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ABSTRACT
Kernel principal component analysis (KPCA) is an effective and efficient technique for monitoring
nonlinear processes. However, associating it with upper control limits (UCLs) based on the Gaussian
distribution can deteriorate its performance. In this paper, the kernel density estimation (KDE) tech-
nique was used to estimate UCLs for KPCA-based nonlinear process monitoring. The monitoring
performance of the resulting KPCA–KDE approachwas then comparedwith KPCA, whose UCLswere
based on the Gaussian distribution. Tests on the Tennessee Eastman process show that KPCA–KDE
is more robust and provide better overall performance than KPCA with Gaussian assumption-
based UCLs in both sensitivity and detection time. An efficient KPCA-KDE-based fault identification
approach using complex step differentiation is also proposed.
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1. Introduction

There has been an increasing interest in multivariate
statistical process monitoring methods in both academic
research and industrial applications in the last 25 years
(Chiang, Russell, & Braatz, 2001; Ge, Song, & Gao, 2013;
Russell, Chiang, & Braatz, 2000; Yin, Ding, Xie, & Luo, 2014;
Yin, Li, Gao, & Kaynak, 2015). Principal component analy-
sis (PCA) (Jolliffe, 2002; Wold, Esbensen, & Geladi, 1987)
is probably the most popular among these techniques.
PCA is capable of compressing high-dimensional data
with little loss of information by projecting the data
onto a lower-dimensional subspace defined by a new
set of derived variables (principal components (PCs))
(Wise & Gallagher, 1996). This also addresses the problem
of dependency between the original process variables.
However, PCA is a linear technique; therefore, it does
not consider or reveal nonlinearities inherent in many
real industrial processes (Lee, Yoo, Choi, Vanrolleghem, &
Lee, 2004). Hence, its performance is degraded when it
is applied to processes that exhibit significant nonlinear
variable correlations.

To address the nonlinearity problem, Kramer (1992)
proposed anonlinear PCAbasedon auto-associative neu-
ral network (NN). Dong & McAvoy (1996) suggested a
nonlinear PCA that combined principal curve and NN.
Their approach involved: (i) using principal curvemethod
to obtain associated scores and the correlated data,

CONTACT Yi Cao y.cao@cranfield.ac.uk

(ii) using an NN model to map the original data into
scores, and (iii) mapping the scores into the original vari-
ables. Nonlinear PCA methods have also been proposed
by (Cheng & Chiu, 2005; Hiden, Willis, Tham, & Mon-
tague, 1999; Jia, Martin, & Morris, 2000; Kruger, Antory,
Hahn, Irwin, &McCullough, 2005). However,most of these
methods are based on NNs and require the solution of a
nonlinear optimization problem.

Scholkopf, Smola, & Muller (1998) proposed Kernel
PCA (KPCA) as a nonlinear generalization of the PCA.
A number of studies adopting the technique for nonlin-
ear process monitoring have also been reported in the
literature (Cho, Lee, Choi, Lee, & Lee, 2005; Choi, Lee, Lee,
Park, & Lee, 2005; Ge et al. 2013). KPCA is performed in two
steps: (i) mapping the input data into a high-dimensional
feature space, and (ii) performing standard PCA in the
feature space. Usually, high-dimensional mapping can
seriously increase computational time. This difficulty is
addressed in kernel methods by defining inner products
of the mapped data points in the feature space, then
expressing the algorithm in a way that needs only the
values of the inner products. Computation of the inner
products in the feature space is then done implicitly in
the input space by choosing a kernel that corresponds to
an inner product in the feature space. Unlike NN-based
methods, KPCA does not involve solving a nonlinear opti-
mization problem; it only solves an eigenvalue problem.

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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In addition, KPCA does not require specifying the num-
ber of PCs to extract before building the model (Choi
et al., 2005).

Similar to the PCA, the Hotelling’s T2 statistic and the
Q statistic (also known as squared prediction error, SPE)
are two indices commonly used in KPCA-based process
monitoring. The T2 is used to monitor variations in the
model space while the Q statistic is used to monitor vari-
ations in the residual space. In a linear method such as
PCA, computation of the upper control limits (UCLs) of
T2 and Q statistics is based on the assumption that ran-
dom variables included in the data are Gaussian. The
actual distributionofT2 andQ statistics canbeanalytically
derived based on this assumption. Hence, the UCLs can
also be derived analytically. However, many real indus-
trial processes are nonlinear. Even though the sources
of randomness of these processes could be assumed as
Gaussian, variables included in measured data are non-
Gaussian due to inherent nonlinearities. Hence, adopt-
ing UCLs for fault detection based on the multivariate
Gaussian assumption in such processes is inappropri-
ate and may lead to misleading results (Ge & Song,
2013).

