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Abstract 

The potential of algal biofuels has been technically and experimentally confirmed 

with laboratory- and pilot-scale studies in past literature. However, the most 

important factor now is to confirm that algal cultivation for biofuels and other 

end-products is economically feasible on the large, commercial scale. The 

ALGADISK project aimed to produce a novel biofilm-based photo-bioreactor 

with the aims of CO2 capture and making valuable products such as biofuel, 

economically viable. This thesis aimed to investigate and provide substrates in 

which algae biofilm is stimulated and increased. Polyelectrolyte (PE) coatings 

adsorbed onto cost-effective polymers were investigated, based on the strategy of 

electrostatic attraction. It was found that the algae species charge density and cell 

wall functional groups composition affected attachment onto charged PE 

coatings. Two coatings labeled C1 and C3 were selected due to their promising 

growth results with the strains C.sorokiniana, C.vulgaris and S.obliquus. 

Harvesting growth results showed inconsistent regrowth due to the lack of 

textured structure. Sandpapering the surface with certain grades was found to 

improve regrowth and consistency. Surface roughness did not show correlation 

to initial attachment of algae or strength of attachment. It was shown instead that 

surface roughness improved long-term growth  

As part of the aims of the ALGADISK project, the coatings large scale potential 

and cost was optimized. It was found that airbrushing rather than dip-coating, 

reduced the amount of PE solution needed drastically. Furthermore, photo-cross-

linking with UV exposure enhanced the strength of C1 according to scratch and 

wear data.  
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Lastly, the physico-chemical properties of both algae and substrates were 

examined in order to examine the thermodynamic model for algae adhesion 

prediction. It was found that the two thermodynamic approaches tested did not 

predict algae adhesion results with good accuracy. However, it was revealed that 

there could be a possible link between the substrate physico-chemistry and lipid 

content found in the biofilm attached. It was found that the less favorable the 

predicted thermodynamic conditions the higher the lipid content. 
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Chapter 1 

1.0 Introduction 

1.1 Algal Biofuel Production 
 

While there is debate regarding the status of the world’s oil reserves, overall world 

energy consumption has risen in correlation with the increase in population, 

industrialisation and globalisation.  International Energy Agency (IEA) data shows an 

increasing trend in the consumption of total energy worldwide over a period of 40 years, 

with increases in fossil fuel usage especially prominent (Figure 1.1) (IEA, 2014). 

Growth in the consumption of oil, coal and nuclear power accelerated in 2013, with an 

overall increase in usage worldwide by 2.3% (BP, 2014). Global policy makers have 

determined that global temperature should not rise by more than 2 °C above pre-

industrial measurements in order to reduce the effects of global warming (UNFCC, 

2009). In order for this to be accomplished, a recent study concluded that one third of 

oil reserves, half of natural gas reserves, and over 80% of coal reserves should remain 

in the ground (McGlade & Ekins, 2015).Therefore, it is clear that alternative, renewable 

and clean sources of energy are required. 

 

Figure 1.1 - Worldwide total energy consumption 1971 to 2012 (IEA, 2014) 
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The extraction of biofuels from agricultural, forestry and aquatic biomass have been 

considered for a number of years due to their renewable, carbon-neutral nature. 

However, the first generation biofuels derived from food crops and oils have 

repercussions on land available for food supply, food prices, and even increased 

emissions from clearing forestry for their cultivation (Ragauskas et al. 2006; Wiley et 

al. 2011). The second generation biofuels can be extracted from lignocellulose material, 

woody crops, or agricultural residues which require extensive processing; meaning 

capital and logistics costs are therefore high and a barrier to widespread use (Greenergy, 

2010). Therefore algal biomass has been identified as a promising alternative. This 

promise results from a number of inherent advantages; firstly, algae have little to no 

competition with agricultural food and feed production (Behera et al. 2015); second, 

they have higher photosynthetic efficiency compared to terrestrial crops (Wiley et al. 

2011); and third, they can be cultivated in arable, saline, and wastewater conditions 

throughout the year  (Gendy and El-Temtamy, 2013). Algae are noted to require less 

land for cultivation: if transport fuel use for a single year in the United Kingdom (UK) 

was met solely with biodiesel from rapeseed oil, this would require 17.5 Mha (million 

hectares) of land, which is over 50% of the total land area of the UK. If these 

requirements were met with algae, assumed productivity estimates suggest that only 0.6 

Mha of land would be required (Scott et al. 2010).The varying molecular contents of 

different algal species leads to a variety of products that can potentially be produced; 

including biofuels, animal feed, high-value cosmetics and food supplements, along with 

industrial applications such as wastewater treatment (Figure 1.2) (Markou and 

Nerantzis, 2013). 



   

3 

 

 

Figure 1.2 - Algae cultivation and the potential products (adapted from Markou and Nerantzis, 

2013). 

Algae cultivation, harvesting and processing into useful end-products is promising in 

small- and pilot-scale studies (Rodolfi et al. 2009; Vanthoor-Koopmans et al. 2013). A 

criticism of contemporary research is that potential growth yields from pilot studies are 

frequently overestimated (Moody et al. 2014). A recent study combining a large-scale 

growth model with worldwide meteorological data found that a number of countries in 

South America, Asia and Africa could potentially supplement 30% of their fuel 

consumption from microalgae cultivation with the lowest estimates of productivity 

(Moody et al. 2014). Therefore, even conservative estimates highlight the potential of 

algae as a biofuel. 

The concept of utilising algae to make fuel was first discussed around half a century 

ago. In the 1970s, The US Department of Energy’s Office of Fuels Development funded 
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an Aquatic Species Program (ASP), aimed at producing biodiesel from pond algae 

(Sheehan et al. 1998). This program led to the development of open production systems 

(raceway ponds) and photobioreactors (PBRs) (Sheehan et al. 1998; Wijffels &Barbosa, 

2010). Both open production systems and PBRs have advantages, however there are a 

number of significant drawbacks which make scaling up production to the level required 

for significant biofuel production difficult. Open ponds are prone to contamination, 

require more land, and do not allow manipulation of environmental factors such as light 

intensity, pH, and carbon dioxide delivery (Scott et al. 2010). PBRs allow for controlled 

conditions, and generally show good productivity on the small- to pilot-scale (Ugwu et 

al. 2008). However, they require higher investment and operating costs. These costs 

have been reducing over the past 15-20 years resulting from improvements in PBR 

design, materials and efficiency (Ugwu et al. 2008). Regardless, sensitivity analysis of 

current PBR production costs (accounting for prospective improvements in efficiency) 

estimate that in 10 years costs can reduce from € 5-6per kg biomass to € 0.70 per kg dry 

weight (Norsker et al. 2011). This is close to the US  € 0.23kg -1 recommended cost for 

economic fuel production (Darzins et al. 2010). This 10 to 15 year projection is 

confirmed by other research (Rodolfi et al. 2009; Wijffels & Barbosa, 2010). 

An alternative method of algae production explored in light of these limitations is the 

non-suspended cultivation of algae in a polymeric matrix or from a biofilm. These solid 

carrier systems can potentially offer greater biomass yields, reduce water consumption, 

and be easier to scale up (Gross et al. 2015). In addition, biofilm growth systems can 

reduce costs related to harvesting, which is an expensive process (Ugwu et al. 2008; 

Gross et al. 2015). A variety of surfaces and reactor configurations have been tested to 

facilitate biofilm formation and overall biomass yield: surface biomass productivity 
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ranges from 1.8 to 20.1 g m−2 day−1 depending on reactor design, attachment material 

and algal species (Blanken et al. 2014; Gross et al. 2015). 

Bio-refining of algae to simultaneously produce and extract bulk chemicals, feed, and 

high-value cosmetic and food materials is noted to be one of the most efficient and 

effective ways to make algae production economically viable (Wijffels & Barbosa, 

2010; Vanthoor-Koopmans et al. 2013; Li et al. 2015). For this to occur, current research 

need to focus on first finding the optimum algae species for the desired end-product, 

with regards to biofuels these are generally high lipid-containing species. A promising 

avenue for future research is the genetic modification of algae species (Wijffels & 

Barbosa, 2010). In addition, proficient cell disruption, extraction and harvesting 

technologies are necessary (Vanthoor-Koopmans et al. 2013). With regards to biofilm 

cultivation, the optimum configuration of bioreactor, along with the most effective 

surface materials are areas that need to be explored. These factors, when combined with 

longer duration pilot-studies and intensive cost analyses, will ideally allow algae to fulfil 

its promising potential as a biofuel.  

1.2 Project development 
 

This project is part of the ALGADISK project, funded by the European Union's Seventh 

Framework Program (FP7/2007-2013) under grant agreement no.286887. The 

ALGADISK project aims to develop a biofilm reactor for algal biomass production. The 

ALGADISK reactor will additionally be modular and automatic, which will facilitate 

scaling of the system to meet industrial needs (Wootsch et al. 2012).  

The ALGADISK system uses biofilm technology on Rotating Biological Contractors 

(RBCs), which are commonly used for industrial wastewater treatment (Safa et al. 

2014). Flat plates or discs are coated with a biocompatible surface which the cultivated 

algal species adhere to. These discs are rotated and submerged regularly in the liquid 
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and gaseous media. The system itself utilises captured carbon dioxide from industrial 

emissions to cultivate algae on both biocompatible surfaces and in aqueous 

environments. This means carbon dioxide is absorbed from both the liquid and the 

gaseous phase, increasing the overall productivity of the reactor while minimising water 

requirements. Excess algae on the surfaces of the rotating discs are harvested 

automatically, without disturbing production. For the reactor to be scaled-up or down, 

this requires the addition or removal of discs. Artificial light is provided and 

manipulated by the use of an LED lamp system (Wootsch et al. 2012).  

This design has the additional advantage of a reduced footprint; a criticism frequently 

found in other suspended and non-suspended algae production systems (Jones & 

Mayfield, 2002; Gross et al 2015).  Other advantages of the ALGADISK system over 

conventional open-pond and photobioreactor (PBR) systems are capital costs on par 

with open-ponds, and lower than those of PBRs (Wootsch et al. 2012) Operating costs 

are further reduced as oxygen removal and cooling are unnecessary (Table 1.1). 
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Table 1.1 - Advantages and Disadvantages of open ponds and photobioreactors 

compared to the ALGADISK system (Wootsch et al. 2012) 

 

 

 



   

8 

 

1.3 Objectives of research 
 

The overall aim of this research was to contribute towards the production of an 

economically viable algae-based solution of CO2 capture from industrial emissions and 

biomass production.  

1. To produce a low-cost novel coating based on the strategy of electrostatic 

attraction of algal cells to promote algae biofilm formations intended for the 

ALGADISK reactor.  

2. To optimise the selected surface coating for large scale production.  

3. To investigate the potential of the thermodynamic approach for the prediction 

of algae attachment. 

4. To investigate the role of carrier materials on algal lipid content. 

1.4 Thesis outline 
 

Chapter 2 reviews current algae cultivation techniques and evaluates algae as a potential 

source of biofuel. Chapter 2 also provides insight into previous algae attachment 

research and the physico-chemical properties that have been found to influence this.  

Chapter 3 focusses on the potential of employing polyelectrolyte multilayers as a 

surface coating in order to attract and increase algae attachment. The coating selected 

was then tested with a lab-scale ALGADISK reactor, in order to determine possible 

further modifications needed. These labscale reactors were located and tested at  

 Wageningen University (WU) (Netherlands) and at the Bay Zoltan Foundation for 

Applied Research Institute (BAYBIO) (Hungary). Chapter 4 investigates and tests these 

modifications in terms of implementing surface roughness and texture to the selected 

substrate in order to improve regrowth. Chapter 5 looks at optimizing the PE coating 

selected for large-scale production, and tests the newly devised method on a pilot scale 

ALGADISK reactor. The main aim of chapter 5 was to reduce coating production and 
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application costs, increase the selected coating strength and performance and reduce the 

need for highly trained end-users. Chapter 6 aimed to examine the physico-chemical 

influence of substrates on biofilm formation and lipid content.  
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Chapter 2 

Literature review 

 

2.1 Current Algae Cultivation Techniques 

2.1.1 Suspended algae production 

The majority of conventional algae production systems are suspended systems, where 

algae cells are suspended in a nutrient-rich liquid medium. These can be further 

subdivided into open or closed systems: Open systems, meaning that the algae and the 

medium are exposed to the atmosphere. Closed systems, also termed photobioreactors 

(PBR), involve algae cultivation in controlled systems. 

2.1.1.2 Open systems 

Open-pond systems for the production of biofuels from algae were first introduced 

conceptually in the 1950s. This was in response to a range of factors including the rising 

world population and subsequent need for alternative food sources (Spolaore et al. 2006) 

and the possible utilisation of microalgae as sources of biologically active compounds, 

including antibiotics (Borowitza, 1995). The hypothesised use of algae as a source of 

biomass for methane developed during the 1970s-1990s in projects funded by the US 

Department of Energy (Sheehan et al. 1998). Initially, a paddlewheel-mixed shallow 

raceway pond was developed. These systems are built as individual ponds or as groups 

of ponds arranged in a series connection, and typically are made of concrete or 

compacted earth. These artificial are ponds approximately 0.3 m deep in the shape of a 

raceway (Fig.2.1) where a paddlewheel continuously circulates the liquid around the 
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raceway, ensuring the algae is maintained in a well-mixed suspension. Overall, this 

mimics the natural way algae grows in the environment.  

Advantages of these systems are their low build and operational costs. In addition, they 

are easier to scale up when compared to PBR systems (Shen et al. 2009; Wiley et al. 

2011), partly due to the few electrical and mechanical components required for 

operation. With regards to commercial production of algae, the most common open 

systems currently in use are raceway ponds and tanks. Examples are Cyanotech 

Corporation in Kailua-Kona, Hawaii and Earthrise Nutritionals, California which 

produce Spirulina algae for their value as food and nutritional supplements (Pulz and 

Gross, 2004).  

However there are disadvantages. Open ponds are limited in the species of microalgae 

that can be grown, the larger land area required, the reduced efficiency of light 

utilisation, and the high risk of culture contamination (Pulz, 2001; Richmond, 2004; 

Carvalho et al., 2006). A method to limit culture contamination is through the use of 

highly selective conditions which favour dominance of the desired species (Wiley et 

al. 2011). Therefore, commercial use is restricted to species that can be cultivated 

under conditions of extreme pH or salinity: Examples of some microalgae that can 

grow at low pH environments are: 

 Dunaliella acidophila, Chlamydomonas acidophila, Chlorella saccharophila, 

Pseudococcomyxa simplex, Stichococcus bacillaris, and Viridiella fridericiana. 

 Chaetoceros grafilis and Tetraselmis tetrathele can be cultivated in saline conditions. 

Algae and cyanobacteria such as Spirulina platensis can also grow in saline alkaline 

environments (Razeghifard, 2013). 

In addition, target algae species are frequently replaced by more rapidly-growing wild 

species (Tamburic et al. 2011).  Due to the exposed nature of open systems; 
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temperatures and exposure to natural sunlight fluctuates according to diurnal variation 

and season. Also, evaporation losses are noted to be as high as 10 L m-2 day -1 (Sheehan 

et al. 1998). This amounts to approximately 410 kg of water lost per kg of produced 

algal biodiesel, thus necessitating large volumes of freshwater to be continuously 

supplied to the raceway ponds. Lastly, raceway ponds require energy-intensive 

harvesting and dewatering techniques in order for the algae to be separated, extracted 

and processed; with costs of biomass production accounting for up to 30% of the total 

cost of production (Gudin and Therpenier, 1986). Overall, while operating costs of open 

systems are amongst the lowest of any algae production systems, they generally result 

in low final densities of microalgae (Suh and Lee, 2003).  

 

Figure 2.1 - Overhead view of a raceway pond system (Chisti, 2007) 

2.1.1.2 Closed Systems 

To address some of the aforementioned limitations of open systems, closed 

photobioreactors (PBR) were developed. Here, algae are cultivated in bags, tubing or 

other transparent materials and are therefore not directly exposed to the atmosphere. A 

PBR involves a four phase system composed of the algal cells, the liquid growth 

medium, the gaseous H2 product, and the superimposed artificial light field (Tamburic 

et al. 2011). The closed configuration allows cultivation of a single species of algae, as 

well as specific control of temperature, pH, light intensity and nutrient composition of 
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media. The ideal PBR should have uniform illumination, along with quick mass transfer 

of carbon dioxide and oxygen (Gupta et al. 2015). Therefore, the ideal PBR will have 

optimised the interaction between environmental parameters, i.e. the light field and fluid 

dynamics, and biomass production.  

The artificial light field must be optimised to match the growth kinetics of the cultivated 

algae strain, as many algae are adapted to low light intensities (Posten, 2009). The 

carbon dioxide transfer rate of the culture can be calculated based on the carbon content 

of the biomass (Posten, 2009).  To supply the specified amount of carbon dioxide, 

carbon dioxide-enriched gas bubbles are bubbled constantly to the reactor at the 

optimum partial pressure, which is generally 0.1-0.2 kPa in the fluid phase (Spalding 

2008; Posten, 2009). Mixing ensures algae cells are kept in suspension in the nutrient-

rich media and improves gas-liquid mass transfer. In addition, mixing induces periodic 

light/dark cycles as algae are consistently exposed to the light rich surfaces of the PBR 

and to the darker interior regions (Spalding 2008; Gupta et al. 2015). Research shows 

that enhancing light/dark cycles has direct effects on productivity and biomass field, 

with the light fraction (ratio between the light period and the cycle time) having the 

highest effect on growth rates (Barbosa et al. 2003).  

Various forms of PBR have been developed based on the morphology of the illuminated 

surface. Horizontal tubular PBRs are among the most popular closed systems (Fig.2.2 

A) (Gupta et al. 2015).  Tubular photobioreactors incorporate small (1cm to 6cm) 

diameter tubes with turbulent flow around the tubes maintained by mechanical pumps. 

The various orientations include horizontal, inclined, spiral and helical. Tube length, 

circulation system, light and flow velocity also differ between systems. A key advantage 

of the tubular layout using small diameter tubes is the high surface to volume ratio 

conferred by the design. In addition, the ‘lens’ effect of the small diameter tubes allows 
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for a more even distribution of light and can prevent the mutual shading of algal cells 

from the light source (Posten, 2009). Two PBRs culturing the cyanobacteria Arthrospira 

platensis using 1cm tubes arranged in a horizontal orientation resulted in biomass output 

rates of 2.1 to 2.7 g L−1 d−1  (Carlozzi, 2003). A study comparing the culturing of 

Haematococcus pluvialis in tubular and bubble column PBRs found that the tubular 

design resulted in higher biomass productivity with greater carotenoid content (Lopez 

et al. 2006). 

However, the high surface to volume ratio of PBRs means that for large scale production 

extensive cooling is required. Another disadvantage is the accumulation of oxygen, 

which at high levels inhibits algae growth (Gupta et al. 2015). Therefore, tubular PBRs 

may be a more suitable choice for high value compounds (such as carotenoids) rather 

than energy products (Posten, 2009). Additionally, tubular PBRs also require more land 

use than other PBR designs.  The largest tubular PBR is located in Klötze, Germany 

with tubes of 500 km length in total (Posten, 2009).  

Vertical tubular PBRs are composed of transparent vertically-arranged tubes with the 

cultured circulated via an airlift system or an air pump. Two subtypes of vertical PBRs 

are bubble column and airlift.  Bubble column PBRs use gas sparging to achieve 

agitation and mixing. The lack of moving parts and the efficiency of sparging allows 

for good mixing and low shear stress (Ugwu et al. 2008; Gupta et al. 2015). These types 

of reactors have wide commercial use for wastewater treatment, along with the 

production of beer, vinegar, and baker’s yeast (Gupta et al. 2015).  

Airlift PBRs physically separate the column either through an internal loop, an internal 

tube, or an external loop. This means that there is separation of the up-flowing (riser) 

stream and the down comer stream. The gas is sparged through the riser stream, and 

then the heavier now bubble-free liquid at the top of the vessel subsequently recirculates 
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through the down comer. This induced circular mixing pattern theoretically exerts a 

light/dark cycle on the algal cells (Sanchez Miron et al. 2002; Gupta et al 2015).  

A study culturing Phaeodactylum tricornutum in both an airlift PBR and a bubble 

column PBR (19cm diameter) concluded that final biomass concentrations and growth 

rates were comparable to narrow (3cm) tubular PBRs (Sanchez Miron et al. 2002). The 

authors also noted that oxygen inhibition of photosynthesis is less than that of tubular 

PBRs.  However, they are generally suited to small-scale production at present, as 

increasing the diameter of the column leads to areas of high dark fraction in the centre 

of the cylinder (Posten, 2009). In addition, scaling up may be difficult as the surface 

area exposed to illumination is relatively small, and construction of airlift PBRs requires 

sophisticated materials (Ugwu et al. 2008).  

Flat plate or plate photobioreactors (Fig.2.2 B) are composed of flat, translucent panels 

which can be oriented and tilted at varying angles to increase exposure to artificial or 

natural light. The flat panels confer a high surface to volume ratio. Similar to tubular 

PBRs, pumps circulate the algae cell suspension. Advantages of this design are the 

larger surface area exposed to light, suitability for outdoor culturing, and relatively low 

cost. Oxygen accumulation is also noted to be lower than that of horizontal PBRs. 
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Figure 2.2: Schematic drawing of tubular horizontal photobioreactor (A); and a flat-plate 

photobioreactor (B) (Jorquera et al. 2009) 

However, flat panel systems generally result in lower areal yields (Gupta et al. 2015). 

This is likely due to the short light penetration depths.  Other limitations include: control 

of culture temperature and aeration of flat panel PBRs that can result in hydrodynamic 

stress (Ugwu et al. 2008). The overall consensus is that flat plate PBRs are more suited 

to research or small-scale production, and thus are unsuitable for the production of 

biofuel (Ugwu et al. 2008; Posten, 2009; Gupta et al. 2015).  

Stirred tank PBRs (Fig.2.3) consist of a tank with a motor-driven agitator. This agitator 

results in mechanical agitation of the algae cell media, along with aeration and heat and 

mass transfer (Gupta et al. 2015). The agitator generally requires a higher energy input 

per unit volume, however the stirring mechanism means that light dispersion throughout 

the medium and mass transfer rates are high (Gupta et al. 2015). This subsequently leads 

to good biomass productivity, although, productivity is hindered by the low surface to 
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volume ratio. In addition, the energy-intensive motor-driven agitation leads to high costs 

and inefficiency, ultimately meaning that stirred tank PBRs are difficult to scale up.  

 

Figure 2.3: Stirred tank photobioreactor (Gupta et al. 2015) 

Overall, the higher investment and operating costs of PBRs are significant barriers to 

industrial use (Carvalho et al. 2006), therefore closed reactors are predominantly utilised 

for high-value products that require cultivation in controlled environments. The various 

cultivation systems of PBRs are promising on the smaller scale, but are generally 

difficult to scale up.  

Typically, PBRs do show greater volumetric productivity when compared to open 

ponds. This is secondary to enhanced capture of light energy and more optimal use of 

land area. There is wide variation in energy use for mixing and gas/liquid mass transfer 

according to the type of PBR: Values of 55 W/M 3for flat plates and from 800–

3000 W/m3 for horizontal tubular reactors have been suggested (Carvalho et al., 

2006 and Sierra et al., 2008).  A significant drawback of flat plate PBRs is the 

vulnerability to stress by aeration (Tamburic et al. 2011).  Both forms of PBR have been 

scaled up to volumes of over 1000 L (Sierra et al. 2008), and recent advanced in PBR 
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design focusing on photosynthetic efficiency and automated process control systems are 

aiming to bring costs of PBRs down. 

Recent analysis showed that PBRs at a capital cost of US  €  452, 690 ha -1 must decrease 

to less than US  € 90,540 ha -1 in order to compete with raceway ponds (Darzins et al. 

2010). Overall, both open and closed systems are not feasible in their present ability to 

produce biofuels from microalgae. Operating costs significantly hinder PBRs, even with 

the research on current systems like the Simgaetm and the GWP-II which show 

construction costs similar to lined ponds (Borowitza and Moheimani, 2012). The present 

cost of biomass production is US  €  4.53 kg -1,which is 20 times the price suggested for 

economic fuel production (US  € 0.23 kg -1) (Darzins et al. 2010). Norsker and 

colleagues (2011) calculated monthly biomass production costs for open pond, 

horizontal tubular PBRs, and flat panel PBRs in Dutch conditions. The costs were 4.95, 

4.15 and 5.96 € per kg respectively. Sensitivity analysis accounting for enhanced 

irradiation and photosynthetic efficiency, along with reduced nutrient and mixing costs 

could potentially reduce costs to € 0.70 per kg dry weight for the two bioreactors and € 

1.30 for the raceway in approximately 10 years. Other methods to improve efficiency 

and economics are the use of flue gases from industrial sources as the carbon dioxide 

source, along with wastewater as the primary water source (Acien et al. 2012). While 

the biomass production and controlled conditions that PBRs possess are advantageous, 

the major issue with regards to large scale biofuel production are scaling up production 

while simultaneously keeping energy input low, minimising maintenance costs and 

maximising solar radiation.  

