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Abstract

This paper focuses on the analysis of the possibility of domino effect in underground parallel

pipelines relying on historical accident data and pipeline crater models. An underground pipeline

can be considered as safe following an accident with an adjacent gas or liquefied pipeline when it

remains outside the ground crater generated. In order to prevent the domino effect in these cases,

the design of parallel pipelines has to consider adequate pipeline separations based on the crater

width, which is one of the widely used methods in engineering applications. The objective of this

work is the analysis of underground petroleum product pipelines ruptures with the formation of a

ground crater as well as the evaluation of possible domino effects in these cases. A detailed literature

survey has been carried out to review existing crater models along with a historical analysis of past

accidents. A FORTRAN code has been implemented to assess the performance of the Gasunie, the

Batelle and the Advantica crater models. In addition to this, a novel Accident-Based crater model

has been presented, which allows the prediction of the crater width as a function of the relevant

design pipeline parameters as well as the soil density. Modifications have also been made to the

Batelle and Accident-Based models in order to overcome the underestimation of the crater width.

The calculated crater widths have been compared with real accident data and the performance

evaluation showed that the proposed Accident-Based model has a better performance compared

to other models studied in this work. The analysis of forty-eight past accidents indicated a major

potential of underground parallel pipelines domino effect which is proven by two real cases taken

from the literature. Relying on the investigated accidents, the crater width was smaller than or

equal to 20 meters in most cases indicating that the definition of underground pipeline separations

at around 10 meters would be sufficient to ensure a small probability of the domino effect.
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Nomenclature

Abbreviations

CONCAWE Conservation of Clean Air and

Water in Europe

DOT United States Department of Trans-

portation

EGIG European Gas Pipeline Incident Data

Group

HSE Health and Safety Executive

LNG Liquified Natural Gas

LPG Liquified Petroleum Gas

NA Not available

NTSB United States National Transporta-

tion Safety Board

PHMSA Pipeline Hazardous Material Safety

Administration

TSB Transportation Safety Board of

Canada

UKOPA United Kingdom Onshore Pipeline

Operator’s Association

USDA United States Department of Agricul-

ture

WSS Web Soil Survey

Greek Symbols

αC1 Crater angle wall at ground level (deg)

αC2 Crater angle wall at half of the crater

depth (deg)

γ Specific heat ratio of the gas (−)

ρ Density of the gas (kg/m3)

ρsoil Density of the soil (kg/m3)

Roman Symbols

a Length of the semi-minor axis of the

elliptically shaped crater (m)

Adyn Work required to disturb a unit of

mass of soil (J)

b Length of the semi-major axis of the

elliptically shaped crater (m)

c Speed of sound (m/s)

CW Crater width (m)

D Crater depth (m)

Dc Depth of cover (m)

Dp Pipeline diameter (m)

mi Correlation constant (m)

ni Correlation constant (m/inch)

NPS Nominal Pipe Size (in)

P Pipeline operating pressure (bar)

Qw Energy per unit mass of the explosion

(J/kg)

R(w) Function of the soil parameter

ux Outburst speed of the explosive gases

(m/s)

ukr Critical velocity (m/s)

w Soil parameter (−)

1. Introduction

The evolving demand for oil and natural gas supply along with the efficiency of distributing

them by using pipelines over long distances generates need for construction of a number of pipelines.
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On the other hand, the need of easements or servitudes to provide the passage of pipelines launches

a challenge to pipeline operators to design pipelines to minimize land conflicts and environmental5

impacts. At the same time, it is necessary to assure the safety of population. The solution to

these issues often involves the construction of parallel pipelines along new or existing right-of-ways

(rows).

The underground parallel pipelines escalation or domino effect could occur when two or more

pipelines run adjacent to a gas or liquefied pipeline. When it happens, the consequences of the10

final event are notably greater than the consequences associated with the primary event [1]. There-

fore, neglecting the evaluation of the domino effect in the risk assessment of underground parallel

pipelines can give rise to a risk underestimation [2, 3].

The rupture of an underground gas or liquefied product pipeline occurs with the formation of

a ground crater by the source jet [4, 5, 6]. When the released gas ignites, the fire will develop15

inside the crater [7]. If an adjacent pipeline is present in the row and outside the crater formed,

it will remain safe as it is protected by the surrounding soil. However, if the adjacent pipeline is

inside the crater, it will be subject to the pressure exerted by the gas released on the soil and the

thermal load generated by the fire. In this instance, there is the possibility of the domino effect

[8]. According to [5], among twelve incidents involving a rupture of underground pipelines, one20

incident was reported in which domino effect was believed to have occurred.

In this paper, among 17 accidents involving underground parallel pipelines, two cases of domino

effect have been identified. To prevent underground parallel pipelines domino effect, it is necessary

to define minimum separations between two or more pipelines adjacent to gas pipelines, or to

implement mitigating measures ensuring that they may be arranged and operated safely [5, 9, 10].25

A schematic drawing of an arrangement of three parallel pipelines is shown in Figure 1 as can

be designed in a row, and Figure 2 illustrates an example where the failure of pipeline 2 generates

a crater.

Figure 1: Schematic drawing of the pipeline arrangement in a row.
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In Figure 2, pipeline 1 can be considered as safe, because it is outside the crater. However,

pipeline 3 would be subject to a ground pressure load during the crater formation and a thermal30

load caused by the jet fire in case of ignition. Therefore, the safety of pipeline 3 will depend on

whether it can withstand these loads without losing its integrity [5, 7].

Figure 2: Crater schematic drawing with parallel pipelines.

An example of an accident involving underground parallel pipelines without domino effect is

shown in Figure 3. This accident occurred in Ghislenghien, Belgium, in 2004. The ruptured

pipeline transported natural gas at a pressure of 80 bar with the diameter of 39 inch. At the35

accident site, a parallel pipeline with the diameter of 35 inch was operating at a distance of 7 m

[11] (see the crater dimensions in Figure 3). It can also be seen in Figure 3 that the adjacent

pipeline was damaged, but remained safe after the accident. It is important to note that the most

part of the adjacent pipeline is outside the crater formed and it may have been protected from the

crater fire.40

Figure 3: Parallel pipelines in an accident without domino effect [11].

In contrast to the Belgium accident, Figure 4 shows an accident involving underground parallel
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pipelines with domino effect, which occurred near Buick, British Columbia, in Canada, in 2012.

