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Ambiguity function and accuracy of the

hyperbolic chirp: comparison with the linear

chirp
Alessio Balleri# and Alfonso Farina∗

Abstract

In this paper, we derive the Ambiguity Function (AF) of a narrowband and a wideband hyperbolic chirp. We

calculate the second derivatives of the squared amplitude of the narrowband Complex Ambiguity Function (CAF)

and use them to calculate the Fisher Information Matrix (FIM) of the estimators of the target range and velocity.

The FIM is then used to calculate the Cramér-Rao Lower Bounds (CRLB) of the variance of the estimators and to

carry out an analysis of estimation performance and a comparison with the case of a liner chirp with a rectangular

and a Gaussian amplitude modulation. The analysis and the calculations of the CRLB are also extended to a train of

hyperbolic chirps. Results corroborate that at narrowband the hyperbolic chirp is less Doppler tolerant than the linear

chirp and show that the hyperbolic chirp provides a comparable measurement accuracy to the linear chirp. Results at

wideband corroborate the superior Doppler tolerance of the hyperbolic chirp with respect to that of the linear chirp.

Index Terms

Hyperbolic Chirp, Bat Echolocation Waveform, Radar Waveform, Ambiguity Function, Fisher Information Matrix,

CRLB, narrowband, wideband.

I. INTRODUCTION

The ability to jointly and accurately estimate the distance and the velocity of a target using one or multiple

consecutive echoes has attracted considerable interest in the radar and sonar community. The first studies on this

topic were carried out for narrowband signals in white noise, e.g. in [1] and [2], and these were then extended to the

Maximum Likelihood estimates of the target parameters for an antenna array in [3]. The more general expressions

for the CRLB of the Direction of Arrival (DoA), target range and target Doppler for an antenna array at narrowband

and in non-white noise were derived and presented in [4]. In this same paper, the authors extended their results to

the case of a train of linear chirps with large time-bandwidth products.

Hyperbolic chirps have attracted considerable research interest in the past because of their Doppler tolerance

properties. They were initially proposed to increase the receiver Doppler tolerance in sonar as well as radar detecting
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high-velocity targets with large time-bandwidth products [5]. A second order Taylor series expansion was used in [6]

to study the properties of the main lobe of the AF of the hyperbolic chirp and the same paper presents an analysis of

the Doppler tolerance for a train of hyperbolic chirps. In [7], it was shown that the hyperbolic frequency modulation

is the optimal modulation, in terms of Doppler tolerance, for applications that require a large time-bandwidth product

(e.g. for space applications of radar, targets can reach velocities of over 9,000 m/s and time-bandwidth products

greater than about 16,000 are to be considered large). The same paper contains the derivation of the Fourier transform

of the hyperbolic chirp and a study of the shape and properties of its cross-correlation function. A nice technical

report that summarises the properties of the hyperbolic chirp can be found in [8].

The existing literature has also focused on techniques to estimate the parameters of signals with a hyperbolic

frequency modulation. The estimators of the parameters of a class of discrete signals with an hybrid FM-polynomial

phase modulation and their relative CRLBs were developed in [9], [10] and [11]. In these papers, the authors studied

the hyperbolic chirp as a special case of an hybrid FM-polynomial signal and found that the ambiguity function

of the hyperbolic chirp tends to a Dirac Delta function when the number of elements of the signal grows without

limit.

Some species of bats have developed an excellent ability to echolocate to search, detect and localise their prey.

They do this by transmitting sophisticated ultrasound waveforms and by using target echoes to gather an acoustic

picture of the surrounding environment. Previous research and experiments have shown that bat echolocation calls

often present a hyperbolic-like frequency modulation, in particular when the bat forages on flying insects in a

highly cluttered environment [12]. The knowledge of the estimation performance of the target range and velocity as

a function of the design of the hyperbolic chirp can potentially help underpin the relationships between the insect

flight trajectory, the waveforms used by the bat and how these are diversified during a mission [13] [14] [15].

This paper is organised as follows; in Section II we calculate the AF of a narrowband hyperbolic chirp, in

Section III we derive the FIM of the target range and velocity estimators and derive the CRLB of their variance

as a function of the Signal to Noise Ratio (SNR), in section IV we compare the performance of the hyperbolic

chirp with respect to a Linearly Frequency Modulated chirp (LFM) with a rectangular and a Gaussian amplitude

modulation, in section V we extend the calculation of the CRLBs to a train of pulses and carry out a comparison

with a train of LFM chirps, in section VI the AFs of the waveforms are compared to facilitate the interpretation

of the results, and finally in section VII we derive the AF of the wideband hyperbolic chirp before drawing the

conclusions in section VIII. All the calculations are given in detail in the Appendices A, B, C and D.

II. NARROWBAND AMBIGUITY FUNCTION OF THE HYPERBOLIC CHIRP

Consider the analytical signal ŝ(t) of a narrowband hyperbolic chirp of unit energy and duration T

ŝ(t) = s(t)ej2πf0t =
1√
(T )

ej2πa ln(1+kt)Rect
{
t

T

}
ej2πf0t (1)

with the function Rect
{
t
T

}
being a rectangular function of the time variable t such that

Rect
{
t

T

}
=

 1 0 < t < T

0 elsewhere
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The instantaneous frequency of the chirp

f(t) =
1

2π

d (2πa ln(1 + kt))

dt
+ f0 =

ak

1 + kt
+ f0 (2)

is a function of the parameters a and k which define the design of the baseband hyperbolic chirp, and that depend

on the start and end frequencies, f1 = f(0)− f0 and f2 = f(T )− f0, of the complex envelope s(t). These can be

calculated according to the relation  f1 = ak

k = f1−f2
Tf2

The Complex Ambiguity Function (CAF) is defined as [16]