2.1.2 Non-suspended algae production  

Following on from aforementioned cost and production limitations with suspended 

algae production methods, there is now an interest in using surface attached algae 
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systems. These solid carrier systems offer higher biomass yields, are easier to scale-up, 

offer improved control of contamination and show markedly reduced water 

consumption (Gross et al. 2015; Katarzyna et al. 2015). With regards to non-suspended 

production, algae can either be incorporated into a polymeric matrix (enclosure 

method), or the algae can form a biofilm on the surface (non-enclosure). Algae are noted 

to be easier to control when encapsulated inside a polymeric matrix. A similar technique 

has been widely used in the industry for many years for the purpose of enzyme and 

organelle entrapment (Katarzyna et al. 2015). Hameed and Ebrahim had some success 

with immobilising algae cells via a matrix of alginate. However, large scale production 

was difficult due to the high cost of polymeric matrix (Hameed & Ebrahim, 2007).  

Johnson and Wen recently developed a rocker system with a bottom surface consisting 

of polystyrene for the attachment of algae. They tested it on Chlorella sp and found that 

the attached culture produced a higher yield than the suspended culture (Johnson & 

Wen, 2010). However, scaling-up polymeric matrices is highly expensive, and is a 

major barrier for large-scale non-suspended production of algae.  

A biofilm is a layer of eukaryotic or prokaryotic cells which are anchored to a 

substratum and embedded in an organic biological matrix (Bos et al. 2006). In contrast 

to suspended production systems, biofilm production shows reduced costs as harvesting 

is more easily accomplished (Gross et al. 2015). Gross and colleagues used a Revolving 

Algal Biofilm (RAB) growth system, and found that a raceway-based and a trough-

based RAB system were superior (with regards to footprint and surface biomass 

productivity) to a control raceway pond by 309% and 697%, respectively. In addition, 

the authors noted reduced costs secondary to improved water efficiency and cheaper 

harvesting (Gross et al. 2015). Another study combined a Rotating Algal Biofilm 

Reactor (RABR) with a simple spool harvesting method and found that this technique 
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was effective at wastewater treatment and biomass production at the small- to medium-

scale (Christenson and Sims, 2002). Harvested algae is approximately 10-20% dry 

content, similar to that of post-centrifuged biomass (Christenson and Sims, 2002; Gross 

et al. 2013). 

As stated, non-enclosure methods are based on biofilm cultures. As a consequence of 

biofilm formation, cell densities in reactors can increase significantly (Qureshi et al, 

2005). There have been several different types of larger scale biofilm systems developed 

thus far, which vary according to end application, configuration, and attachment 

materials. A variety of materials have been utilised in the literature: Cao and others 

produced a floating conveyer belt system for the harvesting of algae from textured steel 

surfaces (Cao et al. 2009). Torpey and others also had used metal surfaces for their algae 

and set up illuminated rotating aluminium disks (Torpey et al., 1971). More recently, 

Christenson and Sims found that cotton rope was the most effective substratum in their 

novel rotating algal biofilm reactor (RABR). Polyvinyl chloride (Posadas et al. 2013), 

cellulose acetate (Genin et al. 2014), and glass (Schnurr et al. 2013) have all been 

successfully used.  

Gross and colleagues subdivide the various configurations of algal biofilm systems into 

stationary and rotating designs (Gross et al 2015). The stationary design uses a pump to 

transfer liquid over the surface of a biofilm. Algal turf scrubbers (ATS) are an example 

of this design, where liquid is flowed over a biofilm formed on the horizontal attachment 

sheet. This method has been successfully used in the treatment of dairy manure effluent 

(Mulbry et al. 2008). Operational costs of ATS are noted to be below costs cited for 

upgrade of existing wastewater treatment systems, likely secondary to the minimal use 

of moving parts (Mulbry et al. 2008). However, scale up is limited by the fact that ATS 

require a significant foot print (Gross et al. 2015).  
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Stationary systems can also be orientated vertically, which creates a flat-plate reactor. 

This configuration has been used to cultivate a range of algae species for feedstock 

production (Liu et al. 2013) and wastewater treatment (Zamalloa et al. 2013). A parallel 

flat plate biofilm reactor was noted to have low capital and operating costs with regards 

to wastewater treatment; approximately 0.5 €/m3. The vertical orientation of plates 

means that overall land footprint is smaller than that of a horizontal plate reactor, but 

the vertical orientation does mean that energy is required to maintain liquid circulation.  

In contrast, rotating algal biofilms (RAB) involve the rotation of the attachment material 

through the air phase and the liquid medium. As stated previously, harvesting is 

commonly accomplished by scraping. The attachment materials can be oriented as flat 

discs (Blanken et al. 2014), a rotating cylindrical drum (Christenson and Sims, 2012) or 

a conveyor belt (Gross et al. 2013). Whertz and colleague’s developed a bacterial 

biofilm reactor which consisted of trickling filters and a rotating biological contactor 

(RBC) (Whertz et al, 2004). RBCs have been utilised in wastewater treatment since the 

1970s (Hassard et al. 2015). 

Two key parameters when discussing the efficiency of algal biofilm reactors are the 

surface biomass productivity and the footprint biomass productivity. A review 

conducted by Gross and colleagues (2015) found that surface biomass productivity is 

generally in the range of 2 - 6 g m−2 day−1, while footprint productivity varies widely 

from 0.71 to 80 g m−2 day−1. The wide range is likely attributed to the differing 

orientations of biofilm systems, as well as the varying strains and conditions tested. 

The major benefits shown by the research are the ease of harvesting when compared to 

suspension-based systems. However, scaling up production will require an efficient 

mechanical harvesting method, as manual harvesting is not feasible for large scale 

production. Light is used more efficiently due to the uniform nature of the biofilm, 
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especially when compared to the varying light paths and biomass densities in suspended 

reactors. This is especially true if frequent harvesting is performed. Photosynthetic 

efficiency is noted to be increased in vertical biofilm reactors, as the biofilm dilutes 

sunlight throughout the entire surface area, which subsequently reduces 

photosaturation. This combined with reduced light reflection which occurs on exposed 

open ponds leads to higher biomass yields within the same footprint area (Gross et al 

2015). Carbon dioxide transfer to biofilms is superior to that of open ponds as there is a 

larger gas-liquid interface. However, carbon dioxide has to diffuse through the interior 

layers of the biofilm, unlike in suspended systems where carbon dioxide can be 

adsorbed (Gross et al. 2015). This limiting step can also be alleviated by frequent 

harvesting which ensures the biofilm remains thin.   

Future research on algal biofilm systems needs to focus on developing a surface coating 

that could potentially enhance algae attachment and optimise biofilm formation. In 

addition, long-term pilot- and laboratory-scale studies are required to determine the 

most efficient methods of carbon dioxide transfer, light penetration and harvesting, 

along with determining the economics of scaling up these systems for large-scale 

cultivation. 

 

2.2 Algal attachment and biofilm formation 

 

Biofilm formation is altered by a number of factors. Important physiological influences 

are the microorganism type, growth stage and metabolic activity. Environmental 

variables include the pH, electrolyte type, ionic strength and temperature. Interface 

factors are the surface charge, surface energy, chemical nature, wettability, lubricity and 

surface topography (Bowen et al. 2007; Li et al. 2010; Characklis et al. 1990; Cao et al. 

2009). The sequence of events is constant and can be subdivided into two parts: firstly, 
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the initial attachment, and second, deliberate secondary adhesion (Callow and Fletcher, 

1994).  

Initially, cells can move towards the conditioned surface in a range of ways; they can 

move actively via motile mechanisms, be transported by gravity, or be transferred by 

advection (Ozkan and Berberoglu, 2013).  Attachment for most algae is thought to be 

facilitated by its specialised reproductive propagules which allow initial contact with a 

substratum. Motile spores are aided by their ability to respond to external stimuli such 

as surface texture and surface chemistry. Non- motile spores are aided by the adhesive 

properties of the extracellular residual mucilage. After initial contact is made all spores 

secrete adhesive materials which allow a permanent attachment to be made (Fletcher & 

Callow, 1992). The primary colonisers are considered to be diatoms, which are unicells 

or colonial algae. The spontaneous, often reversible adsorption of organic and inorganic 

aqueous molecules to the solid surface is followed by a non-reversible secondary 

adhesion of cells via the production of adhesive EPS (extracellular polymeric 

substances). These are molecules produced by both algae and other microorganisms in 

response to physiological stresses encountered in the natural environment (Marvasi et 

al. 2010).   

Algogenic organic matter (AOM) can consist of proteins, peptides, amino sugars, and 

polysaccharose (Pivokonsky et al., 2006). AOM consists of multicomponent, 

mucilaginous, organic bioadhesive complexes that can found on the exterior of algal 

plasma membranes (Evans, 2000).   The major molecular components are acidic 

polysaccharides, proteins, and an actin-based cytoskeleton. The binding strength of EPS 

found in AOM is thought to occur by hydrogen bonding, electrostatic interactions and 

van der Waals forces between functional groups (Ozkan and Berberoglu, 2013). 

Computer derived models showed that charged groups are present on the exterior of the 
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molecular chains, and so can easily interact with other charged molecules (Sutherland, 

2001). 

Research focusing on biofouling has focused on the only variable that can be altered 

artificially, namely the properties of solid surface. The strength of adhesion of both 

micro- and macro-organisms is generally thought to be lower on hydrophobic surfaces 

with a low surface free energy (Brady and Singer, 2000; Li et al. 2010), where minimal 

bioadhesion occurs at 22-24 mJ/m 2 (Li et al. 2010). However, a number of studies have 

shown unexpected behaviours regarding surface energy and adhesion. Certain diatom 

species adhere more strongly to hydrophobic surfaces. This is in contrast to the adhesion 

behaviour of other marine fouling organisms, like green algal spores (Ista et al. 2004).  

A study investigating the adhesion properties of the diatom Nitzschia closterium on self-

assembled monolayers (SAMs) with hydrophobic methyl (CH3-SAM) and hydrophilic 

carboxylic (COOH-SAM) end groups on glass slides found that attachment densities 

were much greater on hydrophobic CH3-SAMs with smaller free energy, and lower on 

mixed SAMs (Li et al. 2010). However, the percentage of removed adhered cells was 

larger for hydrophobic surfaces, overall idicating weaker adhesion strength.  

Alteration of wettability using mixed mernncaptoundecanol (–OH) 

and dodecanethiol (–CH3) SAMs on a gold surface, showed that Ulva zoospores settled 

less on hydrophilic surfaces (Rosenhahn et al. 2010). In another study, the increase 

of Enteromorpha zoospore adhesion with rising contact angle (hydrophobicity) was 

dependent on the surface composition of the mixed –OH/–CH3-terminated alkane 

thiol SAM (Callow et al. 2000). Similar results were found by Finlay and colleagues 

who examined the effect of wettability on the adhesion characteristics of the species 

Enteromorpha and the diatom Amphora coffeaeformis. Results showed that there was 

only slight influence of wettability on the primary adhesion of Amphora. However, 
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motility was subdued at contact angles over 60°, and cells were more adhered to the 

hydrophobic surface, and less adhered to the hydrophilic surface. This strong adhesion 

strength was linked to decreased diatom motility on the hydrophobic surface 

(Wigglesworth-Cooksey et al. 1999).Enteromorpha spores showed strong preference, 

but weak attachment on hydrophobic surfaces (Finlay et al. 2002).  

Finlay and colleagues explained the non-significant effect of wettability on adhesion 

could be attributed to the presence of EPS. Research looking at EPS production and 

attachment on substrata with varying surface tensions determined that EPS production 

is greatest on substrata with surface tensions above 30 mN m-1. However, adhesion of 

Amphora coffeaeformis on both low polytetrafluoroethylene and high (glass) surface 

tension substrata was equally strong, although EPS production was much greater on 

glass compared to PFA. Therefore, on surfaces that are hydrophobic, factors other than 

AOM become more important for attachment and biofilm formation (Becker, 1996). 

Overall, research suggests that interfacial energetics are complex and are heavily 

influenced by algal species and the chemical composition of the specific substrate. Shen 

and colleagues assessed the adhesion of six species of freshwater algae. The species 

with the greatest adhesion biomass productivity (ABP) Chlorococcum sp. was then 

tested on nine different support materials. Glass fibre-reinforced plastic was found to be 

the optimum surface. In addition, the study found that initial total nitrogen 

concentration, pH, culture volume and culture period are the most significant factors 

determining ABP (Shen et al. 2013).   

2.3 Cell to Substrata and Cell to Cell Interactions 

There are three physico-chemical approaches available to describe microbial adhesive 

interactions; the thermodynamic approach, the classical DLVO (Derjaguin, Landau, 

Verwey, Overbeek) approach, and the extended DLVO approach. The thermodynamic 
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approach assumes that when interacting surfaces physically contact each other, this 

occurs under conditions of reversible adhesion (thermodynamic equilibrium).  The 

approach does not incorporate a role for electrostatic interactions, and is instead centred 

on the free energies of the interacting surfaces. In contrast, the DLVO approach 

incorporates van der Waals along with electrostatic interactions and their decay with 

regards to separation distance to describe the interaction energies between two surfaces 

(Bos et al. 1999). Research suggests that both approaches have use for describing 

microbial adhesion for some species, but have thus far unsuccessfully accounted for all 

aspects of microbial adhesion (Bos et al. 1999). The extended DLVO approach further 

incorporates acid-base interactions to seek to explain some of these discrepancies.  

 

 

2.3.1 The thermodynamic approach 

The thermodynamic approach views attachment as a spontaneous change accompanied 

by reduced free energy of the system. The approach uses the Dupré equation to compare 

the surface free energies between interacting surfaces: 

∆Gadh = γsm – γsl – γml 

γsm, γsl and γml refer to the solid-microorganism, solid-liquid and microorganism-

liquid interfacial free energies. Microbial adhesion is favourable when ∆Gadh is 

negative, that is if γsm is smaller than the sum γsl and γml. This represents a state of 

minimal free energy. Adhesion is therefore energetically unfavourable when ∆Gadh is 

more than 0 (Cui & Yuan, 2013).  

In order to determine the values for surface interfacial free energies, the contact angles 

of liquids on test substrata can be utilised as an indirect estimate.  Contact angles are 

related to the work of adhesion via the Young-Dupré equation: 
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γlv cos θ = γsv - γsl 

The subscripts refer to the surface free energy between the vapour (v), solid (s), and 

liquid (l).   

In summary, the model predicts that adhesion will rise as the surface tension of the 

substratum rises, as long as the surface tension of the liquid medium is lower than the 

surface tension of the cells (Absolom et al. 1979). If on the other hand the liquid medium 

surface tension is greater than that of the cellular surface tension; then cell adhesion will 

decrease as the surface tension of the substratum increases (Absolom et al. 1979). This 

thermodynamic model of adhesion has been shown to be useful in understanding the 

adhesion of other microbes. For example, by varying the surface tension of the liquid 

medium with the use of dimethyl sulfoxide (DMSO), granulocyte and platelet adhesion 

was shown to match the thermodynamic model (Absolom et al. 1979). In addition, 

different strains of bacteria show varying attachment depending on cell surface 

composition, which in turn results in varying surface free energy (Fletcher & Pringle, 

1985).  

Cui & Yuan (2013) simulated microalgal attachment to solid-carrier surfaces using the 

thermodynamic model. Results indicated that if the polar surface energy of the cell is 

lower compared to water, attachment is more favourable on surfaces with greater 

dispersive surface energy and lower polar surface energy.  Experimental data using 

freshwater algae S. dimorphus and marine algae N. oculata on five materials (nylon, 

stainless steel, polycarbonate, polypropylene, and glass) qualitative matched the 

findings of the modelling data. Overall, findings support data that algal cell attachment 

is determined by the surface energies of cells and their substrata (Cui & Yuan, 2013). 

Research has shown that although the thermodynamic model can explain some 

microbial attachment patterns, there are limitations with the model. Firstly, it assumes 
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an equilibrium situation. This fails to account for microbial contributions to the 

initiation or stabilisation of attachment, for example by the production of adhesive 

polymers. In addition, microbial surface attachment mechanisms are more chemically 

complex and the thermodynamic model does not account for conformational changes in 

polymers and other entropy-gaining processes (Katsikogianni & Missirlis, 2004). Algal 

surfaces can be extremely complex with long-chain polymers, flagella and fimbriae 

extending into the medium, and are therefore difficult to incorporate into a reductionist 

approach (Cui & Yuan, 2013).  

2.3.2 The classical DLVO Approach 

The DLVO approach describes microbial adhesion as an equilibrium between attractive 

Lifshitz-van der Waals forces, and either repulsive or attractive electrostatic forces (Van 

Oss et al. 1989; Ozkan & Berberoglu, 2013a). The inclusion of electrostatic interactions 

here requires that the zeta potentials of the interacting surfaces are measured, along with 

contact angle measurement.  The interaction energy between two surfaces can be seen 

as:  

(1) Gtot (d) = GLW (d) +GEL (d) 

(2) GLW(d)=−AR/12d 

(3) GEL(d)=2πεRψ2 ln[1+exp(−κd)] 

Gtot refers to the total, Glw denotes the Lifshitz-van der Waals forces, and Gel denotes 

electrostatic interaction energy. Decay with distance (d) of the interaction energies is 

dependent on the geometry of interacting surfaces. A is the Hamaker constant. The van 

der Waals force is responsible for attraction therefore the corresponding interaction 

energy, G LW, is usually negative. The interaction energy, G EL, of the electrostatic 

repulsive force is positive (Van Oss et al. 1989; Ozkan & Berberoglu, 2013a). 
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In equation (2), G LW decreases as an inverse power of the distance between the 

cells. G EL in equation (3) is an exponential function of the distance between two cells 

with a range of the order of the thickness of the double layer (κ −1). Therefore, van der 

Waals attractions are prominent at small intercellular distances, while electrostatic 

repulsion is most prominent at intermediate distances (Van Oss et al. 1989; Ozkan & 

Berberoglu, 2013a). 

Based on the classical DLVO theory, only the electrostatic double layer force can be 

modified to a significant extent, and repulsion can be greatly affected by changing the 

ionic strength of the suspension medium or by modifying the surface charge of the cells 

through pH adjustment or addition of positively charged flocculants. DVLO models 

have been used to quantify the adhesion energy in bacterial adhesion and aggregation 

as a function of the separation distance between surfaces for Escherichia coli (Redman 

et al. 2004), Pseudomonas (Rijnaarts et al. 1995) plus Streptococci and Staphylococci 

species (Truesdail et al. 1998).  

Another study assessed two bacteria species as biocoagulants to harvest Chlorella 

zofingiensis and Scenedesmus dimorphus, and assessed the influence of UV-irradiation 

and a polylethylenimine (PEI)-coating on harvesting efficiency. The authors used the 

soft-particle DLVO theory to determine that an energy barrier formed between uncoated 

E.coli cells and algal cells, and this explained the reduced harvesting efficiency when 

compared to PEI-coated E.coli cells (Agbakpe et al. 2014). The DLVO model has been 

used to predict flocculation characteristics of Scenedesmus dimorphus and 

Nannochloropsis oculata; algal cells with a lower total DLVO interaction energy had 

greater flocculation efficiency (Cui et al. 2014). 

However, the theory has limitations in it generally assumes that the substratum and the 

particle surfaces are chemically inert. Interacting bacteria and algae are essentially 

http://link.springer.com/article/10.1007/s12010-014-0957-4/fulltext.html#Equ3
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assumed to be molecularly smooth. This does not account for the various hydrogen and 

chemical bonds that are present when bacteria or algae interact with substratum 

surfaces. Furthermore, surface structure and surface roughness are not considered to 

impact the energies of interaction by the classical DLVO model (Agbakpe et al. 2014).  

 

2.3.3 The extended DLVO approach 

This approach developed by Van Oss and colleagues focuses on the four non-covalent 

interactions: these are Lifshitz-van der Waals, electrostatic, Lewis acid-base and 

Brownian motion forces (Van Oss et al. 1989; Park & Kim, 2015). The addition of 

Lewis acid-base interactions is based on the electron-donating and –accepting properties 

that occur between polar groups in aqueous solutions, and therefore theoretically 

account for hydrogen bonding which occurs on close approach of bacteria and 

substratum (Bayoudh et al. 2009). The free energy balance of acid-base (ΔGadh
AB) is 

integrated into the extended DLVO approach by the attribution of a decay function. Van 

Oss and colleagues proposed that these attractive or repulsive polar interactions may be 

up to 10-100 times greater than electrostatic and Lifshitz-van der Waals forces (Van 

Oss et al. 1989). These forces are only prominent when the interacting surfaces are less 

than 5mm apart (Bos et al. 2006).  

The total interaction energy is given as (Van Oss et al. 1989): 

 

The free energy balance of acid-base is given as (Ozkan and Berberoglu, 2013a): 

 

In this equation,  refers to the polar free energy change of the overall system.  

is the gyration radius of water molecules in a solution, which is greater around 
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hydrophobic surfaces and less around hydrophilic surfaces (Ozkan and Berberoglu, 

2013a). 

These acid-base interactions may account for differences between DLVO predictions 

and experimental findings (Bayoudh et al. 2009). A comparison between the DLVO and 

extended DLVO approaches with regards to the adhesion of two bacterial strains to glass 

and indium tin oxide (ITO)-coated glass found that the extended DLVO approach was 

more accurate (Bayoudh et al. 2009).  The extended DLVO model was more accurate 

in predicting the density of algal cells and their strength of adhesion when Chlorella 

vulgaris and Botryococcus sudeticus were tested with hydrophilic and hydrophobic 

surfaces (Ozkan and Berberoglu, 2013a). The authors compared the extended DLVO 

model with the thermodynamic and the DLVO models. It was found that the 

thermodynamic model was unsuccessful in predicting the adhesion of C. vulgaris to a 

hydrophilic surface. The DLVO model did predict the density of cells adhered to both 

surfaces, but failed to account for the weaker interaction of C. vulgaris to glass (Ozkan 

and Berberoglu, 2013a). 

Ozkan and Berberoglu (2013b) found that acid-base interactions were the predominant 

mechanism for the adhesion characteristics of 10 different strains of freshwater and 

saltwater microalgae. The authors identified that Botryococcus braunii and Cerithiopsis 

fusiformis as promising species for bioflocculation and biofilm formation in freshwater 

and saltwater aquatic systems, respectively. 

2.4 Methods for harvesting algae 

Following the cultivation of algae in suspended or non-suspended systems, algae is then 

harvested. As previously stated, algal biomass harvesting comprises up to 20-30% of 

the total biomass production cost. Therefore, optimal harvesting methods are crucial to 

make large-scale production viable. 
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Algae cultivation uses high volumes of growth medium, and separation of microalgae 

from this growth medium comprises the harvesting process. In addition, high biomass 

concentration results in mutual shading of microalgae, thus decreasing productivity. 

Overall, this results in relatively low biomass concentrations: ranging from 

approximately 0.5 g/l in open pond reactors to about 5 g/l in photobioreactors 

(Vandamme et al. 2013). Therefore, the correct balance between biomass production 

and efficient harvesting techniques is imperative for large-scale production. 

Very large volumes of water must be removed to harvest the biomass. Two factors 

which prevent the sedimentation or simple screening of growth medium to harvest algae 

are the small size of the microalgal cells (2-20 μm) and the colloidal stability of 

microalgal suspensions. When particles are suspended in water, this results in the 

formation of an electric double layer of ions and counter ions which maintain electrical 

neutrality: This is composed of a dense layer close to the particle surface termed the 

Stern layer, and a diffuse layer further away (Vandamme et al. 2013). 

As the particle moves through solution, the ions surrounding the particle move with it 

up to a certain boundary; this is termed the slipping plane. The potential difference 

between the bulk fluid and the layer of counter ions which move with the charged 

particle is named the ζ potential (measured in mV).Therefore, electrostatic repulsion 

between particles depends on the value of the ζ potential; the greater the ζ potential (>25 

mV), the stronger the repulsion, and the more stable the suspension becomes. If the ζ 

potential approaches 0, particles can approach each to a point where attraction via Van 

der Waals forces occurs, resulting in the aggregation and flocculation or coagulation of 

particles (Vandamme et al. 2013).  
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With regards to microalgae, surface charge is predominantly determined by cell surface 

carboxylic (-COOH) and amine (-NH2) groups. Above pH 4-5, carboxylic groups are 

negatively charged while amine groups are uncharged, resulting in a net negative 

surface charge. AOM has also been found to influence charge density, flotation and 

coagulation. AOM composition can also vary between different species of algae 

(Henderson et al.,2010). 

Contemporary algae harvesting generally uses centrifugation, however the high cost and 

high energy use of this technique makes it suitable for only high-value algae products. 

A suitable alternative harvesting method for low-value products (i.e. biofuels) is 

required to scale-up microalgal biomass production, and is one of the main barriers to 

large scale economically viable microalgae cultivation (Schlesinger et al. 2012; 

Vandamme et al. 2013). 

