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Abstract 

It is widely known that the visible and near infrared (VIS-NIR) spectroscopy has the potential of estimating soil 

total nitrogen (TN), organic carbon (OC) and moisture content (MC) due to  the direct spectral responses these 

properties have in the NIR region. However, improving the predication accuracy requires advanced modelling 

techniques, particularly when measurement is planned for fresh (wet and un-processed) soil samples. The aim of 

this work is to compare the predictive performance of two linear multivariate and two machine learning methods 

for TN, OC and MC. The two multivariate methods investigated included Principal Component Regression (PCR) 

and Partial Least Squares Regression (PLSR), whereas the machine learning methods included Least – Squares 

Support Vector Machines (LS-SVM), and Cubist. A mobile, fibre type, VIS-NIR spectrophotometer was utilised to 

collect soil spectra (305–2200 nm) in diffuse reflectance mode from 140 wet soil samples collected from one field 

in Germany. The results indicate that machine learning methods are capable of tackling non-linear problems in the 

dataset. LS-SVMs and the Cubist method over-performed the linear multivariate methods for the prediction of all 

three soil properties studied. LS-SVM provided the best prediction for MC (root mean square error of prediction 

(RMSEP) = 0.457 % and residual prediction deviation (RPD) = 2.24) and OC (RMSEP = 0.062 % and RPD = 

2.20), whereas the Cubist method provided the best prediction for TN (RMSEP = 0.071 and RPD=1.96).  
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1. Introduction 

Soil is a heterogeneous natural resource, the processes and mechanisms of which are complex and difficult to 

understand. Laboratory analysis has been the main key to better understand the soil system and to assess its quality 

and functions (Viscarra Rossel, Walvoort, McBratney, Janik and Skjemstad, 2006). Accurate information on soil at 

regional and national scale is essential, since it enables improved soil management according to land potential 

(Odeh & McBratney, 2000). Spatial assessment of soil properties allows researchers to understand the dynamics of 

ecosystems (Hively, McCarty, Reeves, Land, Oesterling and Delwiche, 2011). Understanding the soil properties 

and how these affect agriculture can lead to the implementation of sustainable agricultural and environmental 

management (Viscarra Rossel, Cattle, Ortega and Fouad, 2009). In precision agriculture the scale of soil 

information required for land and crop management is much smaller, and normally relay on proximal soil sensing 

(Kuang, Mahmood, Quraishi, Hoogmoed, Mouazen and van Henten, 2012) to allow collecting high sampling 

resolution data. However, the traditional laboratory methods for soil analysis are not able to fulfil the requirement 

of high sampling resolution, since they are tedious, time consuming, expensive and require expert laboratory 

operator. 

 

One of the most common proximal soil sensing techniques is the visible (VIS) and near infrared (NIR) 

spectroscopy methods used to estimate soil properties and can be considered as a complimentary to chemical 

laboratory analysis methods. They are adopted for laboratory and field (both portable and on-line) measurements. 

Detailed information about accuracy and performance under different application conditions is provided in an 

intensive review from Kuang, Mahmood, Quraishi, Hoogmoed, Mouazen and van Henten (2012).  There is an 

increasing interest in VIS-NIR analysis techniques as they are non-destructive, fast, cost-effective and more 

importantly allow for high sampling resolution (Viscarra Rossel and Hicks, 2015; Tekin, Kuang and Mouazen, 

2013), which is particularly necessary to the implementation of variable rate farm inputs (e.g., fertilisers) in 

precision agriculture.  
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The soil mapping and classification has been historically performed through various methods, including statistical 

techniques such as principal components regression (PCR) (Chang, Laird, Mausbach and Hurburgh , 2001; Islam, 

Singh, McBratney, 2003; Mouazen, Kuang and De Baerdemaeker, 2010), partial least squares regression (PLSR) 

(McCarty, Reeves III, Reeves, Follett and Kimple, 2002; Mouazen, Kuang, De Baerdemaeker  and Ramon, 2010) 

and also the use of machine learning techniques such as different types of artificial neural networks, decision trees 

and support vector machines (SVM) (Brown, Shepherd, Walsh, Mays, Reinisch, 2006; Vasques, Grunwald and 

Sickman , 2008; Mouazen, Kuang and De Baerdemaeker, 2010; Viscarra – Rossel and Behrens, 2010; Minasny, 

McBratney, Stockmann and Hong, 2013; Kuang, Tekin and Mouazen , 2015).  Stevens, Nocita,Tóth, Montanarella 

and van Wesemael (2013), have used support vector machines and Cubist to predict Organic Carbon (OC). Cubist 

is able to make very efficient spectral variable selection and the rule structure is transparent to the user regarding 

the association of the spectra to soil properties allowing useful conclusions to be made about this relationship. 

