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A stochastic cure simulation approach is developed and
implemented to investigate the influence of fibre misalign-
ment on cure. Image analysis is used to characterize fiber
misalignment in a carbon non-crimp fabric. It is found that
variability in tow orientation is significant with a standard
deviation of 1.28. The autocorrelation structure is modeled
using the Ornstein-Uhlenbeck sheet and the stochastic
problem is addressed by coupling a finite element model
of cure with a Monte Carlo scheme. Simulation of the cure
of an angle shaped carbon fiber-epoxy component shows
that fiber misalignment can cause considerable variability
in the process outcome with a coefficient of variation in
maximum residual stress up to approximately 2% (stand-
ard deviation of 1 MPa) and qualitative and quantitative
variations in final distortion of the cured part with the
standard deviation in twist and corner angle reaching val-
ues of 0.48 and 0.058 respectively. POLYM. COMPOS., 00:000–
000, 2015. VC 2015 The Authors Polymer Composites published by
Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers

INTRODUCTION

Fiber misalignment is one of the main sources of variability

in composites manufacturing. Variability in as supplied dry

fabrics and pre-pregs is mainly associated with in-plane and

out-of-plane tow waviness setting the minimum level of uncer-

tainty in all subsequent steps of composite manufacturing

[1–3]. This uncertainty can affect the forming/draping step

introducing significant variability in defect formation [3]. Dur-

ing forming/draping of doubly curved parts the reinforcement

is subjected to considerable shear deformation, which may

intensify existing geometrical heterogeneities. These phenom-

ena can in turn influence the local fiber volume fraction and

porosity distribution, introducing significant variability in per-

meability [1, 2]. Fiber misalignment with fiber volume fraction

variations affect the mechanical, thermo-mechanical and ther-

mal properties of the material during cure and introduce vari-

ability in residual stresses and shape distortion. This can affect

both the dimensional fidelity of parts and the presence of initial

defects such as delaminations and matrix cracks governing

mechanical performance.

The issue of variability during the cure step has received

limited attention so far in the literature. In particular, the

influence of geometrical heterogeneity on the cure process
has not been investigated explicitly. A characterization and

modeling approach that takes these effects into consideration
explicitly is of crucial importance to allow quantification of

process outcome variability and its dependence on the level
and type of initial variability of the reinforcement. The sto-

chastic simulation framework presented here addresses this
aim through the implementation of an image analysis meth-

odology to quantify local fiber angle, the developments of a

stochastic object representing fiber angle variability and the
integration of these developments with thermomechanical

process modeling in a Monte Carlo (MC) scheme. The capa-
bilities of the stochastic simulation scheme are demonstrated

using characteristic subcomponent geometry and a variety of
lay-ups and the main trends in the sensitivity of residual stress

and distortion on fabric variability are uncovered. The overall
development addresses the effect of in-plane fiber misalign-

ment and its influence on the process stress developed during
the cure process and the associated part distortion.

METHODOLOGY

Image Analysis of Fiber Misalignment of non-Crimp Fabrics

An in-house image analysis code described in detail in

[3] developed to characterize fiber misalignment in
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woven textiles has been adapted to characterize local var-

iations in unidirectional materials such as non-crimp fab-

rics (NCF). The image analysis code is based on Fast

Fourier Transform (FFT) and correlation analysis. The

approach involves calculation of local fiber direction rela-

tive to the fiber orientation of a reference image, so that

the spatial random field is explicitly quantified. Images

are acquired into a discrete pixel array f x; yð Þ. FFT is

employed to obtain an approximate estimation of the fiber

orientation. Correlation analysis is subsequently used for

an accurate calculation of local fiber orientation using a

reference region ru x; yð Þ. The analysis is carried out by

rotating a kernel ku x; yð Þ of size M3M obtained from a

reference image. This procedure estimates the tow orien-

tation which maximises the correlation between each

image and the reference image. The reference region is:

rh x; hð Þ5kh xcosh1ysinh;2xsinh1ycoshð Þ (1)

The correlation of a reference region ru x; yð Þ with the

image f x; yð Þ is:
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(2)

where ru and f are the averages of ru x; yð Þ and f x; yð Þ
respectively.

