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 Abstract— The detection of degradations and resulting failures 
in electronic components/systems is of paramount importance for 
complex industrial applications including nuclear power reactors, 
aerospace, automotive, and space applications. There is an 
increasing acceptance of the importance of detection of failures 
and degradations in electronic components and of the prospect of 
system-level health monitoring to make a key contribution to 
detecting and predicting any impending failures. This paper 
describes a Parametric System Identification based health- 
monitoring method for detecting aging degradations of passive 
components in switch-mode power converters (SMPC). A Non-
Parametric system response is identified by perturbing the 
system with an optimized multi-tone sinusoidal signal of the order 
of mVs. The parametric system model is estimated from non-
parametric system response using recursive weighted least square 
algorithm. Finally, the power-stage component values, including 
their parasitics, are extracted from numerator and denominator 
coefficients based on the assumed Laplace system model. These 
extracted component values provide direct diagnostic 
information of any degradation or anomalies in the components 
and the system. A proof of concept is initially verified on a simple 
point-of-load (POL) converter but the same methodology can be 
applied to other topologies of SMPC. 

Index Terms— Aging, Digital Control, Parametric Estimation, 
Switched Mode Power Supplies. 

I. INTRODUCTION 
he detection of degradations and resulting failures in 
electronic components/systems is of paramount importance 

for industrial applications, including nuclear power reactors [1], 
aerospace [2-3], automotive [4], and space applications. From 
an economic perspective, it is recognized that with the use of 
complicated electronic industrial systems, every product 
manufacturer wants to increase the lifetime of their product 
with the objective of reducing unscheduled maintenance, in-
service costs and improving the availability of their product [5]. 
More importantly, addressing the issues of how to detect, 
diagnose, and predict degradation and failures has been 
identified as a potential requirement by many industrial 
organizations [6]. 

In recent years, the high current and increased performance 
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demands of highly integrated Programmable Logic Devices 
(PLD) have led to miniaturization of these devices down to 
nanometer and sub-micron scale [7]. Consequently, these 
advancements in the semiconductor industry have required that 
the input voltage of these devices be reduced from 5V and 3.3V 
to below 3.3V. These technological advances in PLD and 
networking microprocessors empowered the power supply 
industry to advance from a basic four output voltage (12.0V, 
9.0V, 5.0V, 3.3V) DC-DC power converter to more than twenty 
output voltage (3.3V, 2.5V, 1.8V,1.5V, 1.2V, 1.0V, 0.9V, 0.8V 
etc.) converters [8]. This led to the use of POL converters in 
distributed power architecture to minimize power losses and 
increase efficiency. The tolerance of these low-voltage power 
supplies is dependent on the load. In traditional power supplies, 
the tolerance requirement on a typical low-voltage power 
converter is ±5%. However, with the advent of sub-micron 
technology as mentioned, the tight tolerance requirement on 
low-voltage converters has been tightened to ±3% [9]. This 
prerequisite inadvertently results in increased stress on the 
power converter and contributes towards degradation of the 
components and failure of the system. 

The majority of power supply failures aggregate from 
degradations and failures in the capacitor  [10]. An electrolytic 
capacitor is a passive electronic component, which degrades 
and fails significantly in power converters [11-13]. The 
Equivalent Series Resistance (ESR) of the electrolytic capacitor 
is a prominent precursor to degradation that provides 
knowledge of anomalies in the capacitor and the overall 
performance of the power converter. Now, the question arises 
as to how these degradations in the capacitor and the overall 
system performance can be detected through global system 
parameters. The aging or degradation detection in electrolytic 
capacitors has been studied using on-line and off-line 
techniques. The off-line technique interrupts normal operation 
of the circuit, however, is accurate and simpler to implement 
[14-16]. The on-line detection monitors aging performance 
while the circuit is in operation. In [12], ESR deterioration has 
been extrapolated by measuring input current and output 
voltage ripple in time domain. Similarly, [13] also use output 
voltage ripple and [17] propose capacitor voltage measurement 
to estimate the ESR and hence, capacitor degradation. 
However, the above method does not provide understanding of 
anomalies in the entire system.  

In the frequency domain, the control-to-output transfer 
function of the power converter describes the dynamic behavior 
of the system/power converter [18]. In the transfer function or 
system response of a basic DC-DC POL converter, the –
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20dB/decade asymptote provides knowledge of the inductor 
and the output filter capacitor. Similarly, the–40dB/decade 
asymptote reveals information about the ESR of the output filter 
capacitor. This knowledge of the power-stage network ensures 
that the degradations and failures of power-stage network 
elements (inductor and capacitors) can be detected, diagnosed, 
and prognosticated from the control-to-output transfer function 
response. From a system-level failure perspective, degradation 
in any of the power supply components due to uncertainties in 
the component’s tolerances or aging of components with time 
will affect the performance of the entire electronic system. 
Therefore, this research aims to study and implement system-
level health monitoring of DC-DC power converters to detect 
anomalies in discrete components and mitigate long-term 
failures in the operation of power supplies. 

