage of the descent phase is

determined from Equation 4.41.

mfueldesc = Tdesc × tdesc × SFC (4.41)

This is done for all stages within the en-route descent phase.

In the descent phase of the Terminal Manoeuvring Area (TMA), an aircraft is flown on

ATC speed of 165 KEAS with flaps in the landing setting, landing gear extended and

engine thrust adjusted to provide the rate of descent required necessary to maintain the

flight path to the final approach.

Given the distance from the TMA to the touchdown point, sTMA, the distance to the

start of final approach, sFA, and the descent gradient, γdesc, the height at the start of

final approach,hFA, is calculated by Equation 4.42.

hFA = sFA × tan γdesc (4.42)

Assuming the height at the entry to the TMA, hTMA, is known, the mean gradient at the

TMA, gradmean, is determined from Equation 4.43.

gradmean =
hTMA − hFA
sTMA − sFA

(4.43)
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Taken the hTMA to be 5000 ft (1524 m), an aircraft needs to decelerate from a certain

deceleration speed, VTMA5000, to a suitable speed of VTMA at the hFA. This phase of

the flight is performed with flap in the take-off setting and the landing gear extended.

The distance covered to decelerate, sdesc, from VTMA5000 to VTMA is determined from

Equation 4.44.

sdesc =
mTMA

2Fmean

(

VTMA
2 − VTMA5000

2

σ

)

(4.44)

Where :

Fmean = T −D + (MTOM × g sin γ) .

mTMA is the mass of the aircraft at the entry of the TMA.

The time expended in the TMA, tTMA, is obtained from Equation 4.45.

tTMA =
2sdescσ

1

2

Ve1 + Ve2
(4.45)

Where: Ve1 is the equivalent airspeed at the entry to the TMA at a height of 5000 ft.

Ve2 is the equivalent airspeed at the start of the final approach in the TMA.

Equivalent airspeed (EAS), is derived from true airspeed (TAS), by the relation given in

Equation 4.46.

VEAS = VTAS × σ
1

2 (4.46)

4.1.6 Landing

The landing phase of flight includes descent from the screen height of 50 ft(15 m) at idle

thrust until touch down. The touch down speed is estimated to be slightly above the

stall speed. In this research, touch - down speed is derived from Vtd = (Vs + 5) m/s. Idle

thrust, (Tid), is assumed to be 1000N [134]. The total landing distance is the sum of the

air and ground distance covered during landing.

The air distance in landing (saland), is calculated from Equation 4.47.

saland = − −MTOM × g

([Tid × neng]−D)av

{

Vapp
2 − Vtd

2

2g
+ 15

}

[134] (4.47)



4.1 Performance Analysis 125

Where:

subscript land designates variable in landing phase.

subscript id designates variable in idle mode.

neng is the number of engines.

subscript eng represents engine.

subscript cr denotes variable in the cruise phase.

Vapp is the approach speed.Vtd is the touch down speed.g is acceleration due to gravity-

subscript td represent the given variable in touch down.

subscript app denotes approach.

The ground run distance in landing (sgland) is estimated from Equation 4.48.

sgland =
1

2gB
ln

(

BV 2 +A
)

[134] (4.48)

Where:

BV 2 +A =
[

ρSrefCL

(2×MTOM×g)

(

CD

CL
− µ

)

V 2
{

[µ+ sin γ]− T
(MTOM×g)

}]

[134].

The ground run is evaluated at 0.7Vtd.

B = ρSCL

(2×MTOM×g)

(

CD

CL

)

[134].

A = µ− T
(MTOM×g) [134].

4.1.7 Diversion and Reserves

Diversion is included in the mission performance analysis in order to provide for unlikely

diversion to an alternative airfield due to destination airfield being unavailable for landing.

The Diversion phase involves climb to the decision height from the final approach, cruise

and descent to the alternate airfield. The diversion fuel and time are thus calculated in

the same way as corresponding segments of the main flight phases.

Reserve fuel includes regulatory and contingency fuel. Regulatory fuel is fuel for 45 min-

utes cruise calculated with landing weight and best endurance speed [134]. Contingency

reserve is usually determined by the aircraft operator as a percentage of the trip fuel

required for flight between departure and destination. In this research contingency fuel

is taken as 10 % of the trip fuel [134].

Knowing the landing weight, the mass of regulatory fuel(mfuelreg) is determined from
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Equation 4.49.

mfuelreg = Treg × SFC × 45× 60 (4.49)

The regulatory thrust (Treg), is calculated from Equation 4.50.

Treg =
MLW × g

(CL/CD)max
(4.50)

In this research, the diversion schedule involve cruise of 200 nm to the diversion airfield

at an altitude of 10000 ft. Consequently, the diversion phase involves climb from the

decision height to the diversion altitude, cruise to the diversion airfield, descent to 5000

ft in the TMA and subsequently to the final approach for landing. The mass of fuel,

distance travelled and time expended in this phase is calculated in the same way as the

corresponding segment of main flight phase.

4.2 Stability

The BWB has good aerodynamic potentials but fairly complicated stability challenges

arising from the low moment arm and poor trim characteristics. This research assesses

the longitudinal static stability of a BWB by determining the static margins and trim

characteristics.

4.2.1 Static Margin

Static margin is a concept used to characterise the degree of static stability and controlla-

bility of the aircraft. Static margin is defined as the distance between the center of gravity

and the neutral point of the aircraft. Applying classical stability theory to the free - body

diagram shown in Figure 4.4, the pitching moment of a tailless aircraft in a trimmed,

quasi- steady flight at constant mass, normal atmosphere and without compressibility

effects for small angles of attack, assuming moments due to power plant and the centre

of gravity due to normal displacement are negligible, is given by Equation 4.51.

Cmcg = Cm0
+CL(h− h0) = 0 (4.51)

Taking h = xcg and h0 = xac, Equation 4.52 is derived.

Cmcg = Cm0
+ CL(xcg − xac) = 0 (4.52)
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Where :

Cmcg is the coefficient of moment about the centre of gravity.

Cm0
is the zero lift pitching moment.

xcg is the cg position on the mean aerodynamic chord.

xac is the aerodynamic centre location on the mean aerodynamic chord.

Differentiating Equation 4.52 with respect to α gives Equation 4.53.

δCmcg

δα
= (xcg − xac)

δCL
δα

(4.53)

Rewriting Equation 4.53 in terms of static stability derivatives gives Equation 4.54.

Cmα = CLα (xcg − xac) (4.54)

But xac − xcg is also known as stability margin, Kn. Making Kn the subject leads to

Equation 4.55.

Kn = −Cmα

CLα

(4.55)

Figure 4.4: Forces and Moments acting on an Aircraft

To guarantee good stability, it is essential for an aircraft to be longitudinally static stable.

An aircraft is longitudinally static stable if it has a positive static margin Kn [136, 137].
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This implies from Equation 4.55, therefore, that longitudinal static stability is achieved

when the design satisfies Equation 4.56.

Cmα

CLα

< 0 (4.56)

4.2.2 Trim Characteristic

Trim characteristics determines the elevon deflections necessary to trim an aircraft in

operating flight envelope. This criterion is particularly expedient for a BWB design

due to its short moment arm and tailless nature. According to Castro [138, 139], a BWB

aircraft trim characteristics is assessed by its trim angle of attack and the elevon deflection

angle for trim. Castro [138, 139] defined the trim angle of attack, αtrim by Equation 4.57

and elevon deflection for trim by Equation 4.58.

αtrim =
CKCLδe

− CBCmδe

Det
(4.57)

δetrim =
CBCmα − CLαCK

Det
(4.58)

Where:

CK = −Cm0 − Cmβ
β

CB = CLtrim
− CL0 − CLβ

β

Det = CLδe
Cmα −CLαCmδe

¯Cm0 is the basic pitching moment at zero degree angle of attack.

Cmβ
β is the pitching moment due to elevon trim tab deflections.

CLβ
β is the lift coefficient derivative due to elevon trim tab deflections.

CLδe
is the lift coefficient derivative due to elevon deflections.

Cmα is the pitching moment coefficient derivative with respect to angle of attack.

CLα is the lift coefficient derivative with respect to angle of attack.

CL0 is the lift coefficient at zero degree angle of attack.

CLtrim
, the trim lift coefficient, is obtained from Equation 4.59.

CLtrim
=

W
1
2ρV

2S
(4.59)

W is the weight of the aircraft [N] at the given flight phase.
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Assuming no trim tabs are used, since tailless aircraft rarely have them [140], then:

CK = −C̄
m0

CB = CLtrim
− CL0

4.2.3 Framework for Design Synthesis and Optimisation

The models developed in this chapter and the preceding chapter are coupled for the

conceptual design synthesis of a BWB according to the flow-chart shown in Figure 4.5.

Subsequently, the design synthesis and analysis models are combined with an optimiser,

as shown in Figure 4.6, to permit the exploration of the BWB design space.

Figure 4.5: Flow - Chart for a Conceptual Design Synthesis and Analysis of a BWB Aircraft.
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Figure 4.6: Framework for the Design Synthesis and Optimisation of a BWB Aircraft.

4.3 Chapter Summary

This Chapter describes the implementation of the stability and performance analysis

modules of the design synthesis tool as well as the framework for coupling developed

disciplinary models. The 2 modules are treated separately from the methodology Chapter

because they are analysis module which depends on the disciplinary modules implemented

in the preceding Chapter for its action. The performance module estimate the mission

and point performance in full engine operative and one engine - inoperative conditions.

The stability module on the other hands assesses the static margin, trim characteristics

and the ride quality.



Chapter 5

Structure of the Multi-variate Design

Synthesis Tool

This Chapter presents an overview of the synthesis and optimisation process for the de-

veloped GMDSO Tool. The tool is implemented through a large JAVA code containing

various isolated modules. The modules are integrated with an optimiser which manip-

ulates design variables to ensure constraints are met and optimal objective function is

realised. The arrangement of modules, data flow and operation of the tool are explained

in the following sections.

5.1 Top Level Requirements for GENUS Aircraft Design

Software

The need to develop computational design synthesis tool that permits the re - use of design

processes led to the development of the multi - variate design synthesis optimisation soft-

ware code-named ’GENUS’. The GENUS Multi - variate Design Synthesis Optimisation

Tool integrates disciplinary models in a modular, expandable, flexible and independent

arrangement.

The modularity arrangement ensures disciplinary modules are implemented in a self -

contained, independent, clearly - separated blocks of code. This reduces debugging diffi-

culties and enables the efficient modification of any module without recourse to the whole

program. Additionally, it allows the use of more than one technique in any disciplinary

131
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module. For example one can have different ways to predict aerodynamic coefficients.

One module could implement empirical method or integrate a physics based code. A

knowledgeable user could then select either of the different techniques to meet the re-

quirements of the design synthesis.

The program’s expandability is intended to ensure the number of modules could be in-

creased to any desired number with the requisite level of detail or fidelity for the intended

aircraft design phase. Though the software is designed primarily to be used for conceptual

design, with expandability, relevant parts of the software could be modified accordingly to

support preliminary or even the detailed design phase depending on the available compu-

tational power. Further to the foregoing, the JAVA programming languages can handle

dynamic memory allocation thus providing infinite expandability as opposed to legacy

languages such as Fortran 77, where the whole program has to be loaded into the mem-

ory before execution.

Flexibility entails the ability of the tool to be used for the design of any aerospace vehi-

cle. This requires high levels of abstraction towards representation and implementation.

For this reason, lifting surfaces are used to define all aerospace systems with lifting sur-

face geometric parts rather than wings which could restrict the application of the tool.

Furthermore, the use of JAVA programming language which supports abstraction and

polymorphism also helps the tool to achieve sufficient flexibility.

Independence and sustainability are also important requirements for the GENUS soft-

ware. This is derived from the need to avoid any dependency on proprietary software.

Proprietary software is expensive and require manufacturer’s permission to modify any

aspect of the code. Any form of dependency on proprietary software increases the cost

of development and exposes GENUS to the risk of becoming obsolete in the case of the

proprietary software being discontinued. In order to avoid this, the GMDSO Tool was

developed in a well established programming language that is freely distributed with great

potential for future growth.

5.2 Selection of a Suitable Programming Language for GMDSO

Tool

A wide range of programming language is available for the development of the GMDSO

tool. Generally, there are two main categories of programming languages; the compiler

and interpreter languages. A compiler language refers to programming language, where
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the typed instructions are assembled, linked and subsequently converted into machine

code which the computer can execute directly from the host Central Processing Unit

(CPU). Interpreter languages are not compiled into an object code but rather rely on

interpreter programs or virtual machines to interpret and execute the commands one af-

ter the other. Generally compiled languages tend to run faster, as they can be directly

executed and do not have the ”interpretation overhead”.

There are several programming languages that could be used in the development of the

GMDSO Tool. According to the Institute of Electrical and Electronics Engineers (IEEE),

the 2015 Top 10 programming language in order of their popularity are shown in Table

5.1. Although, generally regarded as the language of technical computing, FORTRAN is

not listed in the top 10 programming language for 2015. Nonetheless, it is expedient that

any program chosen for the implementation of GENUS should be able to interface with

FORTRAN. This is because several legacy programs which could enhance the capacity

and capability of the developed tool are written in FORTRAN. These includes NASA

and U.S Air Force codes as well as such other codes like the AVL and DATCOM amongst

others.

Based on the requirements for the GMDSO Tool, the programming language adopted is

JAVA. JAVA was chosen because its a general purpose programming language that is

easy to learn with good potential for future growth and longevity. Additionally, JAVA

easily interfaces with several other programming languages in the top 10 such as Python,

C/C++/C as well as with Fortran through the C/C++ interface using the JNI. Also,

JAVA is platform independent and benefits from a wide range of support resources from

several programming communities such as the StackOverflow and CodeRanch amongst

others. Most notably, JAVA is an object oriented program with dynamic memory alloca-

tion. It is free to use and considerably faster than most interpreter language. The JAVA

programming language also supports abstraction and polymorphism.

JAVA was implemented in the Netbeans Integrated Development Environment (IDE).

The NetBeans IDE is a text editor that enables quick and easy development of JAVA

applications. It consists of editors, code analysers and a converter to enable smart editing

and rapid search through multiple applications at the same time. NetBeans IDE facilitates

efficient project management by providing different views of data, from multiple project

windows to helpful tools for setting up applications. Additionally, the NetBeans IDE

enables rapid Graphic User Interface (GUI) development through the use of editors and

the drag - and - drop tools in the IDE. Furthermore, NetBeans provides static analysis

tools for identifying and fixing common problems in JAVA code.
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Table 5.1: 2015 Top 10 Programming Languages

Rank Name Properties Introduction

1 JAVA Compiler 1995
General purpose, concurrent,
class-based, object oriented,

2 C Compiler 1972
General Purpose, imperative

3 C++ Compiler 1983
General purpose, imperative,

object -oriented, generic features
4 Python Interpreter 1991

High level, general-purpose,
object-oriented, imperative

functional
5 C# Compiler 2000

Multi-paradigm programming, involves much typing
imperative, declarative, functional

generic,object-oriented, component-oriented
6 R Interpreted 1993

object oriented, supports matrix arithmetic,
procedural programming,generic

7 PHP Interpreter 1995
Server-side scripting language,

General purpose
8 JavaScript Interpreter

Dynamic language,
mainly used as part of a web browser

9 Ruby Interpreter 1995
Dynamic, reflective, object-oriented,

general purpose
10 Matlab Interpreter 1984

Multi paradigm, numerical computing environment

5.3 Overview of GMDSO Tool

The GMDSO Tool consist of 9 essential disciplinary modules. These modules are the

mission specification, geometry, propulsion specification, mass breakdown, aerodynam-

ics, propulsion, packaging and centre of gravity, performance, stability and control. In

addition to the essential modules, the design program can have any number of ”spe-

cial modules”. The special modules represent modules that are unique and specific to a

given aircraft type. This includes, for instance, modules used in calculating solar radia-

tion intensity for solar powered aircraft, but are not required for the design of any other

aerospace vehicles.
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The essential modules and any special module are integrated with an optimiser to create

a GMDSO Tool with nice interactive GUI. An outline of the data flow between the GUI,

the modules and the optimizer is shown in Figure 5.1.

Figure 5.1: Data Flow for the GMDSO Tool.

The Figure 5.1 shows the exchange of data between the various modules in the design

synthesis framework and the Optimiser. From Figure 5.1, it could be seen that the

GMDSO Tool is designed to enable users to input and extract values as well as set up

optimization processes through a GUI. The GUI also offers users the ability to select an

objective function and define the constraints and design variables. Based on the objective

and the constraints, the user could set up the external variables and define the internal

variable for the optimiser. Internal variables are those variables which the optimiser can

control while external variable are variable that are pre-set by the programmer or entered

as inputs.

5.4 The Design Program

The GMDSO Tool is created around a set of internal and external variables, INPUTS,

OUTPUTS and RESULTS and models. Internal variables are those sets of variables that

directly controls the behaviour of a model. As stated earlier, internal variables are often

the design variables in an optimisation process. External variables on the other hand are
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parameters used to interact with the operation of the program.

INPUTS refer collectively to the variables used to control the behaviour of a module.

Inputs could be integers like the number of passengers or power - plants; double precision

real numbers; or a list which enables the user choose from a selection of pre-defined op-

tions.

OUTPUTS are the responses synthesised from the input variables within a disciplinary

module. Outputs are available to be used during optimisation, either as the objective

function or as constraints.

RESULTS, just like outputs, are derived from the manipulation of inputs within the dis-

ciplinary modules. They are available to the user for post - processing or analysis. It

could be in the form of numbers, text, images or videos amongst others. Unlike outputs,

RESULTS have no effect on the optimization process. However, they can be further pro-

cessed by the user to create plots or analysed in their raw forms for reports. A module

can write out its OUTPUTS as part of the RESULTS.

Models are the blocks of codes within a module used to describe physical processes. A

model could range from a few lines of code to tens of thousands of lines. While models

could be self-contained it could also contain method(s) that call(s) or invoke some external

program(s). A model could also be blank module without performing any computation.

Blank models are however implemented only when other modules do not rely on its results.

It worthy to note that a model must not require direct input from the user or optimizer

nor provide outputs or results. This is often the case with aerodynamics module using

empirical equations that are based on geometry and require no special settings. Such

module would not have an input. Nonetheless, there needs to be outputs or results from

such models otherwise the user will not have any information from the given module.

Unless, such modules are created to support the function of another module, they are not

desirable.

The structure of the design modules in the GMDSO Tool showing data interactions be-

tween the 9 essential modules is shown in Figure 5.2. The GMDSO Tool is designed to

produce a single instance of aerospace vehicle design using its current set of inputs (both

internal and external). Consequently, the GMDSO Tool is made to be robust in order

to be able to produce a design for all potential combinations of input variables. The
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colouring is consistent with Figure 5.1 to aid the identification of the module location

within the GMDSO framework. The arrows show the direction of data flow within the

design program.