Flocculation, where single cells form large aggregates, is considered to be an 

encouraging method compared with other aforementioned techniques. It allows for the 

rapid treatment of large quantities of microalgal culture. It can be also be used with a 

variety of species (Uduman et al. 2010). The flocculants or aggregates of cells can be 

subsequently filtered from the growth medium by simple gravity sedimentation. A two-

step harvesting process for microalgae would first use flocculation to concentrate a 

dilute suspension 0.5-5 g/l dry matter into a slurry of 10-50 g/l (Shen, 2014). Subsequent 

dewatering using mechanical centrifugation is then performed, finally resulting in an 

algal paste with 25% dry matter content (Vandamme et al. 2013; Shen, 2014). 

Centrifugation is more economically viable for this second step because the primary 

flocculation step equals aggregates of particles and a lower volume of water.   
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Flocculation has a range of industry applications which include brewing, water 

treatment and mining (Vandamme et al. 2013). In contrast to algal cultivation, 

flocculation is utilised to separate impurities from a large volume of liquid, with the 

liquid being the final product. Flocculation can be induced in a number of ways: 

Chemical flocculation uses metal salts which form metal hydroxide precipitates.  These 

can induce flocculation through charge neutralisation which negates electrostatic 

repulsion and thus causes particles to coagulate. Chemical flocculation can also cause 

flocculation by bridging particles together, or by entrapping particles in mineral 

precipitates (termed sweeping flocculation) (Schlesinger et al. 2012). A significant 

drawback is that metal salts accumulate in the harvested biomass. Chemical flocculation 

can also occur with synthetic polyacrylamide polymers, or with biopolymers like 

chitosan and poly-γ glutamic acid. Biopolymers are safer than synthetic polymers, 

however Chitosan is only effective at unsuitable pH levels conducive to microalgae 

growth, and other biopolymers are ineffective at cultivating microalgae in saltwater 

(Uduman et al. 2010). 

Flocculation can occur spontaneously in lakes or rivers containing natural blooms of 

algae. This is attributed to extracellular polymer substances and occurs via an unclear 

mechanism, possible due to species-dependent production of infochemicals. 

Bioflocculation is used in wastewater treatment using microalgae. Bacteria and fungi 

can also induce the bioflocculation of algae, however this results in microbiological 

contamination which is an issue where biomass is used for food or feed applications 

(Vandamme et al. 2013).  

Autoflocculation can occur spontaneously when pH is increased above 9 via the 

production of calcium or magnesium precipitates, however this can also result in high 

concentrations of minerals in the harvested biomass. Physical flocculation would avoid 
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contamination of biomass. Proposed methods are via standing ultrasound waves, 

electrocoagulation, or magnetic nanoparticles. Studies have used nanoparticles 

composed of single (Cerff et al. 2012) or composite (Lee et al. 2013) structures. Iron 

oxide (Fe3O4) nanoparticles adsorb directly onto microalgal cells, and cells are then 

separated by applying a magnetic field.  Aminoclay and Chitosan composite 

nanoparticles result in fast harvesting and enhanced biomass recovery respectively (Lee 

et al. 2014), however high manufacturing costs remain a bottleneck. Recent advances 

in efficiency and processing time of microalgal harvesting with nanoparticles are 

promising, however methods for cost-effective recycling as well as efficient and stable 

nanoparticles are required (Lee et al. 2014). 

Overall, development of an efficient and cost-effective flocculation technology is 

imperative in making large scale algae cultivation viable. Promising areas of research 

are physical flocculation using nanoparticles and the genetic modification of algae 

which facilitate flocculation (Wijffels & Barbosa, 2010). Research into the influence of 

algal species and growth medium on flocculation, as well as the infochemicals that 

induce flocculation is also required. Bioflocculation using this method would allow 

harvesting without the addition of contaminants that occurs with chemical and 

microbiological flocculation.  

2.5 Algae as a potential Biofuel 

Overall energy consumption of the world is expected to continue to rise concurrently 

with the increase in population. Data from 2010 shows that the world’s primary energy 

consumption increased by 5.6%, which was the largest percent growth for a single year 

in just under 40 years (BP, 2011). Much of this growth included increased usage of the 

major fossil fuels; coal, natural gas and oil. The finite supply of fossil fuels combined 

with the environmental repercussions of their continued usage has highlighted the need 
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for alternative and renewable sources of energy (Jones and Mayfield, 2012). A recent 

review in 2010 by researchers from Oxford University concluded that conventional 

production of oil will likely decline (Owen et al. 2010), which supports the notion in the 

Hirsch report that the ‘era of plentiful, low-cost petroleum is approaching an end’ 

(Hirsch, 2005). The study also highlights the negative repercussions that changes in oil 

price can exert on the macro-economy. Therefore, investing in alternative fuels carries 

financial benefits in addition to improving energy security and reducing emissions 

(Owen et al. 2010). 

Diversification of available liquid fuels is necessary to meet the rising demand. 

Government policies focused on reducing emissions of greenhouse gases and improving 

energy security have led to a renewed interest in biofuels over the last few decades. The 

first generation biofuels are derived from starches, sugars, animal fats and vegetable fats 

produced in food crops such as corn, sugar cane, soy, and plant or nut oils. Two of the 

most commonly produced biofuels are bioethanol derived from corn or sugarcane, and 

biodiesel produced from a variety of oil-seed crops such as palm, rapeseed and soybean 

(Jones and Mayfield, 2012). These crops can be cultivated on arable land and are 

relatively easy to extract. However, many of these products are vital for global food 

supply and feedstock worldwide. For example, the cultivation of corn crops specifically 

for biodiesel production rather than food production leads to raised food prices 

worldwide (Moore, 2008). A further criticism is that the large-scale deforestation 

necessary to clear land for growth of these crops can in fact lead to the release of carbon 

stocks, overall reducing carbon savings (Mohr and Raman, 2013).  

Second generation biofuels are also termed advanced biofuels, and refer to fuels 

manufactured from more sustainable types of biomass, namely landfill, plant and oil 

material. Polysaccharide-rich lignocellulosic material derived from plant crops and 
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waste vegetable oil are two examples. As these products are more sustainable, the 

second generation biofuels have a greater carbon benefit per hectare when compared to 

first generation biofuels (Greenergy, 2010). However, virgin lignocellulosic material in 

particular requires a great deal of processing before it can be fermented into ethanol. 

This can be done by thermochemical conversion via gasification (which produces 

syngas), pyrolysis or torrefaction; or biochemical conversion which mainly extracts 

polysaccharides (Naik et. al 2010).  The requirement for this extensive processing 

means that capital and logistics costs are high, while energy yields are generally lower 

than that of first generation biofuels (Greenergy, 2010).  

 

The Renewable Fuel Standard 2 (RFS2) mandates by the US Federal Government state 

that by 2020, 30 billion gallons (bgals) of fuel production should be from renewable 

fuel sources (Schnepf, 2013). To achieve this using corn ethanol as the sole source, 

utilisation of total US corn crops would have to rise from 30% to 100%, which would 

have subsequent drastic effects on food availability (Jones and Mayfield, 2012). The 

first-and second-generation biofuels have shown use, especially in Brazil where 

sugarcane ethanol accounts for almost 20% of total energy consumption by the transport 

sector (Martinelli & Filoso, 2008). However the significant disadvantages of 

deforestation, processing costs (Huang et al. 2009), and effects on food prices (Jones 

and Mayfield, 2012) has led to governments pursuing alternative sources of biofuel. 

Furthermore, the limited environmental savings from corn ethanol has mandated that 21 

of the 30 bgals should be from non-corn starch products. Therefore, there is a clear need 

for alternative sources of biofuels.  

Algae have been identified as a viable source for biomass and bio-oil for almost 5 

decades: in 1978 the US Department of Energy’s Office of Fuels Development funded 
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an Aquatic Species Program (ASP) aimed at using algae to produce renewable fuel for 

transportation (Sheehan et al. 1998). At present, algae is still termed the ‘third-

generation’ biofuel (Lee and Lavoie, 2013). Microalgae comprise unicellular and simple 

multicellular microorganisms, while macroalgae include larger species such as 

seaweeds. The photosynthetic process results in the production of a variety of organic 

carbohydrates and lipids, which can subsequently be utilised to generate biomass or be 

extracted directly as biofuels (Fig.2.4) (Jones and Mayfield, 2012; Razeghifard, 2013). 

Other advantages are the ability to cultivate algae in salt and wastewater and on non-

arable land, and the potential for greater productivity over smaller areas of land 

compared to the aforementioned conventional terrestrial crops (Gendy and El-

Temtamy, 2013). Algae cultivation can additionally result in the production of a range 

of valuable non-fuel products such as omega-3 fatty acids, carotenoids, anti-oxidants 

and vitamins.  

 

Figure 2.4 - Proposed versatility of algae as biofuels compared to current sources (Adapted 

from Jones and Mayfield, 2012 & Bondesson et al., 2013). 

 

Biodiesel is produced by the trans-esterification of methanol with biologically derived 

oils with results in the production of fatty acids methyl esters (FAMEs).  These ideally 
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show high stability; low water and volatiles content; and a low amount of sulphur and 

nitrogen-containing polymers. FAME content is dependent on the fatty acid structure of 

the biomass feedstock. The high lipid content (20-60%) of certain species of algae 

makes them an attractive source of biodiesel. However, algae-based biodiesel remains 

much more costly when compared to petroleum-based diesel, with prices of US$1.25/lb 

and US$0.43/lb, respectively (Li et al. 2011). If productivity were able to be increased 

to 10,000 gal acre−1, this would reduce the price of algal oil from $25 to 

$2.5 gal−1 (Pienkos and Darzins, 2009). Current research is aimed at finding high-lipid 

and fast growing algae strains, and optimisation of the transesterification process. At 

present, it remains a solid candidate as a source of commercially viable biodiesel (Jones 

and Mayfield, 2012).  

Algae can also be used for ethanol production via saccharification (hydrolysis of the 

algae cell wall), fermentation, and finally distillation (Razeghifard, 2013). Research 

using yeast to ferment the algae Chlorococum sp. resulted in an ethanol concentration 

of 3.83 g L−1, derived from 10 g L−1 of lipid-extracted microalgae. This amounts to a 

productivity level of 38% w/w. This is similar to current production methods, and so 

consequently highlights the potential role of producing bioethanol from algae (Harun et 

al. 2010). 

Macroalgae may be a suitable substrate for biohydrogen production, which can be used 

for fuel or electricity generation. Park and colleagues determined that the red algae 

Gelidium amansii cultivated by sunlight without fertiliser is viable as a substrate for 

bihydrogen (Park et al. 2011). Microalgae and cyanobacteria are also able to produce 

biohydrogen via anaerobic photofermentation, which is a current area of interest for 

research. Biohydrogen production from algae is many years from commercial 

applications, however the potential is promising (Jones and Mayfield, 2012). 
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The commercialisation and scaling-up of algae cultivation for biofuel production is 

currently reduced by government funding opportunities and tax breaks in the area of 

renewable energy. These investments may result in reductions in the significant cost 

barrier for algae production: the Taiwanese TAIGEM-EB model approximates total 

production cost for 0.6 tons of microalgae biodiesel in a 5-ton photobioreactor is around 

$100,000 (~$19 gal−1) for the first year of operation (Lee, 2011). In comparison, 

Gallagher estimated the cost of algal oil in an open pond system is $4.75 gal−1, and is 

especially feasible with moderate-high lipid yields combined with crude oil prices above 

$100 a barrel (Gallagher, 2011).   

A widespread criticism of research looking at potential microalgae production is that 

growth models using small-scale experimental or pilot-study data frequently 

overestimate potential lipid yields (Moody et al. 2014). To remedy this, a recent study 

combined meteorological data from over 4,000 global locations with a large-scale 

growth model to approximate the prospective lipid and biomass productivity of current 

photobioreactor architecture. The authors determined that maximum lipid yields 

between 24 and 27 m3 ha−1 y−1 on average are feasible in South America (Brazil and 

Colombia), Africa (Egypt, Ethiopia, Kenya) as well as in Australia, India, and Saudi 

Arabia. This is consistent with biomass productivity of 13 to 15 g m−2 d−1. This falls into 

the lower third of modelling estimates quoted in research, which shows that productivity 

is frequently overestimated. However, the authors concluded that with these results, the 

aforementioned countries could supplement 30% of their fuel consumption from 

microalgae cultivation (Moody et al. 2014). 

Overall, there are still remaining limitations that must be addressed to harness the 

potential of algae as biofuels. These are the high cost of infrastructure, the difficulties 

in scaling-up production, and the energy requirements for growth and harvesting. 
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Promising avenues to address costs and the difficulties in biofuel production are genetic 

engineering of algae strains to alter lipid chain length, novel extraction systems to 

facilitate harvesting, and the co-production of valuable non-fuel products to ensure 

biofuel production is economically viable (Jones and Mayfield, 2012; Gendy and El-

Temtamy, 2013). 

2.6 Algae and Biofuel Production 

The interest in using algae for biofuel production is partly due to greater lipid content 

per land area when compared to food and plant-oil based crops (Rodolfi et al. 2009; 

Wijffels & Barbosa, 2010). Furthermore, the chemical content of algae can be 

manipulated by altering growth conditions; many species store triglycerides and lipids 

as an energy reserve when faced with nutrient deprivation (Wijffels & Barbosa, 2010). 

As mentioned, algae can also be cultivated in areas unsuitable for conventional crops. 

Therefore, in order to optimise microalgae-based oil production, there are a range of 

factors that must be accounted for. As previously mentioned, an economically viable 

high lipid yield per area is imperative, and as existing research shows difficult to attain. 

A suitable microalgal strain which contains a high lipid content and can additionally 

produce more lipids in response to nutrient deficiency is desirable. However, much 

research has shown that lipid-rich strains can overall show lower biomass productivity 

(Rodolfi et al. 2009). Species selection poses other challenges, as the metabolism and 

molecular makeup of many species varies widely depending on environmental 

conditions.  

 

Candidates for biodiesel production must have an optimum fatty acid profile that meets 

strict requirements (EN 14214): Specifically, the cetane number (CN), oxidative 

stability, cold flow properties, iodine value, and overall viscosity are all crucial 
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parameters of quality fuel. The CN is a surrogate for the ignition properties of a fuel, 

and is therefore crucial for engine performance and minimising exhaust emissions 

(Ramos, 2009). Oxidative stability measures how long a fuel can resist oxidative 

degeneration, and decreases as the number of double bonds in fatty acid methyl esters 

(FAMEs) increases. Fatty acids with more than one double bond are relatively common 

place, which therefore is one of the primary reasons that make biodiesel production 

difficult (Ramos, 2009). The iodine value refers to the total unsaturation of a mixture of 

fatty acids. Poor cold flow properties lead to obstruction of fuel lines, pumps and filters. 

Fuel quality control uses the cold filter plugging point (CFPP) which is the temperature 

at which a fuel can no longer pass through a filter in a given time (Stansell et al. 2012). 

It is noteworthy that fatty acids with a favourable CN generally result in below-optimum 

cold flow properties; suggesting that a combination of unsaturated and saturated fatty 

acids are necessary (Stansell et al. 2012). 

Stansell and colleagues assessed the fuel properties of a number of microalgae strains 

and determined that the majority of microalgae species tested contained very high 

concentrations of fatty acids with over four double-bonds, therefore conferring poor 

oxidative stability. Most species additionally showed below-optimum cold-flow 

properties. However, microalgae lipids showed acceptable viscosity and concluded that 

if the content of polyunsaturated fatty acids (PUFAs) could be decreased this would 

then confer improved CN and oxidative stability. The authors also suggested that strains 

rich in monounsaturated fatty acids (MUFAs) such as the Mediophyceae and 

Xanthophyceae are promising (Stansell et al. 2012). Manipulation of fatty acid 

composition via genetic/environmental factors is likely to be the most promising route 

(Wijffels & Barbosa, 2010).  
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Research has shown that temperature, irradiance and nutrient availability can all affect 

composition and content. For example, increasing light intensity typically results in 

increased triacylglycerol (TAG) levels (Roessler, 1990), while low light levels result in 

the production of polar lipids (phospholipids and glycol-lipid) which are important 

components of the cell membrane (Rodolfi et al. 2009).  Salinity has variable effects 

depending on species (Rodolfi et al. 2009). It has long been demonstrated that nitrogen 

starved algae species show increased lipid content as a percentage of total cellular mass 

(Roessler, 1990). More recent research shows that this is a species-specific phenomenon 

as some algae strains accumulate starch in response to nitrogen starvation. However, 

The Aquatic Species Program by the US Department of Energy found that lipid 

accumulation through nitrogen deprivation does not necessarily equal higher overall 

productivity; as the restricted growth conditions result in lower biomass production 

(Sheehan et al. 1998).  Therefore, species selection is imperative.  

Griffiths and colleagues (2011) screened eleven microalgal species and concluded that 

lipid yields and overall productivity were greater at 150 mg L−1 nitrate compared to 

1,500 mg L−1 in ten out of the eleven species, with the Chlorophyta (e.g. Chlorella 

vulgaris) exhibiting the greatest increase in lipid content. Culture conditions still need 

to be optimised or the fuel blended to attain the European standards for biodiesel 

production (EN 14214). Rodolfi and colleagues (2009) screened thirty microalgal 

strains for productivity and lipid content, which resulted in the selection of four strains. 

Of the four, two marine microalgae species accumulated lipids under nitrogen 

deprivation. The most promising was Nannochloropsis sp.; the authors extrapolated that 

cultivation of this species had the potential for over 30 tons of lipid production per 

hectare per year in tropical climates.  
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In strains that show an increase in lipid production in response to nitrogen starvation, 

the majority of these lipids are non-polar TAGs. Qualitative analysis of microalgal lipids 

shows that TAGs are primarily composed of saturated and monounsaturated fatty acids, 

which provide more energy upon oxidation in comparison to polyunsaturated fatty acids 

(PUFA), and can be stored in the cell for use as an energy and carbon source. Therefore, 

the accumulation of TAGs in response to nitrogen deprivation confers a reserve for 

rebuilding the cell (Rodolfi et al. 2009).  

2.7 Surface modification via polyelectrolyte layer-by-layer coatings. 

There are many ways to modify the 

properties of a surface, but most of these 

methods are not appropriate for commercial 

applications (Gold.,2009). Example of 

methods that are used to modify surfaces 

include gas plasma treatments, plasma 

spraying, physical vapor deposition, self-assembled coatings, chemical etching, laser 

micromaching and different lithographic techniques. Surface modifications via coatings 

are often made to functionalise surfaces. In biological applications, this can include cell 

adhesion, protein adsorption, cell proliferation, and inflammatory response. Layer-by- 

Layer (LbL) polyelectrolyte (PE) coatings can provide these functions and can self-

organise into thin films (approx.1 um) onto surfaces (Hossfeld et al.,2013). Surface 

properties on a micro or nano scale can affect the cell’s structure, function and behaviour 

at biointerfaces (Gold., 2005).   

Previous studies have shown how PE coatings can influence cell attachment. Figure 2.5 

are microscopy images taken from Guillaume-Gentil and colleagues study which 

illustrates how cell adhesion differs on a variety of polyelectrolyte coatings. It was 

Figure 2.5: Microscopic images of BAEC 

growth and adhesion on different 

polyelectrolyte films. 
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found that none of the PE films were cytotoxic and that most of them served as a cell 

adhesive (Guillaume-Gentil et al.,2008).  

An alternative study focussed on antifouling functions for their  nanofiltration (NF) 

membrane. They used polyacrylic acid (PAA), polyvinyl alcohol (PVA) and polyvinyl 

sulfate (PVS) to form a protective layer on their NF membrane via electrostatic force 

and hydrogen bonding. These strong interactions caused the coating layers to remain 

stable through acid cleaning. The PE coatings resulted in a reduction of pore size, 

permeation flux and rejection of neutral sugars and an increase in charge salts. They 

also found hydrophilicity and smoothness was enhanced. Overall they found that 

surface charge played a significant role in foulant adsorption. As the uncoated 

membrane was positively charged, foulants such as sodium alginate and humic acid 

attached rapidly and strongly. This was also the case for their PVA coated membrane 

due to also having a positive charge. After further optimisation, the NF membrane 

developed in this study will be used in a membrane bioreactor (MBR). This study 

illustrated the potential of modifying membranes in order to cater to different industrial 

demands (Ba et al.,2010).  

Like the previous study mentioned, hydrophilicity is a surface property reported by 

others after the layering of PE’s. Park and others found coating their titanium implants 

with PEs increased surface wettability without changing the surface roughness. These 

PE coated implants were found to enhance osteoblast differentiation (Park et al.,2011).  

Haselberg and others illustrated the use of atomic force microscopy (AFM) to 

characterize polyelectrolyte coatings.  The study showed the coating procedure resulted 

in nm-thick layers on silica substrates. They also concluded that individual polymer lay 

flat on the surface due to intramolecular electrostatic interactions. It was additionally 
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found via AFM imaging that a single PE layer did not cover the surface completely and 

that at least a tri-layer was needed for complete coverage (Haselberg et all.,2013).  

Nehme’s and Perrin’s protocol on developing highly charged polyelectrolyte coatings 

to prevent protein adsorption stated that compared to the use of non-covalent coatings; 

using charged PE’s instead is more efficient and simple. Very stable coatings were 

obtained when optimal conditions were followed. The coatings were able to withstand 

a large pH range (2 – 10) and in the presence of organic solvents. In addition the study 

stated that hundreds of analyses could be carried out without the need for coating 

regeneration (Nehme’s and Perrin’s.,2013).  

Table 2.1 includes a list of polyelectrolytes tested in the present study along with their 

known applications. 
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Table 2.1: List of properties and known applications for PEs selected. 

Name  Chemical structure Applications  

Poly(ethylenimine) (PEI) 

 

Used as a transfection reagent and 

to increase attachment of weakly 

anchoring cells (Vancha et al. 

2004). 

Poly(styrene sulfonate) (PSS) 

            

Used for novel macroporous 

amphoteric gels for drug 

delivering applications (Oh et al., 

2008; Kudaibergenov et al. 2012). 

 

Poly(allylamine hydrochloride) 

(PAH) 

 Cationic electrolyte used for 

multilayer capsules (Antipov et 

al. 2001). 

Poly(acrylic acid) (PAA) 

 

Used for adhesives and ion 

exchange resins (Orwoll et al. 

1999). 

Poly-L-lysine (PLL)  Used as an attachment factor to 

improve cell adherence (Mazia, et 

al.1975). 

 

Polydiallyldimethylammonium 

chloride (PDADMAC) 

 Used to produce ultrathin films 

(Moriguchi & Fendler, 1998), 

water purification (John et al. 

2002) and waste water treatment 

(Edzwald et al. 2011). 

Polyvinylpyrrolidone (PVP) 

 

Film forming and binding agents. 

(Haaf et al. 1985). 

 

 

2.8 Conclusion  

Over the past few decades, the utilisation of algae to develop a range of industrial and 

agricultural compounds along, with its numerous advantages over first- and second-

generation biofuels has highlighted its potential promise. In order to fully realise this 
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promise, there are a number of important factors that need to be addressed in future 

work. 

Firstly, there are issues with cost and scaling-up existing reactor designs. The suggested 

price for economic fuel production is approximately US$ 0.25 kg -1 (Darzins et al. 2010) 

and algal biofuel production costs based on existing technologies are noted to be 

anywhere from 3 to 10 times greater than this (Darzins et al. 2010; Acien et al. 2012). 

With significant improvements to existing technologies along with optimum site and 

strain selection, algae do have the potential to provide a significant proportion of fuel 

along with a number of other high-value compounds (Darzins et al. 2010).  

While there are significant savings with regards to the use of industrial carbon dioxide 

and wastewater for cultivation (Acien et al. 2012), a remaining bottleneck to large-scale 

production is energy-intensive harvesting. Future work focusing on biofilm-based 

reactors should focus on perfecting the simple, automated harvesting via scraping of 

biofilm-based reactors (Blanken et al. 2014). With regards to PBRs, promising avenues 

to facilitate flocculation are by inducing physical flocculation with nanoparticles (Lee 

et al. 2014), or by the genetic modification of algae which facilitate flocculation 

(Wijffels & Barbosa, 2010).  

With regards to large-scale algae cultivation, the most promising avenue may be to 

follow the biorefinery concept, where multiple fuels and products are derived from algae 

cultivation in an integrated facility (Markou & Nerantzis, 2013). The harvesting of 

lipids as well as carbohydrates means that feedstock for biodiesel and bioethanol is 

available. Furthermore, proteins, pigments and high-value cosmetic and supplemental 

compounds would make the biorefinery concept cost-effective: the global market value 

of commercially-used carotenoids and β-carotene for example is expected to reach $1.4 

billion and $334 million by 2018, respectively (Borowitza, 2013). An area for future 
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work is the development of effective co-extraction and separation of multiple 

metabolites from the biomass (Serive et al. 2012; Markou & Nerantzis, 2013; Behera et 

al. 2015).  