II. SYSTEM IDENTIFICATION TECHNIQUES

System identification is an interdisciplinary practice used to 
characterize the behavior of a dynamic system, usually in the 
form of a mathematical model [19]. Parametric and non-
parametric methods outline two different identification 
techniques. The user excites/perturbs the system with a 
deterministic or random excitation signal to achieve non-
parametric identification of the system [20]. A possible source 
of excitation in the system is the inherent noise of the system, 
such as analogue noise. This ambient system noise is best for 
real-time health monitoring as it eliminates the impact of initial 
conditions (time-domain) and leakage errors (frequency-
domain), and reduces the burden of designing external 
perturbation. Nevertheless, different load conditions affect the 
behavior of the inherent noise and lead to low Signal-to-Noise 
Ratio (SNR) of the extracted system response. Therefore, 
researchers prefer external perturbation signals, such as an 
impulse signal, chirp, pink noise, random noise, and single 
sinusoid. 

The general class of perturbation signals, for instance, Dirac-
Delta with a single pulse amplitude spectrum, is not suitable to 
measure the response of the system across the pass-band of the 
system between 10Hz and 200kHz. This is because the power 
of a single pulse at high frequencies close to the ESR  
frequency =  1 2⁄  is not high enough to measure the 
output signal and will result in poor SNR. The high-frequency 
measurement is essential because the zero introduced by the 
ESR of the output filter capacitor lies at the high-frequency 
region of the converter response between the cut-off frequency 
of the output filter =  1 2 √  ⁄  (L is the inductance of the 
output filter) and the switching frequency . Therefore, 
accurate measurement of the attenuation and the phase of the 
system requires the frequency sweep to excite the pass-band of 
the system. 

The unity crest factor of Pseudo Random Binary Sequence 
(PRBS) used by Roinila et al. [21], Shirazi et al. [22], Miao et 
al. [23] and Barkley and Santi [24], which is identical to the 
crest factor of the delta function, is ideal for extracting the 
signal buried in the system noise. However, the amplitude 
spectrum of PRBS for the Band-Limited (BL) inter-sample 

assumption decreases inversely with the frequency, limiting the 
signal-extracting capability up to a certain frequency of the 
entire spectrum. Moreover, Pintelon and Schoukens [25] 
corroborate that the amplitude spectrum for increasing the 
length of the PRBS sequence decreases with frequency and 
hence, is undesirable for extracting signal information at high-
frequency spectra of the power converter. The use of a single 
frequency sinusoid signal incorporated in the Frequency 
Response Analyzer (FRA) and described by Gonzalez-Espin et 
al. [26] accurately measures the system response, but it 
consumes a significant amount of time to measure the system 
response. This is the reason why the majority of general 
excitation signals, such as pseudo-random white noise, impulse, 
and Dirac-Delta, is rejected because the amount of power 
available in the signal at high frequencies is not high enough to 
accurately measure the gain and phase of the system. Therefore, 
none of the above excitation signals is appropriate in this study. 

The present research proposes a multi-tone sinusoid signal as 
an energy-rich excitation to extract a closed-loop frequency 
response of the power converter. A multi-tone sinusoidal is a 
periodic, deterministic broadband excitation with full flexibility 
to define the amplitude spectrum and frequency resolution. It 
enables optimizing the amplitude spectrum for desired 
frequencies of interest before performing any measurements, 
saving significant post-processing and computational time. 
Recently, a similar phase shifted excitation has been proposed. 
However, the proposed method uses only ten frequencies to 
perform non-parametric system response identification across 
wide frequency range 10Hz – 100kHz, compared to 30kHz to 
80kHz specified in [27]. 

From a signal-processing perspective, excitation of the 
system with inadequate energy in the perturbation signal will 
provide a low SNR or high uncertainty of the measurements. 
Therefore, based on the required SNR, the optimized multi-tone 
sinusoid perturbation excites the system at the required 
frequencies of interest. The system identification of such a 
system, wherein knowledge of both high and low frequency 
dynamics is required, is not only complex but also challenging. 

Moreover, the research employs the concept of synchronous 
In-phase and Quadrature-phase (IQ) demodulation used in 
radio-frequency communication for frequency response 
measurements. The non-parametric estimate of the system 
model using quadrature demodulation extracts even the 
smallest amplitude of the in-phase and the quadrature phase 
signal and provides an initial estimate of the characteristics, 
complexity, and the order of the system. 

Once the non-parametric model of the system is available, 
different model estimators, such as least mean squares and 
recursive least square [19], [28], recursive Dichotomous 
Coordinate Descent (DCD)-Infinite Impulse Response IIR 
adaptive filter [29], can be used to estimate a parametric model 
of the system. In parametric identification, the user assumes the 
system model, such as a black-box model, a grey-box model, or 
a transfer function model, and refines this model from the non-
parametric measurements.  

Since, the digital control systems have been used to 
accomplish the majority of the system identification process, 
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the characteristic of the perturbation signal between the 
consecutive sampling instants, i.e. inter-sample behavior 
largely influences the selection of the identification model [30]. 
The researchers across the system identification community 
formulate two assumptions: Zero-Order Hold (ZOH) and Band-
Limited. The ZOH criterion assumes that the sampled signal is 
constant between the consecutive samples. The spectra of the 
reconstructed signal, Sinc function, generate dominant 
frequency component at the sampling frequency  along with 
its harmonics at the higher frequencies2 , 3 … and so on. 
When the inter-sample behavior of the sampled signal is band-
limited, the power spectrum of the reconstructed signal is zero 
above a frequency ω  (usually half the sampling frequency). 
Mathematically, when Φ( ) = 0  ∀ | | >  the 
spectra of the reconstructed band-limited signal only produce a 
fundamental sampling frequency without any harmonics.  