Figure 5.2: Interaction Between Modules in the GMDSO Tool

Generally, aircraft design is an inverse process. This implies that the desired outcome

is known ahead of the design process, but not the inputs. However, it is quite difficult

to reverse engineer a design due to the coupling between disciplines and the non - linear

relationships between desired outputs and inputs. Though, human ingenuity could esti-

mate the desired output, computers often produce a desired design through the process

of assume inputs, synthesis, evaluate and iterate until the desired output is obtained.

Computers are able to do this because of the increase in computing power which enables

modern computers to perform about 177× 109 floating point operations per second [141].

A diagrammatic comparison of human vs computer design process is shown in Figure 5.3.

The ’iterate’ task in Figure 5.3 is performed by an optimiser in the Computer-based design

process. The optimiser iterates and prescribe new sets of inputs for the design. These new

inputs, set within reasonable bounds determined by a knowledgeable user, are used by the

design program to produce several outputs for any single instance of the design. In order

to ensure results are always generated, the design program must be robust, otherwise the

optimizer will not be able to drive the process. This involves some form of fail safe option
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Figure 5.3: Computer-based (top) vs Human Intuitive Design Process(bottom)

within the program to ensure that careless or wrong inputs, does not crash the program.

For instance, if an indiscriminate input combination results in an infeasible aircraft, it is

required that this does not stop the program from completing the design process, even if

the result is rather meaningless.

Despite the robustness of a program, it is absolutely necessary to constrain the design to

yield a feasible or acceptable product. Constraint analysis routines is used to determine if

a constraint is satisfied and if not, by what extent it is from the desired value. Due to the

different tolerance required for different outputs within the GMDSO Tool, constraints are

analysed by Equation 5.1. The Equation 5.1 scales the constraint to ensure an acceptable

tolerance is obtained with different category of constraints.

Constrainti =
valuetargeti − valuecalculatedi

valuetargeti
(5.1)

5.5 The GMDSO Tool GUI

The GMDSO GUI is created with the JAVA native Swing GUI. The GUI enables a

knowledgeable user select the modules, set the inputs, select internal variables, objective

function and constraints. The GUI could be used to trigger single and optimisation run

and view results in text format. The various parts of a GUI are shown in Figures 5.4, 5.5,

5.6 and 5.7.
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Figure 5.4: Selection of Modules in the GMDSO Tool.

Figure 5.5: Setting Inputs in the GMDSO Tool.
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Figure 5.6: Output Frame Showing Selection of Objective Function and Constraints for
Optimisation.

Figure 5.7: Optimisation Frame Showing Constraint Definition.

5.6 Data Flow in the GMDSO Tool

In the development of the GMDSO Tool, a standard format is created to ensure uniform

coding and eliminate time programmers might have spent developing their own format.
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The standard format to which all modules must conform to include features such as the

method to write inputs to be displayed in the GUI called ’writeInputArray’ and another

method for setting the module from the GUI inputs known as the ’setModule’.

The inputs to modules within the GMDSO Tool are chosen by the programmer. However,

these inputs must be methodically defined to allow optimisers vary them without human

intervention. Additionally, the modules could be executed during a single instance of

design to perform its function without an optimiser. The single instance of the program

determines the OUTPUT and provides RESULTS of the modules from the default values

of inputs set in the constructor. For example, single instance of the program could be

initiated to determine the aerodynamic coefficients from the initial geometry specified in

the geometry module.

In addition to the methods mentioned, each module must include the following features:

Name: Name is the identifier that enables a user select the appropriate module from the

module selection pane. The name does not have to be unique.

ID: ID refers to the numerical identifier, denoting the position of a module in the ’select-

edModules’ array. It has to be unique and conform with the numbering for the 9 essential

modules.

Besides, ’Name and ID’, every module must contain the following boolean variables:

hasInputs: ’hasInput’ is a Boolean variable that specifies if the GUI has to display and

set inputs for this module.

hasOutputs: ’hasOutputs’ is Boolean variable describing whether the module has any

outputs to be used by the optimizer.

hasResults: Similarly, ’hasResults’ is a Boolean, describing whether the module is ex-

pected to produce text result for the user.

isExecutable: ’isExecutable’ is a Boolean variable used to specify whether the module

has to be executed during a single instance of design or not. A module is executable if it

provides OUTPUTs that used in subsequent parts of the program or RESULTS. However,
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if the module does not calculate anything nor produce OUTPUTs, such module need not

be executed. In this case all the changes to the model occurs when the module is set from

the GUI.

Both execution and setting are sequenced in the order of conceptual design synthesis in

the ’selectedModules’ array. The modules are ordered from 0 to 8, with the geometry

executed first, given order 0 and stability executed last given order number 8 as shown

in Figure 5.8. The Figure 5.8 also shows the flow of data within the 9 essential modules.

Detailed description of individual modules is given in Appendix D.

Figure 5.8: Flow of Data in the GMDSO Tool.

5.7 Chapter Summary

In this Chapter, the overall structure of the developed GMDSO Tool showing the selection

and data flow between modules are described. The GMDSO Tool consists of 9 essential

modules applicable to all designs irrespective of the configuration. The design of the

GMDSO Tool also allows for the integration of special modules which are only applicable

to certain categories or designs of aircraft. For instance, power management module

in solar - powered aircraft. All modules comprise a set of INPUTS, OUTPUTS and

RESULTS. INPUTS are user defined or set by default. INPUTS drives the synthesis

or act as design variables in the optimisation routine. OUTPUTS are used as objective
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functions or constraints in optimisation process while RESULTS are data presented for

the purpose of reports and analysis.





Chapter 6

Results, Discussions and Analysis

In this Chapter, the results obtained from various applications of the developed GMDSO

tool in the conceptual design synthesis and analysis of a BWB is presented. These re-

sults includes a quasi-validation to verify the accuracy of the developed models, design

improvements using the multi - variate optimisation capability of the GMDSO Tool and

sensitivity analysis to explore the design space of the BWB aircraft.

6.1 Quasi - validation of the GMDSO Tool

The developed tool is validated to ensure the integrity and establish a measure of reliability

on the techniques and models implemented in the GMDSO tool. In the absence of any

commercial passenger transport BWB aircraft and paucity of verified data, only a partial

validation using available data from studies by notable research institutions is possible.

This is termed quasi-validation because there is no means of ascertaining the accuracy

of the data from such researches. In this research, data used for validation is obtained

from the 2011 Cranfield University [32], Aerospace Vehicle Design (AVD), Group Design

Project specification of a BWB aircraft. The aircraft developed from this Cranfield study

is referred to as the BW-11 [32].

6.1.1 Geometry Module

The BW - 11 is designed to airlift 555 passengers in a 3 class seating arrangement over a

range of 7620 nautical mile (14,167.8 km) at a cruising speed of M 0.85. The Geometry

145
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Module of the GMDSO Tool defines the configuration using body component and lift-

ing surface geometry parts. The lifting surface geometry parts is used to describe lifting

surfaces such as wings, horizontal and vertical tails as well as canards while the body

component parts specify fuselage, tail boom and nacelles amongst other. In order to val-

idate the GMDSO Tool, the Geometry Module models a tailless BWB configuration, the

BW - 11 [32], with the specifications given in Table 6.1. The BW-11 as described in the

project specification [32] consists of 8 kinked sections. However, in order to reduce mod-

elling complexities, the Geometry Module implements the BW - 11 with only 5 sections

by eliminating 3 superfluous kinks.

Table 6.1: BW - 11 Semi - span Geometry Specification

Section [-] y[m] Chord [m] Λ[◦] Γ [◦] twist [◦] t/c[-]

1 0 48 63 0 2.7 0.165
2 13 22 38.3 0 -0.3 0.12
3 17.5 14.69 38.3 1.5 0.5 0.09
4 23.5 9.95 38.3 3 0.9 0.08
5 38.75 4.23 38.3 3 -2.7 0.08

The model derived from the geometry specification in Table 6.1 is visualised using the free

plotting software, gnuplot, embedded in the GMDSO tool. The plot obtained is given in

Figure 6.1.

Figure 6.1: BW -11 Tailless Aircraft Pre - coded in the GMDSO Tool Geometry Module.

Running a half span of the test geometry through the GMDSO tool geometry module
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yields the geometric properties which are compared with similar outputs from the AVL,

the XFLR5 and the data from the BW - 11 project specification handbook [32] in Table

6.2. An analysis of the data shows that the GMDSO Tool Geometry Module produces

results that are consistent with the other modelling tools investigated except for the ref-

erence area. The reason for the difference in reference area could be due to modelling

imperfections arising from the fact that the implemented geometry data were derived from

a picture rather than any actual data or probably due to round - off errors. Nonetheless,

the GMDSO tool generates more outputs than the other geometry modelling tools. In ad-

dition to the standard geometry outputs of span and reference surface area, the GMDSO

tool also provides total surface volume. These quantities are invaluable quantities in the

packaging module for conventional aircraft.

Table 6.2: Comparison of the GMDSO Tool Geometry Results with the AVL, XFLR5 and
Test Data

Variables [-] BW - 11 Specification GMDSO XFLR5 AVL

Reference Area [m2] 1390.6 1439.2 1439.2 1439.2
Span [m2] 77.5 77.5 77.5 77.5

Volume [m3] - 10712 - -

The GMDSO Tool’s geometry module is designed to enable a knowledgeable user, through

the GUI, create any BWB configuration by selecting and inputting the dimensions of the

required geometry parts. In addition to the customised option, the Geometry Module also

provides 3 pre - defined configurations. Besides the tailless BW - 11 used for validating the

design tool, the Module also generates a BWB aircraft with winglets and a conventional

tube and wing aircraft. These pre - defined configurations were included to allow for fast

rapid analysis of the design and enable comparison across platforms in order to explore

the design space. The gnuplot representation of the pre - defined configuration showing

a BWB with winglets and a conventional A320 aircraft are shown in Figures 6.2 and 6.3

respectively.
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Figure 6.2: BWB Geometry with Winglets Pre - coded in the Geometry Module.

Figure 6.3: A Conventional A320 Class of Aircraft Pre -coded in the Geometry Module.

6.1.2 Mass Module

To validate the mass models implemented in the GMDSO tool, the module is decoupled

from the aerodynamic, performance and stability analysis models. This is necessary in

order to reduce the run - time of the program. Most components masses were estimated

as a function of the MTOM. Thus, in order to determine the MTOM and hence the

masses of the various components, a mini optimisation problem is created. The objective

of this mini optimisation problem is to minimise the calculated MTOM by varying the

estimated MTOM while ensuring that the difference between the estimated and the cal-

culated MTOM is zero.

Two structural or airframe mass estimation methods and 3 optimisers were implemented

in the GMDSO Tool. The structural mass prediction methods are the Bradley and Howe

methods while the optimisers are the gradient based LSGRG2, the non - gradient based

Genetic Algorithm (GA)and a combined gradient and non-gradient optimiser referred to

as the Hybrid optimiser. The Bradley method distinguishes between the masses of the
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wing and centre - body (fuselage). However, this distinction is not very clear in the the

Howe method. The Howe method estimates the structural mass from the masses of the

inner and outer wings together with penalty factors for departure from the ideal and

allowance for the secondary structure [19]. Though, it is reasonably expected that the

inner wing performs fuselage function, the different characterisation between the 2 meth-

ods could affect their prediction of component masses.

Since, the wing is clearly defined in both methods, the challenge is to determine the mass

of the fuselage in the Howe method in order to provide a consistent breakdown of masses to

enable the assessment of the component masses. Hence, assuming the mass of the fuselage,

in the Howe method, is the sum of the masses of the inner wing and fuselage function

mass penalty, the results obtained using the LSGRG2 optimiser for mass estimation with

Howe structural mass method is shown in Figure 6.4. The Figure 6.4 is the GMDSO

Tool’s GUI presentation of the optimisation routine for the determination of the MTOM.

It shows the problem set, the design variable as well as the variations of the objective

function with number of iterations until an optimum is achieved.

Figure 6.4: LSGRG2 Optimisation for Mass Estimation with the Howe Structural Mass
Method

Similar results are obtained using the LSGRG2 optimiser for mass estimation with the

Bradley structural masses. However, in order to highlight the multi - features of the

GMDSO Tool, a different view of the result is shown in Figure 6.5. The view shows the

selection pane to the left and the results pane on the right. The selection pane is where
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the user selects the appropriate module, sets the inputs and specifies design variables,

objective functions and constraints. It is the panel where all inputs are selected and

problem is set up. The right hand pane on the other hand shows the result from the

different modules as well as the variation of the objective function from an optimisation

run. The Figure 6.5 shows the selected mass breakdown module as well as the change in

the objective function from 328000 kg to 481148 kg in 18 iterations.

Figure 6.5: LSGRG2 Optimisation for Mass Estimation with the Bradley Structural Mass
Method.

The differences in the results of the LSGRG2 optimisation for the determination of the

MTOM using the Howe and Bradley structural mass models can be seen from the plot

of the variation of the objective function with number of iterations given in Figure 6.6.

The Figure shows that using the Howe model requires an increased number of iterations

to achieve an optimum result. Additionally, using the Howe structural mass estimation

model yields a higher MTOM compared to the Bradley method. According to Figure

6.6, the Howe Model requires 22 iterations to achieve an optimum MTOM of over 527000

kg compared to 18 iterations required by the Bradley method to generate a MTOM of

481148 kg.

A breakdown of the component masses obtained with either structural estimation methods

when the LSGRG2 optimiser is selected compared with the BW - 11 estimates is given
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Figure 6.6: Comparison of Mass Variation with Number of Iteration Using the LSGRG2
Optimiser.

in Table 6.3. The masses obtained with either the Bradley or Howe structural weight

prediction methods are fairly consistent and of the same order of magnitude with the

BW - 11 specifications except for the structural masses. The Bradley and Howe methods

give significantly higher structural masses than the BW - 11. While the structural mass

constitutes about 28 percent of the MTOM using the Bradley method, it takes about

31 percent when predicted with the Howe method. This is considerably higher than the

19 percent of the MTOM given for structures in the BW - 11 specification document

[32]. Nevertheless, the results obtained with the Howe and Bradley models are considered

reasonable as they are still within the acceptable limits of 24 - 31.5% provided in the

Cranfield University Lecture Note DAet 9317/30 [142].

Selecting the GA optimiser, the variations of the MTOM with number of iterations for

the determination of the MTOM with the Howe and Bradley structural mass estimates

are shown in Figures 6.7 and 6.8 respectively. The optimised values of 527615.3kg and

483366.5kg obtained for the Howe and Bradley methods respectively are similar to the

values obtained using the LSGRG2 optimiser. This shows that the selected optimisation

technique has negligible effect on the MTOM obtained. However, it does affect the effi-

ciency of the process. It took 18 and 22 iterations with the LSGRG2 as against 14 and

11 runs using the GA, to obtain optimised values for the Howe and Bradley methods

respectively.

From Figures 6.7 and 6.8, it could be argued that the GA is more efficient than the LS-

GRG2 due to the lower number of iterations required to achieve optimal result. However,

this is not always the case. This is because the GA exploits random search algorithm to

solve optimisation problems. Hence, the number of iterations and results obtained for any
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Table 6.3: Comparison of the LSGRG2 Optimiser GMDSO Tool Weight Estimates with the
BW -11

Components mass[kg] %MTOW
GMDSO Cranfield GMDSO Cranfield

Bradley Howe Bradley Howe

Wing 54501.4 16654.9 11 3
Fuselage 83759 147178.1 90412.3 17 28 19
IAE 5910.4 6478.5 7104.5 1 1 1

Hydraulics 2219.6 2324.2 172 1 0 0
API 1375.6 1375.6 4276.1 0 0 1

Electrical 2244.7 2387.6 2838.9 1 1 1
APU 481.1 527.5 400 0 0 0

Flight Control 2811.1 3026.1 2829.7 1 1 1
Furnishing 15271.6 15256 7903.1 3 3 2
Payload 65115 65115 64851.2 14 12 14

Under-carriage 21409 23474.6 25443.8 4 5 5
Fuel 183588.4 201301.4 193821.3 38 38 41

Propulsion 33071 33071 35798.8 7 6 8
Operational Items 9390 9390 32496 2 2 7

MTOM 481148 527561.4 468347.7 100 100 100
ZFM 297559.7 326260 274526.4 36 36 34
OEM 232444.7 261145 210469 28 28 26
MLM 297094.2 325753 321501 36 36 40

optimisation problem varies as shown in Figure 6.9 for other GA derived results of the

same mass determination problem as addressed in this section. Despite these variations,

the GA is able to converge over several generations towards a global optimum using a

mixture of selection, crossover and mutation

A detailed breakdown of the masses of components obtained with the GA optimiser for

the 2 structural mass prediction methods implemented in the GMDSO Tool is given in

Table 6.4. The Table 6.4 supports the finding that there is only a negligible difference in

optimised values regardless of the selected optimisation technique.

Combining the GA with the LSGRG2 optimiser creates the Hybrid optimiser. The results

of mass estimation with the Hybrid optimiser for the implemented structural mass meth-

ods are shown in Figures 6.10 and 6.11. The values of the MTOM obtained with both

the Howe and Bradley structural mass prediction methods are consistent with the values

obtained with the LSGRG2 and the GA optimisers. However, the efficiency of the process

is diminished. It took 25 and 53 iterations to obtain optimised results when the Hybrid

optimiser is selected compared to 18 and 22 with the LSGRG2 and 11 and 14 with the

GA for the Bradley and Howe structural mass methods respectively. This suggests that
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Figure 6.7: GA Optimisation for Mass Estimation with the Howe Structural Mass Method

the Hybrid method is the least efficient of the 3 optimisation methods implemented while

the GA is the most efficient optimisation method for computing the MTOM of a BWB

aircraft. However, as earlier highlighted, because the GA and the Hybrid optimisers are

non - deterministic methods and exploits random search algorithms, the efficiency of the

methods cannot easily be determined.

The masses of components obtained with the Hybrid optimiser is compared with those of

the BW - 11 [32] in Table 6.5. This was necessary in order to ascertain the consistency of

results with the other optimisers. Reviewing the results in Table 6.5 reveals that they are

similar to the component mass breakdown obtained with the other optimisers. This fur-

ther validates the assertion that selected optimisers have negligible impact on the MTOM

and the masses of components. The variations of the MTOM with the number of iter-

ations for mass estimation with the GA and Hybrid optimisers is shown in Figure 6.12.