χ(τ, ν) =

∫ ∞
−∞

s(t)s∗(t+ τ)ej2πνtdt (3)

and for the hyperbolic chirp and 0 < τ < T can be written in the form 1

χ(τ, ν) =
1

T

∫ T−τ

0

ej2πaln(1+kt)e−j2πaln(1+k(t+τ))ej2πνtdt (4)

Using the equality ejlnx = xj we rewrite the integral as

χ(τ, ν) =
1

T

∫ T−τ

0

(1 + kt)j2πa(1 + k(t+ τ))−j2πaej2πνtdt (5)

which after the change of variable t1 = kt becomes

χ(τ, ν) =
1

kT

∫ k(T−τ)

0

(1 + t1)
j2πa(t1 + (1 + kτ))−j2πaej

2πν
k t1dt1 (6)

We then apply a further change of variable t1 = k(T − τ)w that leads to

χ(τ, ν) =
(T − τ)

T (1 + kτ)j2πa

∫ 1

0

(1− k(τ − T )w)j2πa
(
1− k(τ − T )

(1 + kτ)
w

)−j2πa
ej2πν(T−τ)wdw (7)

and define the parameters 

γ = j2πa

u = k(τ − T )

q = k(τ−T )
(1+kτ)

β = j2πν(T − τ)

to obtain a simplified form of the integral

χ(τ, ν) =
(T − τ)

T (1 + kτ)j2πa

∫ 1

0

(1− uw)γ (1− qw)−γ eβwdw (8)

For ν = 0, β = 0 and the integral becomes

χ(τ, 0) =
(T − τ)

T (1 + kτ)j2πa

∫ 1

0

(1− uw)γ (1− qw)−γ dw (9)

1The integral is solved for τ > 0 without loss of generality.
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Fig. 1. Change in curvature as a function of the parameter f2 for a hyperbolic chirp of bandwidth B = 20 MHz and duration 25 µs.

which represents the autocorrelation of the hyperbolic chirp. The integral in Eq. 9 is of a known form and can be

solved as

χ(τ, 0) =
(T − τ)

T (1 + kτ)j2πa
B(1, 1)F1(1,−γ, γ, 2;u, q) (10)

by recalling the equality given in Appendix A [17], which converges 2 for |u| < 1 and |q| < 1. It is simple

to show that these conditions are verified when the lower frequency of the hyperbolic chirp is greater than the

chirp bandwidth, i.e. when f2 > B. In the equation, the function B(x, y) is a Beta function and the function

F1(a, b1, b2, c;x, y) is an hypergeometric function of two variables, also known as the Appell series [18]. Fig. 1

shows the impact that the conditions on |u| and |q| have on the curvature of the hyperbolic chirps of a given

bandwidth and duration. The plot shows how the curvature of the chirp changes when f2 increases and shows that

with the increase in f2 the hyperbolic transition becomes more and more linear.

To the best of our knowledge the integral in Eq. 8 is unknown but it can be approximated by replacing the term

eβw with a Taylor series expansion as

χ(τ, ν) =
(T − τ)

T (1 + kτ)j2πa

∞∑
n=0

βn

n!

∫ 1

0

wn(1− uw)γ (1− qw)−γ dw (11)

By using the same equality given in Appendix A, the terms of the series can be written as a function of the same

hypergeometric function of two variables as

χ(τ, ν) =
(T − τ)

T (1 + kτ)j2πa

∞∑
n=0

βn

n!
B(n+ 1, 1)F1(n+ 1,−γ, γ, n+ 2;u, q) (12)

2The table of integrals in [17] indicates that the integral converges for |u| < 1 and |q| < 1. It is simple to show that these conditions

are verified when the lower frequency of the hyperbolic chirp is greater than the chirp bandwidth (f2 > B). However, it is a property of the

Ambiguity Function that |χ(τ, ν)| ≤ |χ(0, 0)| = 1 and this implies the condition on the tables is only sufficient but not necessary.
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(a) f2=15 MHz (b) f2=1 MHz

(c) f2 = 15 MHz and ν = −80 kHz

Fig. 2. Range Cut (ν = 0) of the Ambiguity Function for a hyperbolic chirp with T = 25 µs, B = 10 MHz for a) f2 = 15 MHz and b)

f2 = 1 MHz. Results show a very good agreement between theory (Eq. 10) and simulations. c) Cut of the Ambiguity Function relative to

ν = −80 kHz (corresponding to a product νT = −2) for T = 25 µs, B = 10 MHz and f2 = 15 MHz. Results show a very good agreement

between theory (Eq. 12 with 250 terms of the Taylor expansion) and simulations.

Fig. 2(a), Fig. 2(b) and Fig. 2(c) show the plots of the theoretical curves for ν = 0 (i.e. the range cut of the

Ambiguity Function) and for ν = −80 kHz obtained by implementing Eq. 10 and Eq. 12 with 250 terms of the

Taylor expansion. The curves are compared with the simulated cuts obtained by cross-correlating a delayed and

frequency shifted replica of the transmitted chirp with the original transmitted version. Results show that there is

a perfect agreement between the theoretical and simulated curves and prove the validity of the theoretical results.

Results in Fig. 2(b) show that when f2 becomes smaller than the bandwidth, and hence the condition on the

parameters u and q is no longer satisfied, the shape and sidelobes of the range cut of the AF deteriorates. This is

in agreement with what has been also observed in [7] and with simulations in [19].
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III. MEASUREMENT ACCURACY OF TIME-DELAY AND DOPPLER

In this section, we study the accuracy of the joint estimates of time-delay and Doppler when a hyperbolic chirp

is transmitted under the narrowband approximation for which the echo from a moving target is a delayed replica

of the transmitted signal shifted in frequency. We calculate the Fisher Information Matrix (FIM), Jc, and find the

CRLB of the estimators of the target position and target velocity.