The promising surface and footprint biomass productivity figures of biofilm-based 

reactors make these a viable prospect. These reactors may minimise harvesting costs, 

which as stated are a significant barrier to large-scale production. However, biofilm-

based reactors are a relatively novel technology, and key areas for future work are again 

identifying optimal strains and ensuring the best surface material to facilitate adhesion 

and biofilm formation (Gross et al. 2015). As with PBRs, the potential of algal biofuels 

has been technically and experimentally confirmed with laboratory- and pilot-scale 

studies, but the most important factor now is to confirm that algal cultivation for biofuels 

and other end-products is economically feasible on the large, commercial scale (Darzins 

et al. 2010; Acien et al. 2012; Gross et al. 2015). 
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Chapter 3 

Encouraging algae biofilm formation using polyelectrolyte 

coated polymers 

 

Abstract 
 
Electrostatic and hydrogen bonds are the major forces involved in the interaction 

between microalgae and the surface. The mucilage layer secreted by algae allows settled 

cells to glide easily across the surfaces aiding in the rapid colonisation of the surface. 

Polyelectrolyte coatings that contain charged groups which can aid in the interactions 

of extracellular polymeric substances (EPS) and microalgae were tested. 

Polyelectrolytes were assembled onto commercially available substrates via manual dip 

coating. It was found that layers of polyvinylpyrrolidone and poly (acrylic) acid labelled 

as coating 1 (C1) performed the best in terms of growth of Chlorella Sorokiniana. In 

addition to the substrate polyethylene terephthalate glycol-modified (PETG) was also 

found to be the best performing substrate. Contact angle measurements revealed all 

polyelectrolyte coatings lowered the contact angle of all substrates significantly, but did 

not necessarily correlate with high growth.  
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3.1 Introduction 
 

 

Due to limitations with suspended algae reactors, there is now a growing interest in 

using surface attached algae biofilm systems. Ozkan and others (2013b) reported that 

their developed biofilm photo bioreactor substantially reduced water requirements by 

45% and reduced energy costs considerably. These results highlight the potential of 

further development and innovation in algal biofilm reactors. 

 The ALGADISK project aims to produce high value organic algal products while 

maintaining low production costs. The ALGADISK system utilises rotating disks which 

facilitate algae biofilm formation. Consequently, this study aims to provide these 

biocompatible surfaces that encourage and enhance algal attachment and biofilm yield. 

Previous studies have shown increased microbial attraction onto oppositely charged 

surfaces (Busscher et al. 1990). Thus, the initial strategy explored was developing a 

coating that can aid in electrostatic attraction of algal cells onto low-cost polymer 

substrates. Surface coatings that can aid in these interactions were therefore proposed. 

Coatings comprising of charged polyelectrolyte multilayers (PEM) via layer-by-layer 

(LbL) deposition were explored.  

Polyelectrolyte (PE) polymers are flexible and can form super lattice structures. 

Polymers can bridge over any defects and after as little as three layers can completely 

cover a charged surface (Krol et al. 2006). Adsorption of polymers with more than one 

layer causes a charge reversal. This, therefore, acts as a regulating system which allows 

only a monolayer to form, thus allowing the oppositely charged polymer to be adsorbed 

in further stages (Decher et al. 1997). Research in PE coatings is valuable due to its 

many applications in the biomedical and electronics fields (Stewart et al.2006; Thierry 

et al.2003; Kommireddy et al. 2005).  
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This chapter is primarily concerned with exploring the potential of using PEM coatings 

to encourage algae attachment. Chapter 4 is concerned with optimising the final selected 

coating from this chapter for the ALGADISK prototype. 

 

3.2 Materials and Methods 
 

3.2.1 Algae culture 

Chlorella vulgaris (211/BK), Scenedesmus obliquus (276/50), Dunaliella salina 

(19/12), Arthrospira maxima (1475/9) were obtained from Culture Collection for Algae 

and Protozoa (Oban, UK). Chlorella sorokiniana (Sorokin and Myers, 1953) was 

received by Wageningen University (Netherlands).  Cell-hi F/2 + Si (Guillards) media 

was used for marine algal species and Cell-HI NC was used for freshwater species. Both 

media concentrates were purchased from Varicon aqua and diluted to recommended 

specifications (1 ml per 1000 L of water). Glass tanks were cleaned prior to inoculating 

with algae and filled with distilled water. For marine species (D. salina) tanks were 

supplemented with water conditioner and a sea salt mix (Aquarium Systems). C. 

sorokiniana and D.  salina were grown in 1 L flasks before being transferred into glass 

tanks (50 L) with one fluorescent tube (15 W) at 20 ± 2ºC on a 16/8 hours light and dark 

cycle. Air was bubbled through an air stone via an air pump which also provided mixing. 

The remaining algae species were cultivated in flasks under two florescent light tubes 

(1500 Lux) at 20 ± 2º C at a 16/8 hours light/dark cycle and shaken manually daily. 

3.2.2 Adhesion assays 

3.2.2.1 Testing initial attachment 

Substrates (area: 3.5 cm2) were placed into petri dishes with 15 mls of algae suspension 

with cell concentrations at 5.0*104 cells/ml (± 0.5) and left on a BlotBoy™ 3D platform 

rocker, AC input 115 V (12 rpm) (Sigma Aldrich, UK) for 2 hours. After 2 hours of 
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incubation the substrates were rinsed gently with water and the number of cells found 

on the surface of the substrates were counted using a microscope (GXML 320 1 LED, 

GX Optical UK) and a heamocyter kit.  

3.2.2.2 Testing strength of attachment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substrates were mounted onto Ibidi 0.2 Luer Sticky-slides (Fig.3.2.1 B) with 2.5 cm2 

growth area and a channel volume of 50 μl. The slides were then connected to a fluidic 

pump (KNF VP Series, UK) and fixed with fluidic adaptors with a flow rate of 

(5mls/min) (Fig.3.2.1 A). Cell concentrations were kept at a range of x 104 cells/ml and 

flowed through for 20 minutes and then left to settle for 72 hours. Number of cells and 

cell viability was calculated immediately after 72 hours. Water was then rinsed through 

Figure 3.2.1: (A) Schematic diagram showing algae adhesion assay set up for 

absorption and desorption tests. (B) Schematic drawing of Ibidi 0.2 Luer Sticky-

slides. 
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(5mls/min) for 15 minutes and the remaining cells were counted using a microscope. 

Strength of adhesion was determined by calculating the number of remaining adhered 

cells as a percentage of the number of cells counted before the flushing process. 

 

 

 

 

 

 

 

 

 

3.2.3 Cell viability assays 

Cell viability was determined without sample preparation. Using already described 

method of using autofluorescence of chlorophyll from viable cells and green 

autofluorescence from non-viable cells using the blue excitation setting (Schulze et al. 

2011). This was undertaken after 72 hours of incubation with algae.  

3.1.4 Long term growth studies and harvesting 

To measure biofilm density between harvests, long term growth studies were set up in 

petri dishes under two fluorescent light tubes (1500 Lux) at 20 ± 2º C at a 16 hours light 

cycle at 12 rpm on a platform rocker. Seven days were left between each harvesting 

cycle.  Algae were harvested from substrates via manual scraping with a plastic scraper 

ensuring all substrates were harvested in the same manner each time. The harvested 

algae were dried in the oven for 12 h at 105 ºC onto glass-fiber paper and then weighed 

and recorded.  

Figure 3.2.2: Microscopic images taken of C. sorokiniana before (left) and after 

flushing with water (right). 
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3.2.5 Substrate selection and preparation 

The following polymer substrates were tested in conjunction with polyelectrolyte 

coatings: Polypropylene (PP), Polyethylene terephthalate (PETG) Polycarbonate sheets 

(PC) and were all purchased from Plastic store Ltd, UK. Polystyrene film (PS) was 

purchased from Goodfellow, UK.  These substrates were all selected on the basis that 

they all have low scratch-resistance, are low cost and very durable.  Substrates were 

cleaned with 70 % ethanol before being rubbed with acrylic fibers approximately 15 

times on each side.  

3.2.6 Fabrication of polyelectrolyte coatings 

Polyelectrolytes used were all purchased from Sigma Aldrich, UK: 

Polyvinylpyrrolidone (PVP, 10 000 Mw), Poly(allylamine hydrochloride)(PAH, 15 000 

Mw) , poly(sodium 4-styrenesulfonate) (PSS, 70 000 Mw), Poly(acrylic acid) (PAA, 

1800 Mw), Polethylenimine (PEI,  10 000 Mw), Poly(diallyldimethylammonium 

chloride) (PDADMAC, 20 wt. % in H2O) and Poly-L-lysine (PLL 0.1% (w/v) in H2O). 

Polyelectrolytes solutions for dip coating were made into working solutions of 1mg/ml 

of the polymer dissolved in PBS buffer. Substrates were previously cut into a typical 

size of 25mm x 25mm and cleaned with 70% ethanol, deionised water (DI) and left to 

Figure.3.2.3: Long-term growth experiment set-up. Image shows example of static and 

non-static (rotating table) growth tests. All samples are placed directly beneath two 

florescent light tubes (15 W). 
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dry. The substrate was then rubbed with acrylic fibres for 1 minute to induce surface 

charging. The substrate selected was then dipped into the polyelectrolyte solution 

(polyanion) so that its surface was completely covered in a solution for 15 minutes. The 

substrate was then rinsed twice with DI water and dried with nitrogen gas at room 

temperature. The substrate was then dipped in an oppositely charged polyelectrolyte 

(polycation) for 15 minutes followed by rinsing the substrate twice with DI water and 

dried with nitrogen gas at room temperature. This was repeated till the desired number 

of layers, and outer charge was achieved.  An overall schematic of the process is shown 

in Figure 3.2.4. Table 3.2.1 lists the PE layers in different coatings tested. Table.3.2.2 

lists all the PEs used in this study and their known applications in research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.4: Schematic diagram showing steps in PEM formation onto a substrate.  
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Table 3.2.1: Coating labels used and their PE layer composition 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.7 Contact angle measurements 

 

A static sessile drop method was used using the Attension Theta Tensiometer to measure 

the contact angle of water on the surface (water drop size of approximately 1.5mm, at 

room temperature approximately 22°C). Measurements were taken at 6 different 

locations of the tested surfaces and then averaged.  

3.2.8 Zeta potential measurements and charge density 

 

Zeta potential of algae was measured at different pH ranges by firstly removing algae 

from its media and washing three times with distilled water (dH2O) followed by re-

suspension in a solution of  NaCl . The pH was altered using HCL or NaOH. The 

concentration was determined by a hemocytometer kit and was adjusted to a density of 

approximately 2 (± 0.5) x 107 cells/µL.  Samples were then analysed by a Zetasizer3000 

(Malvern Instrument 2000HAS) and tested 5 times per sample. Charge density was 

measured using Sharp et al., 2006’s method using the zetasizer with PDADMAC 

(Sigma Aldrich) (charge density: 6.2 mEq g-1).  

Coating 

label 

PEs used in coating 

C1 PVP/PAA/PVP/PAA/PVP  

C2 PAH/PSS/PAH/PSS/PAH 

C3 PLL/PAA/PLL/PAA/PLL    

C4   PEI/PSS/PEI/PSS/PEI 

C5 PEI/PAA/PEI/PAA/PEI 

C6 PDADMAC/PSS/PDADMAC/PSS/PDADMAC 

C7 PDADMAC/PAA/PDADMAC/PAA/PDADMAC 

C8 PAH/PAA/PAH/PAA/PAH 

C9 PVP/PAA/PVP/PAA/PVP/PAA 

C10 PAH/PSS/PAH/PSS/PAH/PSS 

C11 PLL/PAA/PLL/PAA/PLL/PAA 

C12 PEI/PSS/PEI/PSS/PEI/PSS 

C13 PEI/PAA/PEI/PAA/PEI/PAA 

C14 PDADMAC/PAA/PDADMAC/PAA/PDADMAC/PAA 

C15 PDADMAC/PSS/PDADMAC/PSS/PDADMAC/PSS 

C16 PAH/PAA/PAH/PAA/PAH/PAA 
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3.2.9 Determining cell wall functional groups 

A previously detailed method (Ivanova et al. 2012) was used to quantify the functional 

groups in the cell walls of algae. This method uses potentiometric titrations where dried 

biomass is mixed in 50 cm3 of dH2O. HCL was used to adjust the initial pH to 1 and was 

then titrated with 0.1M of NaOH up to a pH of 12. A control was also carried out with 

no algae. The Gran’s method (GRAN, 1952) was then used as detailed again by Ivanova 

and colleagues (2012) to determine the total organic acidity (ATO) consisting of strong 

acidities (AS) at pH <4, weak acidities (Aw) at 4 <pH>7, and very weak acidities (Avw) 

at pH>7. 

3.2.10 Data analysis and Statistics 

 

Pearson’s Correlation coefficients were calculated to test correlation. Two tailed 

Student’s t-tests were used to compare contact angles and weighted dry biomass with 

and without coatings; values that were p<0.05 were considered significant. 

 

3.3 Results and Discussion 

3.3.1 Testing PEM coatings adsorbed onto polymers on different algae species 

 

All three algae species tested showed coatings with a positive outer layer frequently 

found higher weighted growth in contrast to uncoated (C0) and to surfaces with an outer 

negative charge (C9 – C16) after a growth period of 7 days. Attachment assays also 

found a higher number of attached cells on positive coated surfaces followed by 

negatively charged coated surfaces and lastly non-coated substrates (refer to Fig 3.3.1- 

3.3.3). The use of a high positive surface charge in attracting algae cells to the surface 

has been observed previously; Ederth and colleagues (2008) explained that the high 

surface charge of their self-assembled monolayers may have been responsible for 

retaining their spores on to the surface. They also found that Ulva spores preferred 
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uncharged or positively charged rather than negatively charged surfaces (Ederth et al. 

2008).  

All 18 coatings lowered the contact angles of the hydrophobic polymer substrates 

significantly (p < 0.05) (refer to table.3.3.1). Static and non- static conditions were 

tested to examine the effect of hyrdrodyanamic action on the performance of the coated 

substrates. In most cases higher biofilm densities resulted when hydrodyanamic action 

was introduced (Fig 3.3.1 b - 3.3.3 b). This is most likely due to the increased 

opportunities for the algal cells to make contact with the surface.  

When plotting average biofilm density for all three algae species against contact angles, 

there was a general trend of higher yields on substrates with contact angles below 34 

(Fig.3.3.5). However, it cannot be assumed that contact angle influenced adhesion as 

some coated surfaces with lowered contact angles did not perform any better than the 

uncoated hydrophobic polymers (refer to Fig 3.3.1- 3.3.3).  Previous studies have also 

indicated that contact angle did not necessarily correlate with degree of colonisation 

(Irving et al. 2011; Barberousse et al. 2007). Therefore, the coating charge and chemical 

properties in combination with the substrate polymer selected have had a more 

considerable influence on algae biofilm formation. 

Each algae species had its own preferences in terms of substrate and coating. Table 3.3.2 

summarizes the highest recorded weights for each species.  

C1 performed the best for C. sorokiniana in terms of biofilm density harvested 

(Fig.3.3.1A). Coating 3 performed well with both S. obliquus and C.vulgaris (Fig.3.3.2 

A & 3.3.3 A).Testing the strength of adhesion on initial attachment via adhesion assays 

revealed C3, C6 and C7 performed well generally for all three algae species tested 

(Fig.3.3.1C, 3.3.2C, & 3.3.3C). It should be noted that high percentage adhesion after 

flushing did not always correlate with high biofilm density after 7 days. It was also 
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apparent non-coated and negatively charged surfaces had substantially weaker adhesion 

with all algae. This generally low performance on negatively charged surfaces is 

understandable as these coatings produce electrostatic repulsion and so algal cells would 

have weaker adhesion. 

Substrate PETG performed generally well for all three algae strains with C1 and C3 and 

cell viability tests showed low toxicity. Therefore, PETG was selected as the primary 

substrate selected for further experiments.   

 

Table 3.3.1 Contact angle measurements (º) taken with water of all coated substrates. 

 

 

Substrate C0 C1 C2 C3 C4 C5 C6 C7 C8 

 
PETG 

 
83±2.1 

 
46±1.3 

 
32±2.3 

 
38±2.5 

 
26±2.1 

 
32±1.1 

 
52±1.7 

 
47±2.3 

 
34±1.6 

PS 98±1.6 42±2.1 35±1.4 36±3.6 28±1.8 29±2.4 52±3.2 51±1.8 37±2.5 

PP 75±3.2 46±0.8 28±1.6 33±4.2 24±2.0 26±2.2 47±2.5 45±2.3 32±2.7 

PC 92±2.8 49±1.4 34±3.1 31±3.1 27±3.3 31±1.1 53±1.9 49±2.5 36±2.3 

Substrate C9 C10 C11 C12 C13 C14 C15 C16 

 
PETG 

 
39±1.8 

 
41±2.8 

 
36±2.8 

 
46±3.2 

 
29±2.4 

 
49±1.2 

 
31±2.6 

 
24±1.7 

PS 37±2.6 45±2.7 35±1.9 45±2.5 26±2.3 48±2.5 26±2.2 27±1.6 

PP 34±1.2 41±2.2 32±1.6 47±3.1 27±3.7 44±1.8 24±2.4 23±1.3 

PC 36±1.5 44±2.3 37±2.2 48±1.7 29±2.5 47±3.2 22±3.1 26±2.2 
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Figure 3.3.1. (A) Static growth results of C.sorokiniana.(B) non-static growth results of C. 

sorokiniana. A & B show algae dry weight harvested at day 7 on surfaces tested. (C) Adhesion of 

C. sorokiniana found on surfaces after wash-out, calculated as a percentage. Error bars represent 

standard deviation of the mean (n=3).  
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Figure 3.3.2. (A) Static growth results of S. obliquus. (B) Non-static growth results of S. 

obliquus. A & B show algae dry weight harvested at day 7 on surfaces tested. (C) Adhesion (%) 

of S. obliquus found on surfaces after wash-out, calculated as a percentage. Error bars represent 

standard deviation of the mean (n=3).  
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Figure 3.3.3. (A) Static growth results of C.vulgaris. (B) Non-static growth results of 

C.vulgaris. A & B show algae dry weight harvested at day 7 on surfaces tested. (C) Adhesion 

(%) of C.vulgaris found on surfaces after wash-out, calculated as a percentage. Error bars 

represent standard deviation of the mean (n=3).  
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3.3.3 Cell viability assays 

 

Figure 3.3.4 displays the % of viable cells found on all surfaces after 72 hours for all 3 

algal species. C4 and C6 for C. sorokiniana had the lowest observable viable algal cells. 
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Figure 3.3.4. (A)  Cell viability (%) of C.sorokiniana. (B) Cell viability (%) of S. obliquus. 

(C)  Cell viability (%). Cell viability was determined via fluorescent microscopy. C.vulgaris. 

Error bars represent standard deviation of the mean (n=3).  
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The natural zeta potential of algae did not have an apparent influence on the amount of 

attached cells found on positively charged PETG C3 (Fig.3.3.6 B). Although, S. 

obliquus had overall the most negative zetapotential (refer to Fig.3.3.6 A), and the 

highest average number of cells attached was for C. vulgaris followed by C. 

sorokiniana. Therefore, the charge density of algae was investigated and additional 

species of algae were tested to examine the role of charge density on attachment to C3 

PETG (refer to Fig.3.3.6 C). Results indicated a correlation coefficient of 0.76 with 

positively charged coating (C3) and a negative correlation coefficient of -0.71 with 

negatively charged coating (C11). This indicates that charge density of the algae can 

influence attachment onto charged substrates. This was not the case for C1, which had 

a moderate correlation coefficient of -0.58. This confirms other factors also need to be 

considered other than degree of electrostatic attraction/repulsion when it comes to 

explaining why C1 aids in biofilm formation. 

Interestingly, the negatively coated substrates in several cases still had a higher amount 

of biofilm growth when compared to uncoated substrates, especially in non-static 
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Figure 3.3.5: Graph shows average biofilm growth for C.sorokiniana, S.obliquus and 

C.vulgari plotted against contact angle of the substrate. Error bars represent standard 

deviation of the mean (n=9). 
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conditions (refer to Fig.3.3.1- 3 A). C. sorokiniana had a notably higher amount of 

growth found on negatively charged coated surfaces (C13 &C16) when compared to 

non-coated (Fig.3.3.1 A). A possible explanation proposed could be due to the 

positively charged domains on the algal cell surface. These domains facilitate in 

adhesion by local electrostatic attraction and acid- base interactions regardless of the 

overall acting repulsion (Bos et al. 1999). This is further confirmed when looking at the 

functional groups found in the cell walls of all three algae (refer to table 3.3.4). C. 

sorokiniana was found to have a higher percentage of amine functions (positively 

charged) when compared to C. vulgaris and S. obliquus. Although the number of 

negatively charged functional groups (carboxylic, phosphoric and sulfonate groups) in 

the cell walls made up 48.9 % of all binding sites, the high presence of weak acidities 

(amine groups) may have influenced adhesion onto negatively charged coated 

substrates. Zita and Hermansson (1997) observed this behavior strongly with E. coli 

attachment to sludge flocs. They found the number of positively charged surface 

structures correlated with adhesion to sludge flocs, in contrast to the number of negative 

surface structures which showed no correlation. The results presented in this study 

however, indicate that although microscopic interactions of positive cell wall entities 

facilitate the attachment of algae onto negatively charged surfaces, macroscopic 

attraction is more influential in algal surface attachment. This is shown in the higher 

biofilm densities found on positive surfaces rather than negative surfaces.  

It is also evidently shown in the zeta potential and algal adhesion assay experiments 

when increasing the negative charge of algae via pH (refer to Fig.3.3.6 B). The initial 

attachment of algae onto positive coated surfaces (C3) increases with the increase of the 

cells negative charge. This observed increase in attachment is most likely due to the 

increase in macroscopic attractive forces between the algae and coated substratum 
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allowing the two to interact. It has been suggested that once microbial species are at a 

few nanometers away, complementary stereochemical groups can then attract each 

other. This interaction energy is higher than the macroscopic interactions for microbial 

species (Van Oss, 1995). When looking at the reacting charged groups of the 

polyelectrolytes, a possible link to their performance can be suggested. PVP as the outer 

layer generally performed well in all three algae species tested in growth tests but mainly 

in non-static conditions (refer to Fig. 3.3.1- 3 B). PVP has the ability to interact with 

both carboxylic and amino groups via ion dipole interactions and hydrogen bonding. In 

addition to this, when looking at the attachment assay results, the amount of cells found 

after 6 hours on the surface was lower than that of coatings that consisted of strong 

positively charged polyelectrolytes (C3)(Fig.3.3.6 B). However, it should be noted that 

the size of the cells varied between species and so would therefore influence the number 

of cells found on the surface. 

These results suggest that Coating 1 provides favorable highly localised molecular 

groups for specific interactions with complementary groups found on the cell surface of 

algae. However, in contrast to C3, C1 is thought to provide little long range macroscopic 

interaction and is mainly operative over small distances with algal cells. This further 

explains why once hydrodynamics were introduced, the amount of algal adhesion 

increased more drastically than any other coating (Fig.3.3.1-3). The increased frequency 

of algal-substratum contact meant the lower electrostatic attraction offered by C1 was 

no longer a limiting factor. C1 therefore should be used in non-static conditions for 

optimum biofilm yields. C1 also showed good attachment despite the zeta potential of 

algae and charge density relative to other coatings (Fig.3.3.6 C). C3 also performed well 

with all algae species tested, and again when looking at the chemical structure of its 

outer layer (Table 3.2.1), PLL is also capable of hydrogen bonding and ion dipole 
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interactions, which none of the other remaining polycations are able to do. Unlike C1, 

C3 also performed well in initial adhesion tests. This is most likely due to the fact that 

PLL is positively charged in contrast to PVP (neutral) and so adhesion is enhanced by 

electrostatic attraction. Thus, C3 would be a good candidate for biofilm-based photo 

bioreactors with no hydrodynamics offered and requires high initial attachment to 

stimulate growth on the surface.  

Conversely, it should be highlighted that high electrostatic attraction did not always 

coincide with high overall yield. PDADMAC is a strong polycation and was used as an 

outer coating in C6 and C7. Adhesion assay results showed although the strength of 

attachment on C6 had high values for all three algae species tested (refer to 3.3.1 - 3 C), 

it had very low biofilm densities in the long term growth tests (refer to 3.3.1 - 3 A & B). 

C6 is composed of both strongly charged polycation and polyanion layers and so 

although it may have attracted a high number of algae to the surface with strong 

adhesion, it may have in actual fact inhibited the proliferation of algal cells. 

Autofluorescence assays were conducted to determine cell viability at 72 hours and 

revealed C6 had slightly higher number of non-viable algal cells for all three algae 

species tested. PEI found in C6, is typically used to increase attachment of weakly 

adhering cells in biotechnology. However, it has also been shown to be toxic along with 

PSS and PDADMAC by inducing surface modifications on the membrane of microbial 

cells (Vancha et al.2004). Cell viability was good for those grown on C1 and C3 as 

shown in Figure 3.3.1C – 3.3.3C on all three algae species. 