The plots are consistent with the trend observed with the LSGRG2 which establishes

that employing the Howe structural mass estimation method leads to a higher MTOM

and reduced computational efficiency.
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Figure 6.8: GA Optimisation for Mass Estimation with the Bradley Structural Mass Method

Table 6.4: Comparison of GMDSO Tool BW - 11 Weight Estimates Obtained with the GA
Optimiser to Cranfield Study

Components mass[kg] %MTOM
GMDSO Cranfield GMDSO Cranfield

Bradley Howe Bradley Howe

Wing 56527.2 16626.5 11 3
Fuselage 83850.8 147087 90412.3 17 28 19
IAE 5958.6 6465.6 7104.5 1 1 1

Hydraulics 2228.6 2321.9 172 1 0 0
API 1375.6 1375.6 4276.1 0 0 1

Electrical 2254 2384.4 2838.9 1 1 1
APU 484.3 526.5 400 0 0 0

Flight Control 2826 3021.2 2829 1 1 1
Furnishing 15274 15256.8 7903.1 3 3 2
Payload 65115 65115 64851.2 14 12 14

Under-carriage 21550 23427.7 25443.8 4 5 5
Fuel 184799.7 200898.8 193821.3 38 38 41

Propulsion 33071 33071 35798.8 7 6 8
Operational Items 9390 9390 32496 2 2 7

MTOM 484694.7 528270.3 468347.7 100 100 100
ZFM 299895 326068.5 36 36 34
OEM 234780 260953.5 210469 28 28 26
MLM 299283.8 325386.2 321501 36 36 40
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(a) Bradley

(b) Howe

Figure 6.9: GA Result for Design Case 1 Highlighting the Randomness of the Technique.

With negligible differences in the MTOM and the components mass breakdown obtained

with the the various optimisation techniques, the results were compared on the basis of
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Figure 6.10: Hybrid Optimisation for Mass Estimation with the Bradley Structural Mass
Method

Figure 6.11: Hybrid Optimisation for Mass Estimation with the Howe Structural Mass
Method
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Table 6.5: Comparison of GMDSO Tool BW - 11 Weight Estimates Obtained with the
Hybrid Optimiser to Cranfield Study

Components mass[kg] %MTOM
GMDSO Cranfield GMDSO Cranfield

Bradley Howe Bradley Howe

Wing 56607 16657.4 11 3
Fuselage 83878.4 147186.3 90412.3 17 28 19
IAE 5961 6479.7 7104.5 1 1 1

Hydraulics 2229 2324.4 172 1 0 0
API 1375.6 1375.6 4276.1 0 0 1

Electrical 2257.6 4801.6 2838.9 1 1 1
APU 485.2 527.6 400 0 0 0

Flight Control 2830.4 3026.5 2829 1 1 1
Furnishing 15274.8 15256.9 7903.1 3 3 2
Payload 65115 65115 64851.2 14 12 14

Under-carriage 21592.8 23478.8 25443.8 4 5 5
Fuel 185164.3 201337.6 193821.3 38 38 41

Propulsion 33071 33071 35798.8 7 6 8
Operational Items 9390 9390 32496 2 2 7

MTOM 485232.5 527614.9 468347.7 100 100 100
ZFM 300068.2 326277.3 36 36 34
OEM 234953.2 261162.3 210469 28 28 26
MLM 299616.2 325786 321501 36 36 40

(a) GA (b) Hybrid

Figure 6.12: Variations of MTOM with Number of Iterations for Mass Estimation Using the
GA and Hybrid Optimisers.

the differences between the estimated and derived MTOM. The margin of errors obtained

with the different optimisers when the Bradley structural method is applied are shown in

Table 6.6.

A chart of the data in Table 6.6 showing the margin of error and the computational costs
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Table 6.6: Error Between Calculated and Estimated Masses for Bradley Method

Method Estimated Mass[kg] Calculated Mass[kg] Absolute Error[-]

LSGRG2 481119 481148 29
GA 484274 484694 420

Hybrid 485231 485232 1

of the implemented optimisers when the Bradley structural mass estimation is used can

be found in Figure 6.13. The chart shows that the GA optimisation generates the most

error between the estimated and calculated mass with a difference of 420kg compared to

29kg and 1kg for the LSGRG2 and the Hybrid optimisers respectively.

Figure 6.13: Absolute Error Obtained with the Bradley Method.

Similarly, comparing the performance of the different optimisation techniques when the

Howe structural mass estimation technique is applied, in terms of the difference between

the estimated and calculated mass gives the results in Table 6.7.

Table 6.7: Error Between Calculated and Estimated Masses for the Howe Method

Method Estimated Mass [kg] Calculated Mass [kg] Absolute Error[-]

LSGRG2 527519 527561 42
GA 526464 526967 503

Hybrid 527614 527615 1

An analysis of the data in Table 6.7 as shown in Figure 6.14 indicates that the GA

method gives the most margin of error between the calculated and estimated mass while

the Hybrid optimisation technique provides the least margin of error. This is consistent

with the result obtained when the Bradley structural method is applied. Hence, even

though all the optimisers generate results which are within permitted tolerance limit, the
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Figure 6.14: Absolute Error Obtained with the Howe Method.

most accurate result is that provided by the Hybrid method. Nevertheless, a trade - off

needs to be made between accuracy and speed in order to determine the most suitable

optimiser for any aspect of the design.

Reviewing the 2 structural mass estimation methods viz - a - viz the BW -11 mass esti-

mates, the Bradley method is adjudged to be the most appropriate method for conceptual

design of the BWB because it consists of fewer number of variables compared to the Howe

method. Additionally, these variables are readily available at the conceptual design stage.

The Howe method, on the other hand, requires several variables that are not easily de-

termined at the onset of design. Also, while the Howe method tends to over - estimate

the structural mass, the Bradley structural provides masses which are very close to the

values given for BW-11 in the specification handbook [32]. Because, the Bradley method

shows a higher degree of consistency and consists of few easily available variables, it is the

preferred mass prediction model for the design synthesis of BWB Aircraft in the GMDSO

Tool.

Centre of Gravity

In estimating the centre of gravity of a complete aircraft, the locations of individual com-

ponents centre of gravity needs to be determined. Given that the BWB is defined as a

wing, the centre of gravity of the structure is assumed similar to that of a flying wing

which lies between 15 - 25% of the MAC. Additionally, to simplify the process, the CG of

aircraft systems are taken to be located close to the avionics bay on the wing centreline.

This is necessary in order to provide sufficient volume to contain these systems. Addi-

tionally, this location enables systems to be used for controlling the entire aircraft. The

location of the centre of gravity of the engine is taken at the mid - span of its length
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while the landing gear is positioned between 55 - 60%¯̄c [143]. Other components have

their centre of gravity at the centre of the length of the components.

Now taking the location of the centre of gravity of the structure to be equal to 0.2¯̄c and

the landing gear to be located at 0.6¯̄c, the complete aircraft centre of gravity values with

OEM, MZFM and MTOM are determined. The result which is given in Table 6.8 were

obtained with a MAC of 24.7m and an x - position of the quarter chord of 30.7m. The Ta-

ble 6.8 shows the results are very similar with those of BW - 11 which were obtained with

a MAC of 27.3m. The similarity of results and negligible percentage difference between

the calculated and BW - 11 specifications validates the accuracy of the methodology em-

ployed in the CG calculation.

Table 6.8: Validation of Aircraft Centre of Gravity in Cruise

CG BW - 11 GMDSO Percentage Error

CG at MTOM 29.1m 28.1m 3.4
CG at MZFM 31.9m 32.1m -0.6
CG at MOEM 32.7m 35m -7

6.1.3 Propulsion Module

The propulsion module determines the SFC and thrust available at given altitudes and

Mach numbers within the aircraft flight profile. It is a tripartite module consisting of

the power - plant, propulsion specification and propulsion modules. The power - plant

module models the specific type of propulsion system, whether it is turbojet, turbofan or

the ramjet used in the design. The power - plant type employed for the design synthesis

of the BWB is the Turbo - fan engine. The engine is modelled on the Howe’s empirical

engine performance method. The propulsion specification model specifies the operating

characteristics of the selected power - plant. These characteristics include the BPR, static

thrust, number of power - plant, fuel fraction and fuel types amongst others. The propul-

sion component creates methods that compute the SFC and available thrust at different

altitudes and Mach numbers.

The BW - 11 propulsion system consist of 2 turbo - electric project engines driving 14

fans. The engine designated the BW - 11 - 627 - TE, has a Sea Level Static (SLS) thrust

rating of 627.15kN and an assumed SFC of 0.468lb/lbf/h. However, because it is a project

engine, it is not possible to validate the accuracy of these specifications. Subsequently,

a standard turbo - fan engine was selected to validate the developed propulsion model.
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The turbo - fan engine selected for this process is the the Rolls Royce Trent 900 [144].

The Trent 900 is a powerful cost - effective power - plant designed for the Airbus A380

aircraft. Besides, the fact that it is currently been used in an aircraft of similar operating

capacity, the Trent 900 was selected for this validation because it has impressive SFC

and excellent environmental attributes. In order to obtain approximately the total static

thrust specified for the project engine, a 4 - engined design is assumed. The engines have

a BPR of 8.5 and a SLS thrust rating of 350 kN. Computing the engine performance

based on the given specification, the variation of thrust with Mach numbers at different

altitudes is determined as shown in Figure 6.15.

Figure 6.15: Variation of Thrust with Mach Numbers at Various Altitudes.

The plot shows a decreasing available thrust with Mach numbers and altitude until about

M0.84. Subsequently, there is a sharp increase in available thrust between M0.84-0.96 and

then the thrust decreases subsequently. This suggests that the cruising speed of M0.85

would provide near optimum thrust value for the aircraft performance. However, choosing

the operating altitude and Mach numbers based only on the thrust without consideration

for fuel burn is not advisable. Due to environmental considerations and the fact that

fuel constitutes about 35 - 45% of the total take - off weight, there is the need to select

operating point at which fuel burn is minimal. Consequently, the plots of SFC at differ-

ent Mach numbers and altitudes using Kerosene fuel is generated as shown in Figure 6.16.
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Figure 6.16: Variation of SFC with Mach Numbers and Altitudes

Figure 6.17: Variation of SFC with Mach Numbers and Altitudes for the FJ442-A Turbofan
Engine [145]

The plots show that the SFC increases with Mach number but decreases with increasing

altitude up to the limit of the troposphere culminating in the lowest fuel consumption at

12000m and then rising subsequently with increasing altitude as could be seen in the plots

in Figure 6.18. This is similar to the to the variation of SFC with altitude at different

Mach number for the FJ44-2A engine provided by the manufacturer [145] and shown in

Figure 6.17. The reason for this behaviour is because increasing airspeed increases the

mass flow rate of air passing through the engine. This subsequently forces more fuel to
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be introduced into the flow in the combustion chamber in order to ensure an optimum

air/fuel mixture. On the other hand, increasing altitude will cause a decrease in tem-

perature and hence in the pressure and density of air up to the troposphere. Decreased

air density reduces the air mass flow rate thereby lowering the fuel flow needed to ensure

optimum fuel/air mixture. However, temperature beyond the troposphere remains con-

stant up till 20km. This phenomenon causes the air pressure and hence density to remain

constant. Consequently, changes in the engine air mass flow rate would therefore only

be influenced by variations in Mach number. Since, increasing Mach numbers causes an

increase in mass flow rate and hence the fuel consumption, this explains the reversal in

the relationship between SFC and altitude from 12km to 20km.

It is also worthy to state that even though the SFC increases with Mach number, it drops

sharply between M0.84 and M0.96 and then begins to rise again. This suggests that in

order to lower fuel consumption, the selected engine should be flown at 12000m with a

cruising speed between M0.84 and M0.96. There is also a negligible difference between

the SFC at 10000m and 12000m. These suggests that M0.85 and 12000m are the opti-

mum Mach number and altitude respectively, also known as he sweet spot, for an aircraft

operating a high BPR turbo - fan engine. This is the reason why most airlines cruise at

M0.85 and between 10 - 12km.

Efforts to find thrust performance data of the Trent - 900 engine at various altitude proved

particularly challenging. The only turbo - fan engine performance data found was a plot

of the combined effects of velocity and altitude on the thrust of the JT15D - 4C. The

JT15D - 4C is a Pratt and Whitney turbofan engine with a static thrust of 2500Ib and a

BPR of 2.6. The plots of the JT15D - 4C thrust variation with Mach numbers at different

altitudes alongside that of Trent - 900 engine obtained with the GMDSO Tool is given in

Figure 6.19.

A quick comparison of the plots shown in Figure 6.19 indicates similar pattern and trends

of variations. The reasons for observed pattern of behaviour could be deduced from the

effects of altitude and speed on thrust of a turbofan engine. The net thrust of a jet engine

is derived from the difference between the outgoing exhaust momentum and the ram drag

as given in Equation 6.1. As altitude increases, the pressure and density decrease. Hence,

according to Equation 6.1, the available thrust also reduces. But temperature decreases

with increasing altitude and decreased temperature increases the available thrust [146].

Nevertheless, the pressure and density of the outside air decrease at a much faster rate

than the temperature, so an engine produces less thrust as the altitude increases.
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(a) 0 - 12000m

(b) 14000 - 2000m

Figure 6.18: GA Result for Design Case 1 Highlighting the Randomness of the Technique.

T = [ṁVj +Aj (Pj − Pam)]− ṁVi (6.1)
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(a) JT15D - 4C (b) Trent - 900

Figure 6.19: Comparison of the Combined Effect of Velocity and Altitude on Selected Turbo
- Fan Engines.

Where:

ṁ is the mass flow rate.

Vi is the incoming air velocity.

Pam is the atmospheric pressure.

Vj is the exhaust gas velocity.

Aj is the area of jet nozzle.

The effect of speed on the thrust of an engine is due to the velocity difference variations

in the intake and exhaust, and ram effects. When the engine is been run - up prior to

take - off, the momentum drag is zero because the intake velocity is zero. However, as

the aircraft begins to move, the intake velocity increases thereby decreasing the difference

between the intake velocity and the exhaust velocity and hence minimising the available

thrust. Furthermore, increase in airspeed also increases the compression of air in the inlet

duct arising from the forward motion. This phenomenon popularly referred to the ram

effect increases the air mass flow to the engine and the intake pressure and consequently

increases the available thrust as shown in Figure 6.20. However, ram pressure is not

significant at lower speeds, thus it cannot offset the effect of velocity difference and hence

the thrust decreases with increasing airspeed. This is reflected in Figure 6.15 where the

thrust decrease to velocity increase is more pronounced at lower altitude than at a higher

altitude as seen from a flattening of the curve from 14000m onwards. In addition, the

sharp rise in thrust with increase in airspeed could be due to the reversal in the sign of

the difference between intake and exhaust velocity at higher speed.
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Figure 6.20: Effect of Speed on Jet Engine Thrust.

6.1.4 Aerodynamic Analysis Module

Creating the aerodynamic analysis module involves the selection of the most appropriate

code between the XFLR5 and AVL VLMs and the subsequent integration of the selected

code into the GMDSO environment. In this research, the BWB is modelled as a wing.

Creating a wing with complex trailing edge profile involving non-uniform kink sections,

in the XFLR5, requires the intelligent use of the offset feature which is not trivial. Hence,

without the use of the offset feature, the geometry derived with the XFLR5 from the

specifications in Table 6.1 is shown in Figure 6.21. The XFLR5 analysis of the obtained

geometry generates the polar curves in Figure 6.22.

With the AVL, the complex trailing edge profile and control surfaces are easily mod-

elled, as shown in Figure 6.23, using the leading edge coordinate parameter and the ’add

control’ function respectively. Despite the geometry modelling differences between the 2

VLMs, it was found that the AVL and XFLR5 provided similar aerodynamic forces at

M0.02, as shown in Table 6.9, using NACA 4 digit airfoils with the specified thickness to

chord ratio. However, there is relatively, a significant difference in the pitching moment

coefficient. This could be due to the difference in the trailing edges of the geometries from

XFLR5 and the AVL models.

Besides, the geometry modelling complications, it was discovered that the XFLR5 cannot

handle the high subsonic Mach numbers required for the BW - 11 analysis. Hence only

the AVL was used to analyse the test geometry at M0.85. AVL is able to handle high

subsonic Mach numbers by implementing the classical Prandtl Glauert transformation.
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Figure 6.21: Geometry Model obtained with the XFLR5.

Table 6.9: Comparison of Aerodynamic Forces and Moments from AVL and the XFLR5 at
M0.02

Coefficients AVL XFLR5

CL 0.265 0.262
CD 0.006 0.008
CM -0.247 -0.135

To ensure uniformity in the validation process, the NACA airfoils used for low speed

analysis are replaced with the airfoil provided in the project specification handbook [2].

A comparison of the results obtained from the AVL analysis with data in the project

specification handbook [32] is presented in Table 6.10. The coefficients are very similar

with the same order of magnitude thus validating the aerodynamic analysis module of the

GMDSO tool. Consequently, with the enhanced geometry modelling capability, ability

to analyse geometries at high subsonic Mach number and the relatively consistent results

compared with the XFLR5 and the data in the project specification handbook [32], AVL

is considered a reliable and suitable choice for the aerodynamic analysis module of the

GMDSO Tool.

It is imperative to state that even though the AVL stand - alone programme permits the
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Figure 6.22: Polar Plots from XFLR5 Aerodynamic Analysis of Test Geometry.

Figure 6.23: Geometry Model Obtained with the AVL.

Table 6.10: Comparison of Aerodynamic Forces and Moments from AVL and the BW-11 at
M 0.85

Coefficients AVL BW-11

CL 0.243 0.236
CD 0.0055 0.0033
CM -0.052 0



6.1 Quasi - validation of the GMDSO Tool 169

use of externally generated airfoils, this feature has not been implemented in the GMDSO

tool. Subsequently, the test geometry was analysed using NACA 4 digit airfoil of required

thickness. The result obtained are given in Table 6.11.

Table 6.11: Result of the AVL Analysis of Test Geometry with NACA 4-digit Airfoils Sections

Coefficients AVL

CL 0.440
CD 0.015
CM -0.08

A single instance of the AVL VLM, as currently being distributed, can perform the aero-

dynamic analysis of a geometry at only one angle of attack and Mach number. However,

the modified code integrated in the GMDSO tool has been extended to enable batch anal-

ysis of multiple angles of attack and Mach numbers at any instance of the module during

a design synthesis. This multi-speed and angle of attack feature ensures the accurate

prediction of aerodynamic forces for the different phases of flight. This is especially useful

in the performance and stability analysis modules as well as for the exploration of the

design space within a multivariate design synthesis optimisation framework.