It has been previously shown that the FIM can be written as

Jc = −2 SNR JAF (13)

where JAF is the matrix of the second order derivatives of the squared amplitude of the CAF (see [20], [21], [22]

and [23])

JAF =

 ∂2|χ(τ,ν)|2
∂τ2

∂2|χ(τ,ν)|2
∂τ∂ν

∂2|χ(τ,ν)|2
∂ν∂τ

∂2|χ(τ,ν)|2
∂ν2

∣∣∣∣∣∣
τ,ν=0

To calculate the elements of the FIM for the hyperbolic chirp, we start by writing the second derivatives of the

squared amplitude of the AF as a function of the first order and second order derivatives of the complex AF as

∂2|χ(τ, ν)|2

∂ν2
= 2Real

{
χ∗(τ, ν)

∂2χ(τ, ν)

∂ν2

}
+ 2

∣∣∣∣∂χ(τ, ν)∂ν

∣∣∣∣2 (14)

∂2|χ(τ, ν)|2

∂τ2
= 2Real

{
χ∗(τ, ν)

∂2χ(τ, ν)

∂τ2

}
+ 2

∣∣∣∣∂χ(τ, ν)∂τ

∣∣∣∣2 (15)

∂2|χ(τ, ν)|2

∂τ∂ν
= 2Real

{
χ∗(τ, ν)

∂χ(τ, ν)

∂τ∂ν

}
+ 2Real

{
∂χ∗(τ, ν)

∂ν

∂χ(τ, ν)

∂τ

}
(16)

∂2|χ(τ, ν)|2

∂ν∂τ
= 2Real

{
χ∗(τ, ν)

∂χ(τ, ν)

∂ν∂τ

}
+ 2Real

{
∂χ(τ, ν)

∂ν

∂χ∗(τ, ν)

∂τ

}
(17)

The derivatives with respect to ν can be easily calculated by deriving Eq. 8 with respect to ν and by considering

that

dβ

dν
= j2π(T − τ) (18)

to obtain

∂χ(τ, ν)

∂ν
=

j2π(T − τ)2

T (1 + kτ)j2πa

∫ 1

0

w(1− uw)γ (1− qw)−γ eβwdw (19)

∂2χ(τ, ν)

∂2ν
=
−4π2(T − τ)3

T (1 + kτ)j2πa

∫ 1

0

w2(1− uw)γ (1− qw)−γ eβwdw (20)

For (τ ,ν = 0), we have u = q = −kT and β = 0 and it can be easily shown that

April 27, 2016 DRAFT
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∂χ(τ, ν)

∂ν

∣∣∣∣
τ,ν=0

= jπT (21)

∂2χ(τ, ν)

∂2ν

∣∣∣∣
τ,ν=0

= −4

3
π2T 2 (22)

and hence, after applying Eq. 14, that

∂2|χ(τ, ν)|2

∂ν2

∣∣∣∣
τ,ν=0

= −2

3
π2T 2 (23)

The derivatives of the CAF with respect to ν in (τ, ν = 0) do not depend on the waveform design and are

the same for any types of waveform with unit energy and a rectangular amplitude modulation. This can be easily

verified by deriving with respect to ν Eq. 4 rather than Eq. 8.

The derivatives of the AF with respect to τ are calculated by defining the function

u(t) = ej2πaln(1+kt) = (1 + kt)j2πa (24)

such that 
∂u∗(t+τ)

∂τ = −j2πak [1 + k(t+ τ)]
−j2πa−1

∂2u∗(t+τ)
∂τ2 = j2πak2(1 + j2πa) [1 + k(t+ τ)]

−j2πa−2
(25)

The first order derivative with respect to τ is equal to (proof in Appendix B)

∂χ(τ,ν)
∂τ = 1

T

[∫ T−τ
0

u(t)∂u
∗(t+τ)
∂τ ej2πνtdt− u(T − τ)u∗(T )ej2πν(T−τ)

]
= 1

T

[
−j2πak

∫ T−τ
0

(1 + kt)j2πa [1 + k(t+ τ)]
−j2πa−1

ej2πνtdt

−[1 + k(T − τ)]j2πa(1 + kT )−j2πaej2πν(T−τ)
] (26)

which for τ = 0 and ν = 0 simplifies to

∂χ(τ, ν)

∂τ

∣∣∣∣
τ=0,ν=0

=
−j2πa
T

∫ T

0

k

1 + kt
dt− 1

T
=
−j2πa ln(1 + kT )− 1

T
(27)

The second order derivative of the AF with respect to τ can be written as (Appendix B)

∂2χ(τ,ν)
∂τ2 = 1

T

[∫ T−τ
0

u(t)∂
2u∗(t+τ)
∂τ2 ej2πνtdt− u(T − τ) ∂u∗(t+τ)

∂τ

∣∣∣
t=T−τ

ej2πν(T−τ)

−u∗(T ) ∂∂τ
(
u(T − τ)ej2πν(T−τ)

)] (28)

and it is calculated by replacing u(t) with Eq. 24 to obtain

∂2χ(τ,ν)
∂τ2 = 1

T

[∫ T−τ
0

(1 + kt)j2πaj2πak2(1 + j2πa) [1 + k(t+ τ)]
−j2πa−2

ej2πνtdt

−[1 + k(T − τ)]j2πa(−j2πak) [1 + kT ]
−j2πa−1

ej2πν(T−τ)

−(1 + kT )−j2πa(−j2πak)[1 + k(T − τ)]j2πa−1ej2πν(T−τ)

+j2πν(1 + kT )−j2πa[1 + k(T − τ)]j2πaej2πν(T−τ)
]

(29)
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For τ = 0 and ν = 0, the integral becomes

∂2χ(τ, ν)