Table 3.3.2: Summary of coatings and substrates with the highest biofilm growth 

 

 

 

  Coatings Substrates 

C. sorokiniana C1 & C3 PETG 

C. vulgaris C3 & C4 PETG & PC 

S. obliquus C1, C3 & C8 PETG & PC 
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Algae Charge density (peq/cell) 

S.obliquus 0.042 

C.sorokiniana 0.07 

 C.vulgaris 0.113 

 D.salina 0.367 

 A.maxima 0.423 

Figure 3.3.6. (A) Effect of pH on zeta potential of all three algae species. (B) Effect of pH 

and corresponding zeta potential on algal adhesion on C1 PETG and C3 PETG. (C) Effect 

of charge density on 5 different algal species on C3 PETG. Error bars represent standard 

deviation of the mean (n=3).  
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The aim of this study was to produce a versatile, low cost coating that can be used with 

the ALGADISK system, primarily for C. sorokiniana. C. sorokiniana was chosen as the 

main algae for the ALGADISK project by the consortium due to its high specific growth 

rate, (0.27 h-1) and its tolerance to high irradiance, temperature and CO2 concentrations 

(Sorokin, 1959; Matsukawa et al. 2000). Therefore C1 was selected as the main 

candidate for further optimisation and testing due to its promising results with C. 

sorokiniana. C3 was also further tested due to the high growth values and cell viability 

observed with C. vulgaris and S. obliquus. 

3. 4 Conclusion 
 

 

The following can be concluded from this chapter about using PE coatings for the role 

of encouraging and enhancing biofilm formation: 

 

 Positively charged outer PE layers can increase initial attachment, biofilm 

density and strength of adhesion via electrostatic attraction onto commercially 

available polymer substrates. 

Algae species As Aw Avw ATO 

 

 

C. sorokiniana 0.21 0.98 1.24 2.43 

S. obliquus 0.82 0.34 0.87 2.03 

C. vulgaris 0.21 0.15 0.13 0.49 

Table 3.3.4 Amount of acidic sites found in the cell walls of C. sorokiniana, 

C.vulgaris and S.obliquus. 

(mmol g-1) 
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 A neutral polymer such as PVP used in conjunction with a polyanion such as 

PAA in C1 can enhance biofilm yield. This is thought to be due to 

microscopic rather than macroscopic interactions with algae. 

 C3 consisting of PLL as a polycation outer layer can enhance biofilm growth 

and is thought to aid in better macroscopic attraction of algae to the surface. 

Charge density of algae influenced initial attachment to C3 substrates. 

 

 

This study showed the potential of using PE coatings to enhance initial attachment, 

strength of attachment and biofilm density. However, further optimisation and research 

into modifying substrates for maximised growth was needed. The remaining chapters 

address these objectives. 
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Chapter 4 

Cost-effective methods to improve regrowth between harvests 
 

Abstract 
 

 

C1 was imaged via environmental scanning electron microscope (ESEM) and 

characterised using atomic force microscopy (AFM) and confocal laser scanning 

microscopy (CLSM). Harvesting growth results showed inconsistencies, thus surfaces 

were etched manually to help inoculate algae cells for the following growth period. 

Tests carried out in lab-scale ALGADISK photobioreactors also showed a similar issue 

of inconsistent regrowth. Comprehensive growth studies were undertaken in order to 

investigate the effects of surface roughness induced by sandpapering. Surface roughness 

(Ra) was quantified using DekTak surface profiler. Results indicated that while initial 

attachment and strength of attachment was not affected by surface roughness, long-term 

growth showed a strong positive correlation.  
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4.1 Introduction 
 

The surfaces selected (PETG C1 & PETG C3) based on results presented in chapter 3 

have relatively smooth surfaces with minimal surface roughness. The substrates 

physical properties, in particular degree of roughness has been associated with increased 

number of attached cells in previous studies.  

Ulva zoospore settlement have been shown to depend on a variety of factors, from 

biological to topographic features (Callow & Callow, 2000). Surface roughness and 

topography can be significantly influential for the attachment of different organisms 

(Fletcher & Callow, 1992).  Hassan and others (2012) found increasing the degree of 

roughness increased the number of algal strands attached onto coupons. They also found 

increasing the shear flow reduced attachment. Cui and others (2013) used texturised 

solid surfaces and found that algal cells preferred surfaces that had feature sizes closer 

to the algal cells dimensions. Larger or smaller features had in fact reduced attachment. 

An alternative study investigated spore settlement on polydimethylsiloxane elastomer 

(PDMSE) which consisted of microtopographic structures at a range of 1.5 – 20 mm 

intervals. Results showed spores preferred valleys, with a large portion settled in an 

angle against the base of pillars (Callow et al., 2002). It is thought that rough surfaces 

provide protection from hydrodynamic actions (Vadas et al., 1990). 

Granhag and others investigated the adhesion of Ulva linza on Plexiglas (medical grade 

PMMA) with differing surface topographies made from impressed plankton nets (Rz: 

25 – 100 mm). The strongest adhesion was found on the the smallest topographic 

structure (Rz: 25 mm). Furthermore it was found zoospores that found in depressions 

were less likely to be removed compared to ridges (Granhag et al., 2007). 



   

74 

 

However an alternative study found the substrates topography had a non-significant 

effect on periphyton biomass but algae were sensitive to micro-topographical changes 

(Lima de Souza & Ferragut, 2012).   

This chapter therefore investigates the effects of surface roughness and texture on initial 

attachment, strength of attachment, biofilm density and re-growth after harvesting. 

Labscale ALGADISK reactor results are also presented, in which problem-

solving/optimising methods were based on.  

 

4.2 Methodology 
 

4.2.1 Algae culture and growth studies 

 

Cell culture conditions, adhesion assays, cell viability tests and long term growth studies 

were carried out in the same fashion as detailed in sections 3.2.1 and 3.2.2 respectively.  

4.2.2 Substrate preparation and PE deposition 

 

Polypropylene meshes (PPM)   with 100 um and 200 um aperture diameters were 

purchased from Industrial Netting Inc, USA. 

Substrates were cleaned with 70% ethanol. Dip coated substrates (DC) were prepared 

and coated in the same fashion as described in section 3.2.6.  

 

4.2.3 Surface characterization using microscopy 

 

Confocal laser scanning microscope (CLSM) (LSM510 Meta, Zeiss) and atomic force 

microscopy (AFM) were used to analyse the surface topography of the coated 

substrates. Environmental scanning electron microscopy (ESEM) (LX30, FEI) was used 

to examine the coatings structure. Energy-dispersive X-ray spectroscopy (EDX) was 

used for elemental analysis of PETG with C1 after harvesting. 
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4.2.4 Dektak surface profiler 

 

Dektak stylus profiler (Dektak3ST, Veeco) was used to measure surface roughness (Ra) 

and film thickness. Force selected: 30 mg. Scan length: 2000um. Film thickness was 

obtained using step measurements by comparing uncoated regions to coated regions. 

 

4.2.5 Surface roughness studies 

PETG substrates were cleaned with ethanol (70%) before roughening of the surface. 

Grit blasted (GB) surface was carried out using a Grit blaster (F1600,Guyson) with a 

general purpose 120 mesh grit.  For Sandpapered (SP) substrates, sandpaper of differing 

grit sizes were used and rubbed against both sides of the substrate for 3 minutes each. 

Substrates were then rinsed with water and cleaned again with ethanol. Etched grids 

were made onto PETG manually via a diamond tip. Lines were etched with equal 

pressure approximately every 2 mm vertically and horizontally. 

4.2.6 Data analysis and Statistics 

 

Pearson’s Correlation coefficients were calculated to test correlation. Two tailed 

Student’s t-tests were used to compare contact angles and weighted dry biomass with 

and without coatings. Values that were p <0.05 were considered significant.  
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4.3 Results and discussion 

4.3.1 Examining use of C1 and C3 in long term growth studies 

 

 

Durability and longevity are vital requirements of any coating selected to aid in 

continuous production, remain cost-effective and allow harvesting of algae in any 

commercial reactor. The ALGADISK system uses an automated harvesting system 

which utilises suction at the surface with a plastic vacuum head. 

Harvesting in this investigation was carried out via manual scraping. The effect of 

harvesting on the surface and growth of algae was investigated in long term 

experiments. Table 4.2 shows contact angle measurements of surfaces taken after each 

harvest. Results generally indicate that the coated substrates still had contact angles of 

less than 90°. However, it cannot be assumed that the coating still remained on the 

substrate just because the contact angle still remained low. Other reasons for low 

observed contact angles could be salt residue, remaining AOM or a resulting 

conditioning film left on the surface. ESEM images taken after harvesting (Fig.4.3.1) of 

algae did not reveal the same coating structure as taken prior to inoculation with algae 

(Fig. 4.3.2 B & C). This may be due to a conditioning layer left on the surface of organic 

matter and EPS. The uncoated substrates did still have high contact angles when 

compared to coated substrates but were notably lower after 5 harvests (Table.4.3.2). 

Coated and uncoated surfaces showed initial growth was lower than subsequent 

harvested biomass. Figure 4.4.3 shows the average biofilm harvests over 10 harvesting 

cycles. It was found that the amount of biofilm found on the surface increased slightly 

in most cases over time (Fig.4.3.3). Barberousse and others proposed that the age of 

culture had an influence on adhesion strength due to more AOM associated with longer 

contact time (Barberousse et al. 2006a; Barberousse et al. 2007). Bacterial adhesion 

studies suggest due to cellular degradation associated with age, weaker adhesion occurs 
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which stimulates the release of EPS as facilitators of adhesion (Lind et al. 1997; Tsuneda 

et al. 2003). This agrees with the results presented in Figure 4.3.3, as over time the 

amount of biomass harvested increased for both uncoated and coated.     

Interestingly, C1 revealed distinctive particle features attached to the surface in the 

ESEM images taken after harvesting (Fig. 4.3.2 B). Further EDX analysis found a high 

elemental presence of calcium, carbon and oxygen (table 4.3.1).  The ESEM image is 

also reminiscent of SEM micrographs seen in Jada and Jradi’s (2006) study of the role 

of polyelectrolytes in the crystallogenesis of calcium carbonate. They proposed that the 

role of the polyelectrolyte’s they tested (including PAA) was to stabilise high surface 

energy crystal planes and as a result of the adsorption process, aggregated nanocrystal 

morphology resulted. This could be a similar phenomenon observed in this study as the 

media used for C. sorokiniana has calcium-containing salts.  

Some species of algae have been found to secrete calcium carbonate but are mainly 

limited to Coralline algae (Guiry, 2007), and so is unlikely that the calcium carbonate 

nanocrystals observed here are due to C. sorokiniana. Moreover, the amount of growth 

after the sixth harvest (when CaCO3 was first observed) was still comparable to the first 

6 harvesting cycles (Fig.4.3.3). Endolithic algae are able to solubilise calcium carbonate 

as a carbon source and have also been found to photosynthesize within the crystals 

themselves. C. sorokiniana is an endolithic species, and so could explain why the 

calcium carbonate nanocrystals observed on the surfaces did not affect growth 

negatively (Horath & Bachofen, 2009). The biomass harvested between each cycle was 

inconsistent and this could be due to the harvesting method. As harvesting was 

conducted by manual scraping, the amount of algae left on the surface to stimulate 

biofilm for the next period varied greatly. This was also found to be the case in the 
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ALGADISK lab scale experiments conducted in WU using a polycarbonate disk coated 

at Cranfield University (refer to Fig.4.3.4 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1. AFM (left) and ESEM images (right). (A)  PETG C0. (B) PETG C1 (C) 

PETG C3. 
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Table 4.3.1: Elemental analysis of C1 PETG after harvest 6 via EDX. 

 

 

 

 

 

 Apparent 

Concentration 

k Ratio Wt% Wt% 

Sigma 

Atomic % 

C 18.94 0.18938 37.55 0.43 50.57 

O 16.2 0.0545 39.63 0.47 40.07 

Na 0.16 0.00068 0.21 0.07 0.15 

Mg 0.22 0.00145 0.3 0.05 0.2 

Cl 0.31 0.00273 0.31 0.04 0.14 

Ca 22.62 0.20208 22.01 0.24 8.88 

Total   100  100 
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Figure 4.3.2. ESEM images taken after harvest 6 (A) PETG C0. (B) PETG C1 (C) PETG C3. 

Figure 4.3.3: Harvest growth results. Harvesting took place every 7 days for up to 10 harvests 

for C. sorokiniana and C. vulgaris. Error bars represent standard deviation of the mean (n=3). 
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Table 4.3.2: Contact angle (º) measurements taken before and after harvesting. 

 C0 C1 C3 

Before harvest 83±2.1 46 ±1.3 38 ±2.5 

After harvest 10 64±6.6 27 ± 4.5 33 ±7.1 

 

Polycarbonate (PC) disks sent by WU were coated with C1 and tested in WU’s lab scale 

reactor (Fig.4.3.4 A & C). The standard deviation of the average productivities were 

shown to be high for PC C1 when compared to the steel meshes tested (Fig. 4.3.4B). 

The inconsistent growth between each harvest was most likely due to the lack of 

structure PC has. The amount of algae left on the surface after each harvest varied as 

there were no gaps in the surface to allow algae to remain. The steel mesh tested 

performed well and was most likely due to it being able to retain algae because of its 

structure, aiding in rapid re-colonisation. However, due to its high costs it was deemed 

unsuitable for the aims of the ALGADISK project. It was reported that PC C1 had the 

fastest initial attachment highlighting its potential (Blanken et al., 2014). Therefore the 

steel mesh used in this study was characterised so that its dimensions could be 

mimicked, and a low cost alternative could be introduced. CLSM analysis found the 

average width of the gaps for steel fine mesh was 76.86 µm and for rough steel mesh to 

be 162.85 µm. The pore depths were also measured at 78.46 µm and 110.45 µm for fine 

and rough mesh respectively. 
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Figure 4.3.4: (A) Schematic representation of the ALGADISK lab scale reactor. D= disk, M= motor, 

C- container, T= temperature control system, BT= buffer tank. (B) Average productivities of four 

growth harvest cycles at 11 rpm. Due to technical issues with disk one (PET), productivity results were 

not presented. (C) Biofilm progression of lab scale experiment before and after harvest on day 10. Error 

bars represent standard deviation of the mean (n=3). The following surfaces were tested:  Rough mesh 

(45 um) (steel), fine mesh (15 um) (steel) and Polycarbonate with coating 1, on C.sorokiniana. Error 

bars show standard deviation of the mean. (Blanken et al. 2014). (D) CLSM characterization of rough 

and (E) fine steel mesh, both obtained from WU.   
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4.3.2 Optimizing regrowth on coated substrates between harvests 

 

4.3.2.1 Testing polymer meshes and etched grids 

 

In order to improve on stable regrowth of polymer substrates with C1, different textures 

and roughness was investigated. Polymer woven meshes were tested with varying 

aperture sizes in order to emulate the stable productivity and re-growth shown using 

rough steel mesh. Growth experiments surprisingly revealed very low productivity and 

regrowth despite having similar dimensions to the steel mesh (Fig. 4.3.5 A i). Upon 

inspection with an optical microscope, it was revealed that the steel mesh is made up of 

two layers whereas the plastic meshes are made of one. Having only one layer meant 

the algae could not be sufficiently harvested as the gaps were too large and had a smaller 

surface area for algae to adhere to. The layers in the steel mesh facilitated in the 

entrapment of algae and provided a robust structure for harvesting. Specially 

manufacturing polymer meshes with layers would incur higher costs which the 

ALGADISK system aims to reduce. Therefore, other cost-effective avenues were 

explored in order to improve regrowth. 

One method involved etching a grid pattern with a diamond tip into the substrate 

(Fig.4.3.5 A iii), in order to help trap and leave algae behind in the grooves made.  

Average productivity taken from 5 harvests from etched grid substrates (EG) were 

comparable to non- etched substrates, but had lower standard deviations for both algae 

strains testes and coatings (Fig.4.3.5 B & C). With these promising results, labscale 

polyethylene (PE) (diameter: 24 cm) disks received from BAYBIO were etched and 

coated with C3. They were then tested at BAYBIO with an alternative ALGADISK lab 

scale reactor (Figure 4.6 D) and tested with an unknown isolated Chlorella strain. 

Results show generally higher productivity, biofilm thickness and lipid production on 
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C3 PE compared to without C3 (Fig. 4.3.6 A –C). Due to technical failures of the 

ALGADISK lab scale reactor, evaluation of algae regrowth could not be determined. In 

addition, etched grids made the automated harvesting procedure difficult as the grooves 

made would slow down the harvesting head and exhibit friction. Therefore alternative 

methods to improve regrowth and consistent harvesting was investigated further with 

sandpapering (SP) and grit blasting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.5: (A) Optical microscopy images of polypropylene mesh (PPM) with 200 um sized 

gaps (I & ii) and 100 um sized gaps (iii & iv) Etched grids (EG) before and after harvest. (B) 

Average harvest weight from 5 harvest cycles for C.sorokiniana. (C) Average harvest weight 

from 5 harvest cycles for C.vulgaris. 

Harvesting took place every 7 days. Error bars represent standard deviation of the mean (n=3). 
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4.3.2.2 Testing sandpapered and grit blasted surfaces 

 

Sandpapering (SP) and grit blasting (GB) substrates were investigated with the main 

aim of improved regrowth between harvests. SP with grade P90 inferred a Ra value of 

2.8 x105 Å with the highest deviation detected at 21.5 µm via CLSM. GB had a Ra value 

of 0.2 x 105 Å and the highest deviation detected at 4.75 µm via CLSM. Figure 3.12 

(A& B) shows for both algae species tested SP surfaces performed better than GB 

surfaces. The standard deviation of the average biofilm densities of 8 harvest cycles was 

 

Figure 4.3.6: (A) Dry Chlorella strain weight found on polyethylene with and without 

coating 3. (B) Biofilm thickness (um). (C) Lipid productivity found on coated and 

uncoated disk material. (D) Image of lab scale ALGADISK reactor at BAYBIO.  
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the lowest for C1 SP surfaces when compared to the other surfaces tested (refer to 

Fig.4.3.7 G). CLSM analysis shows GB surface topography consists of small pits rather 

than scratches and so although can increase surface area, entrapment of algae is not 

possible (Fig.4.3.7 C). When looking at microscopic images of SP PETG after 

harvesting, it is apparent that algae are able to remain in the scratches made to help 

promote rapid re-colonisation in the next growth cycle. Therefore, sandpapering as a 

cost effective method of increasing biofilm density and consistent regrowth was further 

investigated to find the optimal degree of surface roughness (Ra).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3.7: Topographical analysis using CLSM (A& C) and AFM (B & D). (A & B)  PETG Grit 

blasted. (C & D) PETG sandpapered with grade p90. (E& F) Microscopic images of sandpapered PETG 

C1 after harvest (Objective: X 20 & X 5 respectively).  (G) Average harvested weight for 8 harvest cycles. 

Harvesting was undertaken every 7 days. Error bars show standard deviation of the mean. 
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4.3.2.3 Finding optimal degree of surface roughness and its effect on algae 

attachment 

 

 

It has been reported that algae growth is more active on rougher surfaces than on flat 

planar surfaces. This is thought to be due to an increase in surface area and a decrease 

in shear forces (Characklis et al. 1990; Cao et al. 2009). However, Irving’s and others 

(2011) study concluded surface roughness showed only a small increase in cell density 

and that species selection was more important. 

In order to examine the significance of surface roughness, species selection and 

optimum Ra value; growth and attachment assays were conducted to test varying 

degrees of surface roughness.  

Figure 4.3.8 displays the effect of surface roughness on initial adhesion (A), strength of 

adhesion (B) and long term growth (C). Adhesion assays revealed that surface 

roughness did not strongly affect initial attachment for strains C. vulgaris (r = -0.35) 

and S. obliquus (r = -0.22) and showed very weak correlation for C. sorokiniana (r = 

0.69) (Fig.4.3.8 A). Testing the correlation between surface roughness and strength of 

adhesion found a correlation coefficient of 0.69 for C.vulgaris and no correlation for C. 

sorokiniana (r = 0.01) and S. obliquus (r = -0.20) (Fig.4.3.8 B).  This was in contrast to 

the results presented for long-term growth studies, where surface roughness and average 

biofilm density for 4 harvest cycles showed strong correlation to increasing Ra values 

(refer to Fig.4.3.8 C).C.sorokiniana, C.vulgaris and S. obliquus had correlation 

coefficients of 0.79, 0.92 and 0.72 respectively. In addition, it seemed that surface 

roughness was also species sensitive, with C. vulgaris having the highest correlation for 

both the adhesion assay testing attachment strength and the long term growth tests.  

Sandpaper grade p20 had the highest amount of biofilm growth for C. sorokiniana and 

so was selected for future tests.  
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Surface roughness can therefore aid in increased long term growth and may be due to 

the topography inferred by sandpapering. The scratches made are able to keep algae 

cells after the harvesting procedure and therefore aid in better re-colonisation. 

Understandably, the deeper and wider the scratches made the more algae trapped and 

kept at the surface for the next growth period.  
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Figure 4.3.8: (A) Number of algal cells measured in initial attachment adhesion test. (B) 

% of remaining cells measured after wash-out via adhesion assays (C) Average growth 

results taken for 4 harvest cycles. Harvesting was undertaken every 7 days.  
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4.3 Conclusions 
 

The following can be concluded after investigating cost-effective methods to increase 

attachment and improve consistent regrowth.  

 

 Lab scale tests of the ALGADISK reactor showed promising results using C1 

and C3 coated disks, but further optimisation on re-growth was needed. 

 Roughening PETG with sandpaper was found to be an economical and 

practical method for improving and enhancing consistent re-growth. 

 The effects of surface roughness were species-dependent and the optimum Ra 

value for each species was found using growth tests. 

 Surface roughness did not influence initial adhesion of algae but did however 

increase re- growth between harvest 

 

Scratches made by sandpaper was sufficient for trapping algae cells after harvesting, 

and therefore providing seed cells for the next cycle. However, the longevity of the 

coating was not confirmed. In addition, methods for improving coating adsorption, 

strength and cost of coating would be beneficial. These methods are investigated in 

chapter 5. 
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Chapter 5 

Optimisation of coating and application for large scale 
production for the ALGADISK system 

 

Abstract 
 

The previous method of fabricating polyelectrolyte multilayers (PEM) onto polymer 

substrates detailed in Chapter 3 and 4 was using a traditional dip coating method. Large-

scale production however would prove costly and time-consuming. Issues associated 

with the Layer-by-Layer (LbL) dip-coating techniques have been addressed previously 

in research by modifying ionic strength, deposition temperature and concentration of 

the polyelectrolyte solution. However the method of application in itself is limited and 

so research into investigating a method appropriate for large-scale production would be 

most valuable. In order to improve PE adsorption, substrate prepping prior to deposition 

of PE was investigated. Hydrolysation and plasma etching were compared to the cost-

effective method of substrate polarisation via friction. Scratch and wear data revealed 

hydrolysation provided better C1 strength but did not improve coverage. Therefore 

alternative methods to improve coating strength were investigated. Photo-cross linking 

was found to improve coating strength and surface energy. Airbrushing as a method of 

coating application reduced the amount of polyelectrolyte solution needed and deleted 

the need for in-between wash steps. The optimum ionic strength for PE solutions was 

determined via AFM imaging, scratch and wear data, hysteresis values and growth tests. 

The newly devised method was employed in the ALGADISK pilot-scale prototype.  
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5.1 Introduction 
 

Polyelectrolyte multilayered coatings have a wide variety of possible applications, from 

use in electronic devices to the biomedical field where implants are coated (Ladam et 

al. 2001; Advincula et al.1999). Most research to date has focused primarily on using 

substrates that are glass, silicon or quartz and so their use in the biotechnology field is 

limited (Kostler et al. 2005). Research in this chapter therefore focuses on examining 

the effect of the underlying substrate, the ionic strength, and different pre-treatment 

methods on the resulting multilayer formation and cost.  

Results shown in Chapter 3 concluded the best performing coating was C1 for C. 

sorokiniana and thus this chapter focuses on optimising C1 production and application 

for prototype construction. The first large scale prototype was installed in Almazan, 

Spain at the BFC Biogass Plant in May 2014. The method of coating production and 

application utilised for the prototype disks was devised using the experimental results 

presented in this chapter.  