To investigate the validity of the multi-speed/angles feature, the test geometry was anal-

ysed for a range of Mach numbers within the operating envelope of the aircraft at angles of

attack between -5 and 20◦. The relationships between the lift, drag and pitching moment

coefficients with angles of attack at low and high subsonic Mach numbers are shown in

Figure 6.24.

The plots show an increase in aerodynamics coefficients with angles of attacks except for

the pitching moment coefficient which increases in a negative sense with increasing angles

of attack. This phenomenon conforms to established trends. The linear nature of the

plot is because the AVL uses linear VLM which assumes an incompressible, irrotational,

inviscid flow. Hence, the AVL cannot determine viscous effects of a fluid or simulate flow

separation. The accuracy of the AVL is thus limited to small angles of attack where there

is little or no flow separation.

Similar trend is observed with the polar plots at low (M0.2) and high subsonic Mach

numbers (M0.85) as shown in Figure 6.25. The plots show an increasing drag and lift

coefficients with increases in angles of attack. This is expected because the AVL generates

only induced drag which is directly proportional to the lift produced.
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(a) CL vs AoA (b) CD vs AOA

(c) CM vs AOA

Figure 6.24: Graphical Relationship Between Aerodynamic Forces and Moments at Low and
High Subsonic Mach Numbers.

(a) CL vs CD at M0.21 (b) CL vs CD at M0.85

Figure 6.25: Polar Plots of Lift and Drag Coefficients at Low and High Subsonic Mach
Numbers.

Earlier, it was established that a single point aerodynamic analysis at zero degree angle

of attack using the AVL provides a satisfactory result. It suffices to say, therefore, that

the results from a multi-speed/angle aerodynamic analysis should be equally reliable thus

validating the aerodynamics module of the GMDSO tool. In addition to the foregoing, the

sensitivity of aerodynamic coefficients to Mach numbers was investigated. The results,

which are shown in Figure 6.26, indicates a direct proportional relationship between the
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coefficients and Mach number.

(a) CL vs Mach Number (b) CD vs Mach Number

(c) CM vs Mach Number

Figure 6.26: Sensitivity of Aerodynamic Forces and Moments to Mach Numbers.

6.1.5 Stability Module

The stability module of the GMDSO Tool assesses the control fixed, longitudinal static

stability of the BWB using static margin and trim characteristics. The static margin is

defined as the distance between the center of gravity and the neutral point of the aircraft

as a percentage of the MAC. Given the centre of gravity of the test aircraft as 31.9m [32],

the aerodynamic forces and moments were derived from the aerodynamic modules.

Applying the relevant forces and moments into Equation 4.55, the stability margin was

determined to be -0.02 or -2%. This is exactly the same value (-2%) specified for the

BW - 11 in the specification hand - out thus validating the implemented process and

methodology. Additionally, the result indicates that the aircraft is marginally statically

unstable. While this is not ideal, it does not reflect a bad design as it could ensure the

aircraft is trimmable which is a more stringent requirement for tailless aircraft.
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According to Sadraey [147], acceptable elevon deflection angle for trim must lie between

±20− 25◦ [10, 25, 147]. This is because elevon deflection above 20 - 25◦ causes flow

separation which could lead to loss of control effectiveness. For the test case, the elevon

deflection and trim angles of attack were determined at cruise, take - off and landing.

The results obtained are given in Table 6.12.

Table 6.12: Trim Characteristic for the Test Aircraft in Different Flight Conditions

Phase Speed [m/s] Mass[kg] Trim AOA[deg] Elevon Deflection[deg]

Take-off 1.2Vs MTOM 1.2 -13.7
Landing 1.3Vs MLM 3.74 -16.2
Cruise Cruise speed MTOM 5.45 -4.37

Plots of the trim characteristics at take-off, landing and cruise are given in Figure 6.27.

(a) Elevon Deflection vs Speed (b) Trim Angle of Attack vs Speed

Figure 6.27: Plot of Trim Characteristic at Take-Off, Cruise and Landing.

The plots show that the aircraft can be trimmed in the operating flight conditions as-

sessed. This is because the elevon deflection angles obtained (-4 to -17◦) and angles of

attack required (1.2 to 5.4◦) lie within the acceptable limits. The plots also show that the

critical region for trim is the low speed phases of take off and landing. This is evidenced

from the relatively large elevon deflection(-13.7 and -16.2◦) needed to trim the BWB air-

craft as against the -4.4◦ required in cruise. A BWB tailless aircraft must therefore be

designed to be trim-able in all flight conditions and most especially at the critical landing

and take-off phase of flight.

The foregoing stability results were obtained with the MAC and CG given in the BW -

11 specification document. With the MAC and CG derived from the GMDSO Tool, the

stability and trim characteristics with forward and aft CG is detailed in Table 6.13.
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Table 6.13: Trim and Stability Characteristics with GMDSO Tool Derived CG and ¯̄c

Characteristics [deg] CG MTOM CG MZFM CG OEM

Static Margin [-] 0.13 -0.031 -0.15
Elevon Deflection to Trim [cruise] -2.3 -1.67 -1.1

Elevon Deflection to Trim [Take - off] -2.95 -0.31 2.3
Elevon Deflection to Trim [Landing] -4.3 -1.35 1.5

AoA to Trim[cruise] 3.9 3.5 3.1
AoA to Trim[TO] 4.02 -5.8 -7.5
AoA to Trim[Land] 1.61 0.8 0.1

6.1.6 Performance Module

The performance module assesses the mission and field performance of the test geometry

using the GMDSO Tool. The mission performance includes both point and path perfor-

mances. The point performance determined consists of climb gradient, climb rate and

thrust required at different ceilings. Path performance includes range with different load

profiles used in the payload range diagram. Airfield performance include take - off and

landing distance as well as the balanced field length.

Take off and Landing

The take - off and landing performance of the BW - 11 with all 4 engines operational as

derived from the GMDSO Tool are summarised in Table 6.14.

Table 6.14: Take - off and Landing Performance of the BW - 11 Aircraft

Field Length [m] Time [s] Fuel Burn [kg]

Take-off AEO (unfactored) 1791 -
AEO (factored) 2059 46 3617

Landing Flare 207.6 - -
Free - roll 165.6 - -
Approach 281.8 - -
Brake - roll 858.2 - -

AEO (unfactored) 1419 - 608.4
AEO (factored) 2355 360 608.4

The field lengths are not given in the specification document. However, comparing the

factored field performance value obtained from the GMDSO Tool with the the A380

specification. It was found that the BW - 11 has a comparatively similar take off field

length of 2059m compared to 2050m for the A380 - 800 and a shorter landing distance of

2355m as against 2900 m specified for the A380 - 800 [148]. The improved BW - 11 field

performance over the A380 - 800 conventional aircraft is expected since the BWB has a



174 Results, Discussions and Analysis

lower wing loading compared to conventional aircraft. Low wing loading reduces the take

- off and landing speeds hence leading to shorter take - off and landing field lengths.

One Engine Inoperative Condition

Details of take - off performance in the OEI condition is required to determine the balanced

field length. Assuming a critical engine speed ranging from 0.8 -1.0 Vs, the accelerate stop

distance, saccstop, and accelerate go distance, saccgo, are calculated and presented in Ta-

ble 6.15. On engine failure during take - off run, the saccstop is the distance required to

accelerate an aircraft to a specified speed and then bring the airplane to a stop on the

remaining runway. The saccgo is the total distance required to accelerate to the take - off

safety speed and climb the 35ft obstacle after an engine failure on take - off.

Table 6.15: Balanced Field Length Calculations

BFL Parameters Multiples of Stall Speed [m/s]
0.74Vs 0.79Vs 0.83Vs 0.88Vs 0.93Vs 0.97Vs Vs

v1 57.6 61.2 64.8 68.4 72 75.6 77.8
v12 [m2/s2] 3317.8 3745.4 4199 4678.6 5184 5715.4 6046.6
saccstop [m] 3175.5 3368.9 3579 3807.1 4054.7 4323.6 4496.0
saccgo [m] 4116.0 3955.5 3755.4 3506.8 3197.4 2809.9 2530.4

Plotting the accelerate go distance, saccgo, and accelerate stop distance, saccstop, against

the square of the critical engine speed, v12, as shown in Figure 6.28 give the balanced field

length of 3650m and a critical engine failure speed of 66.2m/s. The balanced field length

is well within the existing runway lengths of major airports. For instance, the length of

the Northern runway at Heathrow is 3902m, while the Southern runway is 3660m long

[149].

Figure 6.28: Determination of Balanced Field Length



6.1 Quasi - validation of the GMDSO Tool 175

Enroute Performance

The enroute performance consists of the climb, cruise and descent phase. The climb and

descent are flown in several segments as detailed in the methodology chapter. The dis-

tance, time and fuel burn in each phase of the en - route mission is listed in Table 6.16.

Table 6.16: En - route Performance of the BW - 11 Aircraft

Distance[m] Time [s] Fuel Burn [kg]

Climb 345372 1040.2 14391.3
Cruise 14800 56042.7 228119
Descent 262246 1592.5 26974.8
Diversion 370400 2366.2 66682

Climb Gradients

The CS 25.117 details the required climb gradient for various number of engines in the

critical engine in - operative flight phase. It specifies climb gradients of not less than 0.5,

3 and 1.7 per cent for a four - engined airplane in the first, second and third segment

climb respectively. Consequently, analysing the test aircraft climb gradients performance

indices using the GMDSO tool, the results in Table 6.17 were obtained. The results given

in Table 6.17 indicate that the BW - 11 meets the climb gradient requirement.

Table 6.17: Climb Gradients of the BW - 11 Aircraft for a 4 -engined Propulsion System
Arrangement

Segments Gradients in percentages

First Segment 12.5
Second segment 14.9
Third Segment 14.1

The Table 6.17 shows quite high climb gradients relative to a conventional aircraft.

Though the order of magnitude in relation to conventional configuration cannot be veri-

fied due to lack of data, the BWB is expected to have a higher climb gradient compared to

a conventional tube and wing aircraft. This is because the BWB has a low wing loading.

This gives it a superior climb rate. Given that climb gradient is derived from Equation

??, superior climb rate leads to a higher climb gradient when compared to a conventional

aircraft.

climbgradient =
climbrate
Airspeed

(6.2)
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Thrust Requirement

The thrust requirement analysis is used to assess the thrust needed to accomplish different

phases of flights. This is necessary in order to evaluate the propulsion system capacity

to power the aircraft through its mission. Details of thrusts required for different flight

conditions are given in Table 6.18.

Table 6.18: Thrust Required at Different Flight Condition

Condition Thrust Required [N]

Climb to Absolute Ceiling 883391.7
Maximum ROC 129067

Climb to Cruise Ceiling 452462.5
Climb to Initial Climb 391197.8

Service Ceiling 574887.9
Maximum Velocity 40018.6

Landing 79702.7

The table shows that the maximum thrust is required in climb to absolute ceiling. Con-

sequently, it is expedient to ensure that the propulsion system is capable of providing this

amount of thrust.

Payload Range Diagram

The payload range diagram evaluates the trade - off between the aircraft range and dis-

posable loads. The typical payload range diagram consists of 3 critical points. These

are the maximum payload, maximum fuel and the maximum ferry range. The maximum

payload range is determined with the full payload of the 555 passengers. Maximum fuel

range determines the range obtained from decreasing the number of passengers. In this

thesis, the maximum fuel range is obtained by reducing the number of passenger to 325

while maximum ferry range assumes there is no payload. Subsequently, applying this

assumptions to the GMDSO tool performance analysis module, the payload range char-

acteristics given in Table 6.19 is obtained.

A plot of the payload and range combinations for the 3 critical points is given in Figure

6.29.

Other Performance Indices

Other performance indices calculated in the GMDSO tool are the sensitivity to turbulence,

structural parameter and the regulatory and reserve fuel. The sensitivity to turbulence
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Table 6.19: Critical Payload Range Characteristics of the BW - 11 Aircraft

Critical Points Maximum Payload Maximum Fuel Maximum Ferry Range

Number of Passengers [-] 555 325 0
Payload [kg] 65115 39125 0
Total Fuel [kg] 183588 209578 209578

Total trip fuel[kg] 112956 138946 138946
Trip fuel available[kg] 86203 112193 112193
Cruise fuel available[kg] 41220 67210 67210

MTOM [kg] 481148 481148 442023
Range[m] 14172728 17933358 18046252

Figure 6.29: Payload Range Diagram for the BW - 11 Mission.

factor is included in the GMDSO Tool to enhance passenger comfort and ensure a good

ride quality. The sensitivity to turbulence in cruise is derived from a simple discrete gust

analysis.

According to Agenberg and Theron [150], tailless aircraft have turbulence handling chal-

lenges because of their low damping ratio and pitch inertia. This challenge led Monnich

and Dalldorf [151] to develop a criteria that assesses tailless aircraft turbulence handling

quality. The criteria states that for a tailless to have good turbulence handling quality, it

must satisfy Equation 6.3.

Cmα
Cmq

< (CLα +CD)
ρSref ¯̄c

2MTOM
(6.3)

Equation 6.3 expressed differently gives Equation 6.4.
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Cmα
Cmq

−
[

(CLα + CD)
ρSref ¯̄c

2MTOM

]

< 0 (6.4)

Here:

Cmα is the pitching moment due to change in angle of attack.

Cmq is the pitching moment due to changes in dynamic pressure.

Sref is the reference surface area.

¯̄c is the mean aerodynamic chord.

MTOM is the maximum take off mass.

CD is the drag coefficient which includes profile drag, zero lift drag, wave drag and lift

induced drag.

CL is the lift coefficient.

The Structural Parameter (SP) is provided to resolve any potential conflicts between the

aerodynamic and structural requirements in aircraft design. It is established to indicate

any likely structural limitations with the design [110]. The SP is derived from the expres-

sion in Equation 6.5.

SP ≤ sec ΛE

[

NAR1.25

(t/c)0.5

]0.5

(6.5)

Where :

N is the normal acceleration factor.

ΛE is the effective structural sweep. It is approximated by the quarter chord sweep Λ0.25.

t/c is the thickness to chord ratio.

The regulatory fuel refers to the 45 minutes mandatory fuel required by regulation while

the reserve fuel refers to the 10% contingency fuel.

The result of the GMDSO Tool prediction of other performance indicators are given in

Table 6.20. According to Howe [110], SP for a commercial passenger aircraft lies between

15 to 16. From the performance analysis with the GMDSO tool, the SP was found to be

equal to 16.2. Consequently, it could be inferred that the BW - 11 is aero - structurally

efficient. Additionally, the BW - 11 is found to have good turbulence handling quality

because the calculate value of -0.12 satisfies Agenberg and Theron [150] condition given

in Equation 6.4.
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Table 6.20: Fuel Reserves for the BW - 11 Aircraft

Fuel Mass [kg]

45 minutes Regulatory 3952
10% Contingency 26753

Sensitivity to Turbulence -0.12
Structural Mass Factor 16.22

6.2 Packaging

The packaging module comprises the sizing and volume constraint handling models. It

estimates the size of the cabin and internal components as well as ensures that the internal

object are well enclosed within the BWB geometry. The packaging model can be used

for sizing all major components including the engine, landing gear and cabin. However,

only cabin dimensions are validated in the packaging module as it is the only information

found in the specification handbook [32].

The cabin is sized to carry 555 passengers in 3 class seating arrangement with a leading

edge sweep of 63◦. The passengers are seated in 2× 2, 2× 3 and 3× 3 arrangement in the

first, business and tourist class respectively. The number of passengers and dimension of

seat pitches in the various class are given in Table 6.21.

Table 6.21: Seat Pitch and Number of Pax in the Different Classes

Class of Seats Number of Passengers [ - ] Seat Pitch [in]

First Class 9 81
Business Class 80 55
Economic Class 466 32

Inserting these values into the packaging module of the GMDSO Tool, the cabin is sized

using the Bradley sizing model. A comparison of the results from the process with the

specifications of the test geometry is given in Table 6.22.

Table 6.22: Comparison of GMDSO Cabin Size With Test Geometry

Parameters GMDSO Cabin BW - 11 Test Geometry

Length of Cabin Centre Line [m] 47.86 48
Length of Cabin Outer - wall [m] 12 22

Half Width of the Cabin [m] 10.97 13

The results of the sizing module correlates closely with the specifications of the test geom-

etry in terms of the length of the cabin centre - line and the cabin width. However, they

differ markedly in the length of cabin outer walls. This difference could be due to the po-

sitioning of the baggage compartment behind the passenger cabin in the test configuration.
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Volume constraint handling is integrated in the GMDSO Tool packaging module using the

CST Parameterization technique. The technique generates airfoil - like cross - sections

which are distributed across the span, according to chosen geometric variables such as

sweep, dihedral, twist and trailing edge thickness, to create the wing. In order to demon-

strate the implementation of the volume constraint feature of the packaging module, the

ability of the CST parameterisation technique to model geometry with different combi-

nations of twist, sweep and dihedral is demonstrated.

The project handbook [32] specifies a cabin with a leading edge sweep angle of 63◦, a

zero degree twist angle and no dihedral. A 2D airfoil of the root section of the BW - 11

cabin generated using the CST method is shown in Figure 6.30. The upper and lower

curves of the airfoil are created independent of each other, as suggested by their different

colours, but with a condition that ensures closure and continuity from the leading to the

trailing edge. In the Figure 6.30, the upper and lower curves are coloured blue and red

respectively. The airfoil shown in Figure 6.30 is the root section of the BW - 11 geometry

with zero twist and dihedral.

Figure 6.30: An Airfoil Obtained with the CST Parameterisation Technique.

Besides creating an airfoil for analysis, the GMDSO Tool also calculates the maximum

camber and thickness of the generated geometry as given in Table 6.23. The Table 6.23

indicates that the airfoil has the recommended 17% thickness to chord ratio providing

a maximum thickness of 8.6 m. However, as will be shown later, this does not always

guarantee that volume constraint is satisfied at all points due to the non - uniform cross

- section of the airfoils.
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Table 6.23: Properties of the Obtained CST - Airfoil

Properties Values

Maximum Thickness [m] 8.38
Maximum Camber [m] 0.43

Thickness to Chord Ratio [%] 0.175
Camber to Chord Ratio [%] 0.009

Further, to the foregoing the test cabin is modelled with different twist and dihedral com-

binations as shown in Figure 6.31. In Figure 6.31a, the upper and lower curves of the

root section are coloured blue and green respectively while the cabin outer - wall section

curves are shown in red and purple colours as shown in Figure 6.31.

(a) Zero Twist and Dihedral (b) 1.5 Deg Twist and 5 Deg Dihedral

(c) 5 Deg Twist and 25 Deg Diheral

Figure 6.31: CST Description of the Test Geometry With Different Twist and Dihedral
Combinations.