However, these authors have used processed (dried, grinded and sieved) soil samples in their analysis. Since 

processed soil samples are of different physical conditions of fresh samples under field spectroscopy analyses, 

calibration models need to be developed with fresh samples. Then the performance of advanced data mining 

techniques needs to be evaluated for improved prediction capability of the VIS-NIR spectroscopy of studied soil 

properties for field spectroscopy application.  

The aim of this paper is to compare the performance of four different regression methods for the prediction of TN, 

OC and MC in fresh (wet and unprocessed) soil samples by means of a portable VIS-NIR spectrophotometer which 

is designed for field applications. These include two linear multivariate methods (e.g., Principal Components 

Regression (PCR) and Partial Least Squares Regression (PLSR), and two machine learning (e.g., Least Squares – 

Support Vector Machines (LS-SVM) and the Cubist).   

 

2. Materials and Methods 

2.1 Soil Sampling and chemical analyses 

A total of 140 soil samples were collected from the top soil layer (0-20 cm) of an arable field with an area of 31, 

020 ha in Premslin, Germany (Error! Reference source not found.) during August 2013, after harvest of winter 
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wheat. The soil type according to the Food and Agriculture Organization (FAO) is a Luvisol. The soil samples were 

analysed in the soil laboratory of Cranfield University for TN, OC and MC. Soil OC and TN were measured by a 

TrusSpecCNS spectrometer (LECO Corporation, St. Joseph, MI, USA), using the Dumas combustion method. Soil 

MC was determined by oven drying of the soil samples at 105 ºC for 24 h.  

 

(Figure1 here) 

 

2.2 Optical soil measurements 

The preparation of soil samples for optical measurements was carried out, as described by Kuang, Tekin and 

Mouazen (2015). Fresh (wet and non-processed) soil samples were put into glass containers and mixed well, after 

large stones and plant residue were removed (Mouazen, Karoui, Deckers and De Baerdemaeker, 2007). The optical 

measurements were taken from the smooth surface of soil samples, in order to achieve a higher signal to noise ratio 

(Mouazen, Karoui, Deckers and De Baerdemaeker, 2007). The soil samples were scanned by the AgroSpec 

portable VIS-NIR spectrophotometer (Tec5 Technology for Spectroscopy, Germany) that provides spectral 

measurements in the range between 305-2200 nm. A 100% white reference was measured before scanning, which 

was repeated every 30 min. The 100% white reference was made from lime material to ensure 100% of light is 

reflected back. A total of 10 scans were collected from each glass container and these were averaged in one 

spectrum. The spectra from 305-370 nm and from 2150-2200 nm at the fringe of the active range of the 

spectrophotometer showed an excessive noisy pattern and were removed from further analysis.  

2.3 Multivariate Regression Models 

2.3.1 Principal component regression (PCR) and partial least squares regression (PLSR) 

Both PCR and PLSR are linear chemometrics tools used for analysis of spectroscopic data for different 

applications. They are extensively explained in the literature (e.g., Martens and Naes, 1989). They are the most 

common modelling techniques for quantitative spectroscopy analyses in soils (Kooistra, Wehrens, Leuven and 

Buydens, 2001; Viscarra–Rossel, 2008). They both represent techniques that are based on the decomposition of the 

spectral data into features (called principal components for PCR (PCs) and latent variables for PLSR (LVs)) that 
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represent most of the variance exist in the raw VIS-NIR data and the creation of linear models between the sample 

scores of the selected features of the most correlated factors.  