This methodology was applied to images of a 6k car-

bon fiber 6 458 HTS carbon NCF (Hexcel) with a chain

knit stitch pattern and an areal density of 534 g/m2. A

Sony digital camera was mounted on a robotic head

(Fig. 1a) in order to control and record the exact posi-

tion of each image. Seven hundred and forty-eight

images were acquired from each side (upper/lower) of

the fabric on a 34 3 22 grid with 5 mm spacing. The

size of the pixel array was 640 3 480. The image analy-

sis results representing the principal orientation of the

image are illustrated as two lines; (i) stitch orientation,

(ii) carbon tow orientation (Fig. 1b). The analysis of sta-

tistical properties was carried on the full dataset on a 5

3 5 mm grid and additional datasets based on a coarser

(10 3 10 mm) and finer (2.5 3 2.5 mm) grid which

were produced using the original images. These addi-

tional datasets were utilized to verify that the analysis

results do not depend on the grid size in terms of var-

iance and autocorrelation structure. In addition, a series

of 50 images were acquired at the same location and

analyzed to estimate the variance associated with the

image acquisition and analysis methodology.

Modeling of the Fiber Orientation Random Field

The random field of fiber angles was modeled using a

two-dimensional autoregressive stochastic process, the

Ornstein-Uhlenbeck sheet (OU), which is a second order

stationary Gaussian process with the following auto-

covariance function [4, 5]:

C x; yð Þ5r2e2jx12x2j=bx2jx12x2j=by (3)

Here r is the standard deviation and bx and by are the

correlation lengths in the x and y directions respectively,

which determine the decay rate of autocorrelation. Esti-

mation of bx and by was carried out using the generalized

reduced gradient non-linear optimization method imple-

mented in Microsoft Excel [6].

To simulate the random field the covariance matrix C
is decomposed as a product of its Cholesky root L and its

transpose as follows:

C5LLT (4)

and the statistical properties of the stochastic process are

reproduced by a vector V defined as:

V5LY (5)

FIG. 1. (a) Experimental set-up, (b) outcome of image analysis of 6 458 NCF. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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where Y is a vector of independent identically distributed

standard normal variables.

Cure Simulation

A coupled thermo-mechanical cure simulation model

was implemented in the finite element analysis solver

MSC.Marc. The model, which is based on the assumption

of Cure Hardening Instantaneously Linear Elastic

(CHILE) material [7, 8], was three dimensional and tran-

sient. The materials considered were HTS carbon fiber

and RTM6 epoxy resin (Hexcel). The material properties

depend on both temperature and degree of cure and the

material sub-models for cure kinetics, specific heat

capacity, thermal conductivity, moduli, cure shrinkage

and thermal expansion coefficients were implemented in

user defined subroutines UCURE, USPCHT, ANKOND,

HOOKLW, USHRINKAGE and ANEXP [9].

The cure kinetics model used in this study is a combi-

nation of an nth order model and an autocatalytic model

[10], while the specific heat capacity is calculated based

on the rule of mixtures. A geometry-based model is

applied to compute thermal conductivity [11].

The cure reaction rate is computed as follows [10]:

da

dt
5k1 12að Þn11k2 12að Þn2 am (6)

where a is the degree of cure, k1, k2 the reaction rate con-

stants following an Arrhenius law, and m, n1, n2 the reac-

tion orders [10].

The composite specific heat capacity is calculated as [12]:

cp5wf cpf 1 12wf

� �
cpr (7)

where wf and cpf is the fiber weight fraction and fiber

specific heat capacity, respectively, whereas cpr is the

resin specific heat capacity. The specific heat capacity of

the fiber is a linear function of temperature whilst the

specific heat capacity of the resin depends on both tem-

perature and degree of cure [12].

The thermal conductivity in the fiber direction is the

following [11]:

K115vf Klf 1 12vf

� �
Kr (8)

where Klf and Kr are the thermal conductivity of the fiber

in the longitudinal and transverse direction, respectively.