Having established the capabilities of the CST as a geometry parameterisation tool, the

aircraft is checked to ensure there is sufficient space to enclose internal objects. Volume

constraints could be implemented by either the method of logarithms or by the use of

coefficients. In order to select the most suitable method for use in the handling volume

constraint, the methods were applied to curve fitting of a wing section.
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Assuming a thickness constraints of 2.5m for an internal objects lying between x = 2.87m

and x = 38.76m and using the logarithmic and coefficient methods, Figure 6.32 was de-

rived. The Figure 6.32 shows the initial wing cross - section in brown colour with the

modified upper curves of the section in purple and green. From the original Figure 6.32,

it could be seen that the internal bounding box, represented by the red dashed and solid

lines, fits properly within the cross - section at x = 2.87m but stuck out at the x = 38.76m

point.

Figure 6.32: Comparison of Volume Constraint Handling with the Logarithmic and Coeffi-
cient Methods.

However, by applying scaling function to the upper curve using the logarithmic method

(Green curve) and the coefficient method (blue curve), the internal object is found to be

properly enclosed at all points. Nonetheless, the logarithm method (Green curve) leaves a

much larger unused space compared to the method of coefficient. Consequently, in order

to avoid such redundant space and ensure efficient utilization of space within a BWB

cross - section, the Method of Coefficient is selected as the most appropriate option for

volume constraint handling feature of Packaging Module.

According to Bradley [63], a minimum thickness of 2.5m is required to accommodate a

standing height of passengers including furnishing and the skins of the upper and lower

deck. It has been estimated that a 15 - 17% thickness to chord ratio provides the required

depth. However, as shown in this preceding discourse, there is no guarantee that the

depth would be maintained through the chord of the section. Consequently, to ensure the

required depth is obtained, the packaging module is essential.
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The ratio of the internal object to the length of the chord as well as its size presents

different sets of challenges in the packaging of a BWB. Figure 6.33 shows a selection of

possible fitting cases that could be encountered in the conceptual design synthesis of the

BWB. In the Figure, the original curve is shown in brown while the volume constraint

fitting curves, implemented using the method of coefficients, are shown in blue and green

colours on the plots. The bounding boxes representing internal objects of different sizes

are represented in red with the dashed portion provided to connect the upper vertices of

the boxes to the 2.5m mark on the z - axis.

(a) Almost Perfect Fit (b) Effect of Constraint Too Close to
Trailing Edge

(c) Excess Space Above Constraint

Figure 6.33: Volume Constraint Handling Using CST Parameterisation Technique.

In the Figure 6.33, the bounding boxes are placed at different locations along the chord.

In the first case, the box was positioned between x = 22.9m and x = 31.8m. The second

case placed the box between x = 2.87m and x = 45.9m. The third case located the box

between x = 2.87m and x = 38.76m.

In Figure 6.33a, the internal object is found to be well contained within the initial ge-

ometry but at the cost of redundant space. The volume constraint fitting curve (blue)
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minimises the excess space thereby allowing for efficient space utilization within the cabin

but distort the leading edge radius of the geometry. In Figure 6.33b, the object is found

to be sticking out from the geometry. The volume constraint curve in green is subse-

quently provided to enclose the object. However, it has been found to generate so much

redundant space which could create aerodynamic problems. The case given in Figure

6.33c encloses only one of the vertices of the bounding box. The volume constraint han-

dling curve(green) modifies the initial curve to enclose the internal object but could not

minimise the redundant space. Consequently, from the Figure 6.33, it is evident that

volume constraint fitting using the method of coefficient works nicely for any potential

packaging problem thus establishing the robustness of the method. However, it exposes

some challenges that still needs to be mitigated. Among the challenges discovered are

poor space utilization arising from redundant space and the distortion of the leading edge

radius with potential consequence on aerodynamic performance.

Distortion of the leading edge radius could easily be resolved by incorporating a variable

for the leading edge radius in the formulation of the CST function. Redundant space,

however, is not easily amenable. Redundant space occurs because the Bernstein poly-

nomial used in the CST functions provides global control rather than local control of

the geometry. Consequently, Michiel Straathof [152] proposed the addition of a B-Spline

polynomial function to the CST Method to obtained a modified function known as the

Class Shape Refinement Transformation (CSRT). The CSRT method minimises the re-

dundant space within the geometry by ensuring local control of the geometry in addition

to the global control provided by the Bezier polynomial in the CST method.

6.3 Design Improvements

The quasi - validation section of the GMDSO Tool assesses individual models in isolation

in order to establish a measure of the level of confidence that could be placed on the

results. The sensitivity analysis section would combine modules to explore the design

space in order to understand the effect of different variables on the characteristics of a

BWB aircraft. This section is used to demonstrate the ability of the GMDSO Tool to

create design improvements using the optimisation techniques integrated into the tool.

The design space of the BWB is infinitely wide. Hence, while the GMDSO Tool enables

a wide range of applications, due to limited computational resources and time, only a

selection of the possibilities is presented in this research.
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6.3.1 Design Case 1 - Mass Minimisation Subject to Geometric Con-

straint

The first sensitivity analysis problem investigated is the effect of the variations of geo-

metric and mission variables on the reduction of the MTOM of the BWB. Using the 3

kinked BW - 11 geometry, defined in Table 6.1, as the baseline and selecting the Bradley

structural weight estimation method, an optimisation problem is formulated. The objec-

tive of the optimisation problem is to minimise the MTOM by varying geometry and

mission variables subject to an equality constraint. The problem was assessed using both

the LSGRG2 and the GA optimisers. The design problem showing specified upper and

lower bounds is given in Table 6.24.

Table 6.24: Design Variables and Constraints for Design Case 1

Variables lower bounds Baseline Upper bounds

Fuselage Sweep [deg] 45 63 72
Wing Sweep[deg] 32 38.3 45

Dihedral section 0[deg] 0 1.5 5
Dihedral section 1[deg] 0 3 5
Dihedral section 2[deg] 0 3 5
Twist section 0 [deg] -3 2.8 3
Twist section 1 [deg] -3 -0.3 3
Twist section 2 [deg] -3 0.5 3
Twist section 3 [deg] -3 0.9 3
Twist section 5 [deg] -3 -2.7 3
Cruise Altitude [m] 10000 11227.6 20000

Cruise Mach Number [-] 0.85 0.85 0.95
Initial MTOM Estimate[kg] 300000 481148 700000

LSGRG2 Design Case 1

With the LSGRG2 optimiser, the MTOM was reduced from 481148kg to 469293kg. The

design case and optimisation result is shown in Figure 6.34. A comparison of the initial

geometric and mission variables to the optimised values is given in Table 6.25.

The results in Table 6.25 retained most of the geometry and mission variables of the

baseline BW - 11 except for the slight increase in the fuselage leading edge sweep angle

from 63◦ to 64.8◦ and a reduction in wing sweep angle from 38.3◦ to 32◦. The increase in

fuselage sweep angle and corresponding decrease in the wing sweep angle leads to a 4.7%

reduction in the structural mass from 138260.4kg to 131769 kg. However, the fuselage

sweep angle is tied to the size of the cabin and hence the number of passengers. In or-

der to accommodate the required number of passengers, the decrease in the cabin width
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Figure 6.34: Evolution of MTOM with Design Optimisation Iterations.

Table 6.25: Variation of Geometric Variable for Design Case 1

Variables Baseline BW - 11 LSGRG2

Fuselage Sweep [deg] 63 64.8
Wing Sweep[deg] 38.3 32

Dihedral section 0[deg] 1.5 1.5
Dihedral section 1[deg] 3 3
Dihedral section 2 [deg] 3 3
Twist section 0 [deg] 2.8 2.8
Twist section 1 [deg] -0.3 -0.3
Twist section 2 [deg] 0.5 0.5
Twist section 3 [deg] 0.9 0.9
Twist section 5 [deg] -2.7 -2.7
Cruise Altitude [m] 11227.6 11227.6

Cruise Mach Number [-] 0.85 0.85
MTOM [kg] 481148 469338

resulting from increase in the fuselage sweep angle is compensated for by an increase in

the root chord. This is likely to have an adverse effect on the aerodynamic efficiency of

the design. Consequently, it is essential to consider the aerodynamics and productivity

implications of any increase in fuselage sweep angles viz - a - viz the weight reduction

before deciding on the appropriate sweep angle for the centre - body (fuselage) of the

BWB.

Similarly, though the reduction in wing sweep decreases the structural mass, it could lead
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to an increase in the drag rise Mach number. Therefore, in view of the tight inter - dis-

ciplinary couplings on the BWB, geometric modifications should only be made with due

considerations for the other characteristics affecting the performance of the BWB. This

requires the implementation of a suitably designed optimisation case with appropriate

objective function and constraints within defined limits.

The limited variations in design variables highlights the weakness of the gradient based

LSGRG2 optimiser to being locked in a local minima and not being able to obtain a

global optimum. The implementation of both the gradient and non - gradient optimisa-

tion technique in the GMDSO Tool is therefore a smart decision as it allows for the use

of appropriate option in different design scenario.

The plot of the resulting geometry from the mass minimisation problem of design case 1

is given in Figure 6.35.

Figure 6.35: Geometry Obtained from the Minimisation of MTOM

GA - Design Case 1

The GA is a non - deterministic (random) optimisation technique. Using the GA opti-

miser, greater variations of the design variables are observed. This is due to the ability

of the GA to obtain global optima and not to be locked in a local minima. Nevertheless,

due to the randomness of the process, there is no definite solution to the design prob-

lem rather several solutions consisting of different combinations of geometry and mission

variables producing various magnitudes of reductions in the MTOM of the BWB were

generated. A comparison of the design solutions with the geometry and mission variables

of the baseline BW - 11 is given in Table 6.26.

A typical GMDSO Tool output for the Design Case 1 is shown in Figure 6.36. The greater

variations of design variables seen in Table 6.26 compared to the results obtained using

the LSGRG2 (Table 6.25) demonstrates the strength of the non - gradient GA in being
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Table 6.26: Variation of Design Variables for Case 1 Using the GA Optimiser

Variables Baseline GA 1 GA 2 GA 3 GA 4 GA 5 GA 6

Fuselage Sweep [deg] 63 72 69.6 72 69.5 72 68.9
Wing Sweep[deg] 38.3 32 32 32 32 32 32

Dihedral section 1[deg] 1.5 5 5 5 3.5 0 0
Dihedral section 2[deg] 3 5 5 5 3 0 0
Dihedral section 3 [deg] 3 5 1.04 4.02 5 2.3 0
Twist section 0 [deg] 2.8 0.09 1.26 -0.84 0.48 0.07 -0.15
Twist section 1 [deg] -0.3 -1.5 -1.18 0.46 -2.2 0.95 -1
Twist section 2 [deg] 0.5 -1.3 -0.49 -0.27 -3 -0.07 0.38
Twist section 3 [deg] 0.9 -1.5 -0.42 0.12 -0.58 0.62 1.96
Twist section 4 [deg] -2.7 -1.4 0.70 2.62 -1.32 1.66 -0.76
Cruise Altitude [m] 11227.6 12611 10958 17021 13155 20000 10000

Cruise Mach Number [-] 0.85 0.82 0.86 0.82 0.82 0.95 0.82
MTOM [kg] 481148 420281 440818 423121 438692 424840 441865

able to obtain a global optimum. However, the GA is a random technique and may re-

quire several computationally expensive runs to generate significant result. In the design

case under consideration, the best objective obtained is a 12.7% decrease in the MTOM

from 481146kg to 420281kg. This reduction requires the aircraft to fly at a reduced cruise

Mach number of 0.82 and a slightly higher cruise altitude of 12611m compared to the

baseline cruise Mach number of 0.85 and altitude of 11227.6m. The reduced cruise Mach

number and higher cruise altitude minimise fuel burn due to reduced thrust. Reduced

thrust arises from an improved flight efficiency caused by the lower air density at higher

flight altitude. Consequently, the reduced fuel burn lowers the mass of mission fuel which

subsequently reduces the MTOM.

All reductions in MTOM is accompanied by a higher fuselage sweep angle, a lower wing

sweep angle and random variations in twist distributions and dihedral angles. Reduced

wing sweep angle minimises tip loading due to the reduction in structural span. This

subsequently reduces the structural weight and hence the MTOM. Twist modifies the

moment distribution over the wing thereby affecting structural weight, pitching moment,

stalling and induced drag characteristics for wings with additional highly weighted load

distributions at the wing tips.

The combined effect of these geometry features coupled with the increased flight altitude

and reduced Mach number helps to minimise the MTOM. Nevertheless, while a decrease in

wing sweep angle reduces the structural weight and hence the MTOM, it could potentially

increase the drag rise Mach number, thereby reducing the ability of the aircraft to operate

efficiently at higher Mach number. Though, this may be offset with the high fuselage sweep
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Figure 6.36: Typical GMDSO Tool Output for the GA Optimisation of Design Case 1.

angle, it is worthy to note that the fuselage sweep angle is linked to the size of the cabin

and hence the number of passengers. Hence, it is imperative to ensure that the lengthening

of the root chord, in order to accommodate the required number of passengers, following

the increase in the fuselage sweep angle does not deteriorate the aerodynamic efficiency

of the configuration. Additionally, since the twist distribution also affects the pitching

moment and trim drag, there is the need for to conduct a multivariate optimisation of

the configuration in view of the interconnected disciplines to ensure that a reduction in

the MTOM does not adversely affect the aerodynamic and stability characteristics of the

aircraft.

6.3.2 Design Case 2 - Mass Minimization Subject to Stability Con-

straint

Design Case 2 combines the mission, geometry, aerodynamic and stability modules to

create a BWB with reduced MTOM and a positive static margin from the Baseline. It

is implemented to investigate the ability of the GMDSO Tool to perform multi - mod-

ule, multi - constraints design synthesis and optimisation involving aerodynamic analysis.

Like design case 1, design case 2 is also a mass minimisation problem set up as given in

Table 6.24 but subject to a positive stability margin. The stability margin is a function

of the position of the c.g and the aerodynamic centre. The c.g depends on the geometry

and the locations of major components. The aerodynamic centre on the other hand is a

function of the aerodynamic characteristics of the aircraft.

Earlier in the quasi - validation of the GMDSO Tool stability module, it was found that
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the BW - 11 with NACA 4-series airfoil sections generated a negative stability margin

of -0.02. By varying the shape variables, it is expected that there will be some changes

in the centre of gravity of the aircraft and hence the static margin. To investigate this

phenomenon, design case 2 was formulated to determine the changes in design variables

necessary to obtain a positive static margin. Using the Bradley structural mass models

and applying the Hybrid method and the gradient based LSGRG2 optimisers integrated

in the GMDSO Tool, the BW - 11 geometry is manipulated to obtain the results presented

in the the next 2 sections.

GA - Design Case 2

A comparison of the baseline mission and geometry variables with the results obtained

using the GA optimiser is given in Table 6.27. The resulting geometry from GA optimi-

sation for design case 2 is given in Figure 6.37.

Table 6.27: Comparison of the Baseline with Results Obtained Using GA for Design Case 2

Variables Baseline GA

Fuselage Sweep [deg] 63 72
Wing Sweep[deg] 38.3 32

Dihedral section 1[deg] 1.5 0
Dihedral section 2[deg] 3 1.13
Dihedral section 3 [deg] 3 0
Twist section 0 [deg] 2.8 -0.36
Twist section 1 [deg] -0.3 0.7
Twist section 2 [deg] 0.5 3
Twist section 3 [deg] 0.9 1.02
Twist section 4 [deg] -2.7 2.43
Cruise Altitude [m] 11227.6 10000

Cruise Mach Number [-] 0.85 0.88
MTOM [kg] 481148 437742

Stability Margin [-] -0.02 0.13

The result presented in Table 6.27 shows wide variations between the baseline BW - 11

specifications and the obtained results. This demonstrates the GA’s ability to perform

a global search of feasible space. Furthermore, similar to design case 1, the result shows

an increase in the fuselage sweep angle and a reduction of the wing sweep angle from

the baseline. Additionally, there was a reduction in the dihedral of corresponding span

stations. Combining the effect of these variables with the manipulation of the twist

distribution leads to a 9% reduction in the MTOM and a change in the static margin

from -2% to 13%. The change in static margin is due the effect of twist distribution on

the centre of gravity of the structure and pitching moment of the configuration.
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Figure 6.37: Geometry Obtained from Design Case 2 Using GA.

LSGRG2 Design Case 2

Using the gradient based LSGRG2 for design case 2, the MTOM of the baseline BWB

was reduced from 481148 kg to 440589 kg creating a BWB with static margin of 0.11.

A comparison of the baseline and the result from the LSGRG2 is given in Table 6.28.

Similar to the GA results, the results obtained from the LSGRG2 for design case 2 shows

an increase in the fuselage sweep angle and a decrease in the leading edge sweep angle

of the optimised geometry. With various combinations of twist, dihedral and mission

variables, the MTOM decreases by about 8% while providing a positive stability margin

of 11%. Consequently, it could be concluded that higher fuselage sweep angle, a reduced

wing sweep and the intelligent combination of twist, dihedral and mission variables would

provide a BWB aircraft with a reduced MTOM. The geometry of the BWB obtained from

the LSGRG2 optimisation for design case 2 is given in Figure 6.38.

Figure 6.38: Geometry Obtained from Design Case 2 Using LSGRG2.

The design cases presented in this thesis were based on the NACA 4 - series airfoil.

However, studies have shown that the BWB will require careful aerodynamic shaping

of the centre - body using different combinations of appropriately cambered supercritical

airfoil in order to satisfy conflicting aerodynamic, cruise deck angle and trim requirements
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Table 6.28: Comparison of the Baseline with Results Obtained Using LSGRG2 for Design
Case 2

Variables Baseline LSGRG2

Fuselage Sweep [deg] 63 71
Wing Sweep[deg] 38.3 32.3

Dihedral section 1[deg] 1.5 2.17
Dihedral section 2[deg] 3 2.17
Dihedral section 3 [deg] 3 2.17
Twist section 0 [deg] 2.8 -1.85
Twist section 1 [deg] -0.3 -1.85
Twist section 2 [deg] 0.5 2.78
Twist section 3 [deg] 0.9 -1.85
Twist section 4 [deg] -2.7 -1.85
Cruise Altitude [m] 11227.6 10000

Cruise Mach Number [-] 0.85 0.89
MTOM [kg] 481148 440589

Stability Margin [-] -0.02 0.11

of the BWB. Hence, there is the need to introduce supercritical and other airfoil suite

into the GMDSO Tool. This will expand the design space allowing for the investigation

of the effects of different airfoils on the various characteristics of the aircraft.