In the current study, both PCR and PLSR models are calibrated using 1-20 PCs and LVs and the optimal number of 

features is selected according to the venetian blinds cross validation method for both techniques, so that to avoid 

over-fitting during the calibration (Reeves, Watson, Osborne, Pounds, O’Brien, Short and Schartel, 2002). 

2.3.2 Least Square – Support Vector Machines 

Least squares support vector machines (LS-SVM) is a method that was recently developed by Suykens, Van Gestel  

De Brabanter, De Moor, Vandewalle and Van Gestel (2002), as an easy but robust approach for the classification 

and regression analysis of linear and nonlinear multivariate problems, using linear equations set and not quadratic 

programming as in the classical SVM. It has been widely used during the last few years in the sector of 

chemometrics (Chauchard, Cogdill, Roussel, Roger and Bellon-Maurel, 2004; Τhissen, Üstün, Melssen  and 

Buydens, 2004; Borin, Ferrao, Mello, Maretto and Poppi, 2006;  Sá, Ferrão, Galdos, Bittar and Poppi, 2010; 

Balabin & Lomakina, 2011 among others). Chemometrics applications such as in the soil spectroscopy are highly 

non-linear, especially for OC (Stenberg, Rossel, Mouazen and Wetterlind, 2010). For this reason, a normal SVM 

that is usually utilised for linear classification can result in poor prediction capability, hence, it needs to be 

expanded for nonlinear regression by using a kernel function (Vapnik, 1995 and 1998).  

In the current study, a LS-SVM is used with the Gaussian radial basis function (RBF) kernel as a training algorithm 

(Eq. (1)). There have also been test runs with polynomial kernels, but they were omitted because the results were 

not satisfactory. The RBF kernel algorithm requires two parameters for tuning, namely, the gamma (γ), which is the 

regularization parameter that determines the trade-off between the training error minimization and smoothness (De 

Brabanter, Karsmakers, Ojeda, Alzade, De Bradanter, Pelckmans and Suykens, 2011) and the σ
2
 (Eq. (1)), which is 

the squared bandwidth of the Gaussian curve. For the tuning of these parameters, leave-one-out cross validation is 

used for choosing the initial random parameters (Stone, 1974) to be optimised by means of performing the standard 

simplex method  (Suykens, Van Gestel, De Brabanter, De Moor, Vandewalle and Van Gestel, 2002). 

K(xi, x𝑗) = exp (−
‖xi − xj‖

2

σ2
) Eq. (1) 
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The input parameters used for the training of the LS-SVM are the VIS-NIR features that will be derived from the 

LVs calculated from the PLS regression model. Mouazen, Kuang, De Baerdemaeker and Ramon (2010) adopted a 

similar approach, where the latent variables obtained from PLSR were used as input to a back propagation artificial 

neural network (BPNN), not to SVM as done in the current work. 

2.3.3 Cubist regression model 

The Cubist model is a data mining technique that works in a similar way to that of the Decision Tree regression 

models. It is based on the M5 algorithm, developed by Quinlan (1992) and has been successfully used in VIS-NIR 

soil spectroscopy analyses, achieving very successful results with small errors, hence it is considered to be 

competitive with other methods of multivariate regression in terms of accuracy (Bui, Henderson and Viergever 

2009; Viscarra Rossel and Webster, 2012; Stevens, Nocita, Tóth, Montanarella and van Wesemael , 2013; Lacoste, 

Minasny, McBratney, Michot, Viaud,  & Walter ., 2014; Malone, Minasny, Odgers, and McBratney, 2014; Miller 

Koszinski,  Wehrhan, and Sommer,2015; Viscarra Rossel and Hicks, 2015).  

The Cubist model is based on the construction of an unconventional type of regression tree (Minasny & 

McBratney, 2008), where the prediction is based on the intermediate linear models at each step. It creates subsets 

of sample of the original data set that have similar attributes and creates multi-linear regression rules by selecting 

the optimum predictor variables to be used as regression variables among all of the spectral variables. These rules 

are connected to each other with an “if [condition is true], then [regression rule], and else [go to next rule]” 

condition sequence. If the tested sample falls into the restrictions of the first subset, it performs the regression rule 

that was chosen for that subset, or else it moves to the next rule as described by Viscarra Rossel and Webster 

(2012). The main advantages of the Cubist regression method is its ability to handle non-linear relationships 

between dependent and independent variables and the ability to use both discrete and continuous variables as inputs 

(Im, Jensen, Coleman and Nelson, 2009). 