∂τ2

∣∣∣∣
τ=0,ν=0

=
1

T

[∫ T

0

k2(j2πa− 4π2a2)

(1 + kt)2
dt+

j2πak

1 + kT
+
j2πak

1 + kT

]
(30)

which after a simple calculation converges to

∂2χ(τ, ν)

∂τ2

∣∣∣∣
τ=0,ν=0

=
−4π2a2k2

1 + kT
+ j

(2πak2T + 4πak)

T (1 + kT )
(31)

The second derivatives of the squared amplitude of the AF with respect to τ can then be calculated as

∂2|χ(τ, ν)|2

∂τ2

∣∣∣∣
τ=0,ν=0

=
−8π2a2k2

1 + kT
+

2 + 8π2a2 ln2(1 + kT )

T 2
(32)

To calculate ∂2|χ(τ,ν)|2
∂τ∂ν we firstly observe that

2Real
{
∂χ(τ, ν)

∂ν

∂χ∗(τ, ν)

∂τ

}
= −4π2a ln(1 + kT ) (33)

We then take the derivative with respect to ν of Eq. 26

∂2χ(τ,ν)
∂τ∂ν = −j2πak

T

∫ T−τ
0

(j2πt)(1 + kt)j2πa [1 + k(t+ τ)]
−j2πa−1

ej2πνtdt

− 1
T [1 + k(T − τ)]j2πa(1 + kT )−j2πa[j2π(T − τ)]ej2πν(T−τ)

(34)

and we calculate the results for (τ = 0, ν = 0)

∂2χ(τ, ν)

∂τ∂ν

∣∣∣∣
τ=0,ν=0

=
4π2a

T

∫ T

0

kt

1 + kt
dt− j2π (35)

∂2χ(τ, ν)

∂τ∂ν

∣∣∣∣
τ=0,ν=0

=
4π2a

T

[
T − ln(1 + kT )

k

]
− j2π (36)

2Real
{
χ∗(τ, ν)

∂2χ(τ, ν)

∂τ∂ν

}
= 8π2a

[
1− ln(1 + kT )

kT

]
(37)

∂2|χ(τ, ν)|2

∂τ∂ν
= 8π2a

[
1− ln(1 + kT )

kT

]
− 4π2a ln(1 + kT ) (38)

Jc = −2 SNR

 −8π2a2k2

1+kT + 2+8π2a2 ln2(1+kT )
T 2 8π2a

[
1− ln(1+kT )

kT

]
− 4π2a ln(1 + kT )

8π2a
[
1− ln(1+kT )

kT

]
− 4π2a ln(1 + kT ) − 2

3π
2T 2

 (39)

The CRLB are the elements of the inverse of the matrix Jc and are equal to

CRLB(τ) = − JAF (2, 2)

2 SNR det(JAF )
(40)

CRLB(ν) = − JAF (1, 1)

2 SNR det(JAF )
(41)
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IV. COMPARISON WITH THE MEASUREMENT ACCURACY OF THE LINEAR CHIRP

The calculations derived in Appendix B can equivalently be applied to the case of a linear chirp with a constant

amplitude modulation s(t) = 1√
T
ejπγt

2

Rect {t/T} of duration T and bandwidth B = γT . The FIM of a linear

chirp is available in the literature [4] and it has previously been calculated by approximating the spectrum of the

chirp with a rectangular shape for chirps with a large time-bandwidth product (BT >> 1). Because the calculations

developed in this paper, do not require the use of the Fourier Transform of the signal, a closed form solution can

be obtained without the requirement for the signal to have a large time-bandwidth product. It can be shown (Proof

in Appendix C) that the matrix of the second derivatives of the squared AF of a linear chirp can be written in the

form

JAFlinearchirp =

 − 2
3π

2γ2T 2 + 2
T 2

2
3π

2γT 2

2
3π

2γT 2 − 2
3π

2T 2

 (42)

and by considering that γ = B/T the results can be rewritten as

JAFlinearchirp = −2

 1
3π

2 (BT )2−1
T 2 −2π πBT6

−2π πBT6 4π2 T 2

12

 (43)

For a chirp with a large time-bandwidth product (BT >> 1) the element JAF (1, 1) ∼= 1
3π

2B2 and the matrix

becomes of the form known in the literature [4]. It is straightforward to verify that the determinant of the matrix

JAFlinearchirp is negative for small BT and that it is zero for BT >> 1, meaning that the CRLBs do not exist for

a single linear chirp. This result is well known in the existing literature; it can be easily shown that for only one

pulse, at narrowband, the signal model for a linear chirp is not identifiable because the time-delay and the Doppler

shift are coupled and cannot be uniquely estimated [4].

For completeness, the comparison is also extended to the case of a linear chirp with a Gaussian amplitude modulation

s(t) =

(
2k2G
π

)1/4

e−k
2
Gt

2

ejbGt
2

(44)

and described by the parameters kG and bG. The parameter kG is such that k2G = 1
2λ2
G

, where 2λG is the half

power width of the Gaussian chirp envelope. The FIM of the Gaussian chirp is known in the literature [21] [24],

and equal to

JAFGaussiaChirp = −2

 k2G +
b2G
k2G

πbG
k2G

πbG
k2G

π2

k2G

 (45)

Fig. 3(a), Fig. 3(b) and Fig. 3(c) show the comparison in accuracy performance for a hyperbolic chirp and a Gaussian

linear chirp of duration 25 µs and bandwidth 10 MHz (for the Gaussian chirp 2λG = 25 µs). Results show that

the CRLB of the hyperbolic chirp is about 3 dB lower than that of the Gaussian chirp for both time-delay and

Doppler estimation. Results are similar for the lower bound of the cross-covariance between the estimators of the

time-delay and the Doppler3. Similar results are obtained for the case f2 < B.