6.4 Exploration of the Design Space

In this section the effects of different phenomena affecting the design of the BWB will

be investigated and analysed. The aim of this, is to provide a design with relevant

data needed to make informed design decisions in the synthesis of the BWB. Among the

phenomena investigated in this research are the effects of Mach number and productivity,

sensitivity of airfoil types to aerodynamic efficiency, productivity and the MTOM, effects

of the camber and its position on the aerodynamic efficiency and stability of the BWB

amongst several other possibilities like turbulence handling, stability characteristics as

well as the field and mission performance of the BWB.

6.4.1 Sensitivity of Mach Number to Productivity, Aerodynamic Effi-

ciency and Turbulence

Commercial airline operates for the purpose of conveying passenger safely to their desti-

nations at the least cost and most profits. This is the basis for the term productivity in

commercial aviation. Liebeck [1] states that it might be better to design for productivity

rather than aerodynamic efficiency. Productivity and aerodynamic efficiency are defined
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in terms of the Mach number by Equation 6.6 and Equation 6.7.

Productivity =
MP

D
(6.6)

Where:

M is the Mach number.

P is the payload in N . D is the aerodynamic drag in N.

Eff =
ML

D
(6.7)

Similarly,

M is the Mach number.

L is the lift in N .

D is the aerodynamic drag in N .

Applying the foregoing equations to the BW - 11 test aircraft with NACA 4 digit airfoil

profiles having 4 percent camber located at the 40 percent chord position and appropri-

ate thickness and varying the Mach number from M0.8 to M0.92 in steps of 0.02 using

the GMDSO Tool, the plot shown in Figure 6.43 is obtained. The Figure 6.43 shows

the variations of Mach number with productivity and aerodynamic efficiency. It could

be seen from the plot that productivity decreases linearly with increasing Mach number

while the aerodynamic efficiency showed a non - linear variation with increasing Mach

number. Maximum productivity of 1.5 was obtained at M0.8 while maximum aerody-

namic efficiency of 1.82 was derived at M0.87.

Maximum productivity implies low fuel consumption due to low drag and hence increased

range or payload capacity. This indicates that the maximum aerodynamic efficiency might

not always be economically beneficial. Consequently, while the BWB is well suited to fly

at high Mach number due to the natural area ruling of the configuration, high speed

might not necessarily be the best option. This is due to the reduced productivity and

lower efficiency at very high speeds. Hence, design decisions about speed must not only

be based on aerodynamics efficiency but also on productivity considerations, stability

and turbulence handling. Also, the plot shows that the best aerodynamic performance is

obtained between M0.84 and 0.88 as observed from the increase in ML/D. The reduced

aerodynamic efficiency beyond Mach 0.88 could be due to wave drag rise resulting from

transonic effects.

Now, applying Agenberg and Theron [150] criteria to the BW - 11, the variations of tur-
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Figure 6.39: Sensitivity of Mach Number to Productivity and Aerodynamic Efficiency.

bulence handling characteristics with Mach number is obtained as given in Figure 6.40.

The plot shows a decreasing negative value and hence a reduction in turbulence handling

capacity with increase in Mach number. This implies that high speed will increase the

sensitivity of the aircraft to turbulence and subsequently minimises passenger comfort

and ride quality.

Figure 6.40: Sensitivity of Mach Number to Turbulence Handling

The test geometry was subsequently assessed for effects of speeds on the static margin.

The result shows an improvement in static margin with increasing Mach number as shown

in Figure 6.41. This is due to the increased lift coefficient derived with increase in Mach

number causing a rearward shift in the aerodynamic centre of the aircraft thus improving

the static margin or making it more positive. This behaviour is corroborated by a com-
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parison of the static margin of F - 14A and the F - 111 shown in Figure 6.42. The result

shows an increase in static margin with Mach number in the subsonic region as obtained

for the BW - 11.

Figure 6.41: Sensitivity of Mach Number to Static Margin

Figure 6.42: Comparison of the Static Margin of the F -14 A and F - 111

A review of the sensitivity of Mach number to productivity, aerodynamic efficiency, tur-

bulence handling and static margin highlights the strong interdisciplinary coupling on the

BWB aircraft and the need for a multi - variate optimisation in the design synthesis. It is

envisaged that the integration of multi - variate optimisation techniques in the GMDSO

Tool will enable a knowledgeable users create the desired BWB that is commercially

profitable as well as provides good stability with reduced sensitivity to turbulence.
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6.4.2 Sensitivity of Maximum Camber to Productivity, Aerodynamic

Efficiency, Static Margin and Turbulence

The GMDSO Tool contains a suite of NACA 4 digit airfoils. In the NACA four digit

numbering system, the first digit represents the maximum camber in percentage of chord,

the second digit is the position of the maximum camber from the leading edge in tenths

of chord while the third and fourth digit refers to maximum thickness in percentage of

chord. The airfoil profile affects the aerodynamic efficiency, stability, turbulence handling

and productivity of the BWB aircraft. Consequently, it was necessary to investigate how

the various features of the 4 digit NACA airfoil affects the relevant characteristics of the

BWB airfoil. The thickness of the airfoil is set by the volume requirements of the aircraft,

though it could be manipulated in the packaging module. Consequently, maintaining the

given thickness to chord ratio and positioning the airfoil maximum camber at the 40%

chord position from the airfoil leading edge, the maximum camber is varied from 0 - 9

percent in increments of 1%. The results obtained from this sensitivity study is given in

Table 6.29.

Table 6.29: Effect of Variations in Maximum Camber

Max. Camber [% Chord] ML/D MP/(D) Static Margin [-] Turbulence Handling [-]

0 7.99 4.62 -0.034 -0.13
1 15.45 3.60 -0.033 -0.125
2 17.58 2.56 -0.033 -0.124
3 17.01 1.8 -0.032 -0.122
4 15.57 1.3 -0.032 -0.122
5 14.38 0.98 -0.032 -0.121
6 12.61 0.73 -0.031 -0.11
7 10.15 0.45 -0.030 -0.12
8 10.25 0.46 -0.030 -0.12
9 9.37 0.37 -0.030 -0.12

Plotting the values of the maximum camber against the aerodynamic efficiency (ML/D)

and the productivity (MP/D) gives Figure ??. The Figure ?? shows a decreasing pro-

ductivity with increase in camber. Maximum productivity is obtained with a symmetric

airfoil or 0% camber while the aerodynamic efficiency is highest at 2% camber. Sub-

sequently, the aerodynamic efficiency and productivity decreases as maximum camber

increases. Hence, it could be seen that 2% provides the most gains in terms productivity

and aerodynamic efficiency.

In terms of stability and turbulence handling, the plot of the static margin and the mea-

sure of turbulence handling against maximum camber is shown in Figure 6.44. The Figure
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Figure 6.43: Sensitivity of ML/D and MP/D to Maximum Camber

indicates that the aircraft have good turbulence handling characteristics irrespective of

the airfoil’s maximum camber. Additionally, the 4 - digit NACA airfoil applied on the

BWB tailless aircraft yields unstable aircraft at all cambers as variations of the camber

always give a negative static margin. The static margin is improved with increasing cam-

ber as the static margin tends towards positive value with increasing camber, levelling off

at the 7% camber onwards.

The turbulence handling characteristics on the other hand is marginally deteriorated as

it becomes less negative with increase in maximum camber. Also just like in the case of

static margin, the turbulence handling characteristic is diminished until the 7% camber

position where it remains steady at -0.12. There is therefore only a negligible change

in static margin and turbulence handling with increase in maximum camber. It could

thus be concluded that the maximum camber of NACA 4 - digit airfoil, positioned at 40

percent chord position from the airfoil leading edge has only a minimal impact on the

turbulence handling characteristics and static margin.

Having investigated the effect of the airfoil’s maximum camber on the BWB aerodynamic

efficiency, productivity as well as the stability and turbulence handling, it was necessary

to vary the positions of the maximum camber in order to establish if they have any effect

on the investigated aerodynamic and stability characteristics. Consequently, varying 2%

maximum camber from 10 - 90% chord position, the results given in Table 6.30 is obtained.

The Table 6.30 shows that all camber positions give unstable aircraft with good turbu-

lence handling characteristics. There is also a negligible difference in the static margin
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Figure 6.44: Sensitivity of Static Margin and Turbulence Handling Characteristics to Maxi-
mum Camber

Table 6.30: Effect of Variations in the Position of 2% Maximum Camber

Position of Max. Camber [% Chord] ML/D MP/D Static Margin [-] Turbulence Handling [-]

0.1 13.69 2.43 -0.033 -0.125
0.2 17.18 2.89 -0.033 -0.124
0.3 17.35 2.74 -0.033 -0.124
0.4 17.36 2.53 -0.033 -0.124
0.5 17.34 2.31 -0.033 -0.124
0.6 16.95 2.01 -0.033 -0.123
0.7 16.20 1.67 -0.032 -0.123
0.8 14.83 1.24 -0.032 -0.123
0.9 11.77 0.70 -0.031 -0.120

and turbulence handling characteristics of the aircraft with increasing maximum camber

position. However, this is not the case with productivity and aerodynamic efficiency of

the aircraft. A plot of the positions of 2% maximum camber against the aerodynamic

efficiency and productivity is given in Figure 6.45.

The Figure 6.45 shows that maximum aerodynamic efficiency is obtained when maximum

camber is positioned at 40%. However, maximum productivity occurs with the maximum

camber at the 20% chord position. Nonetheless, both characteristics tended to decrease

after first rising to their maximum values. It could therefore be concluded that minimal

aft camber is necessary to obtaining maximum productivity and higher aerodynamic

efficiency with the 2% maximum camber NACA 4 - digit airfoil.
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Figure 6.45: Sensitivity of the Position of Maximum Camber on Aerodynamic Efficiency and
Aircraft Turbulence Handling Characteristic

6.4.3 Effect of Centre -Body Sweep on Aerodynamic Characteristics of

the BWB Centre - Body

Siouris and Qin [45] studied the effect of outer wing sweep on the aerodynamic perfor-

mance of the BWB but did not consider the effect of the sweep of the centre - body. Since,

the BWB is often modelled as a wing, it was considered necessary to also investigate the

effect of sweep of the centre - body(fuselage) on the aerodynamic characteristics of the

BWB aircraft. Consequently, varying the centre - body sweep angles from 45 to 75◦ in

steps of 5◦ while keeping the outer wing sweep angle constant at 38.3 ◦ and maintaining

a constant cruise Mach number of 0.85, the aerodynamic characteristics of the BW - 11

(test aircraft) were determined at zero degree AoA. The results of the study is shown in

Figures 6.46, 6.47, and 6.48.

The plots show that the lift and drag coefficients decrease with increase in the centre - body

sweep angles, but the aerodynamic efficiencyML/D increases. This trend favours the use

of higher sweep angles on the centre - body thus explaining the usual high sweep angles

observed on BWB centre - body. However, it ought to be noted that increase in centre

- body sweep angles is accompanied with corresponding extension in the length of the

centre - body, in order to accommodate the given number of passengers. Consequently,

decision on the appropriate sweep angle for the centre - body needs to be made with

due assessment of the impact of the resultant increase in length on the desired aircraft

performance indicators.
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Figure 6.46: Variation of Lift Coefficients with Sweep Angles at M0.85 and 0◦ AoA.

Figure 6.47: Variation of Drag Coefficients with Sweep Angles at M0.85 and 0◦ AoA.

Figure 6.48: Variation of ML

D
with Sweep Angles at M0.85 and 0◦ AoA.
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6.5 Chapter Summary

This chapter presents some of the applications of the developed GMDSO Tool in the design

synthesis, optimisation and exploration of the design space of the BWB. The first sets of

applications isolated and tested individual modules and compared the results with a test

aircraft, the BW - 11, to ascertain the degree of accuracy of its results. This is the quasi -

validation of the developed tool. The results obtained from this process compares closely

with the data given in the BW -11 specification document and validates the accuracy

of the models implemented in the GMDSO Tool. Subsequently, some test cases with

different objective functions, design variables and constraint(s) were implemented in a

multivariate optimisation to demonstrate the capability and robustness of the design

tool. The exploration of the design space was performed next through various sensitivity

studies to understand the impact of different design drivers on the characteristics of the

BWB aircraft. The results maintained a high level of consistency with the test aircraft

and other results from different studies.





Chapter 7

Conclusions and Recommendations

for Further Work

This research develops a flexible user driven tool for the conceptual design synthesis and

optimisation of the BWB aircraft. The GMDSO Tool couples a geometry parameter-

isation packaging model, vortex lattice aerodynamic model and a Class II Component

weight estimation methods incorporating BWB - specific structural mass model to create

a multivariate design synthesis optimisation tool nicknamed GENUS. The GMDSO Tool

enables a knowledgeable user to rapidly perform the conceptual design synthesis and ex-

ploration of the design space of the BWB aircraft. Though, the complete GMDSO tool

is created by a team of researchers, the author is wholly responsible for the development

and integration of all modules involving the BWB. Additionally, the author is solely re-

sponsible for extending the functionalities of the AVL and the creation of the parametric

based packaging module. However, the development of the GENUS framework on which

the individual aircraft synthesis is performed is a group effort, with the author making

significant contribution in shaping the platform. This Chapter presents the principal find-

ings from the research objectives, the research’s contributions to knowledge, limitations

of the study and recommendations for future work followed by the author’s publications.

203
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7.1 Principal Findings From the Research Objectives

7.1.1 Develop Algorithms for the Estimation of Several Variables within

an Aircraft Design Synthesis

In order to develop a design synthesis tool, algorithms for the estimation of disciplinary

variables and enabling inter - disciplinary interactions were developed. These algorithms

were developed from a mixture of legacy codes and JAVA coded analytical and empir-

ical models. The systematic integration of these algorithm enables the creation of the

BWB aircraft and the investigation of coupled effects on the design. Additionally, the

algorithm allows for the estimation of several variables rather than the usual assumption

used in conceptual design. The algorithms developed in the GMDSO Tool include BWB

specific structural mass estimation, physics - based aerodynamic analysis , stability and

performance evaluation and packaging incorporating volume constraint handling. The

algorithm allows for the design synthesis and exploration of the design space of the BWB.

7.1.2 Incorporate Packaging Module Early in the Conceptual Design

Process

Packaging module was incorporated into the GMDSO Tool using the CST parameter-

isation technique and geometry scaling. The need to integrate packaging early in the

conceptual design stage was necessary due to the non - uniform cross - section of the

BWB aircraft. This increases the requirements to ensure there is sufficient space within

the BWB geometry to prevent interference and accommodate internal objects. Addi-

tionally, packaging enables the creation of an aircraft with realistic and acceptable static

margin to improve controllability and reduce pilot workload. Furthermore, integrating

packaging into the design tool eliminates interference between internal objects and the

geometry thereby minimising costly geometry redesign later in the design process. How-

ever, it highlights the need for aerodynamic shape design optimisation and the need to

extend the airfoil suite of the aerodynamic model to include CST derived airfoils.

7.1.3 Create a multi-variate optimisation tool to rapidly perform the

conceptual design synthesis and analysis of the BWB commercial

passenger aircraft

The research set out to create a multi - variate optimisation tool to perform the conceptual

design synthesis and analysis of the BWB. This task is accomplished by integrating 3

optimisers into the GMDSO Tool. These optimisers are the gradient based LSGRG2, the

non - gradient GA and the internally coded Hybrid gradient/non - gradient PDGenetic
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optimiser. The computational efficiency and accuracy of the optimizers varies. The

gradient - based LSGRG2 optimiser is the only deterministic method while the others are

based on a random search process. However, the GA and the Hybrid both yields global

optima while the LSGRG2 has a tendency of being locked in a local minima. Nevertheless,

the Hybrid optimiser is the most accurate method with the least margin of error while the

GA produces results with the most absolute difference between the design variable and

the set objective. Using these optimisers, design improvements can be made to a BWB

through a careful definition of design problems involving appropriate objective function

and relevant constraints.

7.1.4 Explore the design space of a BWB aircraft configuration

This research explores the BWB design space by sensitivity analysis investigating the

impact of design drivers on different aircraft characteristics. The results obtained high-

lights the highly coupled nature of the BWB and the non - linear behaviour of different

design drivers to different aircraft characteristics. This consolidates the application for

the application of a multi - variate design optimisation technique in the synthesis of the

BWB aircraft. With an infinite design space of the BWB configuration, only a limited

number of cases to demonstrate the capability and application of the developed tool were

explored.

7.2 Contributions to Knowledge

This research provides the following significant contributions to knowledge:

1. A novel, robust, flexible conceptual design software to support the iterative and

unique process of the design of a Blended Wing Body aircraft. This tool cou-

ples physics based vortex lattice aerodynamics analysis model with BWB - specific

structural mass module and the CST parameterisation packaging into a multivariate

conceptual design synthesis tool for the rapid design and exploration of the design

space of the BWB aircraft.

2. Algorithms for the accurate estimation of several variables within a design synthesis

rather than relying on assumed values thus providing a more realistic design.

3. Expanded physics based vortex lattice software, AVL, with added functionality for

automated multi - speed, multi - angles of attack aerodynamic analysis of aircraft

in a multivariate design environment.
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4. A compendium of evolving trends in the design of the BWB aircraft to provide

handy reference that will enable designers to quickly understand and select the

most appropriate concepts and systems in the design synthesis of the BWB, without

reviewing large volumes of literatures.

5. An easy to use design environment which enables interaction between a knowledge-

able user and the design process while allowing for extension to other aircraft class.

7.3 Limitations of the Research

The absence of any reliable data of a BWB commercial passenger transport aircraft lim-

its the validation of the developed Tool to quasi - validation using information from the

Cranfield BWB research project. Though the result obtained from the Tool compares

favourably with the Cranfield designed BW - 11, it needs to be subjected to real or near -

real life conditions in order to fully affirm its validity. The development of a scaled model

subjected to wind - tunnel test will provide a more reliable data for validation of modules

within the GMDSO Tool.

Also, this research involves a lot of coding and integration of 3 different programming

languages, JAVA, FORTRAN and C++. In the design and development of the GMDSO,

efforts have been made to ensure the tool meets a very high standard. Nevertheless, it is

envisaged that it could still fall short of the standard of a professional programmer which

could affect the efficiency and program runtime. It might thus be useful if a programmer

is recruited to arrange the codes and program design in a most efficient way.

7.4 Recommendations for Future Work

The GMDSO Tool is developed as a design suite for the conceptual design synthesis of the

BWB Aircraft. Though it is reasonably equipped with most of the models appropriate for

conceptual design synthesis, there is still room for improvement. Potential modification

that could enhance the applications of the GMDSO Tool are:

• Extension of the airfoil suite to include airfoils created from the CST geometry

parameterisation implemented in the packaging module, supercritical airfoils and

other tailless non - NACA airfoils.