The previous method of fabricating polyelectrolyte multilayers onto polymer substrates 

detailed in Chapter 3 was using a traditional dip coating method. Although this method 

worked well, the potential for large scale production was limited and alternatives were 

vital for optimisation. The LbL method has been deemed as time consuming and 

requires too much repetition for industrial purposes.  Methods suggested to counteract 

these issues include changing the ionic strength, deposition temperature and 

concentration of the polyelectrolyte solution (Hilal et al. 2015). Commercially feasible 

approaches are still under investigation but dynamic deposition methods have shown 

great potential. This method typically uses a cross flow or vacuum unit that controls the 

movement of polyelectrolytes across the substrate. One layer is often only needed as the 

performance of the polyelectrolyte is still sufficient (Ba et al. 2010; Baowei et al. 2012). 
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However, this method would not be suitable for the ALGADISK reactor as it would be 

economically unviable.  UV initiated grafting of polyelectrolytes onto substrates has 

also been suggested to reduce cost and can be applied to already existing membrane 

surfaces (Hilal et al. 2015). The number of polyelectrolyte layers as well as the 

molecular weight used can also make changes to the hydrophilic properties and porosity 

of the coatings (Meier-Haack et al. 2001). 

Plasma etching uses ionised gas which is discharged against the substrates surface, 

thereby increasing chemical functional groups. Any selected gas in a plasma state 

contains electrons that can promote graft copolymerisation as well as initiate cleavage 

of chemical bonds and form macromolecule radicals (Tsuji et al. 2006). Plasma surface 

treatment is said to offer more stable, uniform and longer-lasting surface energy 

enhancement (Zia et al. 2015). Andersen and others had illustrated in their study the 

compatibility of Argon plasma treated substrates and PVP (Anderson et al. 2011).  In 

general, plasma treatment can promote adhesion of a coating and so maybe beneficial 

in terms of improved absorption and longevity. Due to potential high costs associated 

with atmospheric plasma, an additional pre-treatment method was also investigated  0in 

the present study (Nady et al. 2011).  

Substrate hydrolysation with aqueous sodium hydroxide as a pre-treatment step on 

polymer substrates was also tested. The aim of this pre-treatment step was to promote 

polyelectrolyte adsorption by providing free carboxylic groups induced by chemical 

hydrolysis (Chen & McCarthy et al. 1996). 

This chapter is concerned with improving on the quality of C1 by modifying the method 

used in chapter 3. The new method was implemented in the prototype pilot test detailed 

later in this chapter.  
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5.2 Materials and methods 
 

5.2.1 Algae culture and growth studies 

 

This chapter focused only on C. sorokiniana, which was kept in the same culture 

conditions as detailed in 3.2.1. Adhesion assays, cell viability tests and long term growth 

studies were also carried out in the same fashion as detailed in sections 3.2.2, 3.2.3 and 

3.2.4 respectively.  

5.2.2 Substrate preparation and PE deposition 

 

Substrates were not sandpapered in this chapter in order to examine the coating 

morphology accurately. Dip coated substrates (DC) were prepared and coated in the 

same fashion as described in section 3.2.6.  

5.2.3 Contact angle measurements, Hysteresis and Surface energy measurements 

 

The static contact angle was measured using the same technique as detailed in section 

3.2.7.  Hysteresis values were obtained by subtracting advancing contact angle by the 

receding angle. The advancing angle was measured by gently increasing the volume of 

the water droplet before the base line begins to advance. The receding angle was 

obtained by decreasing the droplet size before the baseline starts to recede. Six 

measurements were taken for each coated substrates at different locations and then 

averaged (Fig 5.2.1).  

 

Figure 5.2.1. Diagram showing how advancing and receding contact angles are 

measured. 
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Surface energy was obtained using Owens/Wendts theory of surface energy, where by 

the sum of dispersive and polar energy equates to surface energy (mJ/m2) (Owens & 

Wendt., 1969). Diiodomethane was used to determine the dispersive forces and 

deionised water was used to determine the polar components. 

 

5.2.4 Scratch and wear testing  

The Teer ST-3001 was used to assess the mechanical strength, adhesion and wear 

properties of the coated surfaces. Single scratch test under a progressive load (starting 

loading 5 N) was used to determine the homogeneity of the coating along the surface of 

a sample and its strength of attachment. The acoustic emission (dB) emitted when a 

material undergoes stress as a result of an external force was analysed. This external 

force was a 5 mm carbide ball which increased its force against the surface from 5 N to 

30 N. Therefore, the frequency of acoustic emission fluctuations is an indication of 

coating uniformity. Any large sudden increase or decrease as the load increases could 

signify failure in the coating. Generally smooth surfaces with no coating will have a 

consistent acoustic emission range with minimal fluctuation. Thus also serves as a 

reference point for surfaces with coatings. 

 

5.2.5 Hydrolysation of PETG  

To produce free carboxylic acid groups, substrates were exposed to NaOH (1mol/l) at 

60 º for 1 hour followed by HCL solution (0.1 mol/l) for 10 minutes at room temperature 

(21 °C). To stop the hydrolysation process, the substrates were then placed in dH2O for 

10 minutes and dried at room temperature. This hydrolysation process is described in 

more detail in a previous study (Kostler et al. 2005). 



   

95 

 

5.2.6 Plasma treatment 

Polaron Plasma Barrel Etcher was used to apply a conditioning layer of argon (80%) 

/oxygen (20 %) onto the substrate. Substrates were cleaned with isopropanol 

beforehand. Surfaces were exposed to plasma etching for 3 minutes (20 V). 

5.2.7 Coating application via spraying 

The polyelectrolyte solution (polyanion) of choice is placed in the airbrush chamber and 

then sprayed onto the substrate so that its surface is completely covered. The substrate 

is then left to either air dry at room temperature or dried with nitrogen. The substrate is 

then airbrushed with an oppositely charged polyelectrolyte (polycation) followed by 

drying.  This is repeated till the desired number of layers, and outer charge is achieved. 

Airbrush guns mentioned in this study are as follows: Fine mist - Badger Spray Gun 

Model 250.4. Medium mist - Metabo Spray gun Model FB 150. Heavy mist - RS spray 

gun Model 672-071  

5.2.8 Ultraviolet (UV) treatment 

Photo-cross linking in lab experiments were carried out using a 40 W, 290 nm UVC 

lamp capable of emitting 5.71 x 10-33/s of photons. Varying time lengths were tested on 

C1 PETG and a minimum of 120 minutes was needed for maximum benefit. For induced 

photo-cross linking on large scale disks (area: 1m2), UV-C 400W Flood Lamp (UV 

Light technology, UK) capable of emitting 5.71 x 10-32/s of photons was used to 

illuminate the whole disk. According to lab tests conducted, a total of 12 minutes of 

exposure times was needed with this UV lamp. 
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5.2.9 Determining optimal number of AB layers in C1 

 

To determine the optimal number of layers in C1 using the fine mist airbrush gun¸ 5, 7, 

9 and 11 layers were tested and then characterised. The PE deposition method was kept 

the same as detailed in section 4.2.7.  

5.2.10 Determining optimal polymer concentration for AB application 

 

PE deposition solutions were made with varying PE concentrations (0.5 – 2.5 mg/ml) 

and applied in the same fashion as described in section 4.2.7 with the fine mist airbrush 

gun. 

5.2.11 Determining optimum ionic strength 

 

PE deposition solutions were supplemented with varying concentrations of NaCl (0M 

– 2M) before being applied onto PETG forming C1 with 9 layers. The effects of 

differing ionic strengths was tested and characterised.  

5.2.12 Disk coating method for ALGADISK prototype 

 

The following method was used for the prototype pilot installed at the BFC biogas plant 

in Almazan, Spain May 2014. Disks (area: 1 m2) were cleaned with 70% ethanol 

followed by sandpapering. The fine mist gun was attached to a 196 Twin Cylinder with 

Air Tank Airbrush Compressor and PE deposition solutions were made at a 

concentration of 1 mg/ml with distilled water with an ionic strength 1M NaCl. Two 

airbrush guns were used to apply the alternating PE layers of C1 with a total of 9 layers, 

followed by UV- C exposure for 12 minutes (UV-C 400W Flood Lamp, UV Light 

technology, UK). Disks were then rinsed with distilled water before inoculations in the 

ALGADISK reactor.  
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5.3 Results and Discussion 
 

5.3.1 Investigating alternative substrate pre-treatments 

 

A significant problem identified previously is that loss of coating and poor repeatability 

can occur when PVP is weakly bonded to the substrate (Nady et al. 2011; Norhan et 

al. 2011). To improve and optimise polyelectrolyte absorption, methods to prime the 

substrates prior to coating were investigated. Chapter 3 involved the pre-treatment step 

of inducing electrostatic static charge onto the surface via frictional contact with a 

material containing a different dielectric constant as a pre-treatment step (Cross, 1987; 

Wildhaber et al. 1996). Prepping the substrate using this method is not a common 

practice but was investigated due to its low-cost and large-scale potential. Although 

contact angle measurements and ESEM images provided evidence of successful 

polyelectrolyte adsorption; coverage was not always consistent (Fig.5.3.2 Ai). Scratch 

and wear data found that C1 could only resist forces of up to 10 N (Fig.5.3.2 B). 

Therefore, investigating alternative pre-treatment methods to enhance the strength of 

PE adsorption could prove beneficial. Atmospheric plasma was investigated along with 

substrate hydrolysation.  

Table 5.3.1 shows contact angles of untreated and pre-treated substrates. The contact 

angle for both substrates that were treated with plasma or aqueous NaOH had lowered 

contact angles than substrates that were statically charged with acrylic fibres. This was 

also the case with resulting contact angles measured after C1 application; proving the 

nature of the underlying substrate has an influence on coating properties. PETG 

pretreated with ionised oxygen/argon notably decreased contact angles followed by 

hydrolysis of PETG. To examine the extent of coating coverage and heterogeneity, 

hysteresis values were obtained (Fig.5.3.1). Hysteresis is a term used for advancing 
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(maximal) contact angle,  and (minimal) contact angle, of the droplet immediately after 

being placed onto the surface. Figure 5.3.1 shows the pre-treatment of surface charging 

experienced slightly higher values of hysteresis than the other pre-treatment steps. This 

could signify incomplete coating coverage as the hydrophobic nature of the underlying 

substrate could be exposed. However, a one way ANOVA test revealed no significant 

difference was apparent for all three treatment steps (P>0.05). 

 

Table 5.3.1: Contact angle and surface tension measurements of substrate PET  

 

Substrate treatment Contact angle with water Surface energy 

(mJ/m2) 

Hydrolysation 53.3 ± 2.5 58.01± 1.3 

Hydrolysation/C1 27.6 ± 1.8 74.61± 1.6 

Surface charging 83 ±2.1 50.3 ± 2.4 

Surface charging/C1 46 ±1.3 69.3 ± 3.1 

Plasma etching  46.6± 2.6 43.1 ± 1.3 

Plasma etching/ C1 26.8± 3.1 74.2 ± 2.2 
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Figure 5.3.1. Hysteresis values calculated for differing pre-treated PETG with and without C1. 

Error bars represent standard deviation of the mean.  
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Table 5.3.2: Pretreatment and resulting coating thickness 

 

 

ESEM images show differences in coating structures between the different pre-

treatments methods, but still all resemble a crystalline layout. It is also apparent that 

despite the different pre-treatments, full coverage of the substrate was still not achieved 

(Fig 5.3.2 A).  

When examining the effect of the pre-treatments on the strength of coating adhesion via 

scratch and wear testing, it was confirmed that the hydrolysed substrates had the highest 

resistant to coating failure (Fig 5.3.2 C). The plasma treated substrates experienced a 

possible coating failure at 10 N. Statically charged substrates performed similarly with 

observable failure just above 10 N. 

Using these results, it can be said that the pre-treatment of static charging does not 

provide the optimal conditions for strong PVP binding. Hydrolysis of the substrate prior 

to coating via NaOH showed overall better adsorption of PVP when looking at ESEM 

and hysteresis data, followed by atmospheric plasma treatment with Oxygen/Argon.  

One-way Anova revealed there was no significant difference between the three pre-

treatment methods tested when comparing strength of algae attachment, initial 

attachment and long-term average growth studies (p<0.05) (refer to Fig.5.3.3).   

Static charging of the substrate before coating application does have better potential in 

large-scale application in terms of ease and costs when compared to hydrolysis and 

atmospheric plasma. The resulting coating durability is questionable and thus would 

require further optimisation to confirm long-term use. Exploring alternative avenues to 

Pre-treatment Coating thickness (nm) 

Hydrolysation/C1 43.4± 3.2 

Surface charging/C1 31.7 ±2.7 

Plasma etching/C1 46 ±1.3 
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enhance C1 adsorption and mechanical strength was vital. Therefore, method of coating 

application and static charging in conjunction with photo-cross-linking was investigated 

in the following sections. 
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Figure 5.3.2. (A) ESEM images (1000 x) of C1 on different pre-treated substrates. (I) 

Substrate charging. (II) Hydrolysation. (III) Plasma etching. (B – D) Scratch and wear testing 

on differently pre-treated substrates followed by C1.  
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  Figure 4.3. (A) Adhesion of C. sorokiniana found on surfaces with C1 after 72 hours with 

different pre-treatments after flushing. (B) Number of cells counted after 6 hours of 

incubation followed by washing. (C) Biofilm density harvested after 7 days. Error bars 

represent standard deviation of the mean (n=3).  
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Figure 5.3.3. (A) Adhesion of C. sorokiniana found on surfaces with C1with different pre-

treatments after flushing. (B) Number of cells counted after 6 hours of incubation followed 

by washing. (C) Biofilm density harvested after 7 days. Error bars represent standard 

deviation of the mean (n=3).  
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5.3.2 Investigating spraying as method of coating application 

 

A considerable contributing cost factor is the volumes of polyelectrolyte solutions 

needed for large scale production. The ALGADISK disks for the prototype have an area 

of 1 m2, with multiple disks in 1 unit. This would require large filled containers for 

dipping resulting in high waste and costs.  Manual dip coating in large scale applications 

would be costly and time strenuous with the multiple washing steps required. The use 

of automated robotic dip coating would require the purchase and design of very 

expensive equipment. Therefore, this area required a much needed solution and 

optimisation to reduce costs without compromising the efficacy of the coating.  

Spraying of PE was investigated by Schlenoff and colleagues where they were able to 

show the fabrication of PEM was up to 40 times faster than dip coating. After two 

alternative sprayed layers the substrates were rinsed by spraying deionised water. They 

also found that without the rinsing step the films were thicker (Schlenoff et al. 2000). 

Airbrushing was consequently investigated, with several air brush guns tested (refer to 

Fig.5.3.4).  The airbrush guns were labelled fine, medium and large mist according to 

the resulting droplet size seen in ESEM images in Figure 5.3.4.  

Figure 5.3.4 A-B showed the deposition of 5 layers via AB did not offer uniform 

coverage as found in DC substrates (Fig.5.3.3 A). When comparing degree of hysteresis 

between DC and AB, it was apparent that AB substrates had relatively higher 

heterogeneity in coating structure and coverage (Fig.5.3.5). This is most likely due the 

nature of the application method. Rather than forming a monolayer, airbrushing applies 

in a depositing fashion and does not always cover the surface completely. Therefore AB 

substrates had higher amount of surface defects which was represented by high 

hysteresis values. 
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Table 5.3.3: Contact angle measurements and film thickness of airbrushed and dip 

coated methods of C1 application 

 

Method of C1 application Contact angle with water 

 

Film thickness 

(nm) 

Dip coated 46 ± 1.3 31.7 ±2.7 

Airbrushed (fine) 36.5 ± 2.0 46.5 ±3.3 

Airbrushed (medium) 42.4 ± 3.2 39.4 ±2.2 

Airbrushed (heavy) 38.7 ±1.5 42.6 ±3.5 
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Figure 5.3.4: ESEM images at 1000x taken of substrates PET with AB C1 (A) Fine mist. 

(B) Medium mist. (C) Large mist.  

A B C 

Figure 5.3.5: Hysteresis values calculated for PETG with and without C1. Error bars represent 

standard deviation of the mean (N =3). 
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Along with differing CA measurements observed in table 5.3.3, scratch and wear  

testing found a different profile compared to DC substrates. The acoustic emission 

varied substantially across the surface, signifying a very heterogeneous uneven 

topography. An apparent failure was detected at approximately 18 N for the fine mist 

AB gun used, and the remaining substrates used with the other tested guns had no 

obvious detected failure (Fig.5.3.6).  

The thickness of the C1 measured was higher for AB samples than DC samples (refer 

to table 5.3.3). This could be due the depositing nature of the AB gun and due to the 

fact that there was no washing steps introduced in the AB method. The resulting thicker 

coating could have therefore enhanced the strength of the coating. 

 

 

 

 

A 

Figure 5.3.6.Comparison of DC ad AB methods. (A – C) Scratch and wear testing 

on different airbrush gun application.  
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Student-paired T test found the amount of biofilm density weighed after 7 days was not 

significantly different (p = 0.46) between AB and DC samples (Fig.5.3.7 C). The 

strength of algal adhesion was also not statistically significant between DC and AB 

surfaces (Fig.5.3.7 B). Initial attachment was still not comparable to DC substrates and 

was most likely due to the lower coating coverage offered on the substrate (Fig.5.7 A). 

This is also evident when comparing initial attachment with different airbrush guns 

themselves. The fine mist airbrush gun had the highest observed algal attachment, which 

ESEM images (refer to Fig.5.3.4 A) revealed it also offered better substrate C1 

coverage.  

AB results were comparable to DC and had exhibited better mechanical properties.  

Using these results the Fine mist airbrush gun was selected for further testing and 

optimisation. However, further work was needed to improve coating coverage on the 

substrate and improve coating adhesion to the substrate. Therefore photo-cross linking 

and increasing the number of layers was investigated in the hopes of improving these 

properties.  
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Figure 5.3.7. (A) Number of attached cells counted after incubation with C. sorokiniana followed 

by washing. (B) Adhesion (%) of C. sorokiniana found on tested coated surfaces at 72 hrs after 

flushing. (C) Biofilm density found on tested surfaces. Error bars show standard deviation of the 

mean (n=3).  
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5.3.4 Photo-cross linking with Ultraviolet (UV) 

 

UV exposure can form carboxylic groups on the substrate as well as cross link and 

cleave polymers.  

Photochemical grafting of polymers is a common practice and in particular N-viny-l,2-

pyrrolidone (NVP) has been reported previously (Pieracci et al. 1999;  Luan et al. 2012). 

Photo-crosslinking with UV light is said to be cost-efficient and can improve substrate 

properties without adding bulk (Ulbricht, 2006).  

Using the pre-treatment of static charging, surfaces were exposed to UV irradiation 

immediately after coating application. Table 5.3.4 lists contact angle and surface energy 

(SE) measurements of both airbrushed and dip coated substrates before and after UV 

exposure. SE measurements can present quantitative analysis, which is beneficial when 

determining how the underlying substrates and photo-crosslinking can influence the 

resulting PEM coatings.  

SE measurements were increased after UV exposure for both DC and AB substrates. 

ESEM images show a distinctive mud-flat cracking pattern after UV exposure of 3 hours 

(Fig.5.3.9 A & B). AFM analysis showed a smoother topographical appearance but 

ESEM images still showed C1 coverage was still poor with AB surfaces (Fig.5.3.9 C & 

D). 

Contact angle and SE measurements recorded at 20 min intervals, found surface energy 

increasing for the first 100 minutes and then levelling off for the remaining time 

(Table.5.3.4). Therefore, 100 minutes would be needed for the minimum amount of 

induced surface energy enhancement via UV light. 

Scratch and wear data revealed increased durability and homogeneity with UV exposure 

for both DP and AB surfaces (Fig.5.3.10 A & B). This is expected as film rigidity is 

said to increase due to photo-cross-linking (Vazquez et al. 2009). Hysteresis values did 
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not significantly change after UV exposure in all cases. This implies that hysteresis is 

due to the underlying substrate still being exposed. Although UV can strengthen coating 

adhesion, it cannot however improve coverage of the coating onto the substrate as 

shown in ESEM images (Fig.5.3.9 A & B).  

Vazquez and others showed PE photo-cross-linked onto silica plates actually found an 

increase in cell proliferation and changed settlement pattern with myoblast cells 

(Vazquez et al. 2009b). In the present study however, attachment assays found slightly 

lower initial attachment value on surfaces exposed to UV compared to those that weren’t 

(Fig.5.3.10 C & D). A possible reason for lower strength of attachment and biofilm 

density (in harvest 1) (Fig.5.3.10 E) could be due to the UV exposure completely 

sterilising the surface of bacteria. Surfaces developed thus far in this study were only 

cleaned with ethanol after coating application and before inoculation with algae. It is 

generally known that although algae biofilms can form in the presence of no bacteria, 

bacteria are thought to be initial colonisers which help assist algal attachment (Cooksey 

& Wigglesworth-Cooksey, 1995).  

Longer-term growth studies found after harvest 2, growth was very comparable to 

coated substrates that were not exposed to UV. Therefore, the use of UV irradiation to 

aid in cross-linking of polymers PVP and PAA onto PETG would be beneficial in terms 

of improving coating adhesion and strength. 

 

 

 

 

 

 

 

 

 

 

 

 



   

109 

 

 

 

 

 

Table 5.3.4: Contact angles and surface energy measurements of surfaces exposed to 

UVC. 

 

UV C exposure 

time 

Contact angle with water 

(deg.) 

Surface free energy (mJ/m2) 

0 39 ±2.3 72.5± 1.1 

20 38 ±1.7 75.3± 2.5 

40 36 ±3.4 75.1± 1.5 

60 37 ±2.1 76.6± 1.6 

80 35 ±3.1 78.9± 1.1 

100 36 ±2.2 79.7± 0.8 

120 34 ±3.7 79.4± 1.8 

140 36 ±3.3 79.5± 1.5 

160 36 ±2.6 79.9± 2.1 

180 35 ±1.1 78.2± 1.7 

200 37 ±3.1 78.9± 1.8 

220 35 ±1.6 79.2± 0.9 

240 35 ±2.5 78.9± 1.5 
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Figure 5.3.8: Hysteresis values calculated for PETG with and without C1. Error bars represent 

standard deviation of the mean (N =3). 
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Figure 5.3.9: (A&B) ESEM images at 100x (right) and 1000x (left) taken of substrate PETG 

with coating 1 after UV exposure. (A) AB PETG C1. (B) DC PETG C1. (C) AFM 3D analysis 

of AB fine mist (5 layers) of C1 after UV exposure. ((D) AFM 3D analysis of DC of C1(5 

layers) UV exposure. UV exposure: 3hours.  
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Figure 5.3.10 (A & B) Scratch and wear testing comparing the effect of UV exposure on 

strength of coating (C) Number of attached cells counted after incubation with C. sorokiniana 

followed by washing. (D) % adhesion found on tested coated surfaces. (E) Biofilm density 

found on tested surfaces. C. sorokiniana algae used. Error bars show standard deviation of the 

mean (n=3).  
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5.3.5 Determining optimal polymer concentration 

 

Optimising C1 would require investigating the optimum concentration of 

polyelectrolyte solutes. Increasing polymer concentration increased resulting film 

thickness via AB application slightly (Table 5.3.5). Increasing PE concentration did not 

result in a significant decrease in CA measurements or hysteresis values (Table 5.3.5 & 

Fig.5.3.11). Scratch and wear data did however show greater heterogeneity and was 

most likely due to a higher amount of polymer being deposited onto the substrate 

resulting in further uneven topography (Fig.5.3.13). 

When comparing initial attachment assays, it was apparent that C1, with the highest 

amount of polymer concentration (2 mg/ml), found only a slightly higher proportion of 

algal attachment. Overall PE concentration did not have a positive correlation on biofilm 

density(r = -0.9) or strength of adhesion (r = 0.05) (Fig.5.3.12 B &C). However, there 

was a moderate positive correlation (r = 0.62) between PE concentration and initial 

attachment (Fig.5.3.12 A). Cell viability assays conducted found no toxic effect of 

increasing polymer concentrations in C1 (Fig.5.3.12 D).  

 

Table 5.3.5: Contact angle and coating thickness measurements of C1 with different 

PE concentrations. 

 

 Polymer concentration 

(mg ml-1) 
 Contact angle with 

water (°) 

 Film thickness (nm) 

0.5  38.3 ± 1.8 42.8 ± 2.8 

1  36.5 ± 2.0 46.5 ±3.3 

1.5  34.6 ± 3.5 56.1 ± 43 

2  33.3 ± 2.6 67.2 ± 54 

2.5  31.4 ± 3.4 71.3 ± 37 
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Figure 5.3.11: Hysteresis values calculated for PETG made with varying concentrations 

of PE in C1. Error bars represent standard deviation of the mean (N =3). 

C

C 

Figure 5.3.12. (A) Number of attached cells counted after incubation with algae followed 

by washing. (B) Adhesion (%) found on PETG C1 formulated with differing PE 

concentration after 72 hrs incubation with algae followed by flushing. (B) Biofilm density 

found on tested surfaces. C. sorokiniana algae used. Error bars show standard deviation of 

the mean (n=3).  
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5.3.6 Determining optimal number of layers 

 

Previous testing with the AB method found poor coating coverage on the substrate, and 

so was an area that needed to be improved upon. A proposed solution was to apply more 

layers. Table 5.3.6 shows as the number of layers increase, the CA decreases and film 

thickness increases as expected.  