3Care had to be taken in computing the elements of the FIM and the CRLB. Some of the elements can reach very small numbers and

calculations can potentially compete with the current MATLAB R© computational precision limits.
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(a) CRLB for the time delay τ .

(b) CRLB for the Doppler ν

(c) Amplitude of the lower limit of the cross-variance between ν and τ .

Fig. 3. CRLB as a function of SNR for a) the time delay τ and b) the Doppler ν and c) amplitude of the lower limit of the cross-variance

between ν and τ as a function of SNR.
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V. ACCURACY OF A TRAIN OF TIME LIMITED PULSES

In this section, the calculations are extended to the case of a train of pulses of limited duration to allow the

comparison with the accuracy of a rectangular linear chirp.

Consider a signal sN (t) of unit energy

sN (t) =
1√
N

N−1∑
n=0

s(t− nPRI) = 1√
NT

N−1∑
n=0

u(t− nPRI)Rect
{
t− nPRI

T

}
(46)

consisting of a train of N pulses obtained by repeating the signal s(t) with a Pulse Repetition Interval PRI such

that T < PRI . To proceed with the calculations, we observe that the CAF χN (τ, ν) of the signal sN (t) can be

written in the form [16]

χN (τ, ν) = χ(τ, ν)
1

N

N−1∑
n=0

ej2πνnPRI (47)

and we proceed with calculating the matrix of the second derivatives of the squared amplitude of χN (τ, ν)

JAFN =

 ∂2|χN (τ,ν)|2
∂τ2

∂2|χN (τ,ν)|2
∂τ∂ν

∂2|χN (τ,ν)|2
∂ν∂τ

∂2|χN (τ,ν)|2
∂ν2

∣∣∣∣∣∣
τ,ν=0

From Eq. 47, it is straight forward to observe that the first and second derivatives of χN (τ, ν) with respect to τ

only depend on the term χ(τ, ν) and therefore that

∂2|χN (τ, ν)|2

∂τ2
|τ,ν=0 =

∂2|χ(τ, ν)|2

∂τ2
|τ,ν=0 (48)

It can be easily shown that the same applies to the cross derivatives with respect to τ and ν (Proof in Appendix

D). To determine the second derivatives of the squared amplitude of χN (τ, ν) with respect to ν, we proceed by

calculating the first and second derivatives of χN (τ, ν) in its complex form before using Eq. 15 to obtain the final

results. From Eq. 47

∂χN (τ, ν)

∂ν
=

1

N

[
∂χ(τ, ν)

∂ν

N−1∑
n=0

ej2πνnPRI + χ(τ, ν)

N−1∑
n=0

j2πnPRIej2πνnPRI

]
(49)

∂χN (τ, ν)

∂ν

∣∣∣∣
τ,ν=0

=
∂χ(τ, ν)

∂ν

∣∣∣∣
τ,ν=0

+
j2πPRI

N
χ(τ, ν)|τ,ν=0

N−1∑
n=0

n =
∂χ(τ, ν)

∂ν

∣∣∣∣
τ,ν=0

+ jπPRI(N − 1) (50)

Similarly, the second derivative of χN (τ, ν) in (0,0) is obtained by deriving Eq. 49 with respect to ν and by

calculating its value in the origin.

∂2χN (τ, ν)

∂2ν

∣∣∣∣
τ,ν=0

=
1

N

[
∂2χ(τ, ν)

∂2ν

∣∣∣∣
τ,ν=0

N + j4πPRI
∂χ(τ, ν)

∂ν

∣∣∣∣
τ,ν=0

N−1∑
n=0

n− 4π2PRI2
N−1∑
n=0

n2

]
(51)

∂2χN (τ, ν)

∂2ν

∣∣∣∣
τ,ν=0

=
∂2χ(τ, ν)

∂2ν

∣∣∣∣
τ,ν=0

+ j4πPRI
∂χ(τ, ν)

∂ν

∣∣∣∣
τ,ν=0

N − 1

2
− 4π2PRI2

(N − 1)(2N − 1)

6
(52)
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From the equation above, through a very simple calculation, it can be demonstrated that

∂2|χN (τ, ν)|2

∂ν2

∣∣∣∣
τ,ν=0

=
∂2|χ(τ, ν)|2

∂ν2

∣∣∣∣
τ,ν=0

− 2

3
π2PRI2(N2 − 1) (53)

and hence that the matrix of the second derivatives of the squared amplitude of the ambiguity function is

JAFN =

 ∂2|χ(τ,ν)|2
∂τ2

∂2|χ(τ,ν)|2
∂τ∂ν

∂2|χ(τ,ν)|2
∂ν∂τ − 2

3π
2T 2 − 2

3π
2PRI2(N2 − 1)

∣∣∣∣∣∣
τ,ν=0

(54)

Similarly to the case of a single pulse, the CRLB for the time delay and the Doppler can be calculated as

CRLB(τ) = − JAFN (2, 2)

2 SNR det(JAFN )
(55)

CRLB(ν) = − JAFN (1, 1)

2 SNR det(JAFN )
(56)

Fig. 4(a), Fig. 4(b) and Fig. 4(c) show the CRLBs of a train of rectangular linear chirps and a train of hyperbolic

chirps for a SNR of -10 dB. Each pulse has duration of 25 µs and a bandwidth of 10 MHz and the parameter f2

of the hyperbolic chirp is 15 MHz. The energy of the signal in Eq. 46 is unity for any N and, similarly, the results

are relative to a SNR which remains constant irrespective of the number of pulses forming the train. The results

are given as a function of the number of pulses in a logarithmic scale and for PRI = 1 ms. Results show that the

accuracy of the hyperbolic chirp and that of linear chirp is equal for both time, Doppler and for the cross-covariance

of the two estimators. Results are similar for the case f2 < B.