The “Nig Creek” pipeline ruptured first transporting natural gas at a pressure of 66.54 bar with the

diameter of 16 inch. At the accident site, the “Bonavista” pipeline with the diameter of 6.625 inch

at operating pressure of 8.69 bar ruptured approximately 25 minutes later [12]. In this instance,45

a section of the “Bonavista” pipeline is entirely inside the crater. According to the incident

investigation, its rupture exhibited a thin-lipped “fish mouth” feature, which is a characteristic

of a pipeline failure due to overheating [12], thus it can be concluded that the domino effect had

occurred by thermal load.

Figure 4: Parallel pipelines in an accident with domino effect [12].

The design of pipeline separations relying on the crater width is the simplest way of assuring that50

a parallel pipeline in a row will remain safe following an accident with a gas pipeline. In this respect,

pipeline companies have developed different models to predict the crater dimensions generated after

an accident. When underground pipeline separations are defined by using crater models, it is very

important that the crater model could appropriately represent the crater dimensions. Owing to this

fact, the objective of this study is to investigate the possibility of underground parallel pipelines55

domino effect relying on real accidents.

2. Pipeline Crater Models

The objective of this work is the analysis of petroleum product pipelines ruptures with the

formation of a ground crater as well as the evaluation of possibile domino effects in these cases.

Four main models have been identified to predict the dimensions of a crater generated by a pipeline60

failure such as (i) Gasunie, (ii) Batelle, (iii) NEN 3651 equations, and (iv) Advantica model. The

discussion on the NEN 3651 model has been excluded from this Section, because the assumptions

used in its development were not available in the literature.
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2.1. Gasunie Model

The Gasunie model was developed by the Delft Hydraulics Laboratory and sponsored by a65

transmission pipeline company in The Netherlands. It relies on the assumptions that the soil can

be considered as a homogeneous medium, the two end pipes are separated after the rupture, and

the crater formation occurs in two stages. The first stage consists of the displacement of the soil

near the pipeline to form the crater. In the second stage, the axial length of the crater is increased

by the erosion of the soil caused by the gas flow [9].70

The cross-sectional shape of the crater is considered elliptical in this model. The main charac-

teristics are the crater width, CW , the crater depth, D, the crater angle wall at ground level, αC1,

and the crater angle wall at half of the crater depth, αC2 as shown in Figure 5 [9].

Figure 5: Representation of the crater cross-section [9].

To compute the crater dimensions by using the Gasunie model, the input parameters are

required as a) pipeline diameter, b) depth of cover, and c) qualitative description of the soil. The75

crater depth D is considered independent of the soil type for ruptures on the top of the pipeline

and determined as [9]

D = Dp +Dc, (1)

where Dp is the diameter of the pipeline and Dc is the depth of cover. For guillotine ruptures, the

soil type and the moisture content influences the crater depth D, which can also be determined as

[9]80

D =



4.3Dp +Dc, if w ≤ 0.6,

R(w)Dp

0.3 +Dc, if 0.6 < w < 2,

2.2Dp +Dc, if w ≥ 2,

(2)
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where R(w) is a function of the soil parameter, w, and is defined by

R(w) = 0.28 + 0.62 (5 − w) − 0.07
(
25 − w2

)
. (3)

The crater angles αC1 and αC2 are also a function of the soil parameter as [9]

αC1 = tan−1 (w + 1) , (4)

αC2 = tan−1

[(
2.8 + 0.5w

10

)
(w + 1)

]
, (5)

and values of crater angles for different soil types are shown in Table 1 [9].

Table 1: Parameter, w, and crater angles as a function of the soil classification [9].

Type of soil w αC1(deg) αC2(deg)

Very dry sand 0.75 60 29

Sand or dry mixed soil 1.10 65 35

Mixed soil or gravel 1.75 70 45

Humid mixed soil, clay or rock 2.70 75 57

Heavy clay 5.00 80 73

The crater width is determined by [9]85

CW = 2a

√
1 − (b−D)

2

b2
, (6)

where a and b are determined as

tanαC1 =
b

a

√(
b

b−D

)2

− 1, (7)

and

tanαC2 =
b

a

√(
b

b− 0.5D

)2

− 1. (8)

The Gasunie model provides simple empirical correlations in order to model the crater dimensions

generated by a pipeline rupture considering characteristics of the soil and the pipeline. However,

it does not take into account the pipeline operating pressure when the crater is modeled. This90

limitation could lead to an underestimation of the crater width of the pipelines when operating at

high pressures and could overestimate it when operating at low pressures [13]. Furthermore, the

Gasunie model lacks correlations for computing the crater length, although it is assumed that the

crater length is increased which is caused by the gas flow. Another shortcoming of this model lies

on the fact that the crater angles are computed by using only the soil type excluding the pressure95

and the diameter of the pipeline. It is also difficult to correlate the actual soil data with the soil

types which have been presented in Table 1.
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2.2. Batelle Model

The Batelle model was originally developed relying on studies conducted by the Batelle Insti-

tute [9] representing a work to further improve the Gasunie model described in Section 2.1. For100

estimating the crater width, correlations have been derived by considering that the physics gov-

erning the crater formation in a pipeline rupture has similar characteristics to the crater formation

by chemical explosions.

This model considers that the crater has cross-sections in two-dimensions and the cross-section

perpendicular to the axis of the ruptured pipeline is sufficient to determine whether the adjacent105

pipeline is uncovered during the crater formation. In addition to these features, it is assumed that

the crater depth correlations valid for the Gasunie model are also used for this model.

For modeling crater formation by an explosion of an infinitely long buried explosive when the

medium is an incompressible fluid, the outburst speed of the explosive gases can be calculated as

[9]110

ux =

√
2ρQw

3ρsoil
, (9)

where ρ and ρsoil are the gas and soil densities, respectively, and Qw is the energy per unit mass

of the explosion given by

Qw =
c2

2 (γ2 − 1)
, (10)

where γ is the specific heat ratio of the gas, c is the speed of sound, and the crater width is

calculated by

CW = 2

√√√√Dp

(
Dc +

Dp

2

)
ukr

ux −
(
Dc +

Dp

2

)2

. (11)

The critical velocity ukr can displace the soil such as115

ukr =

√
2Adyn

ρsoil
, (12)

where Adyn is the work required to disturb a unit volume of mass of soil and determined empirically.

In the absence of this information, the critical velocity can be taken as an average value of 2.54m/s

[9].