An alternative solution to the non-Gaussian prob-
lem is to derive the UCLs from the underlying proba-
bility density functions (PDFs) estimated directly from
the T2 and the Q statistics via a non-parametric tech-
nique such as kernel density estimation (KDE). This
approach has been suggested in various linear tech-
niques, such as PCA (Chen, Wynne, Goulding, & Sandoz,
2000; Liang, 2005), independent component analysis
(Xiong, Liang, & Qian, 2007), and canonical variate anal-
ysis (Odiowei & Cao, 2010). It is even more important
to adopt this kind of approach to derive meaningful
UCLs for a nonlinear technique such as the KPCA. This is
because the Gaussian-assumption-based UCLs for latent
variables obtained through anonlinear techniquewill not
be valid at all. Unfortunately, this issue has not attracted
enough attention in the literature. In this work, the KDE
approach is adopted to derive UCLs for PCA and KPCA.
Then, their fault detectionperformances in the Tennessee
Eastman (TE) process are compared with their Gaussian-
assumption-based equivalents. The results show that the
KDE-based approaches perform better than their coun-
terparts with Gaussian-assumption-based UCLs. The con-
tributions of this work can be summarized as follows:

• To combine the KPCA with KDE for the first time to
show that it is not appropriate to use the Gaussian-
assumption-based UCLs with a nonlinear approach
such as the KPCA.

• To compare the robustness of KPCA–KDE and KPCA
associated with Gaussian-assumption-based UCLs.

• Propose an efficient KPCA-KDE-based fault identifica-
tion approach using complex step differentiation.

The paper is organized as follows. The KPCA algorithm,
KPCA-based fault detection and identification, and the
KDE technique are discussed in Section 2. Application of
the monitoring approaches to the TE benchmark process
is presented in Section 3. Finally, conclusions drawn from
the study are given in Section 4.

2. KPCA–KDE-based process monitoring

2.1. Kernel PCA algorithm

Givenm training samples xk ∈ �n, k = 1, . . . ,m, the data
can be projected onto a high-dimensional feature space
using a nonlinear mapping, φ : xk ∈ �n → φ(xk) ∈ �F .
The covariance matrix in the feature space is then com-
puted as

CF = 1
m

m∑
j=1

〈φ(xj),φ(xj)〉, (1)

whereφ(xj), for j = 1, . . .m is assumed to have zeromean
and unit variance. To diagonalize the covariance matrix,
we solve the eigenvalue problem in the feature space as

λa = CFa, (2)

where λ is an eigenvalue of CF , satisfying λ ≥ 0, and a ∈
�F is the corresponding eigenvector (a �= 0).

The eigenvector can be expressed as a linear combina-
tion of the mapped data points as follows:

a =
m∑
i=1

αiφ(xi). (3)

Using φ(xk) to multiply both sides of Equation (2) gives

λ〈φ(xk), a〉 = 〈φ(xk),CFa〉. (4)

Substituting Equations (1) and (3) in Equation (4) we have

λ

m∑
i=1

αi〈φ(xk),φ(xi)〉

= 1
m

m∑
i=1

αi

〈
φ(xk),

m∑
j=1

φ(xj)

〉
〈φ(xj),φ(xi)〉. (5)

Instead of performing eigenvalue decomposition directly
on CF in Equation (1) and finding eigenvalues and PCs,
we apply the kernel trick by defining an m × m (kernel)
matrix as follows:

[K]ij = Kij = 〈φ(xi),φ(xj)〉 = k(xi, xj) (6)

for all i, j = 1, . . . ,m. Introducing the kernel function of
the form k(x, y) = 〈φ(x),φ(y)〉 in Equation (5) enables the
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computation of the inner products 〈φ(xi),φ(xj)〉 in the
feature space as a function of the input data. This pre-
cludes the need to carry out the nonlinear mappings and
the explicit computation of inner products in the feature
space (Lee et al., 2004; Scholkopf et al., 1998). Applying
the kernel matrix, we re-write Equation (5) as