VI. COMPARISON BETWEEN NARROWBAND AFS

To understand the achieved accuracy results, we carry out a comparison of the AFs of the three types of waveform

analysed in the previous sections. Fig. 5 and Fig. 6 show the ambiguity function of the three chirps of duration 25

µs and bandwidth 10 MHz together with their relative range and Doppler cuts. The plots in Fig.6(a) and Fig.6(b)

show that there is a very close match between the Doppler and range cuts of the three waveforms. Because the

FIM is a function of the second derivatives of the squared of the AF it is expected that similar shapes of the

main AF lobe should lead to similar results in accuracy. Also, as it is well known in the existing literature, results

show that the sidelobes of the Gaussian chirp are significantly lower and that the Doppler cuts of the rectangular

linear chirp and hyperbolic chirp are equivalent. The results in Fig.5(a), Fig.5(b) and Fig.5(c) highlight that for

narrowband processing the linear chirp is much more Doppler tolerant than the hyperbolic chirp. The narrowband

approximation only accounts for a shift in frequency of the echo from a moving target. Whilst an echo shifted in

frequency can be matched to a 0-Doppler reference signal by applying a simple time-delay for a linear frequency

modulated chirp, this is not possible when the frequency modulation is hyperbolic. This phenomenon is nicely

explained for the wideband case in [7] [8] and shown in Fig.7. Further results show that when the parameter f2

increases and the bandwidth and the duration are fixed, and hence the hyperbolic chirp has a more linear transition

in the time-frequency domain (see Fig. 1), the Doppler tolerance of the hyperbolic chirp also increases. These results

indicate that it is possible to control the Doppler tolerance of the hyperbolic chirp by controlling the hyperbolic

curvature via the parameter f2.
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(a) CRLB for Doppler parameter ν

(b) Amplitude of the lower limit of the cross-variance between ν and τ

(c) CRLB for the time delay τ

Fig. 4. a) CRLB for the Doppler ν, b) amplitude of the lower limit of the cross-variance between ν and τ and c) CRLB for the time delay τ

as a function of the number of pulses N (SNR = -10 dBand PRI = 1 ms).
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(a) AF LFM (b) AF HFM

(c) AF Gaussian LFM

Fig. 5. Comparison between the ambiguity functions of a) a Linear Chirp, b) a Hyperbolic chirp (f2=15 MHz) and c) a Gaussian chirp of

bandwidth 10 MHz and duration 25 µs.

VII. WIDEBAND AMBIGUITY FUNCTION

The analysis and the results of the previous sections are all based on the assumption of a narrowband signal for

which an echo for a moving target is simply a delayed version of the transmitted signal but shifted in frequency of

the Doppler shift 2v/c, with v being the velocity of the target and c the speed of propagation of the waveform. It

can be shown that the narrowband approximation is valid when BT << c/(2v) ( [20], pp. 241). However, there are

applications of both radar and sonar for which the time-bandwidth product BT is not always significantly smaller

than c/(2v) and for which the narrowband approximation is no longer valid. For these applications, echoes from a

moving target are characterised by a compression or expansion in the time domain that has to be taken into account

in a matched receiver.

For these reasons, the Wideband Ambiguity Function (WAF) was proposed in [5] which is defined as

χ(τ, ν) =

∫ ∞
−∞

s(t)s∗[ν(t+ τ)]dt (57)

where ν = c−v
c+v is the Doppler compression factor. In this section, we derive the Wideband AF of the hyperbolic

chirp and carry out a comparison with that of the linear chirp in order to draw differences and similarities with

respect to the narrowband case. An approximation of the WAF of the hyperbolic chirp obtained using a second
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(a) Range Cut of AF (b) Doppler Cut of AF

Fig. 6. Comparison between the a) Range cuts and b) Doppler cuts of a Linear Chirp, a Hyperbolic chirp (f2=15 MHz) and a Gaussian chirp

of bandwidth 10 MHz and duration 25 µs.

Fig. 7. Linear and hyperbolic chirps with relative echoes shifted in Doppler. In the presence of a Doppler mismatch, a time translation by a

narrowband cross-correlation receiver can provide a strong overlap between the echo and the transmitted signals in the case of a linear chirp.

This is not possible for a hyperbolic chirp.

order Taylor expansion has been previously derived and is available in [6]. The calculations are carried out for

τ > 0 with no loss of generality for the case of a time compression (ν > 1) and a time expansion (ν < 1) as

χ(τ, ν ≥ 1) =

 1
T

∫ T
ν −τ

0
(1 + kt)j2πa(1 + kν[t+ τ ])−j2πadt 0 < τ < T

ν

0 τ > T
ν

(58)

χ(τ, ν < 1) =


1
T

∫ T
0
(1 + kt)j2πa(1 + kν[t+ τ ])−j2πadt 0 < τ < T

ν − T
1
T

∫ T
ν −τ

0
(1 + kt)j2πa(1 + kν[t+ τ ])−j2πadt T

ν − T < τ < T
ν

0 τ > T
ν

(59)

The integrals are calculated similarly to the CAF of the narrowband signal. The integral in the interval [0, Tν − τ ]

is solved by the two changes of variable t1 = kt and t1 = k(Tν − τ)w and by defining the parameters
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
γ = j2πa

u = k(−Tν + τ)

q = k(ντ−T )
1+kντ

to lead to the final result

χ(τ, ν) =
ν−γ

T

(
T

ν
− τ
)(

kντ + 1

ν

)−j2πa
F1(1,−γ, γ, 2;u, q) (60)

Similarly, the integral in the interval [0, T ] is calculated with a simple change of variable t = t1T and by defining

the parameters 
γ = j2πa

u1 = −kT

q1 = −kνT
1+kντ

to obtain the final result

χ(τ, ν) = (1 + kντ)−j2πaF1(1,−γ, γ, 2;u1, q1) (61)