As a matter of fact, the Batelle model represents a significant improvement to the Gasunie model

introducing variables in the modeling of the crater width such as the specific heat ratio of the gas,120

soil density and the pipeline operating pressure. However, the crater depth is calculated by using

a qualitative soil characteristic whereas the crater width calculations make use of the soil density

which is a quantitative characteristic of the soil. These considerations make this model not very

practical, because there is no simple way of correlating these two features. This model still needs

correlations for the crater length and presents the same shortcomings inherited from the Gasunie125

model when the crater depth is modeled.

8
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2.3. Advantica Model

The Advantica model was developed within a collaborative project to provide guidance on

escalation involving buried adjacent pipelines. This investigation was conducted by a number of gas

transmission pipelines with the technical coordination of GL Noble Denton (formerly Advantica)130

[5].

The Advantica model developers [5] presented results of twelve experiments involving the release

of natural gas at pressure levels between 20 and 150 bar from holes of diameters 25 or 80 mm

conducted at GL’s Spadeadam Test Site [5]. The size and shape of the ground craters were

measured after each experiment and effect distances between adjacent pipelines where escalation135

will less likely occur were defined.

The results of the crater width were not presented by the authors of the Advantica model [5],

however they emphasized that the effect distances were measured from the centerline of the first

pipeline to the nearest point on the wall of the other pipeline. It is inferred from this information

that the maximum value of the crater width has to be twice as much as the effect distance. In this140

way, the maximum crater width could be calculated by extracting data from the figures presented

in reference [5]. The crater width based on the pipeline pressure and diameter for sandy and clay

soils are shown in Figure 6. The maximum crater width for clay, mixed and sandy soils at pressure

levels up to 80 bar is shown in Figure 7.
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Figure 6: Crater width based on the pipeline pressure and diameter.

Figures 6 and 7 exhibit that the crater width varies linearly with the diameter of the pipeline.145

For a sandy soil, the pipeline pressure has a minor impact except for pressure levels of 40 and 60 bar

when the crater width for punctures at smaller diameters are greater than the crater width for

ruptures. Despite of this fact, for a clay soil, the pressure has a major impact on the crater width

when it increases with the increment of the pipeline operating pressure. For the same conditions

of pressure and pipeline diameter, a lower crater width is obtained for a clay soil compared to the150

9
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Figure 7: Maximum crater width for clay, mixed and sandy soil at pressure levels up to 80 bar.

results of a sandy soil (see Figure 6). It also means that during the design of underground pipelines

parallel to gas pipelines the separation distances in sandy soils are expected to be higher than in

clay soils.

3. Methodology

3.1. Pipeline accident characterization155

The study on previous accidents is the usual way to learn about their circumstances, causes

and consequences [14]. By reviewing the sequence of events that occurred during an accident it is

possible to provide criteria to develop effective mitigating measures to prevent a similar accident

or minimize the damage it would be able to cause. Within this context, this section focuses on

the review of past accidents involving pipelines where the crater dimensions were recorded. In160

order to gain information from as different sources as much as possible, a literature survey has

been carried out including books, reports, articles, pipeline accident databases and pipeline design

standards. It has been found that the most important literature sources on pipeline craters come

from the study of pipeline accidents published by international regulatory agencies such as the

United States National Transportation Safety Board (NTSB), the Pipeline and Hazardous Material165

Safety Administration (PHMSA), and the Transportation Safety Board (TSB) of Canada. The

“Lee’s Loss Prevention in The Process Industries” book [15], two reports by the United Kingdom

Health and Safety Executive (HSE) [4, 16], and a report by the BAM Federal Institute for Materials

Research and Testing [17] represent a scientific contribution on this subject. A wide range of data

are accessible on pipeline incidents in EGIG [18], UKOPA [19], and CONCAWE [20] databases,170

however there is a lack of available information on crater formed after these accidents.

Extensive lists of accidents are accessible through internet sources where essential characteristics

of the pipeline craters are not described. These lists can be considered as additional sources to

track other references, although they often do not contain reliable data.
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Most of the reports include information on location, date and time of the accident, pipeline175

data, and crater dimensions. On the other hand, only a few reports provide data on the soil type

where the accident occurred.

In order to gain reliable data on soil types for evaluating the performance of the crater models

discussed in the previous section, the databases provided by soil agencies have been analyzed. The

methodology consists of the accurate identification of the accident location and the analysis of soil180

characteristics to classify the soil type based on the classes established by the respective agencies.

The site locations of accidents that occurred in the United States have been accurately identified

with the aid of the National Pipeline Mapping System (NPMS) Public Map Viewer [21] whereas

the soil data have been characterized with the aid of the Natural Resources Conservation Service

(NRCS) of the United States Department of Agriculture (USDA), which provides soil data through185

the Web Soil Survey (WSS) [22]. This has not been possible for accidents that occurred in other

countries due to the lack of similar tools.

As an example of this methodology, a pipeline accident site reported in [23] has been shown in

Figure 8 and the location of this accident site on the pipeline route and soil map can be seen in

Figure 9.190

Figure 8: Indication of a pipeline accident site [23].
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(a) Route map [21] (b) Soil map [22]

Figure 9: Location of the accident pipeline site on the route and soil map.

3.2. Correlations for the Advantica model

This subsection presents crater width correlations for the Advantica model relying on different

soil types, pipeline diameters and operating pressures. Modifications have been made in conjunc-

tion with the estimation of the crater width, which is not directly given by the Advantica model.

Therefore, to estimate the correlations a) the values of the effect distance points have been ex-195

tracted and doubled based on the data published in [5], and b) correlations have been obtained by

applying the method of linear regression as

CWi = ni ·Dp +mi, (13)

where ni and mi are empirical correlation constants related to different soil types and pipeline

operating pressure levels. Figures 10 to 12 show that the method of linear regression estimates

accurately these empirical constants against the experimental data of doubled effect distances.200
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Figure 10: Correlations for the maximum crater width for sandy soil.
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Figure 11: Correlations for the maximum crater width for clay soil.

For mixed soil, there is only one curve presented, because data were available at pressure levels

up to 80 bar (see Figure 12).
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Figure 12: Correlations for the maximum crater width for mixed soil.

The experimental data were available for the effect distances in [5], and the values of the

empirical constants in Eq. (13) for the crater width were not published relying on the Advantica

model (see Table 2, and Figures 10 to 12).205

Table 2: Correlations for the Advantica Model at different pipeline operating pressures.