λ

m∑
i=1

αiKki =
1
m

m∑
i=1

αi

m∑
j=1

KkjKji. (7)

Notice that k = 1, . . . ,m, and therefore, Equation (7) can
be represented as

λmKα = K2α. (8)

Equation (8) is equivalent to the eigenvalue problem

mλα = Kα. (9)

Furthermore, the kernel matrix can be mean centred as
follows:

Kctr = K − UK − KU + UKU, (10)

where U is an m × m matrix in which each element is
equal to 1/m. Eigen decomposition of Kctr is equivalent
to performing PCA in �F . This, essentially, amounts to
resolving the eigenvalue problem in Equation (9), which
yields eigenvectorsα1,α2, . . . ,αm and the corresponding
eigenvalues λ1 ≥ λ2 ≥ . . . λm.

Since the kernel matrix, Kctr is symmetric, the derived
PCs are orthonormal, that is,

〈αi,αj〉 = δi,j, (i, j = 1, 2, . . . ,m), (11)

where δi,j represents the Dirac delta function.
The score vectors of the nonlinear mapping of mean-

centred trainingobservationsxj, j = 1, . . . ,m, can thenbe
extracted by projecting φ(xj) onto the PC space spanned
by the eigenvectors αk , k = 1, . . . ,m,

zk,j = 〈αk , (kctr)〉 =
m∑
i=1

αk,i〈φ(xi),φ(xj)〉. (12)

Applying the kernel trick, this can be expressed as

zk,j =
m∑
i=1

αk,i[Kctr]i,j. (13)

2.2. Fault detectionmetrics

The Hotelling’s T2 of the jth samples in the feature space
used for KPCA fault detection is computed as

T2j = [z1,j, . . . , zq,j]�−1[z1,j, . . . , zq,j]T, (14)

where zi,j, i = 1, . . . , q represents the PC scores of the
jth samples, q is the number of PCs retained and �−1

represents the inverse of the matrix of eigenvalues cor-
responding to the retained PCs. The control limit of T2

can be estimated from its distribution. If all scores are of
Gaussian distributions, then the control limit correspond-
ing to a significance level, α, T2α can be derived from the
F-distribution analytically as

T2α ∼

q(m − 1)
m − q

Fq,m−q,α , (15)

Fq,m−q,α is the value of the F-distribution corresponding
to a significance level, α with degrees of freedom q and
m−q for the numerator and denominator, respectively.

Furthermore, a simplified computation of the Q-
statistic has been proposed (Lee et al., 2004). For the jth
samples,

Qj = ||φ(xj) − φ̂q(xj)||2 =
m∑
i=1

z2i,j −
q∑

i=1

z2i,j. (16)

If all scores are of normal distributions, the control limit
of theQ-statistic at the 100(1 − α)% confidence level can
be derived as follows (Jackson, 1991):

Qα = θ1

[
Cαh0

√
2θ2

θ1
+ 1 + θ2h0(h0 − 1)

θ21

]1/h0

, (17)

where θi =
∑n

j=q+1 λij, (i = 1, 2, 3), h0 = 1 − 2θ1θ3/3θ22 ,λi
are the eigenvalues, and Cα is the 100(1 − α) normal
percentile.

The alternative method of computing control lim-
its directly from the PDFs of the T2 and Q statistics is
explained in the next section.

2.3. Kernel density estimation

KDE is a procedure for fitting a data set with a suitable
smooth PDF from a set of random samples. It is used
widely for estimating PDFs, especially for univariate ran-
dom data (Bowman & Azzalini, 1977). The KDE is applica-
ble for the T2 and Q statistics since both are univariate
although the process characterized by these statistics is
multivariate.

Given a random variable y, its PDF g(y) can be esti-
mated from itsm samples, yj, j = 1, . . . ,m, as follows:

g(y) = 1
mh

m∑
j=1

K

(
y − yj
h

)
, (18)

where K is a kernel function while h is the bandwidth or
smoothing parameter. The importance of selecting the
bandwidth and methods of obtaining an optimum value
are documented in Chen et al. (2000) and Liang (2005).