The thermal conductivity in the transverse direction is

computed as follows [11]:
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Here Ktf is the fiber conductivity in the transverse direc-

tion and is a linear function of temperature [13], whilst

Kr is the resin thermal conductivity and is dependent on

both the degree of cure and temperature [13]. The mate-

rial sub-models for the cure kinetics (including glass tran-

sition temperature development), specific heat capacity

and thermal conductivity and the parameters required for

these models are presented in detail in [12].

A widely used micro-mechanics model [14] appropri-

ate for unidirectional plies was chosen to model the

mechanical properties of the composite as a function of

the properties of the constituents. The simplicity of this

model as well its direct parametrization in terms of con-

stituent properties makes it a suitable choice for the itera-

tive use required in the context of stochastic simulation.

The longitudinal and the transverse moduli are computed

as follows:

E115 12vf

� �
Er1vf Elf (10)

E225
Er

12
ffiffiffiffi
vf
p

12 Er

Etf

� �5E33 (11)

where vf is the fiber volume fraction, Er is the isotropic

moduli of the resin and Elf , Etf the fiber moduli in the

longitudinal and transverse directions respectively. The

shear modulus and Poisson’s ratio are modeled as

follows:

G125
Gr

12
ffiffiffiffi
vf
p

12 Gr

G12f

� �5G13 (12)

m125vf m12f 1 12vf

� �
mr (13)

The mechanical properties of the resin are modeled

using a relation that allows a step transition around the

instantaneous glass transition temperature:

Er5ErL
1

ErG
2ErL

11eCrcp T2Tg2sð Þ (14)

mr5mrL
1

mrG
2mrL

11eCrcp T2Tg2sð Þ (15)

where T is the current temperature, Tg is the instantane-

ous glass transition temperature, and Crcp
and s are con-

stants referring to the breadth and temperature shift of the

transition around Tg. The values of Crcp
and s are identi-

cal to those reported in relation to the specific heat

capacity constitutive model for the same epoxy system

[10]. Subscripts rG and rL denote the material properties

of the resin in the glass and liquid/rubber state,

respectively.

The longitudinal and transverse cure shrinkage coeffi-

cients are modeled as follows:

eS
115

eS
r 12vf

� �
Er

12vf

� �
Er1vf Elf

(16)
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where es
r is the linear resin cure shrinkage strain which is

a function of the resin volumetric cure shrinkage Vs
r :

es
r5 11Vs

r

� �1=3
21 (18)

The value of Vs
r for the resin of this study is 0.018 [15].

The longitudinal and transverse thermal expansion

coefficients are modeled using micromechanics as

follows:

ath
115

12vf

� �
Erar1vf Elf alf

12vf

� �
Er1vf Elf

(19)

ath
225 12vf

� �
ar1vf atf 1mr 12vf

� �
ar1vf m12f alf 2m12ath

115ath
33

(20)

where ar is the resin isotropic thermal expansion coeffi-

cient, whilst alf and atf are the longitudinal and transverse

coefficients of the fiber, respectively. Similarly to the

mechanical properties, the resin thermal expansion coeffi-

cient follows a step transition around the glass transition

using the expression:

ar5arL
1

arG
2arL

11eCrcp T2Tg2rð Þ (21)

The fiber thermal expansion coefficients are a poly-

nomial function of temperature and can be computed as

[16]:

alf 5
X
i50;4

Ai
alf

Ti (22)

atf 5
X
i50;3

Ai
atf

Ti (23)

The mechanical properties of the fiber are presented in

[17], whilst the mechanical, thermomechanical and

shrinkage parameters of the resin are detailed in [15, 18].

The fiber thermal expansion parameters in Eqs. (22 and

23) can be found in [16].

Variability in the cure of a carbon fiber–epoxy sub-

component was modeled by coupling a MC scheme with

the finite element cure simulation model. The interface

between MC and the cure model was implemented in

Fortran. The MC generates realizations of the set of fiber

angles over a component using Eqs. (3–5), which are

input in the finite element model. Once the model solu-

tion is complete, the interface reads nodal results and

translates to specific metrics relevant to the case studied.