Soil Type Pressure (bar) Diameter range (in) Correlation

Sandy soil

20 any CW = 0.3999Dp + 5.4695

40
≤ 12.8 CW = −10−14Dp + 10.875

> 12.8 CW = 0.3934Dp + 5.7275

60
≤ 24.0 CW = 0.0278Dp + 14.6060

> 24.0 CW = 0.3927Dp + 5.8000

80 − 150 any CW = 0.3999Dp + 5.4695

Clay soil

20
≤ 36.1 CW = 0.0237Dp + 6.0135

> 36.1 CW = 0.093Dp + 3.4989

40
≤ 36.0 CW = 0.0258Dp + 5.9839

> 36.0 CW = 0.1445Dp + 1.6881

60
≤ 24.0 CW = 0.0237Dp + 5.9989

> 24.0 CW = 0.2437Dp + 0.5545

80 any CW = 0.3148Dp + 0.1522

100 any CW = 0.3710Dp + 0.0842

150
≤ 12.6 CW = −0.0075Dp + 5.5811

> 12.6 CW = 0.3562Dp + 1.0000

Mixed soil ≤ 80.0
≤ 36.1 CW = 0.0244Dp + 10.276

> 36.1 CW = 0.1946Dp + 4.0742
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3.3. An in-house FORTRAN code to calculate pipeline crater dimensions

The correlations of each model have been implemented in an in-house FORTRAN code called

as “PIPELINE CRATER MODELING” (see the flowchart in Figure 13).

Figure 13: Flowchart of crater modeling FORTRAN program.

The program reads the pipeline and soil parameters such as diameter, depth of cover and

operating pressure, soil density, type and critical velocity, respectively. After the model selection,210

a subroutine is called to calculate the crater dimensions and all technical parameters are taken

into account by using the model correlations.

The soil type is an input parameter for the crater width. The Gasunie, Batelle and Advantica

models treat the soil characteristics and classification qualitatively whereas the USDA classification
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is estimated quantitatively based on the sand, silt and clay contents. In addition to this, the number215

of the USDA soil classes are different compared to the crater models. Therefore, it was necessary to

establish a relationship between the soil classifications of the USDA and of the crater models (see

Table 3). In order to determine these relationships, the authors refer to a personal communication

with Professor Helena Polivanov, soil geologist at the Federal University of Rio de Janeiro.

Table 3: Relationship between the USDA soil Classes and Gasunie, Batelle and Advantica Soil

Types.

USDA soil classes Gasunie/Batelle Advantica

Sand Very dry sand Sand

Loamy sand, sandy loam Sand or dry mixed soil Mixed

Loam, silt loam, silt, clay loam, sandy clay Mixed soil or gravel Mixed

Sandy clay loam, silty clay loam, silty clay Humid mixed soil, clay or rock Mixed

Clay Heavy clay Clay

Case studies have been carried out to predict the dimensions of the crater formed by a pipeline220

rupture taking into account the characteristics of the pipeline and the soil. The main parameters

considered in the case studies have been shown in Table 4.

Table 4: Selected set of accidents to evaluate the crater models.

Accident Transported material Pipeline data Soil characteristics

Case ID Product γ Diameter

(in)

Pressure

(bar)

Depth of

cover (m)

Soil class Soil density

(kg/m3)

1 1 Natural gas 1.270 24.0 54.6 1.0 Sandy loam 1360

2 2 Propane 1.127 8.6 66.2 1.5 Silt loam 1480

3 3 Ammonia 1.310 8.6 82.7 1.0 Silt loam 1340

4 4 LNG 1.108 10.8 36.9 1.0 Clay 1270

5 9 LPG 1.270 8.6 100.0 0.9 Clay 1360

6 13 Natural gas 1.270 20.0 57.7 0.9 Silty clay loam 1350

7 14 Natural gas 1.270 30.0 71.4 0.9 Sandy loam 1480

8 16 Natural gas 1.270 30.0 69.7 1.8 Silt loam 1470

9 20 Natural gas 1.270 30.0 69.4 1.8 Rocky 1390

10 28 Natural gas 1.270 36.0 68.2 3.7 Loam 1420

11 29 Natural gas 1.270 36.0 69.0 0.9 Gravel NA

12 30 Natural gas 1.270 42.0 60.7 4.0 Mixed NA

13 31 Natural gas 1.270 34.0 50.0 1.3 Clay NA

14 36 Natural gas 1.270 20.0 46.9 0.6 Rocky 1390

15 39 Natural gas 1.270 24.0 54.8 1.8 Sand 1400

16 41 Natural gas 1.270 18.0 58.9 1.1 Silt loam 1540

17 45 Natural gas 1.270 24.0 51.6 3.7 Rocky 1360
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It is important to mention that a subset of accidents from Table A1 in the Appendix has

been used, because all the necessary parameters were available only for seventeen cases. The

calculated results have been compared with real accident values to evaluate the performance of the225

implemented crater models.

3.4. A model based on accidents

In this section, we present a novel crater model development based on data from real accidents.

All crater models presented in previous sections were based on experimental investigation of the

crater dimensions with different characteristics of the pipeline and soil. A mathematical approach230

has been developed which allows the prediction of the crater width as a function of the technically

relevant pipeline parameters such as diameter, depth of cover, operating pressure and the specific

heat ratio of the gas transported as well as the soil density.

The determination of functional dependence between these parameters and the crater width has

been made by employing the multiple linear regression tool from STATISTICA software package.235

Relying on the data presented in Table 4, a polynomial correlation between the crater width and

the real accident data can be predicted as

CW = 33.646 + 0.315Dp − 0.056P + 3.995Dc − 8.304γ − 0.017ρsoil, (14)

and the statistical evaluation of the model is illustrated in Figure 14, which shows scatterplots of

predicted versus observed and predicted versus residuals values. It is possible to verify that the

crater width correlates well with the real accident data, because most of the observed values are240

within or near the 95% confidence limit and the residuals fluctuate randomly around zero.

(a) Predicted versus observed. (b) Predicted versus residuals.

Figure 14: Accident-Based crater model scatterplots.
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4. Results and Discussion

4.1. Real accident analysis

In this Section forty-eight real accidents have been studied related to pipeline failures with

recorded crater sizes from 1965 to 2012. Among these identified cases, forty-three accidents involved245

gas pipelines (natural gas and propane), three cases occurred related to liquefied products pipelines

(ammonia, LNG and LPG), one case involved a liquid pipeline (naphtha), and another case was a

pipeline accident with a mixture gas (natural gas + liquids + CO2). A detailed list of the main

characteristics of these events can be found in the Appendix.