In the presented work, it is assumed that the Cubist model is capable of discovering spectra features that contribute 

highly to a specific soil property and it is able to construct a multivariate regression model to predict this property.  

2.4 Spectral data pre-treatment 

When the data pre-treatment techniques that are applied to the raw spectral data prior to the regression analysis are 

successfully implemented, it is possible that various problems such as noise, light scattering and external effects 
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can be reduced and this in turn can improve the accuracy of the models that will be created (Stevens, van 

Wesemael, Bartholomeus, Rosillon, Tychon, and Ben-Dor, 2008). In this study, the raw VIS-NIR reflected data (R) 

were first transformed into log(1/R), in order to reduce the nonlinearities that probably exist in the spectra (Viscarra 

Rossel, 2008). The transformed data were then pre-treated so that they became mean centred, with a standard 

deviation equal to 1 (autoscaling). Following this, soil spectra were subjected of the Savitzky – Golay (1964) filter 

for smoothing, using a first derivative transformation with 31 smoothing points. The first derivative transformation 

enhances small spectral absorptions and eliminates the background effect (Viscarra Rossel, Walvoort, McBratne, 

Janik and Skjemstad , 2006). Scatter removal from the transformed data was succeeded by implementing the 

standard normal variate technique (SNV) (Barnes, Dhanoa and Lister, 1989), which centres each spectrum by its 

mean and then scales it by its standard deviation in order to remove the path length variations.  

The outliers were omitted from inclusion in further modelling steps. The outliers were decided after performing 

PCA and checking the Hotelling’s T
2
 test and taking 95% confidence intervals, as well as the Q-residuals, also in 

95% confidence intervals that were derived by the PCA MANOVA (Constantinou, Papakonstantinou, Benaki, 

Spraul, Shulpis, Koupparis and Mikros, 2004). 

2.5 Model evaluation 

The accuracy of the models was assessed with the root mean squared error (RMSE) for the  cross validation 

(RMSECV) and prediction (RMSEP), the coefficient of determination (R
2
) and the residual prediction deviation 

(RPD). Before running the analysis the entire data set of 140 samples were randomly divided into training set (100 

samples) and prediction set (40 samples). The data for the prediction set were selected using the Venetian blinds 

method, according to total acidity (Chauchard, Codill, Roussel, Roger and Bellon Maurel, 2004). The same testing 

sets were used for all the different models that were developed. The cross – validation methods that gave the best 

results was the Venetian blinds cross-validation for the PCR and PLSR methods and the leave-one-out cross-

validation for the LS-SVM and Cubist methods. The RMSE, shown in (Eq. (2)), represents the mean absolute error 

of the time-series that was calculated by the model between the observed estimators and the measured values 

(Stone, 1993). The disadvantage of using the RMSE is that its value is sensitive to heavily weighted outliers and it 

can give a false estimation simply by taking some of the outliers into account (Bermejo and Cabestany, 2001).  
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RMSE = √
∑ (xobs,i − xmod,i)

2n
i=1

n
 Eq. (2) 

Where 𝑥𝑜𝑏𝑠 is the observed value, 𝑥𝑚𝑜𝑑 is the simulated value at observation i and n is the number of observations.  

On the other hand, R
2 
is the percentage of the total variation in the dependent values, which can be explained by the 

regression equation (Nagelkerke, 1991). R
2 

ranges from 0 to 1 and the higher the value of R
2
, the better fit the 

model is for the purpose. It is defined as follows (where 𝑥 is the mean of the observed data): 

R2 = 1 −
∑ (xobs,i − xmod,i)

2
n

∑ (xobs,i − x)2
n

 Eq. (3) 

RPD is also used for the evaluation of the models’ accuracy and is the standard deviation divided by RMSEP as 

proposed by Saeys, Mouazen and Ramon (2005) and described by Eq. (4). According to this indicator, if RPD is 

below 1.5, the model performance is considered to be very poor and can’t be used for prediction. If it is between 

1.5 and 1.8, the model can give fair results, but it has a margin for improvement. For values of RPD in the range of 

1.8 to 2 the prediction is considered to be good. Finally, if it is higher than 2.0, the model performance is 

considered to be very good. 