The research on system identification of power converters 
assumes ZOH as the characteristic of the perturbation signal 
[23], [31], [32], and uses discrete time models to identify the 
system model. Since the reconstructed signal is not the exact 
replica of the signal itself, the ZOH assumption of the signal 
can introduce errors and may not be suitable for detecting 
anomalies in the system. On the other hand, the band-limited 
assumption of the signal ensures that an exact replica of the 
signal is reconstructed and enables identifying the continuous-
time model in frequency domain. Therefore, in this paper, a 
continuous-time system model in the form of a Laplace rational 
fraction is assumed.  

Recently, several data-driven frameworks have gained 
attention in fault diagnosis and model extraction. This includes 
statistical and non-statistical analysis based methods. For 
instance, Weighted Least Square, Partial Least Square (PLS) 
[33-36], total projection to latent structures (T-PLS) [37-38], 
Principal Component Analysis (PCA) [39-41], Independent 
Component Analysis (ICA) [42] etc. are some of the statistical 
methods which utilize input and output data to diagnose faults 
in the system. 

Neural Networks (NN), on the other hand, describe non-
statistical data-driven tool that has been extensively used in 
industrial applications for fault diagnosis. NN based tools can 
be further categorized into supervised and unsupervised based 
learning. In supervised learning, the data set is labelled as 
healthy or faulty and the algorithms learn from variations 
among the labelled data. The data set in unsupervised learning 
does not include any labelled data, instead the algorithm finds 
clusters from its own data. Well-established algorithms such as 
Fuzzy Logic [43], support vector machine (SVM) [44-45], 
Kalman Filter [46-47] etc. are some of the learning 
methodologies that assist in non-statistical fault diagnosis. 

A weighted recursive least square algorithm that minimizes 
relative error is used to extract the system model in frequency 
domain. The power-stage component values, including their 
parasitics are then extracted from the numerator and 
denominator coefficients based on an equivalent Laplace 
model. This extraction requires the knowledge of the output 
load, which implies the knowledge of the output (or the input) 
current. These extracted component values allow drift/aging 

measurement of relevant component electrical characteristics 
and permit diagnostics and end-of-life prognostics. 

III. PARAMETRIC IDENTIFICATION OF DC-DC CONVERTER IN 
FREQUENCY DOMAIN 

The proposed system identification based health-monitoring 
methodology is executed on a basic DC-DC buck converter, as 
shown in Fig.1. 

The block diagram includes the power-stage network or the 
DC-DC power converter regulated by a digital controller in the 
feedback network. In digital control of power converters using 
either a Digital Signal Processor (DSP) or a Field 
Programmable Gate Array (FPGA), the Analog to Digital 
Converter (ADC) discretizes the output voltage signal ( ) 
into a sequence of n samples ( ) and computes the error 
between the digital reference and the digital signal. The digital 
corrector, usually a Proportional-Integral-Derivative (PID) 
controller or 3p3z digital filter, compensates the error to 
provide a digital sequence ( ). The Digital Pulse-Width 
Modulator (DPWM) then commands a Pulse Width Modulation 
(PWM) duty signal ( ) to regulate the control loop. The 
perturbation signal, which is digitized in the digital controller ( ), excites the control loop and provides a small-signal AC 
response of the system at the injected frequency of the 
perturbation. It is worth mentioning that the control loop is not 
broken and the frequency response is measured in a closed-loop 
condition. 

A. Design of Perturbation Signal 
Ideally, the frequency sweep at every integer frequency up to 

half the switching frequency provides accurate frequency 
response measurement. This is similar to the operation of an 
FRA. However, the memory and computational power of the 

Fig. 1.  Block Diagram of Parametric Identification Based Health-Monitoring 
on Digitally-Controlled DC-DC Buck Converter 
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digital controller limits the feasibility of this approach. Instead, 
the equally spaced frequency sweep of ten or eleven integer 
frequencies provides maximum system information at the 
frequencies of interest without restricting the computational 
power consumption of the digital controller. This multi-tone 
frequency sweep excites the system at the user-defined 
frequencies and minimizes power leakage in the adjacent 
harmonics. Therefore, frequency response measurements by 
perturbing and linearizing the system with a user-defined 
frequency sweep provide better insight of anomalies and 
degradation of the system. More importantly, the selection of 
integer frequencies close to the ESR frequency and the cut-off 
frequency of the power converter enable extracting and 
understanding the degradation of the ESR and the capacitance 
of the output filter capacitor. Prior to the selection of the 
perturbation frequencies, periodic perturbation is considered as 
it reduces measurement noise and enables the spectrum of the 
signal measured over an integer number of periods to be 
calculated precisely by the Discrete Fourier Transform (DFT). 

The perturbation frequency sweeps logarithmically by 
octaves from the start to the end frequency to generate a multi-
tone signal. Mathematically, the frequency sweep  is defined 
by F =  . , m = 2, 3, … 12;  l = 1 (1)

where  and  are integers.  can be modified to values 3, 5, or 
7 to generate different frequency sweeps. The selection of  
generates different logarithmic sweeps by octaves. Using (1), 

=200kHz and l=1, the start and end frequency tones can be 
calculated. This equates to different frequency sweeps as shown 
in Table I. For l=7, eleven tones from 85.44922Hz to 87500Hz 
excite the pass band of the converter (zero until half the 
switching frequency). Similarly, for l=5, eleven tones from 
61.035Hz to 62500Hz can describe the entire response of the 
system, including the ESR frequency. For lower values of l, 
more frequency sweeps are available, for instance, twelve for 
l=3 and thirteen for l=1. 