Most accidents reported in the literature occurred in the Unites States (31 cases) and in Canada250

(12 cases). The low number of occurrences in other countries might be due to the lack of detailed

incident investigation reports available to the public. For example, it has been found that a total

of 1,309 incidents was recorded in the EGIG [18] database from 1970 to 2013, however no detailed

incident investigation report for these accidents has been found.

Out of the accidents studied, seventeen cases involved underground parallel pipelines as pre-255

sented in Table 5. These parallel pipelines accidents have also been highlighted in the Appendix.

Table 5: Accidents involving underground parallel pipelines.

ID Pipeline NPS(in) Product Condition after the accident

5

Line C 42.0 NA Not exposed, safe

Line A 30.0 NA Not exposed, safe

Line B 30.0 Natural gas Ruptured

10

Wolverine 16.0 NA Not exposed, safe

Toledo-Sarnia 8.0 Propane Ruptured

Toledo-Inkster 8.0 NA Not exposed, safe

16

Line 15 30.0 Natural gas Not exposed, safe

Line 10 30.0 Natural gas Ruptured

Line 25 36.0 Natural gas Not exposed, safe

20

Line 15 30.0 Natural gas Ruptured

Line 10 30.0 Natural gas Exposed, safe

Line 25 36.0 Natural gas Not exposed, safe

28

Buckeye F-2 NA Refined products Not exposed, safe

Buckeye F-1 NA Refined products Not exposed, safe

Line 20 36.0 Natural gas Ruptured

30

Line 100-1 34.0 Natural gas Not exposed, safe

Line 100-2 34.0 Natural gas Not exposed, safe

Line 100-3 36.0 Natural gas Ruptured
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Table 5: Accidents involving underground parallel pipelines(continued).

Line 100-4 42.0 Natural gas Ruptured

Line 100-5 48.0 Natural gas Exposed, but remained safe

Line 100-6 48.0 Natural gas Not exposed, safe

31

Line 100-1 34.0 Natural gas Not exposed, safe

Line 100-2 34.0 Natural gas Ruptured

Line 100-3 36.0 Natural gas Exposed, but remained safe

Line 100-4 42.0 Natural gas Not exposed, safe

Line 100-5 48.0 Natural gas Not exposed, safe

Line 100-6 48.0 Natural gas Not exposed, safe

32

Line 1100 26.0 Natural gas Not exposed, safe

Line 1103 30.0 Natural gas Ruptured

Line 1110 30.0 Natural gas Not exposed, safe

34
Line 5A 22.0 Natural gas Not exposed, safe

Line 5B 24.0 Natural gas Ruptured

35
NA 39.4 Natural gas Ruptured

NA 35.0 Natural gas Exposed, but remained safe

37
NA 12.0 Abandoned Exposed, safe

South Main Line 16.0 Natural gas Ruptured

41

Line 100 18.0 Natural gas Ruptured

Line 200 24.0 Natural gas Not exposed, safe

Line 300 30.0 Natural gas Not exposed, safe

42
R line 26.0 Natural gas Not exposed, safe

RA loop line 26.0 Natural gas Ruptured

43

NA 10.0 Sanitary sewer Exposed, but remained safe

Line 132 30.0 Natural gas Ruptured

Distribution 4.0 Natural gas Exposed, but remained safe

45

Line 100-1 24.0 Natural gas Ruptured

Line 100-2 30.0 Natural gas Not exposed, safe

Line 100-3 NA Natural gas Not exposed, safe

Line 100-4 NA Natural gas Not exposed, safe

46
Bonna Vista 8.69 Natural gas Ruptured

Nig Creek 16.0 Natural gas Ruptured

47

SM-86 26.0 Natural gas Not exposed, safe

SM-86 loop 30.0 Natural gas Not exposed, safe

SM-80 20.0 Natural gas Ruptured
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It can be seen in Table 5 that all accidents involving underground parallel pipelines were caused

by gas pipeline ruptures. Sixteen cases out of seventeen, the ruptured pipeline transported natural

gas and another pipeline transported propane. Due to the fact that accidents involving gas and260

liquefied products are prone to form a crater in the ground, if there is any adjacent pipeline in

the row, this pipeline can be exposed to the consequences of the accident. Thus, there is a major

potential of domino effect for pipelines adjacent to gas and liquefied product pipelines. This fact is

confirmed by the real accidents presented in Table 5, because in five cases out of seventeen at least

one adjacent pipeline was exposed to the fire inside the crater and to the pressure load during the265

crater formation. In two of these cases, i.e. the accidents in Rapid City [24] and Buick [12], there

was the occurrence of domino effect.

The examination of accidents that occurred in Rapid City and Buick (accidents 30 and 46,

respectively) indicated that the domino effects were caused by the thermal load originated from

the fire generated by the rupture of the first pipeline.270

In the case of Rapid City, the domino effect was confirmed by metallurgical examinations of

the failed pipeline sections. The examination of Line 100-4, which ruptured first, confirmed that

its rupture resulted of stress overload at a pre-existing defect located at the toe of the longitudinal

seam weld, and this stress load is an indicative of external corrosion. Line 100-3 was running

adjacent to Line 100-4 and ruptured 52 minutes later. The examination of Line 100-3 confirmed275

that its rupture resulted from the over-stress caused by heat exposure to the fire generated by the

first pipeline rupture. The occuring over-stress lowered the mechanical properties of the pipe to a

point that its wall yielded to the stresses from the internal operating pressure. There was another

pipeline (Line 100-5) running adjacent to Lines 100-3 and 100-4 operating approximately 100 cm

directly under Lines 100-3 and 100-4, which was also exposed to the fire, however this exposure280

resulted in minor coating damage and the domino effect did not occur in this case. Three other

parallel pipelines (Line 100-1, Line 100-2 and Line 100-6) were not exposed to the fire and also

remained safe after the accident occurred [24].

In the case of Buick, the analysis of the failed section of Nig Creek pipeline included visual

examination, magnetic particle inspection, coating testing, chemical analysis, metallography, me-285

chanical testing and hardness testing. The analysis concluded that the rupture of the aforemen-

tioned pipeline was the result of a pre-existing hook crack that caused a fracture along the electric

resistance welded longitudinal seam of a pipe joint. The Nig Creek pipeline was running adjacent

to Bonavista pipeline and ruptured 25 minutes later. The laboratory analysis of the failed Bonav-

ista pipeline segments included visual examination, chemical analysis, metallography and hardness290

testing. It was concluded that its failure was the result of over-heating due to fire impingement,

which lowered its yield strength, reducing its ability to withstand the internal pressure [12].