RPD =
sy

RMSEP
 Eq. (4) 

Where sy is the standard deviation of the observed values. 

Different regression analyses were developed for each soil parameter. The LS-SVM analysis  was carried out using 

the LS-SVMlab toolbox for Matlab (Mathworks, Natick, MA., USA), which was also used by Suykens, Van 

Gestel, De Brabanter, De Moor, Vandewalle and Van Gestel (2002). PLS regression and PCA have been performed 

using Unscrambler X10 (Camo Software, Oslo, Norway), whereas the Cubist analysis was performed using R 

toolbox (R-project, 2015) developed by Kuhn, Weston, Keefer, and Coulter (2011).  

The spatial distribution of the models' performance was evaluated with residual maps of each parameter. The 

residuals of each model's prediction of the soil parameter on the 140 locations were interpolated spatially using 

radial basis function / completely regularised spline (RBF/CRS). RBF/CRS is an exact deterministic interpolator 

that works well for large number of data points with most soil parameters, such as organic matter (Robinson and 
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Metternicht 2006), MC (Western, Grayson, Blöschl, Willgoose and McMahon, 1999) and TN (Bruland, Grunwald, 

Osborne, Reddy and Newman, 2006). 

 

3. Results and discussion 

3.1. Overview of reference and optical measurement of soil samples 

From the statistics of the values of the soil properties that resulted from laboratory analyses it was concluded that 

there were no outliers to be excluded from further analysis, as the median and mean are only slightly different to 

each other and there are no extreme values in the minimum and maximum values (Error! Reference source not 

found.  

(Table 1 here) 

Although the soil variables had quite a wide range of values, the reflectance spectra for the different samples had a 

similar pattern without significant deviations, due to the fact that all samples belong to one soil type (e.g. luvisols 

soil) and may also indicate small variability in different soil properties (Figure 2).  

(Figure 2 here) 

 

3.2 Prediction performance of principal component regression (PCR) and partial least 

squares regression (PLSR) models 

The results of the regression (cross-validation) with PCR and PLSR and the performance of the models during the 

validation phase (prediction) are shown in Error! Reference source not found. and Error! Reference source not 

found.. From the results one can easily observe that PLSR outperforms the PCR method for the prediction of the 

TN and MC, whereas PCR performs slightly better than PLS for the OC. The PLSR models can be considered to 

have a good prediction ability, as far as the prediction of TN and OC is concerned, as the RPD values are >1.8, 

while for the MC the prediction is considered to be very good, as the RPD = 2.17. A similar prediction performance 
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can be observed with the PCR models, where prediction results were better for MC (RPD = 2.19, very good 

prediction) as compared to those for TN (RPD = 1.72, fair prediction) and OC (RPD = 1.90, good prediction) 

(Saeys, Mouazen and Ramon, 2005). This can be also seen in Figure 3, which clearly shows that for TN and MC, 

only a few readings are highly diverging from the 1:1 line and are responsible for the lower model performance. 

PCR was expected to demonstrate lower performance than the PLSR model for the prediction of TN and OC, 

according to the independent literature reports by Viscarra Rossel (2006) and Mouazen, Kuang, De Baerdemaeker 

and Ramon (2010). 

(Table 2 here) 

(Figure 3 here) 

3.3 Prediction performance of least – squares support vector machines (LS-SVMs) models 

During the development of the LS-SVM models, both scores of PLSR and PCR were tested as input features. 

However, the PCs obtained from the PCR did not give satisfactory results as compared to the LVs, derived by 

PLSR, which is in line with findings of similar research performed by Mouazen, Kuang, De Baerdemaeker and 

Ramon (2010).In the latter work researchers compared the performance of artificial neural networks using PCs and 

LVs as input variables for the network. For this reason, only the LVs were used for the calibration and validation of 

the LS-SVM. The γ and σ
2
 values used for the calibration of the LS-SVM in the current work are shown in Error! 

Reference source not found.. 