However, the intention is firstly to excite the system with the 
minimum number of sweeps to reduce measurement time and 
secondly to sweep only the frequencies that add knowledge to 
health monitoring. This results using the frequency sweeps 
either for l=3, 5, 7. Nevertheless, the sweep frequencies are far 
apart for the above cases, as shown in Fig. 2. 

For l=1, on the contrary, 13 frequency sweeps can be reduced 
by eliminating the lower frequencies, such as 12.207Hz, 
24.414Hz, and 48.828Hz as they do not provide significant 

system information for this application. Therefore, for l=1 and 
a power converter switching at 200kHz, a maximum of ten 
equidistant discrete tones once every octave provides extensive 
information about the entire system response. This frequency 
scaling is essential because it enables proper representation of 
the power-stage frequency response and it includes the power-
stage cut-off frequency and the zero introduced by .This 
comb spectrum injects the maximum energy at the specified 
frequency and eliminates spectral spurs that originate at 
frequencies other than the frequency associated with the 
discrete tones. 

The amplitude of the perturbation signal must be greater than 
ambient system noise to measure the system response precisely 
but small enough to keep the system linear and stable. 
Moreover, the amplitude of the perturbation signal governs the 
SNR of the non-parametric frequency response measurements 
and hence, the SNR of the system response. Therefore, to 
achieve a desired SNR at all the frequencies of interest, it is 
necessary to optimize the amplitude of the perturbation with 
respect to the gain of the power converter. In order to achieve a 
given SNR and minimum uncertainty on the measured system 
response, different aspects of the digital controller and the 
power converter need to be analyzed. 

The control-to-output characteristics of the POL converter 
[17] signify that the amplitude of the output voltage is high at 
lower frequencies compared to the duty signal. 
Correspondingly, the amplitude of the duty signal is high at 
higher frequencies, compared to the output voltage. From the 
above analysis and assuming the presence of additive white 
Gaussian noise introduced by samplers, it is not feasible to 
maintain a constant SNR across the frequency spectrum by 
injecting a constant amplitude perturbation. This would mean 
injecting large signals at high frequencies leading to saturation 
of the duty signal. 

In addition, it follows that variations/ripple on the output 
voltage can be measured up to a certain frequency, typically 
crossover frequency  =  (1 20⁄ ),  = 10 kHz and two 
more octaves. However, for higher frequencies, typically 
25 kHz and 50 kHz, the control loop has to be disturbed to 
measure a significant amount of variation of output voltage 
from the ambient noise while maintaining the SNR. For 
instance, assuming the entire loop noise is due to ADC 

TABLE I 
SELECTION OF FREQUENCY SWEEP BASED ON THE VALUE OF l 

Fig. 2.  Comb Spectrum for l = 1, 3, 5, and 7 
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quantization noise, injecting more than 100mV of perturbation 
amplitude would clamp the duty signal. This dictates that to 
achieve a given SNR at higher frequencies, averaging a large 
number of measurements is essential. Consequently, if the SNR 
across the band of frequencies is not constant compared to the 
limited amplitude of the perturbation, which is certainly the 
case for frequencies greater than the crossover frequency, 
averaging over large measurements will yield a given SNR. 
This would certainly increase the measurement time at the 
expense of a constant SNR across the frequency spectrum. 

Moreover, the quantization noise introduced during analogue 
to digital conversion diminishes the SNR on the transfer 
function. This can be resolved by using a high-bit ADC. 
However, if this not feasible, it must be guaranteed that the 
amplitude of the perturbation signal is greater than the voltage 
resolution of the ADC at all frequencies of interest. In other 
words, the perturbation amplitude must be greater than single 
Least Significant Bit (LSB) of the ADC. Otherwise, the signal 
will be buried in the digital quantization noise and will remain 
undetected during the frequency response measurements. Based 
on the above analysis, the following boundary conditions 
decide the amplitude of the perturbation signal:  

a) For frequencies below the crossover frequency, low-
perturbation amplitude satisfies a high SNR on the transfer 
function. However, high gain of the integrator necessitates 
superimposing a large AC perturbation of the order of 100mV 
to measure the small-signal response of the output voltage,  

b) For frequencies above the crossover frequency, a high
SNR on the duty signal, i.e. a large signal on the duty 
necessitates superimposing a small amplitude of the 
perturbation to achieve a given SNR on the transfer function,  

c) For intermediate frequencies, the perturbation amplitude
must be relatively low to avoid clipping of the output signal. 

The multi-tone sinusoid reduces measurement time, as the 
transients that appear at each frequency sweep will only be 
present at the first perturbation frequency. The periodic and 
harmonically-related perturbation signal defined by the 
amplitude A  and frequency F describes 

p(n) = ∑ A  . sin  2 +  θ (2)

where  defines number of frequency domain data samples, 
N defines the length of the sequence as in power of two and θ  
is the phase between the different sinusoids. The phase is 
defined zero for initial measurements. 