Integrating the density function over a continuous
range gives the probability. Thus, assuming the PDF g(y),
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168 R.T. SAMUEL AND Y. CAO

the probability of y to be less than c at a specified signifi-
cance level, α is given by

P(y < c) =
∫ c

−∞
g(y)dy = α. (19)

Consequently, the control limits of the monitoring statis-
tics (T2 andQ) can be calculated from their respective PDF
estimates:

∫ T2α

−∞
g(T2)dT2 = α, (20)

∫ Qα

−∞
g(Q)dQ = α. (21)

2.4. On-linemonitoring

For a mean-centred test observation, xtt , the correspond-
ing kernel vector, ktt is calculated with the training sam-
ples, xj, j = 1, . . . ,m as follows:

[ktt]j = k(xj, xtt). (22)

The test kernel vector is then centred as shown below:

kctt = ktt − Ku1 − Uktt + UKu1, (23)

whereu1 = 1/m[1, . . . , 1]T ∈ �m. The corresponding test
score vector, ztt is calculated using

ztt,k = 〈αk , (kctt)〉 =
m∑
i=1

αk,i〈φ(xi),φ(xtt)〉. (24)

This can be re-written as

ztt,k =
m∑
i=1

αk,i[kctt]i. (25)

In vector form,

ztt = Akctt , (26)

where A = [α1, · · · ,αm].

2.5. Outline of KPCA–KDE fault detection procedure

Tables 1 and 2 show the outline of KPCA–KDE-based fault
detection procedure.

To provide a more intuitive picture, a flowchart of the
procedure is presented in Figure 1.

2.6. Fault variable identification

After a fault has been detected, it is important that the
variablesmost strongly associatedwith the fault are iden-
tified in order to facilitate the location of root causes.

Table 1. Off-line model development.

TR1. Obtain data under normal operating conditions (NOC) and scale the
data using the mean and standard deviation of the columns of the
data set which represent the different variables

TR2. Decide on the type of kernel function to use and determine the kernel
parameter

TR3. Construct the kernel matrix of the NOC data and centre it using
Equation (10)

TR4. Obtain eigenvalues and their corresponding eigenvectors and
rearrange them in a descending order

TR5. Orthonormalize the eigenvectors using Equation (11)
TR6. Obtain nonlinear components using Equation (13)
TR7. Compute monitoring indices (T2 and Q) based on the kernelized NOC

data using Equations (14) and (16)
TR8. Determine control limits of T2 and Q using Equations (20) and (21)

Table 2. On-line monitoring.

TT1. Acquire test sample xtt and normalize using the mean and standard
deviation values used in step 1 of the off-line stage

TT2. Compute the kernel vector of the test sample using Equation (22)
TT3. Centre the kernel vector according to Equation (23)
TT4. Obtain the PC of the test sample from Equation (25)
TT5. Compare the T2 and Q of the test sample with their respective control

limits obtained in the model development stage
TT6. If both T2 and Q are less than their monitoring statistics, the process

is in-control. If either T2 or Q exceeds its control limit, the process
is out-of-control and therefore fault identification is carried out to
identify the source of the fault

Figure 1. KPCA–KDE fault detection procedure.

Contribution plots which show the contributions of vari-
ables to the high statistical index values in a fault region
is a common method that is used to identify faults. How-
ever, nonlinear PCA-based fault identification is not as
straightforward as that of linear PCA due to the nonlinear
relationship between the transformed and the original
process variables.

In this article, fault variables were identified using a
sensitivity analysis principle (Petzold, Barbara, Tech, Li,
Cao, & Serban, 2006). The method is based on calculat-
ing the rateof change in systemoutput variables resulting
from changes in the problem causing parameters (Deng,
Tian, & Chen, 2013). Given a test data vector xi ∈ �n with
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n variables, the contribution of the ith variable to a moni-
toring index is defined by

T2i,con = xiai and Qi,con = xibi, (27)

whereai = ∂T2/∂xi andbi = ∂Q/∂xi. In thiswork, thepar-
tial derivatives were obtained by differentiating the func-
tions defining T2 and Q at a given reference fault instant
using complex step differentiation (Martins, Sturdza, &
Alonso, 2003). This is an efficient generalized approach
for obtaining variable contributions in fault identification
studies that use multivariate statistical methods.