 (Table 3 here) 

From Error! Reference source not found. it becomes obvious that LS-SVM has a very good prediction 

performance for all three studied soil properties, as demonstrated by the low RMSE, high R
2
 and RPD values that 

varies from 1.90 to 2.24. Error! Reference source not found. depicts the scatter plots of the LS-SVM model 

prediction performance with the prediction sample set, showing only few points that significantly deviate from the 

1:1 line for MC (Error! Reference source not found.B) and OC (Error! Reference source not found.C).  

For the training of the LS-SVM for the TN, 10 LVs were used as they showed to have the best performance during 

the training and the prediction phase, whereas for the prediction of MC and OC, 2 and 3 LVs, respectively, were 

sufficient to obtain the best model performance for both properties. It is worth confirming that both OC and MC 
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have direct spectral responses in the NIR range, while it was not clearly confirmed this to be the case for TN 

(Stenberg Rossel, Mouazen and Wetterlind, 2010). This may explain why a significantly smaller number of LVs 

was needed for OC and MC, as compared to TN.   

(Table 4 here) 

(Figure 4 here) 

3.4 Prediction performance of Cubist model 

The outcome of the simulations for the Cubist model is shown in Error! Reference source not found. in the cross-

validation and prediction phases. A closer look to this table shows that Cubist model has a very high accuracy both 

in terms of cross-validation and prediction. This can be also confirmed by the low RMSE and high RPD values 

(higher than or at least very close to 2) in the prediction set, which confirm these predictions can be used with good 

model performance (Saeys, Mouazen and Ramon, 2005). Error! Reference source not found. depicts the scatter 

plots of measured versus predicted soil properties using the prediction samples sets.  

(Table 5 here) 

Only one rule with one variable was enough for the Cubist method to find the best fit for the TN data. The spectral 

wavelength that was chosen by the Cubist model to predict the TN was 475 nm, which is one of the band listed in 

literature as sensitive to TN content (Viscarra Rossel, Walvoort, McBratney, Janik and Skjemstad, 2006; Viscarra 

Rossel and Webster, 2012). This wavelength variable may also associate with the blue absorption band that is 

reported to be around 450 nm (Mouazen, Karoui, Deckers, De Baerdemaeker and Ramon, 2007). For the prediction 

of MC, two rules have been created that are associated with 1862 nm wavelength. However, more spectral 

variables (wavelengths) were highlighted to provide good prediction of MC including 616, 684, 823, 1402, 1715, 

1715, 1862, 1864 and 1867nm, with 1867nm being the most important spectral variable for model fitting, which is 

also in-line with findings of other researchers (Bowers and Hanks, 1969; Lobel and Asner, 2002, Mouazen, Karoui, 

De Baerdemaeker and Ramon, 2006; Viscarra Rossel and Webster, 2012). Wavebands at 1402 nm and 1860 nm 

can be attributed to the second and first overtones on O-H absorption in the NIR range (Tekin, Tumsavas,  

Mouazen and (2012). Both 616 and 684 may be attributed to absorption of red colour around 680 nm (Viscarra 

Rossel, Walvoort, McBratney, Janik and Skjemstad, 2006; Mouazen, Karoui, De Baerdemaeker and Ramon, 2007). 
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Finally, for the OC there was again one rule for the best fitting of the data, which was based on two wavelength 

regression variables of 476 and 808 nm. While the former wavelength can be linked with the blues colour 

absorption band at 450 nm (Mouazen, Karoui, Deckers, De Baerdemaeker and Ramon, 2007), the latter waveband 

can be attributed to aromatics (C-H) band at 825 nm according to Viscarra Rossel and Behrens (2010). The 

significant wavelengths identified for the investigated properties are shown in Table 6. 

(Table 6 here) 

(Figure 5 here) 

3.5. Models Comparison 

From the results and based on RPD values, it can be concluded that all four calibration methods provided 

prediction results ranging from ‘fair’ to ‘very good’, according to the evaluation criteria of Saeys, Mouazen and 

Ramon (2005). The LS-SVM method though, shows the best performance, in comparison with the rest of the 

models for the prediction of MC and OC, whereas the Cubist model has slightly over-performed LS-SVM for TN. 