A similar multi- 

B. Non-Parametric System Identification 
It is recognized that frequency-domain identification in 

continuous-time systems with the BL assumption associates the 
system model coefficients with the power-stage components. 
Therefore, frequency domain identification is best suited to 
perform detection of anomalies in the components and the 
power converter. 

The Fourier transform of a finite-length  of a sequence ( ), i.e. 

( ) = 0  < 0( )  ≥  (3)

is ( ) = ∑ ( )  (4)
where 0 ≤ ≤ 2  is the angular frequency and N is the 

total number of integer samples in a single period. The DFT of 
a real-valued sequence ( ) sampled at equally spaced 
frequencies =  2  where =  0, 1, 2 … − 1 has a
complex spectrum defined by 

( ) = ∑ ( ) (5)

Generally, the length of the sequence  is fixed and an 
integer power of two. The rationale behind this selection is 
because memory address in the majority of digital controllers is 
byte-addressable rather than decimal-addressable, which 
minimizes leakage errors in DFT computation. 

The above complex-valued discrete-time sequence can also 
be represented as the sum of the in-phase and quadrature 
components, i.e. the ( ) =  ( ) +  ( ) where ( ) and ( ) represent real-valued discrete quadrature sequences 
representing real and imaginary components. These quadrature 
components are the replicas of the sampled sequence multiplied 
by the sine and cosine of the perturbation frequency =   
yields ( ) =  ∑ ( ) sin   (6)

( ) = ∑ ( ) cos   (7)
Similarly, the sampled output sequence gives ( ) =  ∑ ( ) sin   (8)

( ) = ∑ ( ) cos   (9)

The sampled complex in-phase and quadrature sequence at a 
specific perturbation frequency finally provides the magnitude 
and phase response of a sequence at that frequency 

| ( )| =  ( )  ( )( )  ( )  (10) 

arg ( ( )) =  tan ( )  ( )( )  ( ) . (11) 

The Frequency Response Function (FRF) algorithm based on 
the concept of synchronous IQ demodulation accurately 
demodulates the quadrature phase signals by multiplying the 
sampled output voltage and duty signal by sine and cosine 
signals. The sine and cosine signals are initialized at the 
beginning of the algorithm. The algorithm stores steady state, 
quadrature output voltage and duty signals in six separate 
column vectors of size × , where the first  rows of a 
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column vector contain data of a single acquisition for all the 
perturbed frequencies and  as the number of acquisitions. 
For example, if the column vector length is 64×10, the first ten 
rows correspond to data for 10 perturbation frequencies of a 
single acquisition. The six column vectors comprise ( )–the 
in-phase component of the output voltage, ( )–the 
quadrature phase component of the output voltage, ( )–the 
in-phase component of the duty signal, ( )–the quadrature 
phase component of the duty signal, SumVout – the steady state 
value of the output voltage and SumDuty – the steady state 
value of the duty signal. The four quadrature phase sequences 
are ( ) = ∑ ( ) sin   (12)

( ) = ∑ ( ) cos   (13)

( ) =  ∑ ( ) sin   (14)( ) = ∑ ( ) cos   (15)

The data from these four vectors ( ( ), ( ), ( ), and ( )) is re-arranged to construct the output voltage matrix ( × )  (16) and duty signal ( × ) (17) matrix of size ×  where the rows  define the number of acquisitions 
= 64 and the columns define the number of perturbation 
frequencies = 10. The first column represents the start 
frequency 97.65Hz and last column represents the end 
frequency 50kHz. 

( × ) =
 ( × ) + ( × ) … ( × ) + ( × )⋮ ⋱ ⋮( × ) + ( × ) … ( × ) + ( × )

(16)

( × ) = ( × ) +  ( × ) … ( × ) +  ( × )⋮ ⋱ ⋮( × ) +  ( × ) … ( × ) +  ( × )
(17)

The complex division of ( × ) and ( × ) matrix then 
constructs the complex transfer function matrix 

( × ) =  ( × ) … ( × )⋮ ⋱ ⋮( × ) … ( × ) (18)

Where ( × ) =  × ××  ×  

From the above analysis, a non-parametric estimate of the 
continuous-time system model (s ) expressed as the ratio 

of output to input response (s ) = ( )( ) =  (s ) + j H (s ) (19) 

calculates the system magnitude and phase response i.e. 
magnitude and phase matrices for all the perturbation 
frequencies defined by (20) and (21) 

| (s )| = (s ) +  (s ) (20) 

φ (s ) = tan ( )( )  (21) 

where  =    defines the Laplace transform variable 
evaluated along the imaginary axis at DFT frequency k. 

From these FRF measurements at different perturbation 
frequencies, a non-parametric system model is estimated prior 
to parametric identification of the model. This identification 
enables understanding the source of different uncertainties and 
nonlinear distortions in the system and ultimately, extracting a 
non-parametric noise model. 

C. Parametric Identification of DC-DC converter 
The process of parametric model identification is dependent 

on the non-parametric FRF measurements. The uncertainties in 
the measured data, such as quantization noise, switching noise, 
measurement errors, and errors including DFT noise, etc., 
influence accurate identification of the system model. These 
uncertainties further lead to inaccurate estimation of model 
parameters, extraction of component values, and erroneous 

TABLE II 
RECURSIVE WEIGHTED LEAST SQUARE ALGORITHM 
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interpretation of degradation. Therefore, it is emphasized 
throughout the development of the health monitoring method 
that uncertainties introduced by the digital control and the 
measurement process must be minimized. In this study, the 
majority of these uncertainties are eliminated by using a 
periodic excitation and synchronous demodulation of system 
dynamical characteristics. 