The anaysis of real accidents presented in Table 5 also reveals that once the parallel pipeline

was not exposed to the crater, which also means that the pipeline was outside of the formed crater,
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it remained safe after the accident since it was protected by the surrounding soil. Furthermore,295

other six pipelines were reported in the literature which remained safe after being exposed to the

consequences of the accident (see Table 5). These accidents confirm the theoretical point-of-view

that the definition of minimum separation distances relying on the crater width is a simple and

efficient way of assuring the safety of underground parallel pipelines.

Even though accidents involving other than petroleum product pipelines are outside of the scope300

of this work, it is important to mention three cases of domino effect caused by water pipelines.

The first case is related to an 8 inch natural gas pipeline failure occurred in Malaysia in 2009 [25],

the second one is related to a 34 inch oil pipeline failure occurred in Romeoville, Illinois, USA in

2003 [26], and the third one is also related to an 8 inch natural gas pipeline failure occurred in

Malaysia in 2012 [27]. Experimental and computational studies have been found in [28, 29, 30, 31]305

and [32, 33] for the first and third cases, respectively. In these accidents, the domino effect was

caused by a high-pressure water jet which in the presence of the surrounding soil produced a highly

abrasive slurry. The abrasive jet caused erosion of the coating materials and made the steel pipeline

wall thin when impacted on it. The main characteristics of the pipelines involved in these three

cases and the description of these accidents were summarized in [7]. One can find guidelines on310

the safety distance between underground natural gas and water pipelines in [34].

It has been observed in 41 cases out of 48 underground pipeline accidents that the size of the

crater width was recorded. It can be seen from these cases that the pipeline diameter and operating

pressure are the main pipeline design parameters in the determination of the size of the crater width.

In order to have a better understanding on how these parameters have influenced the crater sizes315

generated in real accidents, Figure 15 shows the crater width generated in actual accidents based

on the pipeline diameter and operating pressure, and Figure 16 presents the variation of the crater

width with these parameters individually.
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Figure 15: Crater width based on the pipeline pressure and diameter.

Diameter (in)

C
ra

te
r 

W
id

th
 (

m
)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

(a) Crater width versus pipeline diameter
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(b) Crater width versus pipeline operating pressure

Figure 16: Crater width versus pipeline diameter and operating pressure individually.

By analyzing these results, it has been observed that according to actual accidents, the pipeline

diameter is the main pipeline parameter influencing the crater width, because the crater width320

increases significantly with the increment of the pipeline diameter. Considering the variation of

the crater width with the operating pressure itself, the increment of the crater width has not been

observed in the same way as it can be observed for the pipeline diameter. The impact of the soil

type on the size of the crater width is important, therefore no conclusions can be drawn for these

pipeline accident results. Furthermore, for smaller pipeline diameters, the pressure has almost no325

influence in the crater width results. For bigger diameters, the pressure range is not as wide as for
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smaller ones, thus the operating pressure might have influence on the crater width results. Due to

the fact that most of the crater width results are smaller than or equal to 20 meters except for only

three cases, which also means 93% of the recorded values, the definition of underground parallel

pipeline separations at around 10 meters would be sufficient to ensure a small probability of the330

domino effect.

4.2. Evaluation of the implemented crater models

In order to evaluate the agreement of the implemented models compared to real accident data,

the crater sizes have been calculated. The ratio between the predicted and observed crater width

for the seventeen case studies are shown in Figures 17, 18 and 19 for the models from the literature.335

Figure 17: Ratio between predicted and observed crater width for the Gasunie model.

Figure 17 shows that there is not an accurate agreement between the Gasunie model predicted

crater width and the observed ones in real accidents. The predicted ones are smaller than the

observed values in approximately 65% of the cases (i.e. eleven cases) indicating that the Gasunie

model tends to underestimate the size of the crater width. The underestimated ratios between the

predicted and observed crater width are in the range from approximately 0.28 to 0.83, and most of340

the values are in the range of 0.5 to 0.7. The Gasunie model overestimated the crater width in five

cases in which most calculated values are more than two times bigger compared to the observed

values. In two cases, the predicted values are approximately three times bigger than the observed

crater width. One can observe that only two cases exhibit good agreements with real accident data

in which the ratio of predicted and observed values is close to unity.345

One of the reasons that could explain the inaccurate results predicted by the Gasunie model

is that this model was developed relying on experimental data without taking into account the

pipeline operating pressure, which is the driving force of the process. Furthermore, this model

employs a simple qualitative description of the soil characteristics to determine the soil parameter
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that is used to represent the moisture and type of the soil. These model features seem to be too350

simple to represent the interaction between the jet of gas and the soil during the crater formation.

Figure 18: Ratio between predicted and observed crater width for the Advantica model.

It can be seen that the implemented Advantica model shows a slight improvement in the

predicted crater width compared to the Gasunie model (see Figure 18). The main reason for this

may be the inclusion of the pipeline operating pressure in the model. In the case of this model,

there is a balance between the under- and overestimation of the crater width. For those cases where355

this model underestimates the crater width, ratios between the predicted and observed crater width

are in the range from approximately 0.45 to 0.95, and it improves most of the values to the range

of 0.6 to 0.7. For those cases where the Advantica model overestimates the crater width, most

calculated values are again more than two times bigger compared to the observed values similar

to the Gasunie model. In two cases again (see Figure 18), the predicted values are approximately360

three times bigger than the observed crater width. It can also be observed that only three cases

show good agreements with real accident data in which the ratio of predicted and observed values

is close to unity, and we can see a slight improvement hereby as well.

In terms of soil characterization, the implemented Advantica model has two shortcomings such

as a) considers only qualitative soil characteristics, and b) takes into account only three soil types365

(sandy, clay and mixed) to represent all different soil environments. These model features can be

considered as very restrictive and may have contributed to the inaccurate results predicted by this

model. Another disadvantage of the implemented Advantica model for the mixed soil type lies

on the fact that the correlation curves are valid for all pressure levels up to a maximum value of

80 bar, which also means that the pipeline diameter is the only variable to influence the crater370

width prediction in this case. For example, it was not possible to calculate the crater width for

case study 3 in which the pipeline operating pressure was equal to 100 bar.