• Modification of the the physics - based aerodynamics tool to integrate or accept non

- NACA airfoils. This modification extends the design space and allow for better

assessment of the stability of the aircraft.
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• Couple the aerodynamics and packaging modules with the optimisers to perform

aerodynamic shape design optimisation.

• At the moment only one core is running, and the program can easily be overwhelmed

by a complex optimization task. Hence, there is the need for the program to be run

on parallel cores to reduce computational time. This will increased the number of

design cases that could be investigated therefore enabling better exploration of the

design space.

• The GUI could be significantly improved to include some form of analytics for the

optimiser including number of runs, plots of variations of constraints and objective

functions, number of iterations and duration of the optimisation.

• The GMDSO Tool employs a free plotting software, the gnuplot. The gnuplot is

integrated in the GMDSO Tool as a geometry viewer. Currently, the viewer displays

the geometry by wireframes. This could be updated to display polygons in order to

enable better displays. Additionally, the geometry could be linked to the CATIA

software to provide additional functionalities in geometry representation.

• The GMDSO Tool permits only the implementation of single objective optimisation

using continuous variables. Multi-objective optimization should be implemented to

increase the options of design cases that could be investigated. Additionally, the

optimiser could be improved to enable discrete optimisation.

• Incorporate advanced technologies to the design synthesis tool.

• Consider the impact of technology reduction factors on mass models.

7.5 Publications

7.5.1 Journal Paper

1. P. Okonkwo and H. Smith, Review of Evolving Trends in Blended Wing Body

Aircraft Design, Progress in Aerospace Sciences (2016), http://dx.doi.org/10.

1016/j.paerosci.2015.12.002i.

7.5.2 Conference Paper

1. P. Okonkwo and H. Smith, Packaging in a Multivariate Conceptual Design Synthesis

of the Blended Wing Body Aircraft, International Journal of Mechanical, Aerospace,

Industrial and Mechatronics Engineering Vol:8 No:6, 2014.

http://dx.doi.org/10.1016/j.paerosci.2015.12.002i
http://dx.doi.org/10.1016/j.paerosci.2015.12.002i
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Appendix A

Atmospheric Model

Given that the temperature in the international standard atmosphere is derived from
Equation A.1:

T = Ti + Li(h− hi) (A.1)

T is the temperature in Kelvin ,(K).
L is the temperature lapse rate in K/m.
h is the geopotential altitude in m.
Subscript i is the datum level for each segments of the atmosphere.

And knowing the temperature lapse rate in the various segments, then substituting into
Equation A.1, the temperatures at the 3 segments are determined as follows:

T = 288.15 − 0.0065h for 0 ≤ h ≤ 11000m.
T = 216.65 for 11000 ≤ h ≤ 20000m.
T = 216.65 + 0.001(h − 20000) for 20000 ≤ h ≤ 32000m.

The pressures at the different segments are determined as:

p = 101325 [1− 0.000022558h]5.25588 in the troposphere.
p = 22632 exp [−0.000157688 (h− 11000)] in the lower stratosphere.

p = 5474.9 [1 + 0.000004616 (h− 20000)]−34.1632 in the lower stratosphere.

Density is derived from the equation of state A.2 using the temperature and pressure
obtained at the given altitude.

ρ =
p

RT
(A.2)

Where:

ρ is density in kg/m3.
R is the gas constant = 287.05287Nm/kgK.

The speed of sound a is a function of temperature and is derived from Equation A.3.

a =
√
401.87T (A.3)
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The kinematic viscosity in m2/s is calculated from Equation A.4.

ν =
1.458 × 10−5T 1.5

(T + 110.4) p
(A.4)



Appendix B

Steps to Compiling the Athena

Vortex Lattice for Operations on

Windows

Though AVL is often distributed pre-compiled, the source code is also available for modi-
fication if need be. Pre - compiled AVL.exe file requires a geometry text file, to be loaded
prior to analysis. However, because the design synthesis tool being developed requires
automated operation, there was the need to modify the source code and recompile it
accordingly. Generally, compiling a FORTRAN source code such as the AVL is pretty
straight-forward. However, AVL source code just like most FORTRAN code is platform
dependent and requires the X11 plot library which is not often available on windows.

The -X11 is a windowing support library used by Linux to make plots. Compiling the
distributed AVL source code on windows therefore involves a complicated process of in-
stalling several programs which is not convenient. There is therefore the need to modify
the AVL source code in order to bypass the requirement for the -X11 library which,
nonetheless, is not necessary in a multivariate optimisation scheme.

The procedure described in this thesis assumes that the open source Minimalist GNU
for Windows (MinGW) and Minimal System (MSYS) are installed on the system. After
installing MinGW and MSYS, ’C:/MinGW/bin;’ ’C:/MinGW/msys/1.0/local/bin;’ and
’C:/MinGW/msys/1.0/bin’ should be added to the end of the PATH system environment
variable.

The AVL is then compiled according to the following steps:

1. Download the AVL source code from http://web.mit.edu/drela/Public/web/avl/.

2. Unzip the source code using any unzipping program.

3. Place the unzipped AVL folder in the path ’MinGW/msys/1.0/home/usr’ . ’usr’ in
the path name refers to the login or user name.

4. Now open the plotlib folder located in the path:
MinGW/msys/1.0/home/usr/AVL/plotlib.
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5. Open and edit the file ’makefile.f’ as follows:

• Comment out PLTLIB=libPlt.a and uncomment PLTLIB=LibPltDp.a.

• comment out Xwin.o in OBJ.
• Change FC=f77 to FC=gfortran if using gfortran compiler or to the appropri-

ate FORTRAN compiler installed on the system.

• Change ”CC=CC” to ”CC=g++” or the appropriate C++ compiler installed
on the system.

• Uncomment and change ”DP=r8” to ”DP=-fdefault-real-8 -fdefault-double-8”.

• Comment out ”include.config.make”.

• Comment out ”Xwin.o:Xwin.c”.
• ”$cc -c $ $(cflags) Xwin.c$”.

6. Having completed the foregoing process, open MinGW shell or run terminal.

7. Do ”cd c:/MinGW/msys/1.0/home/usr/AVL/plotlib”.

8. Do ”make” to generate the plot lib object file.

9. Open the eispack folder in the in the path MinGW/msys/1.0/home/usr/AVL/eispack
and edit the edit the makefile.f as follows:

• Comment out FC=f77.
• Change fc=ifort to FC =gfortran or the appropriate fortran compiler.

• Change ”Fflags =-0” to ”Fflags =-o -fdefault-real-8 -fdefault-double-8”.

10. Open MinGW shell.

11. Change directory to eispack by typing ”cd: c:/MinGW/msys/1.0/home/usr/AVL/eispack”.

12. Create the eispack object file using ”make” to generate eispack.o.

13. Open the bin folder in AVL directory i.e c:/MinGW/msys/1.0/home/usr/AVL/bin.

14. Edit the makefile as follows:

• Comment out the plotOBj.

• Change FC=f77 to FC=gfortran.

• Change Fflags =-0 to Fflags =-o -fdefault-real-8 -fdefault-double-8.

• Change PLTLIB=LX11 to PLTLIB=

• Change SECOND=second g77.f to SECOND =second.f

• Comment out everything from ”uncomment flags for desired machines” until
and including ”PLTLIB”, ”SECOND” and ”FTNlib”.

• Ensure PltOBJ = ...../plotlib/libpltDP.a.

• Comment out $cp(SRC) /$(SECOND) $ (SRC) /second.f$

15. Open the file gw subs.f in the path c:/MinGW/msys/1.0/home/usr/AVL/src and
delete contents of all subroutines within the file except the ”return” and ”end”
commands. In other words creating an empty subroutine. This step is critical as it
controls the process responsible for invoking the X11 library call.

16. Now open MinGW shell or run terminal again.

17. Change directory to c:/MinGW/msys/1.0/home/usr/AVL/bin.

18. Generate the executable file using the ”make” command.



Appendix C

Process of Creating a Shared Library

of FORTRAN Written AVL Codes

and JAVA Disciplinary Models

In order to create a shared object file that allows for self contained JAVA execution of
the aerodynamic analysis code, the JAVA code is first compiled by typing ”javac Java-
Codefilename.java” in the compiler to create a classfile named ”JavaCodefilename.class”.
Subsequently, a JNI header file is generated by typing ”javah JavaCodefilename” to create
a header file with the same name as the class file but with a ”.h” extension. Following
the example in this thesis, this will create a file named ”JavaCodefilename.h”

As JAVA can only be interfaced with Fortran through a C++, a C++ code to link the
FORTRAN code to JAVA is created by inserting ”#include” followed by the name of the
header file at the top of the C++ document. Using the example in this thesis, this trans-
lates to writing ”#include <JavaCodefilename.h.>” at the top of the C++ code. This
will be followed by a declaration of the name of the C++ function invoked in the ”native
method” in JAVA together with the prototype interface from the header file. The term
”Extern ”C” ” is used before the C++ function name in order to notify C++ compilers
that the function(s) following should be compiled using Cs function naming convention
instead of C++ naming protocol.

A ”C” function naming convention is written as Java package and classname {function
name { (JNI arguments, arguments of the C function). The JNI arguments are the
JNIEnv* and jobject. JNIEnv refers to the JNI environment which provides access to all
the JNI functions while the jobject argument refers to ”this” java object.

Applying this convention to the example used so far in this chapter, the prototype decla-
ration and subsequent C function would look like the following:

JNIEXPORT returntype JNICALL Java JavaCodefilename cppfunctionNameAsGiven-
inJava(JNIEnv *env, jobject thisobj, jargumenttype, argument..)
{ Describe what the C++ function is to written to accomplish;
}
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JAVA Disciplinary Models

The C++ code file generated from the foregoing process, assuming it is named ”Cpp-
code.cpp”, is then compiled, by typing:

”g++ -c Cppcode.cpp -m64”

This creates an object file ”Cppcode.o”. This object file is then linked with FORTRAN
object files to create a Dynamic Link Library (DLL).

In this thesis, the FORTRAN codes that needs to be linked is the AVL source code. The
AVL source codes comprises 37 files. A single library file is created from these 37 files by
first creating an object file for each of the 37 files using the command :

”gfortran -c *.f -m64”

Subsequently, the object files are combined into a library file through the command:

”ar rcvf libAVLf.a *.o”

This creates a library file named libAVlf.a.

The C++ object file and the combined FORTRAN library file are then linked to create
a DLL file using the command:

”g++ Cppcode.o -L. -lAVLf.a -o nameofDLL.dll -m64 -static -lgfortran -shared”

This generates a DLL file named ”nameofDLL.dll”. The generated DLL file is copied and
placed in the same folder as the JAVA file. The JAVA program which now serves as the
main program for the C++ and FORTRAN codes within the interface is then executed
using the ’run’ button in ’Netbeans’ or by typing in ’java Javacode’ in the compiler console.



Appendix D

Development of the GMDSO Tool

The GMDSO Tool is developed to ensure modularity by creating distinct disciplinary
modules with sequentially defined forward interacting paths. The modules, which are
created with the polymorphism feature of JAVA programming language, are the compu-
tational engines driving the functioning and operations of the GMDSO Tool. Polymor-
phism is an essential feature in the development of the GMDSO Tool due to the need for
different aircraft configurations with different design models to utilise common features
and conform to a set format. Polymorphism allows objects with different internal features
to share the same external interface. Additionally, it enables subclasses of a class to define
their own unique behaviour while still retaining or sharing some of the functionality of
the parent class [153].

The organisation and hierarchy of the modules within the GMDSO Tool is shown in Fig-
ure D.1.

Figure D.1: Overview of the GENUS Module Class.

The GMDSO Tool is organised into 3 levels namely the top, module and individual level
classes. The top level class termed the ’GENUSModule’ and module level classes are
implemented as Abstract classes. Abstract classes are used because of the need to share
common top level codes among the different individual level modules. There are 10 indi-
vidual level essential modules and an arbitrary number of special modules in the GMDSO
Tool. The top level module specifies all the methods and fields that enable the GMDSO
tool to function. These methods and fields are used:
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• To display and acquire information from the GUI.

• To enable the modules to be updated as well and provide values to the optimizer(s)
or other processes.

• For communicating between modules.

• For saving data to permanent storage as opposed to RAM.

• For writing output report to the hard disk.

D.1 0 - Geometry

The Geometry Module defines the shape of the aircraft using geometric variables such as
the span, sweep, twist, etc and store the generated data in an agreed common format. The
organisation of the Geometry Module showing its constituent parts is given in Figure D.2.

Figure D.2: A Layout of the Geometric Module.

The shape of an aircraft is defined in the Geometry Module using components of the
GeometrycPart abstract class. The hierarchy of Geometrycpart is defined in Figure D.3.

The GeometrycPart is divided into the LiftingSurfaces and BodyComponents arrays. One
of the arrays can be zero long but not both. Setting both arrays to zero long denotes
absence of a geometry which is impracticable. A zero long BodyComponents array is used
to describe a flying wing type aircraft, while zero long LiftingSurfaces is applicable to a
space capsule.
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Figure D.3: Hierarchy of Geometric Parts in the Geometric Module.

D.1.1 LiftingSurface

The LiftingSurface is used to describe elements that generate the aerodynamic forces
and/or moments to lift and/or control the vehicle. LiftingSurfaces are used to define the
wings, horizontal and vertical tails. The shape of a lifting surface is controlled by the
number, arrangements and dimensions of cross-sections or kinks. In the GMDSO Tool,
the number of kinks is denoted by the letter m. The location and arrangement of the
kinks are governed by the Apex, section and cross-section properties.

Apex represents the xyz reference coordinates of the kink. Section properties refers to the
section span[m], leading edge sweep[rad], dihedral[rad] and the area ratio of the control
in surface meters. The area ratio of a control surface is the ratio of the portion of the
section used for control function to the total length of the section. It is taken as 0 in
the absence of control surfaces and 1 when the whole surface is used for control function.
Nevertheless, when control surfaces are present, this ratio ranges from 0.1 -1, depending
on the location of the control surface from the leading edge of the section. Each section
property has an array length equal to m+ 1.

Cross-section properties consist of the chord length [m], airfoil type and inputs specifying
the thickness and camber of the airfoil, and the local incidence or twist in radians. Each
cross-section properties has an array length equal to m+ 2.

The XY, YZ and XZ - plane views of an arbitrary 4 - sections lifting surface as generated
from the GMDSO Tool using the lifting properties are shown in Figures D.4, D.5 and
D.6 respectively. The shape was splined and surfaced in CATIA from the outputs of the
Geometry Module. The shape sections are coloured differently to aid identification of the
different sections.

The span of a section in the GMDSO Tool is defined differently from the span normally
used in aircraft design. Span as used in the Geometry Module of the GMDSO Tool refers
to the true distance between the 2 leading edge points as shown in Figure D.5 rather
than the usual projected distance in the XY - plane. This definition was adopted in order
to be able to specify non-conventional wings such as winglets, box-wing, c - wings etc.
Knowing the projected distance and provided none of the dihedral or sweep is 90◦, the
input span length can be calculated by Equation D.1.
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Figure D.4: XY - Plane View of a Lifting Surface Showing Definition of Properties.

Figure D.5: YZ - Plane View of a Lifting Surface Showing Span Definition.

Figure D.6: XZ - Plane View of a Lifting Surface Showing Span Definition.

spani = spanprojected,i

√

1 + tan2 Γi + tan2ΛLE,i (D.1)
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D.1.2 BodyComponent

BodyComponents define non-lifting surfaces such as the fuselage, tail boom, etc using
apex, number of kinks, section and cross-section properties. The apex, number of kinks,
m, and section properties are arrays with length equal to m+ 1. They are defined in the
same way as the LiftingSurface properties of same name.

The cross-sectional properties comprise the width [m], height [m], bottom distance[m]
and the cross-section shape. The cross - section shape could be either oval or rectangular.
Cross - section properties are arrays of length equal to m+ 2.

In order to completely define a BodyComponent, the nose and/or end section of must
also be specified. The nose and end sections are described by their radius [m] and length
[m]. The variation of the length and radius of the nose determines its shape. Various
definitions of the nose section are given in Figures D.7, D.8, and D.9.

Figure D.7: Shape of the Nose Section with Zero Radius and Finite Length.

Figure D.8: Shape of the Nose Section with Finite Radius and Finite Length.

A 3 - dimensional view of a fuselage section together with a description of its properties
are defined in Figures D.10, D.11 and D.12. It is pertinent to note the difference between
the fuselage total length and its structural length. Th total length refers to the tip to tip
length of the fuselage from the nose to the from the nose to the end of the rear section.
The structural length refers to the length of the mid section or body of the fuselage with-
out the nose and end sections of the body.
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Figure D.9: Blunt Nose Section with Zero Length and R > Ro.

Figure D.10: XZ-Plane View of the Fuselage Section.

Figure D.11: XY-Plane View of the Fuselage Section.

Figure D.12: YZ-Plane View of the Fuselage Section.
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D.1.3 Geometry Formats

The geometry format provides a common storage standard for the outputs of LiftingSur-
faces and BodyComponents. The number of geometry formats implemented depends on
the different aerodynamic analysis modules integrated into the GMDSO Tool. This is
because geometry formats must conform to the geometry standards required by the aero-
dynamic analysis tool implemented. Consequently, 3 geometric formats are defined in the
GMDSO Tool in line with the 3 aerodynamic analyses tools implemented. The geometry
formats are the NASA Langley Wireframe Geometric Standard (LAWGS) [154], Digital
Datcom [155] and the AVL geometry format.

The NASA LAWGS is a format that describes a configuration geometry with discrete
points. It is implemented in the GMDSO Tool for use with the Supersonic/Hypersonic
Arbitrary Body Program (SHABP) [156], and the built-in plotting in the GMDSO Tool.
The Digital Datcom format defines the wing and tail surfaces as equivalent straight ta-
pered plan - forms with only one kink, and the fuselage by a series of circular cross
-sections with equivalent radius. The Digital Datcom format is developed for use with
the Digital Datcom aerodynamic analysis tool. Similarly, the AVL geometry format is
implemented for use in the AVL aerodynamic analysis tool. The AVL geometry format
describes a surface by a mixture of the xyz leading edge coordinates, kinks, sections,
spans, chords and airfoil. Though the AVL does not analyse bodies as it does not model
thickness. However, bodies could be defined, for aesthetic reasons only, using series of
circular cross - section [157].

All geometry formats generated during a single instance of the GMDSO Tool are stored.
This is to enable them to be reused in other parts of the program when needed thereby
avoiding duplication of effort. The process of generating, requesting for and transfer of
geometry module within the GMDSO Tool Geometry Module are shown in Figure D.13.