For parametric identification, the model estimator targets 
reducing the error between the measured transfer function H (s ) and the assumed system model H (s ). The method 
assumes the ratio of frequency-dependent complex polynomials (s )and (s ), i.e. Laplace rational fraction in continuous-
time domain as the system model. 

The identification process states the system model as a 
solution to the normal equation of the form β =∑ ∑ . ∑  .  

(22)

where β  represents the best model fit of the model 
coefficients,  states the real-value diagonal weighing matrix. 
The individual weights of the weighing matrix are strictly 
positive  ≥  0.  represents the state variable vector 
containing bias function and coefficients as its elements. The ‘⋅’ 
denotes the dot product, ¯ denotes the complex conjugate, and 

 denotes the transpose. is a column vector containing 
non-parametric FRF measurements. 

The parametric model identification algorithm based 
Recursive Weighted Least Square (WLS) is executed in 
MathCAD. In steps 1 and 2, the algorithm defines and 
initializes the denominator, the numerator, and the frequency 
vectors. The elements of the weighing matrix, the numerator 
and denominator vectors are initialized to zero except  is 
constrained to 1.0 in the next step. The WLS estimator takes the 
non-parametric FRF measurement column vector and 
denominator vector as the input to evaluate the weighing 
matrix, i.e. for i=0, the unknown weighing function is defined 
based on prior analysis of the measured transfer function in step 
4. Consequently, the algorithm estimates the state variable
vector and the cost function based on the selected order of the 
numerator and the denominator vectors in step 5. The next step 
entails estimating the relative error function. This modifies to 
matrix  to obtain the first part of the said normal equation. In 
step 8, the second part of the normal equation is approximated 
by weighing the individual experimental data points. Finally, 
the best estimate of the system model is evaluated in step 9. The 
entire process recursively minimizes the relative error instead 
of the absolute error on the model estimates. This algorithm is 
limited to only one iteration. However, the number of iterations 
can be increased for an optimum result. This relative error 
criterion combined with a weighing and iterative process yields 
best fit for the system model. The estimated best-fit model 
defined in the form of a Laplace rational fraction enables 
extracting the model coefficients and the component values 

thereafter. 

D. Parameter Extraction 
The majority of the research on system identification of 

power converters identify non-parametric system response. 
However, they fail to estimate the model (numerator and 
denominator) coefficients and the subsequent power-stage 
component values that give a clear indication of the deviation 
of the circuit components from their actual values. The 
identification of model parameters and subsequent circuit 
components is essential as it detects drift in the system and the 
components from its healthy state and enables accurate 
detection of degradation. 

Reproducing the results, the identified model defines an n-
order system depending on the power-stage network. Using the 
equivalent Laplace model of a power-stage network defined by 

H(s ) =    ..  .. (23) 

where the model coefficients n0, n1, d0, d1 and d2 represent the 
power-stage network elements. 

For a basic DC-DC buck converter, the power-stage network 
(Fig.1) forms a second-order system as it contains two energy 
storing passive components. Therefore, the equivalent Laplace 
model of a second-order is defined by H(s ) =     (24) 

where the model coefficients can be evaluated from the 
transfer function equivalent to H(s) =  ( )( ) = K   (25) 
where K =   +  ( )  (26) Z =  ×  (27) 
and =  +  (28) 

where the combined resistance of , ,  and the shunt 
resistance  is defined by r =r +D r +(1 − D)r + r  (29) 

and ( ) defines the knee voltage of the switch S2. 

Substituting (26) and (27) in (25) evaluates second-order 
transfer function to 

H(s) = K   
   

 
(30) 
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Therefore, n =  K (   ) (31)

n =  K (   )  C r (32)

d =  1 (33) d =    (    )     (   ) (34)

d =  L C (   ) (   ) (35)

IV. EXPERIMENTAL INVESTIGATION

Fig. 1. provides a block diagram of a synchronous POL 
converter which is powered from input ( )=3.3V to provide 
a regulated low-voltage output ( ) = 1.2V. The power-stage 
circuit component inductor L, output filter capacitor C and its 
ESR , resistance of the switching devices, and the output load 

 are defined as  = 150µH,  = 220µF,  = 90mΩ 
(measured at 8 kHz),  = 840mΩ and  = 10Ω. 1and 2 are the synchronous switching devices. The switching 
frequency of the converter is 200 kHz. 

The rationale for using a low-voltage converter is to emulate 
the power supply rail of the digital load, such as FPGA 
constrained by the tight voltage tolerance. The typical tolerance 
requirement of the low-voltage power rail is 2-3%, compared to 
5-6% of a high-voltage power rail (for instance, 15V). This 
restriction on the selection of the low-voltage power converter 
enables recognizing the implementation of the method on low-
voltage industrial applications. 