In the case of the Batelle model, there is also not a perfect agreement between the calculated and
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Figure 19: Ratio between predicted and observed crater width for the Batelle model.

the observed crater width, however it is noteworthy that the inclusion of important variables such as

the specific heat ratio of the gas, soil density and pipeline operating pressure may have contributed375

to improve the crater width prediction (see Figure 19). The ratios between the predicted and the

observed crater width calculated by using the Batelle model are far closer to unity compared to

the ratios predicted by the Gasunie and Advantica models. There is a maximum deviation in the

range of -20 to +30% in most cases. The Batelle model also makes an improvement in those cases

where there is an overestimation of the crater width, because all predicted ratios are below or close380

to the values which are two times bigger compared to the observed ones.

As discussed above, we can conclude that the Batelle model can predict more accurately the

crater width compared to the other crater models in the literature.

It is important to emphasize the performance evaluation of the Accident-Based model proposed

in this paper. The ratios between the predicted and observed crater width obtained by using the385

proposed model have been shown in Figure 20.

The results show that the proposed Accident-Based model exhibits a better performance com-

pared to other models in this work (see Figure 20). The gained improvements also confirm the

hypothesis that the inclusion of all relevant design pipeline parameters as the specific heat ratio of

the gas, soil density and pipeline operating pressure in the modelling process contribute to further390

improve the crater width prediction. The ratios between the predicted and the observed crater

width calculated by employing the proposed Accident-Based model are closer to unity compared

to the ratios calculated by Gasunie, Advantica and Batelle models.

The Batelle and Accident-Based models can be improved in order to avoid the underestimation

of the crater width. In the case of the Batelle model, the parameters that define the crater width395

have been evaluated and it has been observed that the underestimation of the crater width can

almost be overcome by using an average value of 1.8542 for the critical velocity. By applying the
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Figure 20: Ratio between predicted and observed crater width for the Accident-Based model.

proposed Accident-Based model, it has been observed that the underestimation of the crater width

can also be overcome by using a correction factor of 1.2125. Relying on these assumptions, the

Batelle and the proposed Accident-Based models have been modified and most of the obtained400

ratios between the predicted and observed crater width remained equal or greater than unity as it

can be seen in Figure 21.

(a) Batelle model (b) Accident-Based model

Figure 21: Ratio between predicted and observed crater width for the improved crater models.

The final polynomial formulation for the proposed Accident-Based model can be expressed as

CW = 40.795 + 0.382Dp − 0.068P + 4.844Dc − 10.069γ − 0.020ρsoil, (15)

and overall, it can be concluded that when the design of underground parallel pipelines is concerned,

the domino effect can more likely be prevented by the definition of parallel pipelines distances based405

on the Batelle and Accident-Based models. These models have similar performance, however the

27



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Accident-Based model exhibits sligthly better results compared to the Batelle model.

After considering all advantageous features of the Batelle and Accident-Based models, it is

important to mention that their shortcomings are mainly related to the availability of the soil

density, which needs to be determined before using these models. This fact can also explain the410

absence of results for case studies from 11 to 13 in which accidents the soil densities were not

available in the literature.

5. Conclusions

The accidents that occurred in the past with crater formation indicate a major potential of

domino effect for underground pipelines adjacent to gas and liquefied product pipelines. As it415

was discussed, two of these accidents occurred with the domino effect suggesting that the risk

evaluation of underground parallel pipelines has to consider this possibility.

The anaysis of real accidents that occurred involving underground parallel pipelines revealed

that once the parallel pipeline was located outside of the crater formed, it remained safe after the

accident because it was protected by the surrounding soil. These investigated accidents confirmed420

the validation of the theoretical approach that the definition of minimum separation distances

based on the crater width is a simple and efficient way of assuring the safety of underground

parallel pipelines.

Relying on 41 cases out of 48 accidents investigated in this paper, the crater width was smaller

than or equal to 20 meters in 93% of these cases indicating that if the domino effect is not evaluated,425

the definition of underground parallel pipeline separations at around 10 meters would be sufficient

to ensure a small probability of the domino effect.

The crater models from literature predicted different values for the crater width formed by

the rupture of a gas pipeline. After comparing the performance of these models, the implemented

Advantica model showed a slight improvement compared to the Gasunie model, however the best430

performance was obtained by using the Batelle model. This is due to the fact that the Batelle

model takes into account all important variables as the specific heat ratio of the gas, soil density

and pipeline operating pressure in the modeling process.

We present a novel crater model development based on data from real accidents in this paper.

A mathematical approach has been developed which allows the prediction of the crater width as435

a function of the relevant design pipeline parameters such as diameter, depth of cover, operating

pressure and the specific heat ratio of the gas transported as well as the soil density.

Modifications have been proposed and implemented to the Batelle and Accident-Based models

presented in this paper in order to overcome the underestimation of the crater width.

Relying on real accident data, the performance evaluation of the Accident-Based model pro-440

posed in this paper showed that this model has a slightly better performance compared to the

Batelle model.
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Overall, considering the analysis of different crater models presented in this paper, we can

conclude that when the design of underground parallel pipelines is concerned, the domino effect

can more likely be prevented by the definition of underground parallel pipelines distances based445

on the Batelle and Accident-Based models.
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Appendix

Table A1: List of pipeline accidents with crater formation.

ID Local year Product
Pipeline characteristics Crater dimensions

References
Diameter

(in)

Pressure

(bar)

Depth of

cover(m)

Length

(m)

Width

(m)

Depth

(m)

1 Natchitoches, Louisiana, USA 1965 Natural gas 24.0 54.6 1.0 23.0 9.0 4.5 [4, 16, 17, 35]

2 Port Hudson, USA 1970 Propane 8.625 66.2 1.5 3.0 3.0 1.2 [16, 17]

3 Conway, Kansas, USA 1973 Ammonia 8.625 82.73 1.0 2.1 2.1 1.8 [16, 17]

4 Austin, Texas, USA 1973 LNG 10.783 36.9 1.0 3.1 3.1 NA [16, 17]

5 Bealeton, Virginia, USA1 1974 Natural gas 30.0 50.5 1.0 36.0 11.0 2.1 [4, 16, 17]

6 Farmington, New Mexico, USA 1974 Natural gas 12.75 34.9 0.76 13.0 5.2 3.0 [16, 17]

7 Monroe, Louisiana, USA 1974 Natural gas 30.0 56.0 1.95 30.0 9.1 7.6 [16, 17]

8 Meridian, Mississipi, USA 1974 NG + Liq+CO2 6.625 21.1 0.9 3.0 3.0 1.8 [16, 17]

9 Devers, Texas, USA 1975 LPG 8.625 100.0 0.9 3.1 3.1 1.5 [16, 17]

10 Romulus, Michigan, USA 1975 Propane 8.625 77.3 NA 3.7 3.7 2.1 [16, 17]

11 Cartwright, Louisiana, USA 1976 Natural gas 20.0 54.1 NA 13.7 7.6 3.1 [4, 16, 17]

12 Long Beach, California, USA 1980 Naphtha 10.75 69.6 0.91 1.2 0.9 0.9 [16, 17]

13 Hudson, Iowa, USA 1982 Natural gas 20.0 57.7 0.91 19.5 15.0 2.8 [16, 17]

14 Jackson, Louisiana, USA 1984 Natural gas 30.0 71.4 0.9 27.5 7.6 3.0 [16, 17, 36]

1Accidents which involved underground parallel pipelines are highlighted in bold.