Figure D.13: The Process of Generating and Transfer of Geometry Formats Within the
GMDSO Tool.

In addition to defining the shape of the aircraft, the Geometry Module also contains
utility methods for modifying the shape and/or extracting information for use in other
modules. The utility methods implemented in the GMDSO Tool are categorised into the
common methods, BodyComponents methods and the LiftingSurfaces methods.

The common utility methods are applied to both the LiftingSurface and BodyCompo-
nents. Common methods are used to modify an aircraft shape or extract information for
use in other modules. Common utility methods implemented in the GMDSO Tool are the:
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• Add kinks.

• Remove kinks.

• Set Apex(origin).

• Set non-dimensional Apex.

• Count number of parameters.

• Get the total volume.

• Get the total surface area.

• Get section volume and surface area.

• Get cross-section area and circumference.

• Get the lowest z-coordinate.

• Get the highest z-coordinate.

• Get XYZ coordinate at X̄ and Ȳ .

BodyComponents utility methods comprise:

• Copy object properties from other BodyComponent.

• Set body component.

• Calculate volume and surface area of nose and rear.

• Add/remove/set nose and rear.

• Get XYZ coordinate at X̄ and Ȳ .

• Get end coordinate.

• Get planform area.

LiftingSurfaces utility methods are used to manipulate lifting surfaces elements or extract
information for use in other modules. These include :

• Copy object properties from other LiftingSurface.

• Set LiftingSurface.zz

• Get XYZ coordinate at X̄ and Ȳ top or bottom surface.

• Get equivalent sweep at chord fraction.

• Get XYZ coordinate at p% of the Mean Aerodynamic Chord (MAC).

• Get XYZ coordinate at at p% of the Mean Aerodynamic Chord (MAC) at Ȳ .
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LiftingSurfaces and BodyComponents use aerofoils and simple sections respectively to
define their cross-section shapes. The fineness of the cross-section shapes, which are gen-
erated in planar XY coordinates form, is controlled by a division parameter. The division
parameter sets the total number of points on the cross-section depending on the type of
geometry. For a lifting surface, the number of points or fineness is derived from Equation
D.2.

finenessLS = 2 ·Divisions + 7 (D.2)

For a BodyComponent, the number of points is determined from Equation D.3.

finenessBC = 8 ·Divisions+ 9 (D.3)

BodyComponents and LiftingSurface cross - section must be defined in a clockwise direc-
tion to form a closed loop starting from the trailing edge of the lifting surface or bottom
of the body section to the leading edge of the lifting surface or top of the section.

D.2 1-Mission Specification Module

The mission module specifies the minimum requirement which a design is expected to
satisfy. These requirements are derived from the market or customer specification. The
mission module consists of the following common fields:

• cruiseAlt[m]: This is the assumed cruising/orbit altitude [m] used in the design of
the aircraft.

• cuiseSpeed[m/s]: This is flight speed of the aircraft in the cruising phase of flight.
It is also referred to as the Cruising/Orbital speeds.

• cruiseMach[-]: Cruising/orbital Mach number.

• tRange[m]: Target range determined from the cruising phase of flight.

• tEndurance[s]: Target Endurance also obtained from the cruising portion of the
aircraft flight profile.

• pax [-]: Number of passengers.

• crew [-]: Number of crew on board.

• payload, payload drop, payload pick: These refer to mass of payload [kg].

• estMass [kg]: Estimated all up mass of the aircraft.

• nzmax: Allowable maximum z-acceleration as multiples of sea level g(+ and -) [-].

• cTake off Type, cLanding Type: Take-off and landing method. In the GMDSO
Tool, the methods implemented are the horizontal and vertical take-off and landing
methods.

A block diagram showing the flow of data in the mission specification module is shown in
Figure D.14.
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Figure D.14: Data Flow in the Mission Specification Module.

D.3 2-Propulsion Specifications Module

The propulsion specifications module sets the static properties of the propulsion system in
use. This includes the static thrust, number and type of power - plant and fuel properties
for the propulsion system(s). Usually, most aircraft use one type of propulsion system
with different number of power - plants. However, spacecraft often combine different types
of propulsion systems in order to enable take - off and low speed flights. In the propulsion
specification module, the list of power - plants is populated with objects of the power -
plants abstract class as shown in Figure D.15.

Figure D.15: Power - plant Types Implemented in the GMDSO Tool.

The data flow and operations within the propulsion specification module is given in Fig-
ure D.16.

Within the propulsion specification module, a method is developed to extract the available
fuel and oxidizer stored on-board the aircraft based on an assumed specified fuel fraction.
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Figure D.16: Operations in the Propulsion Specification Module.

D.3.1 Power - plant Class

The power - plant class calculates the thrust available, SFC and efficiency of the selected
propulsion system type for every Mach number, altitude, fuel type and throttle setting.
This information is subsequently used to asses the capacity of an aircraft to deliver the
necessary thrust in any given flight regime. Consequently, the power - plant or propul-
sion class is designed to return a 2 dimensional array of doubles denoting the SFC and
available thrust at any given flight condition.

The power - plant class also implements a set of methods that returns the type of oxi-
dizer and fuel used, sends a list of inputs and updates inputs with the values from the
GUI/optimiser. The operations within the power - plant class are given in Figure D.17.

Power - plants are assessed for the ability to deliver the needed thrust at the given flight
condition and throttle settings using the logic described in Figure D.18.

The choice of fuel and oxidiser types are implemented with the ’Enum’ [158] data type in
JAVA. ’Enum’ allows variables to be a set from a predefined constants or list.

The fuel types available in the GMDSO Tool are the Liquid Hydrogen(LH2), Kerosene,
Liquid Methane (LMethane), Liquid Ethanol (LEthanol), Hydrazine, Unsymmetrical
Dimethylhydrazine Liquid Ethanol (UDMH) and electricity. The GMDSO Tool consider
electricity as fuel because it is the main source of energy in the solar powered UAV. The
list of oxidisers available for selection include none, air, Liquid Oxygen (LOX), Hydrogen
Peroxide (H2O2) and the Dinitrogen Tetroxide (N2O4).

For each fuel type, the following properties must be defined:

• Density [kg/m3].

• Constant specific heat of fuel, Cpfuel [J/kg/K].

• Specific gas constant of fuel(gaseous form), Rspec[J/kg/K].
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Figure D.17: Operations in the Power - plant/Propulsion Module.

Figure D.18: Logic Employed in Power - plant Evaluation.

• Ratio of specific heats, gamma[−].
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• Temperature of fuel, storageTemp[K].

• The boolean, storable, specifying whether the fuel has to be stored in a fuel tank
or not.

For the oxidiser, the properties that must be the specified are:

• Density [kg/m3]

• The boolean, storable[−], specifying whether the fuel is stored in a tank or not.

It is important to note that the mono-propellant fuel ’UDMH’ is only used when ’none’
is selected as the oxidizer. Also, when the selected fuel is electricity, the density is set to
zero.

D.3.2 3 - Mass Breakdown

The mass - breakdown module provides a framework for estimating the mass of major
components of an aircraft. It also decouples the mass components from the modules that
generated them for use in the packaging module. The main operations within the mass
breakdown module is given in Figure D.19.

Figure D.19: Layout of the Mass Breakdown Module.

The mass - breakdown module generates an array of mass components. The mass com-
ponent class is an abstract class with various sub - classes for the different components
of the aircraft. The hierarchy of the mass components in the GMDSO Tool is shown in
Figure D.20.

The properties of each mass component is defined by the following fields:



238 Development of the GMDSO Tool

Figure D.20: Hierarchy of Mass Components and Sub-Classes in the GMDSO Tool.

• myShape: myShape is used to describe the shape of each mass components using
basic shapes such as :

– Box.
– Cylinder.

– Sphere.

– Conformal.
– Distributed.

• myVolume: MyVolume is used to define the volume of the component. It is taken
as -1 if the volume was not known when the shape was generated.

• myCGPos: myCGPos is an array of the CG positions for all mass components.

• myMaster: MyMaster is used to specify the reference part of the mass component
when the component is linked to a GeometrycPart like in structural masses.

• myContainer: myContainer specifies the reference component when a mass compo-
nent is linked to another. For instance, fuel to the fuel tank.

• myName: myName is the unique designation of the mass component.

• myMass: myMass is the estimated mass of the component. MyMass should always
be defined. If the mass of the component is unknown, myMass should be set to zero.

It is essential to specify as many of the properties of a mass component as possible. This is
because such comprehensive description enables the GMDSO Tool to accurately package
the components and determine the aircraft CG. Other inputs of the mass components
depending on the selected shape and whether the volume is known or unknown are given
in Table D.1. In addition to the mass of the various components, the mass - breakdown
module also calculate the MTOM, ZFM, OEM and MLM.
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Table D.1: Shape and Volume Dependent Inputs to the Mass Component

Shape Characteristic Inputs with Input with

Unknown Volume Known Volume

Box X,Y,Z X,Y,Z Y/X, Z/X
Cylinder L,R L,R L/R
Sphere R R None

Conformal None None None
Distributed None None None

D.4 4 - Aerodynamics Analysis Module

The aerodynamic module predicts the aerodynamic coefficients from the mission flight
conditions and the geometry specified in the geometry module using any of the imple-
mented analysis methods. The analysis methods implemented in the GMDSO Tool are the
AVL methods, SHABP, Digital Datcom and the empirical methods. Besides the empiri-
cal method, all the other analysis methods are pre-coded in the FORTRAN programming
language. The aerodynamic analysis module integrates the FORTRAN written codes into
the JAVA development environment through the C++ using the JAVA Native Interface.
The aerodynamic analysis module as implemented in the GMDSO Tool is shown in Figure
D.21.

Figure D.21: Layout of the Aerodynamic Analysis Module.

The aerodynamics coefficients derived from the analysis method is stored in a common
format called the Coefficient Matrix. The Coefficient Matrix enables a uniform and struc-
tured storage of the aerodynamic coefficients. In addition, it contains reference values used
to non-dimensionalise the forces and moments. The reference values ensure consistency in
the derived coefficient irrespective of the analysis method applied. The reference values
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used in the aerodynamics module of the GMDSO Tool are the reference area, usually the
gross wing area or plan - form area; the reference longitudinal dimension or the Mean
Aerodynamic Chord (MAC); and the reference dimension normal to flow, usually the wing
span. The structure of the coefficient matrix in the GMDSO Tool is shown in Figure D.22.

Figure D.22: Structure of the Coefficient Matrix in the GMDSO Tool.

The main coefficients extracted from the aerodynamic analysis methods are:

• The lift coefficient (CL).

• The drag coefficient (CD).

• The pitching moment coefficient (CM ).

• The rolling moment coefficient (CMY ).

• The axial force (CFX).

• The side force (CFY ).

• The normal force (CFZ) coefficients in the body axis coordinate system.

Only CL, CD and CM must always be extracted from any analysis method. Other forces
and coefficients are optional. It is therefore essential for the knowledgeable user to under-
stand the coefficients evaluated while requesting for coefficients in any analysis module
before making request for coefficient in subsequent modules of the GMDSO Tool.

In order to protect the modularity property of the GMDSO Tool, aerodynamic and
stability derivatives are not extracted within the aerodynamics analysis modules. The
derivatives could nonetheless be derived from the coefficient matrix by manipulating the
coefficients accordingly. For instance, to determine the lift curve slope with respect to
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angle of attack can be determined by Equation D.4.

CLα@αj =
CLi − CLi−1

αi − αi−1
(D.4)

Where:
αi and αi−1 are the bounding angles of attack values to the angle of attack of interest αj
available in the coefficient matrix closest.

The determination of derivatives in this manner permits the treatment of non-linear aero-
dynamic coefficients. This is because it permits the calculation of local derivatives at every
point or angle of interest. However, in order to fully characterise the aircraft longitudinal
aerodynamic performance, only the CL values at αmin and αmax and the CD values at
corresponding CL are required.

The coefficient matrix implemented in the GMDSO Tool does not differentiate between
Mach or Reynolds number derived coefficients. However, an array of coefficient matrices
for coefficients at same Mach Number but different Reynolds Number could be created.
This is how the effect of side - slip, roll, pitch etc are included in the coefficient derivative
matrix.

An important feature of the aerodynamic analysis module is the flexibility to override the
Coefficient Matrix or set it up to perform evaluations on demand rather than mapping the
whole flight envelope. The list of methods used in the extraction of required information
in the Coefficient Matrix class are as follows:

• addResultatMach: The addResultatMach adds results at a given mach number.
Additionally, it stores the calculated coefficients and corresponding angles of attack
and its corresponding mach number in ascending order in a matrix.

• getCoeffatMandAlpha: This method extracts the selected type of coefficient at the
given mach number and angle of attack. If no evaluations were performed at the
exact mach number and angle of attack, the values are linearly interpolated between
the 2 closest bounding values. If the requested value exceeds the range of evaluated
angles of attack, the extreme values are returned.

• getMaxCoeff: The method ’getMaxCoeff’ returns the maximum value of the re-
quested coefficient type from the range of angles of attack evaluated.

• getMinCoeff: The getMinCoeff method returns the minimum value of the requested
coefficient type from a range of angles of attack evaluated.

• getAOAatMachatCL: This method returns the angle of attack corresponding to a
given lift coefficient at the given mach number. If the requested values exceed the
minimum or maximum values, the extreme value would be returned.

D.5 6 - Propulsion Module

The propulsion module estimates the thrust available and the specific fuel consumption
at any given flight condition and thrust setting. This is necessary in order to determine
the fuel efficiency and assess if a given configuration is capable of providing the thrust
required at a specified flight condition. The main requirement of the propulsion module
is that it must be capable of handling arbitrary number of propulsion systems in any
flight condition. The design of the propulsion module showing constituent parts is given
in Figure D.23.

Further to determining the thrust available and specific fuel consumption, the propulsion
module includes logic for distributing the thrust amongst the different types of power -
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Figure D.23: Design of the Propulsion Module.

plants on-board the vehicle. The logic could be to provide the required thrust with the
least amount of fuel consumption or maximize fuel consumption in order to complete
mission in the least possible. This is useful in emergency situation where speed is the
essence. For instance in emergency landing.

The methods used to extract the thrust from the propulsion module are the ’getPropul-
sion’ Method and the ’ThrustOutput’ class. The ’getPropulsion’ is an abstract method
used to determine available thrust from the Mach Number, altitude, required thrust and
the list of power - plant where applicable. The power - plant list allows other modules to
keep track of such power - plant conditions as running out of fuel, warm-up or cool down,
and disabling air - breather engines above a certain altitude if the power - plant list is
not suitably designed to deal with it.

The ThrustOutput class calls other methods with all the power - plant enabled. The
ThrustOutput takes an array of distributed thrust values and SFC as well as the thrust
and total fuel flow. The propulsion module decouples the performance of the power -
plants and the logic controlling the selection of different systems from the performance
calculations.

D.6 Packaging and Centre of Gravity

The packaging module positions aircraft components within the vehicle geometry in or-
der to determine the centre of gravity as well as ensure that the components are suitably
enclosed within the geometry. The CG is evaluated for conditions with and without fuel
and payload using individual masses and CGs of the mass components generated from
the mass breakdown module.

The design of the packaging and CG module showing the constituent parts is shown in
Figure D.24.
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Figure D.24: Design of the Packaging and CG Module.

The CG positions are returned from the packaging module as XYZ coordinates in the
body axis coordinate system. These coordinates are stored within the GMDSO Tool as
an array of N × 3 matrix.

Where:
N is the number of CG positions generated.
N has a minimum value of 4.

The first four elements of the N × 3 matrix are the MTOM, ZFM, OEM and MLM in
ascending index values from 0 - 3.

Additional CG positions could be evaluated as required and added as the fifth and subse-
quent elements of the matrix. However, it is expedient to maintain the order of the first
4 elements as specified. This is necessary in order to be able to calculate the CG during
various flight phases. With the order of the N × 3 retained, the CG in various phases of
the flight can be determined by interpolating between the CG positions at the specified
mass values.

In order to fit the components within the aircraft configuration, the packaging module
compares the volume of internal components to the volume of the aircraft external geom-
etry. The result of the comparison is an error information that determines if the internal
volume fits into the structure of the vehicle under design or not. Further to the volume
error, the packaging module also ensures no component interferes with the external ge-
ometry by carefully manipulating the volume and distance of each component.

Ordinarily, it would have been ideal for the internal components to fit in perfectly into the
external geometry. However, this is quite a computational challenge in a computer based
design synthesis due to round-off and truncation error. Hence, forcing the components
to fit in perfectly could lead to slow or no convergence. Consequently, its always a good
programming practice to allow a reasonable but negligible tolerance between the internal
and external volume.
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D.7 8 - Performance Module

The performance module evaluates whether a single instance of the GMDSO Tool is ca-
pable of fulfilling the specified mission. The GMDSO Tool performance module assesses
the field and point performance of the given design. Point performance is concerned with
the aircraft’s ability to perform certain manoeuvres at different points of the mission in-
cluding climb gradient and instantaneous or sustained turn rates amongst others.

The inputs to a performance module are usually the performance targets or settings for
the methods. The outputs are the the calculated performance characteristics and error
indicators between the calculated and target values. The calculated values can be used
as the target/objective/cost function by the optimiser while the error indicators are used
as constraints in the optimisation process.

The layout of the performance module showing the constituent parts is given in Figure
D.25.By virtue of its function, the performance module usually do not send inputs to any
other module, except to the stability evaluation module. The performance module sends
a list of the various flight conditions to the stability module as an array of the Flight-
Condition class. Each member of the FlightCondition class consist of the flight Mach
Number, altitude, thrust distribution and mass configuration (fuel, payload,etc).

Figure D.25: Design of the Performance Module.

Methods implemented in the performance module could be as simple as the Bereguet
range equation or as complex as a time domain simulation of the whole mission or mis-
sion segments.

D.8 9 - Stability and Control

The stability and control module is used to evaluate the static margin, longitudinal sta-
bility and trim-ability of the aircraft at various flight conditions and configuration. The
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Figure D.26: Layout of the Stability and Control Module.

design of the stability and control module is described in Figure D.26.

The stability and control module does not provide inputs for any module but generates
outputs that could be used to drive the optimisation process. These outputs are usually
error indicators that state whether the aircraft is stable or not in a given flight condition,
speed regime and/or the whole mission envelope.

The stability and control module uses a list of flight conditions obtained from the perfor-
mance module to evaluate the stability and control characteristics. The list of fields in
the flightCondition class are:

• The flight mach number[-].

• The Cruise altitude[m].

• CG position [m,m,m].

• current mass of the vehicle[kg].

• Power - plant thrust distribution[N].

• Angle of attack[rad].

• Flight path angle[rad].

• The name of the flight condition or phase of flight.
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