The degree of hysteresis observed decreased as the number of layers increased 

(Fig.5.3.16 A). This is in contrast to the observed behavior found in previous research 

undertaken by others. For example Wang and others stated that as the number of bilayers 

increased, the amount of hysteresis experienced also increased (Wang et al. 2011). 

ESEM imaging revealed complete coating coverage after spraying 9 layers and so this 

decrease in hysteresis could be a reflection of this (Fig.5.3.16 F). As the hydrophobic 

nature of the underlying substrate is no longer exposed, the heterogeneity of the surface 

is reduced thereby reducing hysteresis.  

Algal adhesion assays conducted found weak correlation between the strength of 

attachment and number of layers (r = 0.1) (Fig.5.3.14 A). Initial attachment tests found 

a moderate correlation between number of layers and number of cells found on the 

coated substrate (r =0.65) (Fig.5.3.14 B). There was no correlation between biofilm 

density measured after 7 days and the number of PE layers (r = 0.084) (Fig.5.14 C). Cell 

viability tests showed no negative influence between number of layers and cell viability 

of cells attached to the coated surface (Fig.5.3.14 D).  

AFM analysis showed a rough and uneven topography which was also reflected in 

scratch and wear testing (Fig.5.3.16 B). 

Scratch and wear data did not confirm whether increasing the number of layers 

increased the durability of C1 (Fig.5.3.15). Nonetheless, 9 layers was shown to improve 

coating coverage and initial attachment and so was selected for prototype testing.  
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Table 5.3.6: Contact angle and film thickness measurements of C1 with differing 

number of layers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of layers Contact angle with water (°) Film thickness 

(nm) 

5 39.5 ± 2.0 46.5 ±3.3 

7 32.4 ± 3.2 52.3 ± 2.8 

9 34.2 ± 3.5 61.7 ± 4.4 

11 33.7 ± 2.6 78.3 ± 3.6 
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Figure 5.3.14. (A) Adhesion (%) found on C1 PETG with different number of layers. (B) 

Number of attached cells counted after incubation with algae followed by washing (C) Biofilm 

density found on tested surfaces.  C. sorokiniana algae used. Error bars show standard deviation 

of the mean (n=3).  
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Figure 5.3.15: (A – D) Scratch and wear data investigating effect of number of PE layers 

on coating strength (PETG C1). (A) 5 layers. (B) 7 layers. (C) 9 layers. (D) 11 layers. 
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5.3.7 Determining optimum ionic strength 

 

To examine the influence of ionic strength of the PE deposition solution used and its 

resulting multilayer formations; contact angles, hysteresis values and resulting film 

thickness were measured. PE solutions were supplemented with varying concentrations 

of NaCl solution before multilayer fabrications on to substrates were made. Contact 

angle and film thickness measurements showed increasing salt concentration decreased 

the contact angle measurements (Table 5.3.7). Previous studies have shown the 

influence of salt as a growth mechanism due to thicker films resulting from swelling. 

Swelling occurs as salt ions and water become incorporated into the PEM films. When 

the ionic strength of the PE solution is higher, the Debye length of an electrical potential 

is lower, which is thought to be due to the screening effect via salt ions. This screening 

Figure 5.3.16. (A) Hysteresis values observed on different number of PE layers. (B) AFM 

3D analysis of 9 layers (C1 PETG). (C) ESEM image (1000 x) of PETG C1 9 layers. 
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effect causes PE to form dense globules due to lower self-repulsion. This coiling 

therefore causes thicker multilayered films as observed in this study (Ladam et al.1999; 

Tadmor et al. 2002). Tadmor and others investigated the link between ionic strength and 

Debye length. They found according to the Debye length (K-1) equation, the higher the 

concentration of ions the lower the resulting Debye length (Tadmor et al. 2002).  

 

Debye length equation: 

 

Therefore, the behaviour of decreasing contact angles observed here and the increasing 

film thickness can be explained according to this; as the increase in thickness dilutes the 

influence of the underlying layers and substrate (Decher, 1997; Lvov et al. 1993; 

Kostler et al. 2005).  

Hysteresis values were the highest for 0M and 2M NaCl concentrations, perhaps 

signifying surface defects (Wang et al. 2011). Previous research has shown increase in 

salt content can decrease the amount of surface defects and produce more coherent films 

(Dubas & Schelenoff, 1999; Wang et al. 2008; Wang et al. 2009). This is reflected when 

looking at hysteresis values and 3D AFM analysis between 0M and 1M. The degree of 

hysteresis increased slightly at 2M [NaCl] suggesting an unstable coating (Fig.5.3.18 

F) (Wang et al. 2011). AFM analysis showed significant topographical changes with 

increasing ionic strength of deposition solutions (Fig.5.3.17 A- E). Fery and others 
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found their PAA/PAH multilayers formed nanopores or vermiculate-like structures 

which were caused by exposure to water or salt solutions. Zhai and colleagues study 

produced AFM images of PAA/PAH of PEM films with similar dimpling patterns 

shown in Fig.5.3.17 D. They found these pores were formed after exposing their 

heterostructure films to aqueous acidic solutions followed by rinsing with water (Zhai 

et al. 2004).The changes in morphology induced by ionic strength in the present study 

is particularly of interest as the method of application was spraying. At 0.1 M [NaCl] 

the coating structure is uneven and has a high Ra (>1nm) and is in accordance with the 

nature of the method of AB application used. Airbrushing was found to deposit PEs 

randomly onto the surface rather than forming a monolayer at each step as with DC. 

Increasing the salt concentration of the deposition solution showed a smoothing effect 

after 0.5 M [NaCl] was introduced (Fig.5.3.17 B- E). Reducing roughness is said to be 

due to the increased mobility of the multilayer (Wang et al. 2011). 

Pores started to form at 1M which were not present at 2M [NaCl]. Instead at 2M, less 

frequent larger micropores were present which also correlated with higher hysteresis 

values and failures observed in scratch and wear testing. Scratch and wear results 

showed a very uneven surface at 0.1 M which reduced as the [NaCl] increased. Although 

higher salt concentrations produced thicker and smoother films, their robustness was 

not always reflected well in their scratch and wear results (Fig.5.3.18). C1 made with 2 

M [NaCl] found coating failure at approximately < 17 N (Fig.5.18 E). The weaker 

resulting film could be due to the increased PE mobility. 

Strength of algae adhesion and biofilm density was the lowest for 0M and 2M [NaCl] 

and found no correlation (Fig.5.3.17 F & H). Initial attachment however found at 0.1 M 

and 0.5 M [NaCl] performed the best (Fig.5.3.17 G). Therefore, although the presence 

of salt in PE solution before deposition is necessary for better PEM film morphology 
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and algal attachment; the presence of pores induced by high salt levels did not have any 

advantageous effects on growth. Nonetheless, these nano/micropores have potential 

applications in other fields such as vapour sensors, monitorable drug delivery systems 

and tuneable dielectric mirrors (Zhai et al. 2004). 

 

Table 5.3.7: Contact angle and film thickness measurements of C1 made with 

differing levels of salt 

 

 

 

 

 

 

 

 

 

 

 

NaCl (M) 
Contact angle  

with water (°) 

 Film thickness 

(nm) 

0 41.4 ± 1.9 34 ± 1.4 

0.1 36.5 ± 2.0  46.5 ± 3.3 

0.5  31.2 ± 3.1 103 ± 12.4 

1 27.1 ± 2.8 168 ± 16.3 

2 22.3 ± 3.2 142 ± 12.2 
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Figure 5.3.17: (A-F) AFM 3D analysis characterising the effect of ionic strength (NaCl 

conc.) on C1 PETG. (A) 0 M. (B) 0.1 M. (C) 0.5 M. (D) 1 M. (E) 2 M. (F) Adhesion (%) of 

C.sorokiniana (N=3).  Error bars show standard deviation of the mean. 
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Figure 5.3.18. (A - D) Scratch and wear data investigating effect of ionic strength of PE solution 

on coating strength (PETG C1). A) 0 M. (B) 0.1 M. (C) 0.5 M. (D) 1 M. (E) 2 M (F) Hysteresis 

found with varying salt content. 
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5.3.8 Finalized method for ALGADISK prototype, cost analysis and results 

 

5.3.8.1 Contact angle measurements for on-site characterization 

 

 

For large scale production of coated disks for the ALGADISK reactor a method for on-

site characterisation was proposed. Contact angle (CA) measurements can provide 

qualitative data to determine polyelectrolyte adsorptions onto substrates.  Table 5.3.8 

lists the contact angle measurements measured in dry and wet conditions of AB C1 

treated with UV. Pre-wetting the surface with algae media M8-a was carried out due to 

the fact that the coated substrates would be exposed to wetting when in contact with 

algae in-between harvests. Therefore to examine the effect of this environment on C1, 

the contact angle along with surface tension measurements were carried out. It was 

found testing the contact angle with media from dry to wet surface conditions had an 

apparent influence on its wetting behavior. The CA decreases slightly in all cases when 

comparing dry surfaces to pre-wetted surfaces (refer to Table.5.3.8). Changes in contact 

angle measurements were also observed in Kostler and colleagues study, where they 

observed unusual wetting behavior of PDADMAC. They found when tested with water, 

the pre-wetted coated substrates had contact angles of up to 10ᵒ higher. They proposed 

the hydrated outer layer of hydrophobic PDADMAC camouflaged the hydrophilic 

properties of the PSS underneath due to its increase in thickness and slight layer 

separation (Kostler et al. 2005). C1’s outermost layer is PVP, which is hydrophilic 

and it’s beneath layers consist of a less hydrophilic PAA. Therefore, it can be assumed 

that the strong hydrophobic nature of the PETG substrate and the less hydrophilic PAA 

was slightly obscured when the coating was observed at a pre-wetted state.  These 
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results can be used as reference data when checking coating adsorptions and life-span 

on industrial scale reactors with a simple pocket goniometer.  

 

Table 5.3.8: Contact angle measurements taken before and after wetting. 

 Contact angle with water (°) 

Dry C1/AB/PETG/UV (9 layers) 39 ± 3.1 

Pre-wetted C1/AB/PETG/UV (9 

layers) 

26.6± 2.1 

 

 

5.2.7.2 Description of coating procedure implemented in the prototype 

 

The scaling up method for coating application was originally to be used with robot dip-

coating equipment. However, this method was thought to be potentially very costly and 

so other methods were explored. Alternatively, using a manual dip coating approach 

would eradicate the cost of purchasing expensive equipment. This would still require 

large volumes of polyelectrolyte solutions and a significant amount would end in waste. 

In addition to this, the previously reported dip coating method itself requires a lot of 

steps in washing and drying.  

Therefore the process of airbrushing was investigated as reported in this chapter. 

Airbrushing as a method of application was used in the pilot-scale disks (diameter: 1 

m). PE solutions were made at a concentration of 1mg/ml with distilled water 

supplemented with 0.1 M [NaCl] and mixed with a magnetic stirrer. Substrate disks 

were sandpapered and cleaned with ethanol (70%) before airbrushing on alternating PE 

layers (9 in total). According the coating application procedure carried out on the pilot, 

each disk (both sides) required a total of 300 mls of PE solution (£0.12/disk, Sigma 

Aldrich, UK). This is a large decrease from the amount that would be needed for dip 

coating disks into large enough containers filled with PE solutions. 
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A suggested method for on site characterisation was to use a pocket goniometer. The 

contact angle showing successful coating adsorption onto the substrate is normally 

within a range of 20– 35 degrees. 

5.3.8.2 Summary of results on the performance of the ALGADISK prototype system 

 

 

The ALGADISK prototype reactor was installed in Almazan, Spain at the Biogas Fuel 

Cell (BFC) site in May 2012. The prototype consisted of 6 PVC disks (total disk surface 

area: 15.9 m2) which were coated with C1 and used with mesophilic green microalgae 

C. sorokiniana (CCAP211/8k). PE solutions were made at a concentration of 1mg/ml 

with distilled water supplemented with 0.1 M [NaCl 

The prototype was run until October 2014 with the help of BFC/ALGADISK members. 

Several technical difficulties occurred affecting the biomass productivity negatively in 

the first cycle. The productivity of the second cycle improved and was the highest (12 

g/m2/day-1 per disk) despite technical difficulties with the CO2 supply. The automatic 

harvesting system had no difficulty and was able to harvest 89 g/ L in cycle 2 in total. 

Using ALGADISK prediction software, it is predicted to increase to 35 g/m2/day-1 

without CO2 limitation. Nevertheless, this field test showed the rapid growth of C. 

sorokiniana when the flue gas was made available and proved to be a good source. It is 

expected that the biomass concentration will be higher than this when the productivity 

is enhanced by removing the CO2 limitation. The prototype will remain at the BFC plant 

and re-tested again in spring 2015.  
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5.4 Conclusions 
 

 

The following can be concluded from the research undertaken in the present chapter 

on investigating optimal C1 conditions.  

 

 Pre-treatment steps found hydrolysation incurred stronger C1 adhesion on 

PETG, but did not improve on substrate coverage or algal growth. 

 Airbrushing PE layers instead of dip-coating showed large-scale promise and 

growth results were comparable. However, 5 layers offered poor substrate 

coverage. Applying 9 layers was later shown to solve this problem. 

 Photo-cross linking with UV-C exposure was found to increase coating strength 

but had lower yield in the first harvest cycle. The second harvest cycle showed 

growth results were comparable to C1 substrates that weren’t exposed to UV-

C. 

 Varying PE concentrations in PE deposition solutions had little effect on growth 

results. Varying ionic strength had a far more significant effect on coating 

morphology and growth results. 

Figure 5.3.19. (A) Image of prototype disk before and after harvest. (B) Prototype reactor 

growth results for up to 10 harvesting cycles showing total dry matter (g).  
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 A modified method was proposed for large scale production and used in the 

pilot test conducted at the biogas plant. 

 A method to characterise the coating applied onto disks on site was proposed 

and reference data was made.  
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Chapter 6 

Influence of physico-chemical properties on algae adhesion and 

lipid production 

Abstract 
 

Electrostatic interactions, van der Waals forces and hydrogen bonds are the three types 

of binding forces involved in algae attachment and biofilm formation. Physico chemical 

properties were measured for C. sorokiniana, C. vulgaris, S. obliquus and S. dimorphus 

and 7 different substrates including PETG C1 and PETG C3. Two thermodynamic 

approaches were tested, the first approach looked at work of attachment and the second 

looked at change in free energy of adhesion. These thermodynamic approaches were 

tested in order to examine the potential of the model to successfully predict algae 

adhesion, and therefore make future substrate selection more efficient.  

The degree of successful algae biofilm formation was measured by three aspects; the 

initial attachment, the strength of attachment and the resulting biofilm density. Results 

showed both thermodynamic approaches failed to predict algae attachment with good 

accuracy. There was however an observed correlation between lipid content extracted 

from the harvested biofilms and the physicochemical properties of the corresponding 

substrates 
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6.1 Introduction 
 

 

Physico-chemical approaches can be used to describe microbial adhesive interactions. 

The thermodynamic approach uses interfacial free energies to determine favourable and 

unfavourable adhesion from a free energy point of view (Bos et al.1999). 

Thermodynamic models have been used in different applications to understand 

microbial adhesion (Absolom et al. 1983; Katsikogianni & Missirlis, 2004). Recently, 

Cui and Yuan (2013) used a thermodynamic approach comparing dispersive and polar 

interaction, and found that their experimental data matched their modeling results. This 

study illustrates the possible use of thermodynamic models in predicting algae adhesion. 

The ALGADISK system tested primarily on C. sorokiniana, and so to cater to other 

species of algae the disk material and coating may be limited. In order for the end user 

to select appropriate disk material according to their selected species of algae, a model 

which can predict adhesion would be valuable, cost-effective and time saving. 

Therefore, the first section of this chapter focuses on comparing thermodynamic models 

with experimental results, in order to evaluate the potential for algae attachment 

prediction.  

 

Plant and animal oil is commonly used today to produce biodiesel. However, microalgae 

have higher growth rates and oil content than commonly used energy crops such as corn, 

palm, Jatropha, soybean, etc.  (Felizardo et al. 2006; Chisti, 2007; Barnwal & Sharma, 

2005). Focus into commercializing microalgae for biodiesel production has now 

increased due to the increasing price of petroleum and global warming concerns 

(Gavrilescu & Chisti, 2005). 
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Although biodiesel production from algae is feasible, the cost of production needs to be 

reduced in order to compete with petro-diesel (Knothe et al. 1997; Chisti, 2007; Fukuda 

et al. 2001). 

The lipid yield can be manipulated by introducing environmental stresses such as 

nitrogen limitation, metal components and phosphate (Sheehan et al. 1998; Illman et al. 

2000; Liu et al. 2008; Reitan et al. 1994). It is thought that nitrogen limitation causes 

lipid synthesis to occur from protein synthesis due to changes of the cellular carbon flux 

(Sheehan et al. 1998). Chlorella strains are commonly chosen as candidates for the 

purpose of biofuel production due to their fast growth rates. Their lipid contents 

however are relatively low (14-30%) (Illman et al. 2000). A study using Chlorella 

vulgaris showed limiting nitrogen increases lipid content from 20% to 40 % (Illman et 

al. 2000). However, this method has resulted in low biomass yields and therefore overall 

lower lipid productivity (Griffiths & Hille, 2014; Feng et al. 2011). Finding alternative 

ways to increase lipid production would therefore be most beneficial. Johnson and Wen 

(2009) found lipid content in their algae was highest on polystyrene compared to their 

other surfaces tested. This could suggest that the substrate selected could influence algal 

lipid content. Therefore, this chapter later focuses on examining the influence of 

physico-chemical properties of algae and substrates on resulting lipid content.  

 

6.2 Methodology 

6.1 Algae culture 

Algae species mentioned in this chapter have been detailed in section 3.2.1 along with 

their culture conditions. This chapter includes an additional algae species known as 

Scenedesmus dimorphus (CCAP 276/48), which was grown in the same freshwater 

conditions detailed in section 3.2.1 
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6.2 Adhesion assays  

Initial attachment assays and strength of adhesion assays were carried out in the same 

fashion as detailed in section 3.2.2. 

6.3 Growth tests 

Long term growth studies were also carried out in the same procedure detailed in section 

3.2.3.  

6.4 Substrates 

Details of all substrates used in this chapter can be found in section 3.2.5. Silicone 

rubber substrates were made via Silicone Sealant, Clear, Waterproof (V tech, UK) 

applied to glass slides with an even thickness of 3 mm. Steel mesh was also used known 

as Dutch Weave type 80/700 (GKD Solid Weave, Düren, Germany). ,  

6.5Measuring physico-chemical properties of algae and substrata 

 

6.5.1 Contact angle measurements 

 

Contact angle measurements of substrates and algae were taken with distilled water, 

diiodomethane (Sigma Aldrich, UK), and glycerol (Sigman Aldrich, UK) in order to 

obtain surface interfacial free energies. To obtain contact angles of algae, an even layer 

of algae was prepared on cellulose acetate membrane filter (pore size: 0.45 um). The 

algae mats were left to dry for 1 – 3 h before contact angle measurements were taken 

(Van Loosdrecht et al. 1987).  Attension Theta Tensiometer equipment was used to 

measure contact angles on both substrates and algae.  
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6.5.2Thermodynamic models 

 

Thermodynamic approach I 

 

Two thermodynamic approaches were tested simultaneously in order to provide 

comparison and insight in to physico-chemical factors that are involved in algae 

attachment. The first approach investigated was finding the work of attachment (Wcs,l) 

(1.1) which is described by equation 1. γcl is the cell and liquid interfacial free energy, 

γsl is the surface and liquid interfacial free energy and γcs is the interfacial free energy 

between cell and the surface (Ikada et al. 1984). Good’s Equation (1.5-1.7), are used to 

derive these interfacial free energies. Owens/Wendt theory, states surface free energy 

comprises of both polar and dispersive forces (1.2 – 1.4) (Owens& Wendt., 1969). The 

subscript s relates to the solid surface, c is the cell and l is the liquid.  Equations 1 – 7 

can be combined into equation 8 where work of attachment is expressed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

 (1.8) 
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Thermodynamic approach II 

The second thermodynamic approach tested was looking at the change in total free 

energy (∆Gadh) between the microorganism, substrate and liquid. γsm, γsl and γml refer to 

the solid-microorganism, solid-liquid and microorganism-liquid interfacial free 

energies and is calculated according to equation 2.1. Lifshitz-van der Waals-acid base 

(LW-AB) approach is used here to calculate γsl, γsm, γml. The LW-AB approach 

consists of van der Waals surface free energy and electron donating and accepting 

parameters. Equation 2.2 illustrates an example of how γsl is calculated, γsm, γml is 

calculated in a similar fashion. Equation 2.3 illustrates that total free energy is the sum 

of both LW and AB components. Equations 2.4 and 2.5 illustrates how both the LW 

and AB components of surface free energy were derived. 

  

6.5. 1 Finding degree of hydrophobicity 

 

The extent of substrate or algae hydrophobicity was calculated using equation 3 where 

surface tension of the interacting surface (S) and water (W) are used to calculate free 
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energy of interaction. Values of less than zero are considered hydrophobic, and values 

above 0 indicate the surface is hydrophilic.  

 
 

 

6.9 Lipid extraction 

 

In order to measure lipid content from harvested biofilms, algae samples were dried in 

the oven for 12 h onto glass-fiber paper (0.45 um). Dried biomass samples were then 

weighed before using a fatty acid extraction kit (Sigma Aldrich). 3 mls of the extraction 

solvent supplied was added before being vortexed for approx. 3 minutes.  0.5 ml of 

aqueous buffer was added and vortexed again but for only 30 s. A syringe with a filter 

already supplied with the kit was then used to filter through the solution allowing total 

lipid extract to be eluted. The total lipids were then measured gravimetrically by 

evaporating to dryness by washing with 20 mls of 5% (w/v) NaCl solution.  

 

6.3 Results and discussion 

6.3.1. Thermodynamic modeling results  

 

Two thermodynamic approaches were calculated from measured physico-chemical 

properties of algae and substrates. The first being the work of attachment (Wcs,l) and the 

second being total free energy  of adhesion (Gadh). 

Table 6.1 lists the surface tension properties of the liquids used to determine different 

interfacial free energies. Table 6.3.2 shows the physico-chemical properties measured 

for four different algae species. Their corresponding hydrophobicity was calculated, and 

(3) 
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values above 0 corresponded to hydrophilic surfaces while those below 0 were 

considered hydrophobic. All algae strains tested were hydrophilic except S. dimorphus. 

Table 6.3.3 includes all the physico-chemical properties of the substrates used in this 

study. Coated PETG had a lowered LW component when compared to uncoated PETG. 

In addition to this, hydrophobicity values showed coated surfaces were hydrophilic 

compared to uncoated substrates that were strongly hydrophobic. Table 6.3.4 

summarizes the work of attachment (Wcs,l) and the free energy of adhesion (ΔGAdh) and 

their corresponding AB and LW components. AB values below 0 for ΔGAdh signified 

favourable attachment, whereas above 0 signified unfavorable parameters for 

attachment.  All four algae species had the same order of predictive adhesion, from 

favourable to least favourable: PC > PETG > Silicone rubber > PP > Steel > PETG + 

C1 > PETG+ C3. The highest observed ΔGadh value was for S. dimorphus with substrate 

PC, due to both their high hydrophobicity.  

Values above 0 Wcs,l  signify favourable adhesion, and below 0 is deemed unfavourable. 