Fig. 8(a) shows the theoretical AF for a ultrasound hyperbolic chirp of duration T = 3 ms, bandwidth B = 20 kHz

and lower frequency f2=30 kHz for ν = 1.05 compared to the same simulated cut. Because the speed of sound in

air is much lower than the speed of light, the narrowband approximation does not hold and wideband processing is

required despite BT = 60. Results show a perfect match between theory and simulation proving the validity of the

theoretical results. Fig. 8(b) and Fig. 8(c) show a comparison between the WAF of the same hyperbolic chirp and

that of a linear chirp of the same bandwidth B = 20 kHz and duration T = 3 ms. Fig. 8(d) shows a comparison

between the range cuts for ν = 1.05. Results clearly show that at wideband, as expected, the hyperbolic chirp is

more Doppler tolerant than the linear chirp.Th is property of the hyperbolic chirp is well know in the literature and

some key recommended references are [7] and [8].

VIII. CONCLUSIONS

In this paper, we have derived the expressions of the AF of a narrowband and a wideband hyperbolic chirp.

We have calculated the second derivatives of the squared amplitude of the narrowband CAF and the elements of

the FIM of the estimators of the target range and velocity and their CRLBs. We have also presented an analysis

of estimation performance and a comparison with the case of a liner chirp with a rectangular and a Gaussian

amplitude modulations. Results have corroborated that, at narrowband, the linear chirp is more Doppler tolerant

that the hyperbolic chirp. The analysis of the CRLBs has demonstrated that the accuracy of the hyperbolic chirp at

narrowband is about 3 dB better than that of the Gaussian chirp and comparable to that of a train of linear chirps

with constant amplitude modulation. The results of the WAF have corroborated the superior Doppler tolerance of

the hyperbolic chirp at wideband. The main equations derived in this paper are a) Eq. 10 and Eq. 12 give the

narrowband AF of the hyperbolic chirp, b) Eq. 39 gives the FIM of the hyperbolic chirp, c) Eq. 42 gives the FIM
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(a) Range Cut of WAF (ν = 1.05) (b) WAF LFM

(c) WAF HFM (d) Comparison between Range Cuts (ν = 1.05)

Fig. 8. a) Theoretical and simulated range cut (ν = 1.05) of the WAF for a hyperbolic chirp (f2=30 kHz) and comparison between the WAFs

of b) a linear chirp and c) a hyperbolic chirp (f2=30 kHz) and d) between the range cuts for ν = 1.05. Results are relative to signals with a

duration T = 3 ms and a bandwidth B = 20 kHz.

for the linear chirp for any time-bandwidth products, d) Eq. 54 gives the FIM for a train of pulses and e) Eq. 60

and Eq. 61 give the wideband AF of the hyperbolic chirp.

APPENDIX A

TABLED INTEGRAL - HYPERGEOMETRIC FUNCTION (PP. 287)

∫ 1

0

xλ−1(1− x)µ−1(1− ux)−ρ (1− vx)−σ dx = B(µ, λ)F1(λ, ρ, σ, λ+ µ;u, v) (62)

APPENDIX B

PROOF OF THE DERIVATIVES WITH RESPECT TO THE PARAMETER τ

ψ(τ, ν) =
1

T

∫ ∞
−∞

u(t)Rect
{
t

T

}
g∗(t+ τ)Rect

{
t+ τ

T

}
ej2πνtdt (63)
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∂ψ(τ, ν)

∂τ
=

1

T

∫ ∞
−∞

u(t)Rect
{
t

T

}
∂

∂τ

(
g∗(t+ τ)Rect

{
t+ τ

T

})
ej2πνtdt (64)

∂
(
g∗(t+ τ)Rect

{
t+τ
T

})
∂τ

=
∂g∗(t+ τ)

∂τ
Rect

{
t+ τ

T

}
+ g∗(t+ τ) [δ(t+ τ)− δ(t− T + τ)] (65)

∂ψ(τ,ν)
∂τ = 1

T

∫∞
−∞ u(t)Rect

{
t
T

} ∂g∗(t+τ)
∂τ Rect

{
t+τ
T

}
ej2πνtdt

+ 1
T

∫∞
−∞ u(t)g∗(t+ τ)Rect

{
t
T

}
[δ(t+ τ)− δ(t− T + τ)] ej2πνtdt

(66)

For 0 < τ < T the term Rect
{−τ
T

}
= 0 and the equation becomes

∂ψ(τ, ν)

∂τ
=

1

T

∫ ∞
−∞

u(t)Rect
{
t

T

}
∂g∗(t+ τ)

∂τ
Rect

{
t+ τ

T

}
ej2πνtdt− 1

T
u(T − τ)g∗(T )ej2πν(T−τ) (67)

We also note that the integral term in Eq. 67 is of the same form of that in Eq. 63 and hence the same property

can be used to calculate the higher order derivatives of the complex AF with respect to τ . In the specific case of

the AF, g(t) = u(t) and

∂χ(τ, ν)

∂τ
=

1

T

∫ T−τ

0

u(t)
∂u∗(t+ τ)

∂τ
ej2πνtdt− 1

T
u(T − τ)u∗(T )ej2πν(T−τ) (68)

∂2χ(τ,ν)
∂τ2 = 1

T

∫ T−τ
0

u(t)∂
2u∗(t+τ)
∂τ2 ej2πνtdt− 1

T u(T − τ)
∂u∗(t+τ)

∂τ

∣∣∣
t=T−τ

ej2πν(T−τ)

− 1
T u
∗(T ) ∂∂τ

(
u(T − τ)ej2πν(T−τ)

) (69)