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 Erlangen, Germany 1984 Natural gas 28.0 67.5 1.0 15.0-

20.0

15.0-

20.0

3.0-4.0 [4, 17]

16 Beaumont, Kentucky, USA 1985 Natural gas 30.0 69.7 1.8 27.5 11.6 3.7 [4, 16, 17, 37]

17 Ignace, Ontario, Canada 1985 Natural gas 36.0 66.5 NA 17.0 17.0 3.0 [16, 17]

18 Lowther, Ontario, Canada 1985 Natural gas 36.0 67.89 NA 28.0 NA 4.9 [16, 17]

19 Callander, Ontario, Canada 1986 Natural gas 36.0 62.61 NA 31.0 NA 4.0 [16, 17]

20 Lancaster, Kentucky, USA 1986 Natural gas 30.0 69.4 1.8 152 .0 9.1 1.8 [4, 16, 17, 37]

21 Sabine Pass, Texas, USA 1989 Natural gas 16.0 57.6 0.15 3.0 NA 1.5 [16]

22 Marionville, Ontario, Canada 1990 Natural gas 12.76 47.0 1.2 4.6 1.5 1.7 [16, 17]

23 Cardinal, Ontario, Canada 1991 Natural gas 20.0 63.35 NA 17.8 9.0 2.7 [16, 17]

24 Cochrane, Ontario, Canada 1991 Natural gas 30.0 63.10 NA 49.0 33.0 3.0-7.0 [16, 17]

25 Saskatchewan, Canada 2 1992 Natural gas 36.0 60.0 1.0 27.0 20.0 6.0 [16, 38]

26 Potter, Ontario, Canada 1992 Natural gas 36.0 69.07 0.91 56.1 13.6 4.5 [16, 17]

27 Palaceknowe, Moffat, Scotland 1993 Natural gas 36.0 48.0 3.0 10.0 10.0 4.0 [4, 17]

28 Edison, New Jersey, USA 1994 Natural gas 36.0 68.2 3.7 43.0 20.0 4.3 [4, 16, 17, 39]

29 Latchford, Ontario, Canada 1994 Natural gas 36.0 68.95 0.914 36.0 16.0 2.0-4.0 [4, 16, 17, 40]

30 Rapid City, Manitoba, Canada 3 1995 Natural gas 42.0 60.68 4.0 51.0 23.0 5.0 [4, 16, 17, 24]

31 Saint Nobert, Manitoba, Canada 1996 Natural gas 34.0 50.0 1.3 17.0 13.5 5.0 [4, 16, 17, 41]

32 Carlsbad, New Mexico, USA 2000 Natural gas 30.0 46.5 NA 34.4 15.5 NA [42]

33 Viola and New Windsor, Illinois, USA 2003 Natural gas 24.0 55.0 NA NA 12.0 7.6 [17]

2Experimental test.
3The incident Report describes the rupture of a 42 inch pipeline followed by a rupture of a 35 inch pipeline, indicating a case of domino effect.
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34 Eaton, Colorado, USA 2003 Natural gas 24.0 NA NA 305.0 15.0 6.0 [17]

35 Ghislenghien, Belgium 2004 Natural gas 39.4 80.0 1.10 14.0 14.0 4.0 [11]

36 Lawrence, Douglas County, Kansas , USA 2005 Natural gas 20.0 46.9 0.6 6.1 6.1 NA [43]

37 Elmore County, Alabama, USA 2007 Natural gas 16.0 77.8 NA NA NA NA [44]

38 Baden-Wurttemberg, Germany 2007 Natural gas 6.0 70.0 NA 5.0 2.0 2.0 [17]

39 Pilot Grove, Cooper County, Missouri,USA 2008 Natural gas 24.0 54.8 1.8 15.2 10.1 2.1 [45]

40 Bushland, Potter County, TX, USA 2009 Natural gas 24.0 52.5 1.5 17.4 NA 4.3 [46]

41 Palm City, Florida, USA 2009 Natural gas 18.0 58.9 1.1 35.6 5.2 0.9 [23]

42 Abbyville, Reno, Kansas, USA 2010 Natural gas 26.0 57.4 1.0 NA NA NA [47]

43 San Bruno, California, USA 2010 Natural gas 30.0 26.6 NA 21.9 7.9 NA [48]

44 Gillette, Campbell,Wyoming, USA 2011 Natural gas 30.0 92.4 NA NA NA NA [49]

45 Batesville, Panola, Mississippi, USA 2011 Natural gas 24.0 51.6 3.7 23.8 23.8 4.6 [50]

46 Buick, British Columbia, Canada4 2012 Natural gas 16.0 66.6 NA 17.0 7.6 1.1 [12]

47 Sissonville, West Virginia, USA 2012 Natural gas 20.0 64.1 NA 22.9 10.7 4.3 [51, 52]

48 East Godavari, Andhra Pradesh, India 2014 Natural gas 18.0 NA 5.0 7.0 7.0 7.0 [53, 54]

4The incident Report describes the rupture of a 16 inch pipeline followed by a rupture of a 6.625 inch pipeline, indicating a case of domino effect.
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Highlights 

• Pipeline crater models from literature have been evaluated relying on real 

accidents.  

• A historical analysis of accidents involving underground pipelines has been 

performed. 

• A FORTRAN code to assess the performance of the crater models has been 

designed. 

• A specific novel pipeline crater model has been developed by using data from 

real accidents 

• The potential of domino effect is proven by two real cases. 

• Parallel pipeline distance values are suggested to prevent the domino effect. 

 