Despite this, the RMSE (the most important parameter to evaluate accuracy) values for both models were as the 

same. For MC prediction, although the Cubist model has a higher fitting R
2
 than LS-SVM, it also has lower RMSE 

and RPD values. For this reason, LS-SVM is assumed to have better prediction performance ability than the Cubist 

model. 

The spatial distribution of the models' performance is displayed in Figures 6 (parameters) and 7 (residuals). The 

spatial distribution of the parameters shows higher values along the north-south central axis of the field, which is 

consistent across the models tested (Fig. 6). In red colour are displayed areas where the model has overestimated 

the respective parameter, while in green are displayed the areas with underestimations (Fig. 7). All models tested 

show a similar spatial pattern of residuals across the three spatial parameters. In specific, PLSR shows an area of 

overestimation of TN in the north end of the field and another in the southwest, while LS-SVM and Cubist show an 

additional area in the eastern and central parts of the field. For MC, all models show an area of overestimation in 

the northern and central parts of the field and an area of underestimation exactly to the south of the latter, which is 

more pronounced for Cubist. For OC, all models show an overestimation in the central part of the field, with an 

additional area in the north for Cubist. PLSR results in a large area of underestimation in the western side of the 

field. 
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(Figures 6 and 7 here) 

The superior performance of the LS-SVM, in comparison with the rest of the models tested can be explained by its 

high ability to deal with the nonlinear pattern (Chauchard, Cogdill, Roussel, Roger, and Bellon-Maurel, 2004), 

which is reported during modelling the VIS-NIR spectra for soil properties, particularly for OC (Stenberg, Rossel, 

Mouazen and Wetterlind , 2010). Cubist models over-perform both PCR and PLSR models, for the prediction of all 

three soil attributes. Stevens, Nocita, Tóth, Montanarella and van Wesemael (2013) also found that a classic SVM 

performs competitively compared to the Cubist model for the prediction of OC. Viscarra Rossel and Behrens 

(2010) and Mouazen, Kuang, De Baerdemaeker and Ramon (2010) found machine learning techniques to provide 

better results than PLSR and PCR in soil spectroscopy. The results found in the current work confirm this finding 

but for fresh (wet and unprocessed) soil samples, while findings of previous studies were based on processed 

(dried, crushed and sieved) soil samples.  

3.6 Research limitations 

 

Although from the comparison of the different models it becomes obvious that machine learning techniques lead to 

very satisfactory results for the prediction of the formentioned soil parameters (TM, MC and OC), there is a 

limitation concerning the generalisation of the results of this study.  

The models were calibrated and tested according to the samples collected from one field of one soil type in a 

specific region in Germany. That means that the specific models can’t be generalised for the prediction of the same 

parameters in any soil type given. This happens because for the machine learning techniques, the generalisation of 

the models is strongly dependent on the calibration and testing samples variability. Therefore, there is a need to use 

samples from a big diversity of soil types and from different fields, in order for these models to be generalised to a 

larger scales e.g., regional, country, continental of global.  

From the models developed, it is obvious that such techniques as Cubist and LS-SVM can have very good 

predictive ability for TN, MC and OC and for this reason it can be assumed that those methods could also give 

comparably good results for different soil types. Further calibration-validation procedure is needed for other soil 

types to validate this assumption..
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4. Conclusions  

The comparison between principal component regression (PCR), partial leas squares regression (PLSR), least-

squares support vector machine (LS-SVM) and Cubist methods for the prediction of total nitrogen (TN), moisture 

content (MC) and organic carbon (OC) with the visible and near infrared spectroscopy based on 140 fresh soil 

samples collected from one field in Germany have led to the following conclusions: 

 For the given dataset, LS-SVM outperformed all the other methods for the prediction of the MC and OC, 

but TN was best predicted by the Cubist method.  

 Machine learning techniques such as Cubist and LS-SVM showed a better explanatory power than the 

classic multivariate regression techniques such as PCR and PLSR. For this reason they are recommended 

for soil spectroscopy analyses.  

 Although, for the MC, the Cubist showed the best model fitting, it had higher RMSE and lower RPD than 

LS-SVM and for this reason it was chosen as the best performing model. 

 The machine learning techniques investigated in this study can be used in field spectroscopy for  off-line 

and on-line prediction of the soil parameters studied in fields with similar soil type and variability. 
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