3. Application

3.1. Tennessee Eastman process

The TE process is a simulation of a real industrial pro-
cess manifesting both nonlinear and dynamic properties
(Downs & Vogel, 1993). It is widely used as a bench-
mark process for evaluating and comparing process
monitoring and control approaches (Chiang et al., 2001).
The process consists of five key units: separator, compres-
sor, reactor, stripper and condenser, and eight compo-
nents coded A to H. The control structure of the process
is presented in Figure 2.

There are 960 samples and 53 variables, which include
22 continuous variables, 19 composition measurements
sampled by 3 composition analysers, and 12manipulated
variables in the TE process. Sampling is done at 3-minute
intervals while each fault is introduced at sample number
160. Information on disturbances and baseline operating

conditions of the process are documented in (Downs &
Vogel, 1993; McAvoy & Ye, 1994).

3.2. Application procedure

Five hundred samples obtained under NOC were used as
the training data set and all 960 samples obtained under
each of the faulty operating conditions were used as test
data. All 22 continuous variables and11manipulated vari-
ables were used in this study. The agitation speed of the
reactor’s stirrer (the 12th manipulated variable) was not
included because it is constant. A total of 20 faults in the
process were studied. Descriptions of the variables and
faults studied are presented in Tables 3 and 4.

Several methods have been proposed for determin-
ing the number of retained PCs. Some of these methods
are scree tests, the average eigenvalue approach, cross-
validation, parallel analysis, Akaike information criterion,
and the cumulative percent eigenvalue. However, none
of thesemethods have been proved analytically to be the
best in all situations (Chiang et al., 2001). In this paper,
the number of PCs that explained over 90% of the total
variance were retained. Based on this approach, 16 and
17 PCs were selected for PCA and KPCA, respectively.

Another, important parameter for kernel-based meth-
ods in model development for process monitoring is the
choice of kernel and its width. The radial basis kernel
which is a common choice for process monitoring stud-
ies (Lee et al., 2004; Stefatos & Hamza, 2007) was used
in this paper. The value of the kernel parameter c was
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Figure 2. Control structure of TE process.
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Table 3. TE process monitoring variables.

No. Description No. Description

1 A feed (stream 1) 18 Stripper temperature
2 D feed (stream 2) 19 Stripper stream flow
3 E feed (stream 4) 20 Compressor work
4 Total feed (stream 4) 21 Reactor cooling water

outlet temperature
5 Recycle flow (stream 8) 22 Condenser cooling water

outlet temperature
6 Reactor feed rate (stream 6) 23 D feed flow (stream 2)
7 Reactor pressure 24 E feed flow (stream 3)
8 Reactor level 25 A feed flow (stream 1)
9 Reactor temperature 26 Total feed flow (stream 4)
10 Purge rate 27 Compressor recycle valve
11 Separator temperature 28 Purge valve
12 Separator level 29 Separator pot liquid flow

(stream 10)
13 Separator pressure 30 Stripper liquid product

flow
14 Separator under flow (stream 10) 31 Stripper steam valve
15 Stripper stream valve 32 Reactor cooling water flow
16 Stripper pressure 33 Condenser cooling water

flow
17 Stripper under flow(stream 11)

Table 4. Fault descriptions in the TE process.

Fault Description Type

1 A/C feed ratio, B composition constant Step
2 B composition, A/C ratio constant Step
3 D feed temperature Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss Step
7 C header pressure loss-reduced availability Step
8 A, B, C feed composition Random variation
9 D feed temperature Random variation
10 C feed temperature Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown
17 Unknown
18 Unknown
19 Unknown
20 Unknown

determined using the relation c = Wnσ 2, where W is
a constant, which is dependent on the process being
monitored, n and σ 2 are the dimension and variance
of the input space, respectively (Lee et al., 2004; Mika
et al., 1999). The value ofW was set at 40 with validation
from the training data.

The T2 andQ statisticswere used jointly for fault detec-
tion due to their complementary nature. This means that
a fault detection was acknowledged when either of the
monitoring statistics detected a fault. This is because
detectableprocess variationmaynot alwaysoccur inboth
themodel space and the residual space at the same time.