APPENDIX C

ELEMENTS OF THE FIM OF A LINEAR CHIRP

u(t) = ejπγt
2

(70)

u∗(t+ τ) = e−jπγ(t+τ)
2

(71)

∂u∗(t+ τ)

∂τ
= −j2πγ(t+ τ)e−jπγ(t+τ)

2

(72)

∂2u∗(t+ τ)

∂τ2
= −j2πγe−jπγ(t+τ)

2

− 4π2γ2(t+ τ)2e−jπγ(t+τ)
2

(73)

a =
1

T
u(T − τ) ∂u

∗(t+ τ)

∂τ

∣∣∣∣
t=T−τ

ej2πν(T−τ) = −j2πγejπγ(T−τ)
2

e−jπγT
2

ej2πν(T−τ) (74)

a|τ,ν=0 = −j2πγ (75)
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b =
1

T
u∗(T )

∂

∂τ

(
u(T − τ)ej2πν(T−τ)

)
=

1

T
e−jπγT

2 ∂

∂τ

[
ejπγ(T−τ)

2

ej2πν(T−τ)
]

(76)

b =
1

T
e−jπγT

2
(
−j2πνej2πν(T−τ)ejπγ(T−τ)

2

− j2πγ(T − τ)ej2πν(T−τ)ejπγ(T−τ)
2
)

(77)

b|τ,ν=0 = e−jπγT
2
(
−j2πγejπγT

2
)
= −j2πγ (78)

c =
1

T

∫ T−τ

0

u(t)
∂2u∗(t+ τ)

∂τ2
ej2πνtdt (79)

c =
1

T

∫ T−τ

0

ejπγt
2
[
−j2πγe−jπγ(t+τ)

2

− 4π2γ2(t+ τ)2e−jπγ(t+τ)
2
]
ej2πνtdt (80)

c|τ,ν=0 =
1

T

∫ T

0

(
−j2πγ − 4π2γ2t2

)
dt = −j2πγ − 4

3
π2γ2T 2 (81)

∂2χ(τ, ν)

∂τ2

∣∣∣∣
τ,ν=0

= c− a− b = −4

3
π2γ2T 2 + j2πγ (82)

∂χ(τ, ν)

∂τ
=

1

T

∫ T−τ

0

ejπγt
2
[
−j2πγ(t+ τ)ejπγ(t+τ)

2
]
ej2πνtdt− 1

T
ejπγ(T−τ)

2

ejπγT
2

ej2πν(T−τ) (83)

∂χ(τ, ν)

∂τ

∣∣∣∣
τ,ν=0

=
1

T

∫ T

0

−j2πγtdt− 1

T
= −jπγT − 1

T
(84)

Using Eq. 15 it is possible to calculate the second derivative of the squared amplitude of the CAF with respect

to τ as

∂2 |χ(τ, ν)|2

∂τ2

∣∣∣∣∣
τ,ν=0

= −8

3
π2γ2T 2 + 2

(
π2γ2T 2 +

1

T 2

)
= −2

3
π2γ2T 2 +

2

T 2
(85)

∂2χ(τ, ν)

∂τ∂ν
=

1

T

∫ T−τ

0

j2πtejπγt
2
[
−j2πγ(t+ τ)ejπγ(t+τ)

2
]
ej2πνtdt− 1

T
j2π(T−τ)ejπγ(T−τ)

2

ejπγT
2

ej2πν(T−τ)

(86)

∂2χ(τ, ν)

∂τ∂ν

∣∣∣∣
τ,ν=0

=
1

T

∫ T

0

4π2γt2dt− j2π =
4

3
π2γT 2 − j2π (87)

∂2|χ(τ, ν)|2

∂τ∂ν

∣∣∣∣
τ,ν=0

=
8

3
π2γT 2 + 2Real

{
−jπT

(
−jπγT − 1

T

)}
=

2

3
π2γT 2 (88)
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APPENDIX D

PROOF OF CROSS SECOND ORDER DERIVATIVES FOR A TRAIN OF PULSES

To evaluate the cross derivatives of χN (τ, ν), we first derive Eq. 47 with respect to the parameter τ and then

with respect to ν
∂χN (τ, ν)

∂τ
=
∂χ(τ, ν)

∂τ

1

N

N−1∑
n=0

ej2πνnPRI (89)

∂2χN (τ, ν)

∂τ∂ν
=
∂χ(τ, ν)

∂τ∂ν

1

N

N−1∑
n=0

ej2πνnPRI +
∂χ(τ, ν)

∂τ

1

N

N−1∑
n=0

j2πnPRIej2πνnPRI (90)

These quantities in the origin are equal to

∂χN (τ, ν)

∂τ

∣∣∣∣
τ,ν=0

=
∂χ(τ, ν)

∂τ

∣∣∣∣
τ,ν=0

(91)

∂χN (τ, ν)

∂τ∂ν

∣∣∣∣
τ,ν=0

=
∂χ(τ, ν)

∂τ∂ν

∣∣∣∣
τ,ν=0

+ j2πPRI
N − 1

2

∂χ(τ, ν)

∂τ

∣∣∣∣
τ,ν=0

(92)

We can then apply Eq. 16 and use the result in Eq. 91 and Eq. 92 to write

∂|χN (τ,ν)|2
∂τ∂ν

∣∣∣
τ,ν=0

= 2Real
{
∂χ(τ,ν)
∂τ∂ν

∣∣∣
τ,ν=0

+ j2πPRI N−12
∂χ(τ,ν)
∂τ

∣∣∣
τ,ν=0

}
+

2Real
{
∂χ(τ,ν)
∂τ

(
∂χ∗(τ,ν)

∂ν

∣∣∣
τ,ν=0

− jπPRI(N − 1)

)}
=

∂|χ(τ,ν)|2
∂τ∂ν

∣∣∣
τ,ν=0

(93)
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