The subcomponent is a 2 mm thick bracket, with two

100 mm long arms. The inner radius of the bracket is

3 mm and its width 40 mm. The standard cure profile for

the resin system of this study (1608C cure and 1808C

post-cure) was used. Three different lay-up sequences

were investigated: a cross-ply [0/90/90/0]s, a bias-ply

[45/-45/-45/45]s and a quasi-isotropic (QI) [0/45/-45/90]s

laminate; here all orientations are with respect to the long

axis of the component. The initial temperature was set at

158C applied to all the nodes of the model. A prescribed

temperature boundary condition following the cure profile

was applied to the nodes in contact with the tool, whereas

natural air convection with a surface heat transfer coeffi-

cient of 5 W/(m2K) was applied on the surface in contact

with the vacuum bag.

Incorporation of local tow waviness was carried out by

modifying the thermal conductivity matrix, compliance ten-

sor, cure shrinkage coefficient matrix and thermal expan-

sion coefficient matrix. This was performed by applying

the coordinate transformation corresponding to the rotation

of the principal axis of the individual plies by the angle

corresponding to the local fiber misalignment of each ele-

ment. Enquiries for access to the data referred to in this

article should be directed to researchdata@cranfield.ac.uk

RESULTS AND DISCUSSION

Statistical Properties and Spatial Autocorrelation
Structure of Fiber Misalignment

The image analysis results show that both sides of the

fabric present identical statistical behaviour in terms of

FIG. 2. Statistical behaviour of tow orientation: (a) probability distribution of tow orientation of upper side; (b) probability distribution of tow orien-

tation of lower side.
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probability distribution and autocorrelation structure. The

tow orientation can be represented by a normally distrib-

uted variable as shown in Fig. 2. The variability in tow

orientation is considerable reaching a standard deviation

of 1.28. The standard deviation obtained for the set of

images from a single location is 0.18, indicating that the

experimental and image analysis method introduces negli-

gible variations to the results. No correlation was

observed between the tow orientations of the two sides.

Variability comes in patches over the space domain.

The autocorrelation structure of the orientation of the

tows was investigated in order to study similar behavior

of neighboring tows and estimate the spatial dependence

of variability. The method of moments was used to quan-

tify spatial autocorrelation between two samples of all

pairs of points obtained from the experimental results

located at a specific distance and direction as follows:

C x; yð Þ5
XN

i51

xi2lð Þ yi2lð Þ
N

(24)

Here N is the number of observations, xi and yi tow ori-

entations at a specific distance and direction and l the

mean value of tow orientation. The spatial autocorrelation

of tow orientation as a function of distance and direction is

reported in Fig. 3a. The calculation reported in Eq. 24 was

carried out in bins of 25.78 (1808/7) in terms of angle and

a distance step of 15 mm with the exception of the first

step. In the computational procedure employed the distance

and angle between all experimental points against each

other are calculated and each pair of points is assigned to

the corresponding bin. The distance and angle values used

in Fig. 3a correspond to the mid-point of each bin.

It can be observed that fiber misalignment of the 6458

NCF exhibits anisotropic spatial autocorrelation with the

major direction of autocorrelation coinciding with the

direction of the non-structural stich (08). This reflects the

fact that the majority of variability is introduced during

the stitching process of NCF. The autocorrelation in this

direction decays towards a negligible plateau value at

about 100 mm. In the 6258 directions the autocorrelation

reaches a plateau at about 40 mm, whilst autocorrelation

at 6508 and 6758 shows a faster decay, reaching zero at

approximately 25 mm. The autocorrelation in opposite

directions is very similar, suggesting that the autocorrela-

tion structure is quadrant symmetric. The spatial cross-

correlation of the orientations in the two sides of the fab-

ric was found to be negligible.

The non-linear fitting applied to the autocorrelation

structure yielded a value of 20.2 mm for the autocorrela-

tion length in the direction of the stich (bxÞ and 4.7 mm

for the length in the normal to the stich direction (by).