3.3. Fault detection rule

Since measurements obtained from chemical processes
are usually noisy, monitoring indices may exceed their
thresholds randomly. This amounts to announcing the
presence of a fault when no disturbance has actually
occurred, that is, a false alarm. In other words, a mon-
itoring index may exceed its threshold once but if no
fault is present, the monitoring index may not stay
above its threshold in subsequent measurements. Con-
versely, a fault has likely occurred if the monitoring index
stays above its threshold in several consecutive measure-
ments. A fault detection rule is used to address the prob-
lem of spurious alarms (Choi & Lee, 2004; Tien, Lin, &
Jun, 2004; van Sprang, Ramaker, Westerhuis, Gurden, &
Smilde, 2002). A detection rule also provides a uniform
basis for comparing differentmonitoringmethods. In this
paper, successful fault detection was counted when a
monitoring index exceeds its control limit in at least two
consecutive observations. All algorithms recorded a false
alarm rate (FAR) of zero when tested with the training
data based on this criterion. Computation of the met-
rics for evaluating the monitoring performance of the
different techniqueswas thereforebasedon this criterion.

3.4. Computation ofmonitoring performance
metrics

Monitoring performance was based on three metrics:
fault detection rates (FDRs), FARs, and detection delay.
FDR is the percentage of fault samples identified cor-
rectly. It was computed as

FDR = nfc
ntf

× 100, (28)

where nfc denotes the number of fault samples identified
correctly and ntf is the total number of fault samples. FAR
was calculated as the percentage of normal samples iden-
tified as faults (or abnormal) during the normal operation
of the plant.

FAR = nnf
ntn

× 100, (29)

wherennf represents thenumberof normal samples iden-
tified as faults and ntn is the total number of normal
samples. Detection delay was computed as the time that
elapsed before a fault introduced was detected.

3.5. Results and discussion

KPCA-based fault detection is demonstrated using Faults
11 and 12 of the TE process. Fault 11 is a random varia-
tion in the reactor cooling water inlet temperature, while
Fault 12 is a random variation in the condenser cooling
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Figure 3. Monitoring charts for Fault 11.
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Figure 4. Monitoring charts for Fault 12.

water inlet temperature. The monitoring charts for the
two faults are shown in Figures 3 and 4, respectively. The
solid curves represent the monitoring indices, while the
dash-dot and dash lines represent the control limits at
99% confidence level based on Gaussian distribution and
KDE, respectively. It can be seen that in both cases, espe-
cially in the T2 control charts, the KDE-based control limits
are below the Gaussian distribution-based control lim-
its. That is, the monitoring indices exceed the KDE-based
control limits to a greater extent compared to the Gaus-
sian distribution-based control limits. This implies that
using the KDE-based control limits with the KPCA tech-
nique gives highermonitoring performance compared to
using the Gaussian distribution-based control limits.

Table 5 shows the detection rates for PCA, PCA–KDE,
KPCA, and KPCA–KDE for all 20 faults studied. The results
show that the KDE versions have overall higher FDRs

Table 5. Fault detection rates (%).

Fault PCA PCA–KDE KPCA KPCA–KDE

1 99.75 99.75 99.75 99.75
2 98.25 98.75 98.63 98.63
3 0.13 0.88 1.63 1.75
4 99.88 99.88 99.88 99.88
5 23.63 25.75 26.38 26.88
6 99.88 99.88 99.88 99.88
7 99.88 99.88 99.88 99.88
8 96.88 97.38 98.00 98.00
9 0.25 1.13 1.63 2.25
10 35.75 41.63 51.13 53.50
11 74.75 77.50 78.13 79.88
12 97.50 97.63 97.50 97.63
13 95.50 95.75 95.38 95.63
14 99.75 99.75 99.75 99.75
15 0 1.13 2.13 2.88
16 27.50 36.13 39.75 44.62
17 92.50 93.88 93.00 93.50
19 5.50 9.88 10.13 13.50
20 49.25 53.00 57.13 57.75

Table 6. Detection delay, DD (min).