All four algae species again followed the same trend when Wcs,l was considered, which 

was: Silicone rubber > PP > PETG > PC > PETG+ C1> PETG + C3 > steel. The highest 

observed Wcs,l   value was for S. obliquus with silicone rubber, due to their relative 

dispersive and polar properties. 
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Table 6.3.1: Surface tension measurements of liquids (mJ m−2) (Van & Good, 1992) 

 

 

 

 

 

 

 

 

 

 

Table 6.3.2: Physico chemical properties of algae 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3.3: Physico chemical properties of surfaces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Liquid γlv γlv
LW γlv

AB γlv
⊕ γlv

⊖ 

Water 72.8 21.8 51.0 25.5 25.5 

Glycerol 64 34 30 3.92 57.4 

Diiodomethane 50.8 50.8 ∼0   

 

Algae γLW γs
⊕ γs

⊖  0w Hydrophobicity 

(mJ m-2) 

C.sorokiniana 31.2 0.01 55.49  40.2 45.83 

C.vulgaris 34.3 0.26 39.03  46.5 55.49 

S. obliquus 39.2 0 35.59  50.9 8.27 

S. dimorphus 38.1 0.01 20.70  64.1 -12.60 

Surface γLW γs

⊕ 

γs
⊖ 0w Hydrophobicity 

(mJ m-2) 

PETG 46.01 0.41    1.38 83.41 -77.28 

PETG + C1 21.21 0.6 49.79 31.21 33.29 

PETG + C3 29 0.31 68.88 34.1 58.39 

PC 36.51 1.1 0.10 92.01 -79.52 

PP 30.2 0 15.94 75.31 -23.29 

Steel  34 0.17 28.41 57 72.34 

 

Silicone rubber 28 0.1 3.06 92 -63.27 
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Table 6.3.4 Interaction energy between substrate and algae 

 

   

C. 

sorokiniana 

 

C. vulgaris 

 

S. obliquus 

 

S. dimorphus 

 

 

PETG 

 

ΔGAB 

ΔGLW 

ΔGadh 

Wcs,l 

 

-17.20 

3.87 

-13.33 

     14.76 

 

-24.63 

-5.02 

-29.65 

22.82 

 

-31.06 

-6.73 

-37.79 

26.49 

 

-42.77 

-6.35 

-49.12 

23.15 

      

PETG 

+C1 

 

 

 

PETG 

+ C3 

ΔGAB 

ΔGLW 

ΔGadh 

Wcs,l 

 

ΔGAB 

ΔGLW 

ΔGadh 

Wcs,l 

40.38 

1.31 

41.69 

      0.84 

 

       53.73 

-0.12 

53.61 

-1.57 

21.73 

-1.7 

20.03 

4.36 

 

40.28 

0.15 

40.43 

-1.77 

28.10 

-2.28 

25.82 

4.56 

 

41.05 

0.21 

41.26 

-2.00 

15.59 

-2.15 

13.44 

4.09 

 

27.68 

0.19 

27.87 

-1.72 

 

PC 

 

ΔGAB 

ΔGLW 

ΔGadh 

Wcs,l 

 

-27.66 

2.52 

-25.14 

14.50 

 

-33.40 

-3.36 

-36.66 

19.52 

 

-40.48 

-4.7 

-45.18 

22.75 

 

-50.86 

-4.13 

-54.99 

19.48 

 

PP 

 

ΔGAB 

ΔGLW 

ΔGadh 

Wcs,l 

 

13.77 

1.52 

15.29 

24.64 

 

2.50 

-1.96 

0.54 

26.95 

 

-1.43 

-2.63 

-4.06 

30.38 

 

-15.52 

-2.48 

-18 

26.07 

 

Steel  

 

 

 

 

Silicone 

rubber 

 

ΔGAB 

ΔGLW 

ΔGadh 

Wcs,l 

 

ΔGAB 

ΔGLW 

ΔGadh 

Wcs,l 

 

 

25.03 

2.13 

27.16 

-10.92 

 

-9.96 

1.14 

-8.82 

26.23 

 

13.65 

-2.76 

10.89 

-5.64 

 

-18.63 

-1.48 

-20.11 

27.63 

 

11.33 

-3.7 

7.63 

-5.62 

 

-24.66 

-1.98 

-26.64 

31.01 

 

-1.86 

-3.49 

-5.35 

-4.44 

 

-37.41 

-1.87 

-39.28 

26.56 
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6.2.1 Experimental growth results and evaluation of the thermodynamic model 

 

Figure 6.3.1 – 6.3.3 is summarized in table 6.3.5 and compared to the model predictions 

calculated previously. Both the ΔGadhvalues and Wcs,l did not accurately predict order of 

favourable adhesion. However, Wcs,l values did predict silicone rubber to have the 

highest adhesion, which was the actual case for S. dimorphus. However, the remaining 

order did not match the experimental results. PETG + C3 preformed the best in initial 

attachment tests for all 4 algae species. It should be noted that this did not necessarily 

always correlate with the highest strength of attachment or eventual biofilm density (for 

e.g. S. obliquus & S. dimorphus). Therefore, other factors that do not affect initial 

attachment come into play when determining strength of attachment and biofilm yield.  

Table 6.3.6 lists the Pearson’s correlation coefficients found between ΔGadh, ΔWd, ΔWp, 

ΔWcs,l and resulting initial attachment (IA), strength of attachment (SA) and biofilm 

density (BD). For all algae species tested there was actually moderate to strong 

correlation between ΔGadh and IA, SA and BD. As negative values are seen as 

favourable, these results indicate the opposite. This is in contrast to many microbial 

studies, whereby there is an apparent link between ΔGadh and higher adhesion (Ozkan 

and Berberoglu, 2013).  

The case with the approach using ΔWcs,l also followed a similar trend, whereby high 

ΔWcs,l did not correlate with overall better attachment for all algae tested, which again 

is in contrast to previous literature (Cui & Yuan., 2013). 

One possible factor contributing to these results are the unaccounted for physico-

chemical properties of PE coated substrates. The thermodynamic models do not account 

for attractive or repulsive electrostatic attractions. It stands to reason that the 

electrostatic attraction offered by C1 and C3 was stronger than unfavourable surface 

energy conditions of the substrate. In addition to this, substrates such as PC, which were 



   

140 

 

predicted by the ΔGadh model to provide the most favourable attachment conditions, did 

not perform the best after PETG+C1 and PETG + C3. This could imply that PC provided 

repulsive electrostatic interactions, which is why it experimentally did not perform 

according to the ΔGadh model. 

Another reason as to why the models did not match the experimental results well could 

be due to the fact that the models do not consider surface roughness. Steel preformed a 

lot better than either thermodynamic approaches predicted. The steel had a mesh 

structure and so its surface roughness was high. Previous research has indicated that 

colonisation can increase as a result of surface roughness due to the protection offered 

and reduced shear forces (Donlan, 2002). As shown in chapter 4 in the present study, 

the effects of surface roughness were species-dependent and although did not have a 

significant effect on initial attachment, it did have influence on long-term biofilm 

growth.  

The Wcs,l  model did predict silicone rubber to have the highest adhesion correctly for S. 

dimorphus .Interestingly, the Wcs,l for this interaction was not the highest observed in 

comparison to all other algae species tested. However, when looking at their 

hydrophobicity values, S. dimorphus was the only hydrophobic strain tested. This could 

imply this interaction was mediated by favorable hydrophobic interactions, which were 

stronger than the electrostatic attraction offered by PETG + C3 or PETG + C1.  

 Other observations found using the Wcs,l approach revealed the role of the ΔWd and 

ΔWd in attachment. For algae strains tested, there was no correlation between ΔWd and 

ΔWp components and IA, SA and BD except in the case of C. sorokiniana. Table 6.3.6 

shows C. sorokiniana had a strong positive correlation between strength of attachment 

and ΔWd (r = 0.82) and moderate correlation between ΔWd and biofilm density (0.48). 

There was also weak positive correlation between initial attachment and ΔWd (r = 0.24), 
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which for all other algae species tested was a negative correlation. This indicates for C. 

sorokiniana, attachment was strongly influenced by attractive dispersive forces.  

Despite these results, both thermodynamic models did not predict adhesion with good 

accuracy. Thermodynamic approaches are based on surface free energies of the 

substratum, algae and liquid medium. The results presented in this study indicates no 

strong correlation between contact angles and low surface free energies. Although 

previous research have shown the opposite trends (Cui & Yuan, 2013; Ozkan and 

Berberoglu, 2013b; Brady & Singer, 2000; Li et al. 2010), there have been alternative 

studies that agree with the trends observed in the present study. Finlay and colleagues 

explained that the non-significant effect of wettability on adhesion could be attributed 

to the presence of EPS. Research looking at EPS production and attachment on substrata 

with varying surface tensions determined that EPS production is greatest on substrata 

with surface tensions above 30 mN m-1
. However, adhesion of Amphora coffeaeformis 

on both low polytetrafluoroethylene and high (glass) surface tension substrata was 

equally strong, although EPS production was much greater on glass compared to PFA. 

Therefore, on surfaces that are hydrophobic, molecules other than EPS become more 

important for attachment and biofilm formation (Becker, 1996). Ahimou and others 

found the concentration of EPS correlated strongly with their membrane- aerated 

biofilm (R = 0.78). They concluded that along with other environmental factors the 

polysaccharide fraction of EPS plays a significant role in biofilm cohesion (Ahimou et 

al. 2007). 

Other factors that are not concerned with EPS concentration or composition were 

explored by Shen and colleagues. They assessed the adhesion of six species of 

freshwater algae. The species with the greatest adhesion biomass productivity (ABP) 

Chlorococcum sp. was then tested on nine different support materials. The study found 
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that initial total nitrogen concentration, pH, culture volume and culture period are the 

most significant factors determining ABP (Shen et al. 2013).  

The results presented in the present study and previous literature suggests that interfacial 

energetics are complex and although heavily influenced by algal species and the 

chemical composition of the specific substrate; other more determining factors play a 

vital role in attachment.  
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Figure. 6.3.1. Bars show initial attachment of algae after 2h on different surfaces. Error 

bars show standard deviation of the mean (n=3). ΔGadh is the free energy of adhesion 

according to AB and LW components. W-d and W-p is the work of attachments due 

dispersive and polar forces respectively. W is the total work of attachment due to polar 

and dispersive forces and substrate surface energy.  
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Figure. 6.3.2. Bars show percentage of algal cells after flushing with water on different surfaces. 

Error bars show standard deviation of the mean (n=3). ΔGadh is the free energy of adhesion 

according to AB and LW components. W-d and W-p is the work of attachments due dispersive 

and polar forces respectively. W is the total work of attachment due to polar and dispersive 

forces and substrate surface energy.  
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Figure. 6.3.3. Bars show weighted biofilm density found on tested surfaces on different 

surfaces after 7 days. Error bars show standard deviation of the mean (n=3). ΔGadh is the free 

energy of adhesion according to AB and LW components. W-d and W-p is the work of 

attachments due dispersive and polar forces respectively. W is the total work of attachment 

due to polar and dispersive forces and substrate surface energy.  

 



   

146 

 

Table 6.3.5: Comparison of model prediction and experimental results.  

 

 

 

Algae    Order of adhesion 

C.sorokiniana   

Wcs,l  prediction 

 

ΔGadh prediction 

 

Initial 

attachment 

 

Strength of 

attachment 

 

Biofilm density 

 

Silicone rubber > PP > PETG > PC > PETG+ C1 > PETG + C3 > steel 

PC > PETG > Silicone rubber > PP > Steel > PETG + C1 > PETG+ C3 

PETG + C3 >Steel> PETG + C1 >PC > PP > PETG > Silicone rubber 

 

PETG + C3 > PETG + C1> Silicone rubber > PC > Steel > PP > PETG 

PETG + C1 > PETG + C3> Steel > PC > PETG > Silicone rubber > PP 

 

C.vulgaris 

 

 

 

 

 

 

 

 

 

 

 

 

S. obliquus 

 

 

 

 

 

 

 

 

 

 

 

 

S. dimorphus 

  

Wcs,l  prediction 

 

ΔGadh prediction 

 

Initial 

attachment 

 

Strength of 

attachment 

 

Biofilm density 

 

 

Wcs,l  prediction 

 

ΔGadh prediction 

 

Initial 

attachment 

 

Strength of 

attachment 

 

Biofilm density 

 

 

Wcs,l  prediction 

 

ΔGadh prediction 

 

Initial 

attachment 

 

Strength of 

attachment 

 

Biofilm density 

 

Silicone rubber > PP > PETG > PC > PETG+ C1 > PETG + C3 > steel 

PC > PETG > Silicone rubber > PP > Steel > PETG + C1 > PETG+ C3 

 

PETG + C3 > PETG + C1 > Silicone rubber > Steel> PETG > PC > PP 

 

 

PETG + C3 > Silicone rubber > PC> Steel > PETG + C1 > PETG >PP 

 

PETG + C3 > Silicone rubber > PETG + C1> PC > Steel> PETG > PP 

 

Silicone rubber > PP > PETG > PC > PETG+ C1 > PETG + C3 > steel 

PC > PETG > Silicone rubber > PP > Steel > PETG + C1 > PETG+ C3 

 

PETG + C3 > PETG + C1 >Silicone rubber > PETG > PC > PP > Steel 

 

 

Silicone rubber > PETG + C3 > PETG + C1 > Steel > PC > PETG > PP 

 

PETG+ C3 > Silicone rubber > PETG + C1 > PC > Steel > PETG > PP 

 

 

Silicone rubber > PP > PETG > PC > PETG+ C1 > PETG + C3 > steel 

PC > PETG > Silicone rubber > PP > Steel > PETG + C1 > PETG+ C3 

PETG + C3 > PETG + C1 > Silicone rubber > PETG > PC> Steel > PP 

 

 

Silicone rubber > PETG + C3 > PETG + C1 > Steel > PC >PETG > PP 

 

 

Silicone rubber > PETG + C3 > PC > PETG + C1 > Steel > PETG > PP 
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Table 6.3.6: Correlation coefficients calculated from data presented in Figures 6.1  

– 6.3.3.  

 

Correlation coefficient (r) 

 

Algae Graph ΔGadh ΔWd ΔWp ΔWcs,l 

 

C.sorokiniana 

 

Initial attachment 

(Fig.6.1 A) 

0.68 0.24 -0.76 -0.76 

  

Strength of attachment 

 

0.61 

 

0.82 

 

-0.52 

 

-0.46 

 (Fig.6.2 A) 

 

Biofilm density 

 

 

0.77 

 

 

0.48 

 

 

-0.76 

 

 

-0.73 

 

 

C.vulgaris 

(Fig.6.2 A) 

 

Initial attachment 

 

 

0.76 

 

 

-0.77 

 

 

-0.51 

 

 

-0.58 

 (Fig.6.1 B) 

 

Strength of attachment 

 

 

0.45 

 

 

-0.68 

 

 

-0.41 

 

 

-0.48 

 (Fig.6.2 B) 

 

Biofilm density 

 

 

0.77 

 

 

-0.64 

 

 

-0.68 

 

 

-0.73 

 

 

S. obliquus 

(Fig.6.3 B) 

 

Initial attachment 

 

 

0.70 

 

 

-0.67 

 

 

-0.43 

 

 

-0.51 

 (Fig.6.1 C) 

 

Strength of attachment 

 

 

0.38 

 

 

-0.54 

 

 

-0.34 

 

 

-0.37 

 (Fig.6.2 C) 

 

Biofilm density 

 

 

0.66 

 

 

-0.82 

 

 

-0.41 

 

 

-0.49 

 

 

S. dimorphus 

(Fig.6.3 C) 

 

Initial attachment 

 

 

0.54 

 

 

-0.62 

 

 

-0.39 

 

 

-0.46 

 (Fig.6.1 D) 

 

Strength of attachment 

 

 

0.29 

 

 

-0.63 

 

 

-0.17 

 

 

-0.25 

 (Fig.6.2 D) 

 

Biofilm density 

(Fig.6.3 D) 

 

 

0.30 

 

 

-0.57 

 

 

-0.14 

 

 

-0.22 
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6.2.2 Investigating the influence of physico-chemical properties of algae and 

substrata on lipid content. 

 

Lipid content was measured for all algae samples that were harvested from different 

substrates, in order to examine the influence of the substrate’s physico-chemical 

properties on lipid production (refer to Fig 6.3.4). Table 6.3.6 lists the correlation 

coefficients calculated for the data presented in Figure 6.3.4. All algae experienced 

negative correlation between ΔWcs,l and lipid content. With the strongest negative 

correlation observed for S. obliquus (r= -0.75). All algae experienced positive 

correlation between ΔGadh and resulting lipid content. 

The strongest positive correlation was for S. dimorphus (r= 0.89). These results 

generally suggest higher lipid content is found in algae that are attached to substrates 

that have been predicted to be thermodynamically unfavourable. The differences in lipid 

content between different substrates were not large but nonetheless a possible trend has 

been detected.  A possible reason as to why there was a found subtle influence of 

substrate properties on lipid content is offered. The first explanation could be due to the 

composition and quantity of the EPS being produced. EPS is said to consist of proteins, 

polysaccharides, and lipids (Vu et al. 2009). Microorganisms are able to change and 

adapt their EPS and adhesion according to the substrate properties they attach to 

(Ahimou et al., 2007). A previous study examining bacterial attachment found certain 

substrates such as pyrite or sulfur involve the lipopolysaccharide fraction of EPS. They 

also observed the % of lipids found in EPS on pyrite was 53.8 % which was 14.4 % 

more than in EPS found on sulfur (Gehrke et al. 1998). 

It has also been shown that fatty acids from bacterial EPS aid in hydrophobic 

interactions between the substrate and microorganism. The study also concluded that 

fatty acids were far more important in membrane fouling than thought previously (Al-

Halbouni et al. 2009). An additional study which further confirms this was carried out 
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by Becker (1996) where Amphora coffeaeformis was studied on different substrates 

with varying surface tensions.  Substrates with high surface tensions correlated with 

high EPS production and resulted in better adhesion. 

It should be noted that several other environmental factors have also been found that 

influence EPS quantity and composition; such as oxygen, temperature, pH, nutrient 

levels and nitrogen (Mayer et al. 1999). 

Therefore, it could be suggested that the higher algal lipid content found in this study 

was due to increased lipid production for EPS, which is thought to be induced by 

energetically unfavorable conditions (high surface energy).  Coated PETG generally 

had higher lipid content then the other substrates tested but also had unfavorable 

predicted interfacial energies. As the cells were attracted to the surface via electrostatic 

attraction, algal cells once at the surface may have produced more EPS in order to 

compensate for the lack in AB and LW attractions offered by the substrate. The higher 

production of EPS would have then aided algae cells to form better attachment. This 

could also further explain why previous results did not perform according to the 

thermodynamic model (Fig.6.3.1 – 6.3.3). Future investigations would benefit from 

characterising the EPS found on the substrate secreted by algae to confirm this 

suggested explanation.  
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Figure. 6.3.4. Bars show lipid content (%) found on tested surfaces on different surfaces after 

7 days. Error bars show standard deviation of the mean (n=3). ΔGadh is the free energy of 

adhesion according to AB and LW components. W is the total work of attachment due to polar 

and dispersive forces and substrate surface energy.  
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Table 6.3.7: Correlation coefficients calculated from data presented in Figure 6.3.4. 

 

 

 

Algae 

Correlation coefficient (r) 

 

ΔGadh                ΔWcs,l 

 

 

C.sorokiniana 

 

0.710133 

 

-0.7752 

 

C.vulgaris 

 

0.303301 

 

-0.57621 

 

S. obliquus 

 

0.843405 

 

-0.92 

 

S. dimorphus 

 

 

0.913898 

 

-0.35083 
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6.4 Conclusion 
 

The following can be concluded after investigating the influence of physico-chemical 

properties of both algae and substrata.  

 Both the work of attachment and change in free energy of adhesion approaches 

tested in this study failed to predict algae adhesion accurately.  

 Surfaces with lower interfacial energies generally had better biofilm formation 

for all algae species tested, except for hydrophobic S. dimorphus, where silicone 

rubber had the highest biofilm density observed.  

 The thermodynamic model also neglected to account for electrostatic 

interactions. Initial attachment to coated substrates are thought to mainly be 

mediated by electrostatic attraction. 

 Charge effects may therefore be more significant than previously thought when 

determining attachment. 

 The strength of attachment for C. sorokiniana was shown to be strongly 

correlated with the dispersal component of work of attachment.  

 Physico-chemical properties of the substrate was shown to influence lipid 

content measured in algal biofilms. A strong correlation between lipid content 

and unfavourable thermodynamic conditions was observed for C.sorokiniana, 

S. obliquus and S. dimorphus.  

 

The results presented in this study suggests that while interfacial energetics are complex 

and are heavily influenced by algal species and the chemical composition of the 

substrate, other factors may mediate attachment more heavily. Therefore, using 

thermodynamic models for selecting substrates and predicting adhesion may not be 

accurately reflective. In addition, further research into attachment factors such as EPS 
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and substrata influence on algal lipid content may prove beneficial in terms of 

optimising biofilm growth and stimulating lipid production.  
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Chapter 7 

Conclusions and Recommendations 
 

Chapter 3 revealed the potential of using PE coatings onto commercially available 

polymers as the carrier substrates for photobioreactors such as the ALGADISK reactor. 

The degree of attachment was found to be linked with the charge density of the algae 

species tested. Thereby suggesting attachment was mediated by electrostatic attraction 

and reduced repulsion. As attachment was measured according to the number of cells 

found on the surface, the size of the algae species may have had an effect on the number 

of cells found. Therefore a future recommendation would be to test strength of 

attachment (% of cells remaining after flushing) instead, to gage more accurately the 

effect of charge density on attachment to charged substrates.  

 

Although initial attachments on C1 and C3 coated PETG were high and showed 

promising applications in the ALGADISK reactor, regrowth between harvests was low 

and inconsistent. Regrowth was improved by inducing surface roughness onto the 

substrate prior to coating application via manual sandpapering. A recommendation 

based on this would be to investigate more textures with varying dimensions. Micro-

textured surfaces for example may affect initial attachment or strength of attachment. 

Three different algae species that ranged in size was tested in chapter 4 when 

investigating surface roughness. Therefore, the size of the algae in relation to the size 

of the depressions made would also need to be investigated to gain further insight.  

 

Optimisation of the selected coating (C1) was carried out and suitable parameters were 

revealed. Developing an airbrushing method rather than dip coating reduced the amount 

of PE solution needed and reduced the number of steps in the application process. Photo-
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cross-linking with UV exposure increased the mechanical strength of the coating. The 

finalized devised method of coating production and application was implemented in a 

pilot scale ALGADISK reactor with C. sorokiniana. However, due to technical issues a 

clear conclusion on it performance was not made. A further pilot test after these 

technical issues are solved would be needed in order to evaluate its performance with 

the coated disks. In addition to this, the reactor tested freshwater algae species with the 

coated disks. Therefore, further tests in a marine species environment with the coated 

disks would have to be tested. A future recommendation would be to test the coated 

substrates in more alkaline environments to confirm its durability when using marine 

algae species.  

 Physicochemical studies showed that the model prediction stated unfavorable 

parameters for adhesion for C1 and C3. Results indicated that the most 

thermodynamically unfavorable substrates actually had the highest observed 

attachment. It was revealed that the thermodynamic model was not able to predict algae 

adhesion well, but a strong link between lipid content and the substrate was observed. 

Future recommendations would include testing the extended DVLO model as it 

accommodates for Lifshitz-van der Waals, electrostatic, Lewis acid-base and Brownian 

motion forces (Van Oss et al. 1989; Park & Kim, 2015). This model may aid as a better 

tool for algae adhesion prediction. 

 In addition to this, the link between lipid content and the substrate should be further 

examined. The EPS or AOM found on the substrates should be characterised and 

compared for their lipid content. These results could therefore confirm whether EPS 

composition, particularly the lipid fractions are influenced by the physico-chemical 

properties of the substrate. Subsequently it would also be recommended to conduct Fatty 

acid methyl esters (FAME) analysis of the lipids extracted from biofilm samples via gas 
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chromatography or high-performance liquid chromatography (HPLC). This would 

reveal if the substrata influences the quantity and composition of FAME, which are 

integral components to biodiesel. 

The findings observed in the present study have applications in biofilm based 

photobioreactors as well as designing surfaces for antifouling properties. The 

conclusions derived from this study state that a higher amount and strength of adhesion 

occur on surfaces that are oppositely charged to the algae. Thermodynamically 

unfavorable substrates generally have a higher biofilm lipid content.  These findings can 

be used to select an appropriate substrate to enhance biofilm growth and lipid content.  

The coating application method developed in this study has many applications in the 

coatings field, in particular producing polyelectrolyte coated surfaces on a large scale. 

The method developed uses a cost effective airbrushing approach combined with UV 

light for curing. This technique designed for polyelectrolyte deposition reduces costs 

and the need for highly trained end users. This was an important aspect towards helping 

algae production to be commercially viable.  

After further development and testing of the ALGADISK reactor, it is hoped to be used 

by small businesses who aim to produce algae biomass products from industrial 

emissions.  
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Nomenclature 
 

A  Hamaker constant 

a  radius of algae cell, m 

b  depth of the parallel plate flow chamber, m 

c  distance from the surface of the substrata, m 

d  separation distance of algae cell and substrate, m 

d0  minimum separation distance between two surfaces, m 

e  electron charge, 1.6022×10−10 C 

k  Boltzmann constant, 1.3807×10−23 J K−1 

n  concentration of ions, # m−3 

N  cell number concentration, # m−3 

T  temperature, K 

v  hydration layer associated with algal cells, m 

w  width of the parallel plate flow chamber, m 

z  charge number of ions 

PE  Polyelectrolyte 

PEM  Polyelectrolyte multilayer 

Superscripts 

AB  acid-base, i.e., polar component 

LW Lifshitz-van der Waals, i.e., dispersive component 

+  refers to electron acceptor parameter 

−  refers to electron donor parameter 

Subscripts 
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s  substrate 

sr  surface 

l  liquid medium 

m  algae 

Greek symbols 

γ  surface energy, J m−2 

ζ  zeta potential, V 

ψ  surface potential, V 

θ  contact angle, degrees 

η  dynamic viscosity of water at 20oC , 8.9×10−4 Pa s 

ρ  density of water at 20 oC, 997 kg m−3 

γ˙  wall shear rate, s−1 

κ−1  double layer thickness, m 

λ  correlation length of the molecules of the liquid medium, m 
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