A DSP-based microcontroller including 32-bit floating-point 
arithmetic and an integrated ADC, PWM, and an embedded 
Random Access Memory (RAM), is used to regulate the control 
loop and act as an embedded sensor for data acquisition. The 
digital controller PiccoloTM F2806x from Texas Instruments (TI) 
interfaces to the POL converter via 16-pin connector and PC via 
an on-board USB as shown in Fig. 3. The Code Composer 
Studio (CCS) development tool from TI provides on-board 
JTAG emulation, access to peripherals such as ADC and PWM, 
and real-time debug to the control algorithm [48]. The CCS 
Integrated Development Environment (IDE) controls and 
monitors the power converter wholly via software re-
programmability and flexibility. 

The 12-bit Successive Approximation Register (SAR) ADC 

with an integrated Sample and Hold (S/H) circuit samples the 
output voltage ( ) at a sampling frequency . The timer-
based PWM module generates a pulse width modulated duty 
signal ( ) after the addition of an excitation signal to the 
compensated control voltage. The voltage resolution of the 
timer module, defined as the ratio of the system clock period 
and the user-defined switching period , governs the resolution 
of the duty signal. The Piccolo PWM timer module provides a 
duty signal resolution of 2.5mV, given the system period is 
12.5 ns and a switching period is 5µs [49]. To avoid limit 
cycling [50], Micro Edge Positioning (MEP) integrated in the 
controller provides a much finer PWM resolution of the order 
of 36µV. The CCS Integrated Development Environment (IDE) 
provides the selection of the reference signal for the integrated 
ADC, the design of discrete 3pole-3zero digital IIR filter, and 
the configuration of the digital pulse-width modulator. It is 
necessary to acknowledge that the input filter modifies the 
control-to-output system response. However, for initial 
assessment of the proposed methodology, the study does not 
consider its design and implications. 

The design of the low-voltage AC perturbation is such that 
the maximum variation on the output voltage is within ±1.0% 
of the nominal value and the maximum variation on duty is 
±3.0% - ±5.0% of the nominal to achieve a constant SNR across 
the desired frequency spectrum. Fig. 4(a) illustrates the outline 
of the digital perturbation written in C++ and programmed in 
the digital controller. The amplitude of the perturbation is 
greater than the voltage resolution of the ADC, ensuring the 
signal will not be buried in the quantization noise and the 
analogue noise of the system. 

Since the perturbation signal is the sum of harmonically 
related sinusoids, the frequency spectrum of the signal 
represents a comb spectrum as shown in Fig. 4(b). The discrete 
tones are synchronized with the switching frequency of the 
digital controller to largely minimize leakage errors and the 
effect of harmonics. Moreover, the factor of two between each 
frequency gives a programming advantage where the variable 
‘frequency’ is right shifted every time to obtain the next 

Fig. 4.  Perturbation Signal and its Comb Spectrum 

Fig. 3. Experimental Test Module 
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frequency thereby saving a lot of computational time. The comb 
spectrum only injects ten frequency sweeps to obtain the 
frequency response of the entire system. 

The relative standard deviation on the output voltage and the 
duty signals in Fig. 5(a) and (b) reveal that the injected multi-
tone perturbation limits the duty signal within 3% of its nominal 
value and the output voltage signal within 2%, i.e. 24mV for a 
1.2V signal, for all the frequencies of interest. Superimposing 
an optimized multi-tone signal at frequencies of interest does 
not disturb the steady state response of the converter. There is 
low noise on the output voltage and the duty signal, considering 
there are other uncertainties in the system, such as quantization 
noise of the samplers, measurement noise, and the inherent 
analogue noise of the system. Consequently, this low 
percentage of the relative standard deviation on the input 
(output voltage) and the output (duty) indicates low variability 
on the data set, and hence a high SNR on the transfer function. 

The uncertainty on the magnitude and phase response 
describes how the SNR is preserved across the defined 

frequencies of interest as depicted in Fig. 6(a) and (b). The high 
variability at low frequencies, compared to higher frequencies 
on both magnitude and phase indicate more noise at the lower 
frequencies. This noise can be the quantization noise of the 
ADC, DPWM or the analogue noise of the system. However, 
the origin of this variability on the response is not known. 

The non-parametric system model in Fig. 7 depict that the 
amplitude response asymptotically decays by -20 dB/decade at 
frequency 1 kHz and further rolls off by -20 dB/decade at 5 
kHz. This graphical interpretation allows assuming a second-
order parametric system model with numerator and 
denominator polynomial of the order of two and three 
respectively. The close match between the non-parametric 
response of the system and the assumed parametric second-
order model of the system in Fig. 8 indicates that minimizing 
relative error using a Recursive WLS estimator provides a good 
fit of the model over a wide frequency range from 10Hz to 
10kHz. However, the model is verified against a third-order 
system with N=2 and D=4. The response evidently signifies the 
difference in phase response with a second and a third-order 
system at the higher frequencies. 
For parameter extraction of power-stage component values, the 
inductance  and the output load  are assumed to be 
150µH and 10Ω, similar to the experimental test module and as 
assumed in [12]. Inductors are reliable than capacitors, 
however, they show large tolerance in their values. The method 
presented herein does not take into account these tolerances for 
parameter extraction. The actual component values on 
experimental test module are measured using an RLC meter. 
Using (31)-(35), the capacitance, ESR of the output filter 
capacitor, and the resistance of the inductor including the 
switches are extracted. The extracted capacitance value is 
within the 20% tolerance of the actual value as shown in Table 
III. Similarly, the extracted ESR shows a consistent result with
the actual ESR on the board. It is important to mention that the 
equivalent Laplace model considers a simple model of the 
capacitor against a realistic RC ladder model of the electrolytic  
capacitor.  