Fault PCA PCA–KDE KPCA KPCA–KDE

1 6 6 6 6
2 39 30 33 33
3 2346 1656 1725 1725
4 3 3 3 3
5 3 3 3 3
6 3 3 3 3
7 3 3 3 3
8 48 48 48 48
9 2346 1665 1725 1725
10 186 186 180 180
11 15 15 15 15
12 42 30 60 42
13 102 102 111 105
14 6 6 6 6
15 ND 1656 1725 1725
16 81 78 81 81
17 45 45 45 45
18 24 24 24 24
19 213 24 213 36
20 105 102 105 105

Note: ND, not detected.

compared to the corresponding Gaussian distribution-
based versions. Furthermore, in Table 6, it can be seen
that the detection delays of the KDE-based versions are
either equal to or lower than the non-KDE-based tech-
niques. This implies that the approaches based on KDE-
derived UCLs detected faults earlier than their Gaussian
distribution-based counterparts. Thus, associating KDE-
based control limits with the KPCA technique for fault
detection provides better monitoring compared to using
control limits based on the Gaussian assumption.

KPCA–KDE-based fault identification is demonstrated
using Fault 11 as an example. The occurrence of Fault 11
induces change in the reactor cooling water flow rate,
which causes the reactor temperature to fluctuate. Both
the T2- and SPE-based contribution plots at sample 300
shown in Figures 5 and 6, respectively, identified the two
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Figure 5. T2-based contribution plot for Fault 11.
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Figure 6. SPE-based contribution plot for Fault 11.

fault variables correctly. Variable 9 is the reactor tempera-
ture while variable 32 corresponds to the reactor cooling
water flow rate. Although it is possible for the control
loops to compensate the change in the reactor temper-
ature after a longer time has elapsed, the fluctuations in
both variables affected early after the introduction of the
fault were correctly identified by the contribution plots.

3.6. Test of robustness

To test the robustness of the KPCA–KDE technique, fault
detection was performed by varying two parameters:
bandwidth and the number of PCs retained. Figure 7
shows the monitoring charts for KPCA and KPCA–KDE
with W =40 for Fault 14. This fault represents stick-
ing of the reactor cooling water valve, which is quit
easily detected by most statistical process monitor-
ing approaches. At W =40, both KPCA and KPCA–KDE
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Figure 7. KPCA-based control charts for Fault 14 atW = 40 in the
formula c = Wnσ 2.
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Figure 8. KPCA–KDE-based control charts for Fault 14 atW = 10
in the formula c = Wnσ 2.

Table 7. Monitoring results at different number ofPCs retained.

KPCA KPCA–KDE

PCs FDR FAR DD FDR FAR DD

10 99.88 0 3 99.88 0 3
15 99.75 0 6 99.75 0 6
20 96.75 0 6 99.88 0 3
25 99.88 8.13 3 99.75 0 6

recoded zero false alarms (Figure 7). However, atW =10,
KPCA recorded a false alarm rate of 8.13% while the FAR
for KPCA–KDEwas still zero (Figure 8). Also, Table 7 shows
that the KPCA recorded a similar high FAR when 25 PCs
were retained. Conversely, the KPCA–KDE approach still
recorded zero false alarms.

Thus, apart from generally providing higher FDRs and
earlier detections, the KPCA–KDE is more robust than
the KPCA technique with control limits based on the
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Gaussian assumption. A more sensitive technique is bet-
ter for process operators since less faults will be missed.
Secondly, when faults are detected early, operators will
have more time to find the root cause of the fault so
that remedial actions can be taken before a serious
upset occurs. Thirdly, although methods are available for
obtaining optimum design parameters for developing
process monitoring models, there is no guarantee that
the optimum values are used all the time. The reason
for this may range from lack of experience of personnel
to lack of or limited understanding of the process itself.
Therefore, the more robust a technique is, the better it is
for process operations.

4. Conclusion

This paper investigated nonlinear process fault detec-
tion and identification using the KPCA–KDE technique. In
this approach, the thresholds used for constructing con-
trol charts were derived directly from the PDFs of the
monitoring indices instead of using thresholds based on
the Gaussian distribution. The technique was applied to
the benchmark Tennessee Eastman process and its fault
detection performance was compared with the KPCA
technique based on the Gaussian assumption.

The overall results show that KPCA–KDE detected
faults more and earlier than the KPCA with control lim-
its based on the Gaussian distribution. The study also
shows that the UCLs based on KDE are more robust than
those based on the Gaussian assumption because the
former follow the actual distribution of the monitoring
statistics more closely. In general, the work corroborates
the claim that using KDE-based control limits give bet-
ter monitoring results in nonlinear processes than using
control limits based on the Gaussian assumption. A gen-
eralizable approach for computing variable contributions
in fault identification studies that centre on multivariate
statistical methods was also demonstrated.
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