The parametric identification of the system model with 
relative minimization of the cost function across the logarithmic 
frequency range provides accurate extraction of the power- 
stage component values of the power converter, compared to 

Fig. 6.  Relative Standard Deviation on |H(s)| and φ(H(s)) 

Fig. 7.  Non-Parametric Response vs Parametric System Model 

Fig. 5.  Relative Standard Deviation on output voltage and duty signal 
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the actual component values on the buck converter. The 
above results signify that the proposed parametric identification 
can be used to detect degradations in switch-mode power 
supply topologies whilst proper care is taken for the design of 
perturbation selection, non-parametric FRF measurements, and 
extraction of model coefficients to minimize the variance on the 
transfer function. 

An important result of the model coefficients in Fig. 8 
demonstrates that all model coefficients converge within one or 
a maximum of two iterations with an accuracy of ± 1 %. This 
reduces the complexity of the model and provides fast 
identification of the system. 

V. AGING DETECTION CAPABILITY FOR SWITCH-MODE 
CONVERTERS 

The majority of the health-monitoring research community 
performs different acceleration tests such as HAST or apply 
environmental or operational stress to the system to predict the 
end of life of the system and/or its components. Subsequently, 
the continuous monitoring and measurement of certain system 
parameters along with their theoretical models provide 
knowledge of anomalies in the system and the components. 
These predictions are formulated when the system is 
functioning outside its normal operating conditions. The 
knowledge of degradation of a system and its components 
functioning within its operating conditions is not available. By 
contrast, this study proposes detecting anomalies in passive 
components by operating the system under normal working 
conditions. 

One method could be to increase the circuit component value 
and recognize that the health-monitoring methodology detects 
the system change. For example, an external capacitor 
connected in parallel with the output capacitor would increase 
the overall capacitance of the output filter. It follows from here 
that if the health-monitoring technique detects the increased 
external capacitance, it can be argued that the methodology can 
be used to detect anomalies or aging degradations in passive 
electronic components. 

The above hypothesis is experimentally validated by 
implementing the same methodology on the modified circuit 
illustrated in Fig. 9 without changing the design and 
implementation of the ADC, digital compensator, and the 

DPWM. The measurement algorithm is encoded in the 
PiccoloTM F2806x while system identification and the parameter 
extraction algorithm is implemented in MathCAD. 

The modified power-stage depicts the addition of external 
capacitance  in parallel to the output capacitor. Twelve 
ceramic capacitors with values ranging from 2µF to 30µF are 
added sequentially as external capacitance in the circuit. The 
tolerance of selected ceramic capacitors is low, 1%, compared 
to 20% tolerance of the output electrolytic capacitor. In 
addition, the ESR of ceramic capacitors is trivial in comparison 
to the ESR of the electrolytic output capacitor. The selection of 
the external capacitor assures that the transfer function will be 
stable and within its operating conditions. 

The non-parametric frequency response measurements by 
perturbing the modified system followed by parametric system 
identification and parameter extraction using WLS, extracts 
Laplace rational fraction coefficients and the associated power-
stage component values. The rational fraction coefficients and 
the value of total capacitance (with ) is extracted assuming 
inductance  and the output load  are 150µH and 10Ω, 
similar to the experimental test module. 

The results describe that the overall capacitance on the 
modified experimental test module follows a rising trend 

TABLE III 
COMPARISON OF ACTUAL AND EXTRACTED  

POWER-STAGE COMPONENT VALUES

Fig. 8.  Convergence of System Model Coefficient with number of iterations 

Fig. 9.  Modified Block Diagram of Parametric Identification Based Health-
Monitoring on Digitally-Controlled DC-DC Buck Converter for Aging 
Detection on Power-Stage Network Elements 
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indicating an increase in overall capacitance of the circuit as 
shown in Fig. 10. Evidently, the extraction algorithm accurately 
estimates the overall capacitance across the output of a buck 
converter, taking into consideration the tolerance of the 
components and the uncertainty associated with the 
measurements, modelling, and component extraction. 

VI. CONCLUSION

In this paper, aging detection capability for a switch-mode 
power converter is developed. Prior to detecting aging 
degradations, a parametric system identification based health 
monitoring methodology is developed and presented. The 
health monitoring technique involved i) non-parametric 
identification of the system by injecting small multi-tone 
sinusoidal perturbation (of the order of few mVs) at only ten 
frequencies within the closed loop; ii) Parametric identification 
of the system using a Recursive Weighted Least Square 
estimator; and iii) parameter extraction of power-stage 
component values assuming a Laplace rational function of the 
system. The effectiveness of the health monitoring technique is 
observed by accurate estimation of the parametric model and 
extraction of the component values. Finally, the aging detection 
capability of the proposed technique is established by inserting 
additional capacitance across the output. The detection 
procedure involves the use of different capacitance values to 
recognize its effect on the overall capacitance of the circuit. The 
overall capacitance illustrates an increasing trend with 
increased external capacitance demonstrating the 
implementation of an accurate detection methodology and 
demonstrating its usefulness for predicting end-of-life of 
power-supply components. This methodology is tested and 
validated on a basic POL converter but can be generalized to 
other power converter topologies. 
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