Figures 3b and 3c illustrate the autocorrelation of simu-

lated tow orientation of the NCF used in this study gener-

ated on a 68 3 22 grid with 5 mm spacing. It can be

observed that the Cholesky factorization reproduces the

decay of the autocorrelation structure successfully. There

are some discrepancies at the region of the plateau; how-

ever this introduces a negligible error as the autocorrela-

tion is close to zero at this region.

Stochastic Simulation of the Propagation of Fiber Angle
Variability Though the Cure Process

Figure 4 illustrates the final stress in the fiber direction

of the outer layers and the final distortion of the compo-

nent for the deterministic model and one realization of

the stochastic simulation for each case. It should be noted

that the distortion shown in the deformed shape is multi-

plied by a factor of 50 to facilitate visualization. Com-

pressive residual stresses are generated in the longitudinal

direction whilst tensile residual stresses are generated in

the transverse direction, due to the fact that the response

of the ply in the longitudinal direction is dominated by

the fiber properties and in the transverse direction by the

matrix. Shape distortion in the form of spring-in is

observed in the case of both the deterministic models and

the models incorporating variability in fiber orientation.

This is a result of the difference in thermo-mechanical

behavior between the out-of-plane and the in-plane direc-

tions. In addition to this type of distortion, laminates with

stochastic fiber orientation present qualitative differences

compared to the nominal cases, as shown in Figure 4. In

the case of the cross-ply and quasi-isotropic laminates a

twist is present in the realizations of the stochastic model.

The twist tends to be more pronounced in the cross ply

FIG. 3. Directional autocorrelation of tow orientation of 6458 NCF -

08 refers to the orientation of the non-structural stitch; (a) experimental

results; (b) simulated tow orientation 08; (c) simulated tow orientation

258.
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than in the quasi-isotropic lay-up. A similar effect occurs

in the bias ply laminate, with the qualitative difference

that distortion is manifested mainly as bowing of the

flange. These effects are due to deviations from the per-

fect nominal orientations which induce local asymmetry

and imbalance in the lay-up. The differences in the type

and magnitude of distortion are governed by the differen-

ces in stiffness in each lay-up. In the case of the cross ply

laminate small variations in fiber angle induce a twisting

moment that is not resisted sufficiently by the material,

given that no fibers are aligned to the bias direction. As a

consequence, twisting becomes the dominant mode of dis-

tortion. In contrast, in the case of the bias lay-up twisting

is counteracted by the 6458 layers, whereas any asymme-

try induced bending moment is not resisted sufficiently,

due to the lack of fibers aligned to the longitudinal direc-

tion of the component, resulting in some bowing. The

case of the quasi-isotropic laminate is intermediate, with

twisting being the dominant mode of distortion due to the

fact that the outer layers are 08 and the overall twisting

was significantly lower than in the case of the cross ply

laminate.

FIG. 4. Residual stress of the outer layers in the fiber direction at the end of the process after release from the tool and final distortion multiplied by

a factor of 50: (a) cross ply-deterministic model; (b) cross plystochastic model; (c) bias ply-deterministic model; (d) bias ply-stochastic model; (e)

quasi-isotropicdeterministic model; (f) quasi-isotropic-stochastic model. [Color figure can be viewed in the online issue, which is available at wileyon-

linelibrary.com.]
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Satisfactory convergence was obtained in the MC sim-

ulation for the first and second statistical moments of

maximum longitudinal residual stress of all layers in the

fiber direction after 200 iterations (Fig. 5a). The results

suggest that stress presents a coefficient of variation of

2.3, 1.4 and 1.2% (standard deviation of 1.29, 0.76, and

0.75 MPa), for the cross ply, bias ply and quasi-isotropic

laminate respectively. Examination of the probability dis-

tribution shown in Fig. 5b indicates that maximum stress

can be considered a normally distributed random variable.

The mean value of stress is higher than the corresponding

nominal value resulting from the deterministic simulation

in all three case studies, as shown in Fig. 5b. This is due

to the fact that the distribution of residual stresses

depends on the local properties of the laminate and devia-

tions of the nominal fiber orientation at a local level gen-

erate higher levels of stresses locally.

Figures 6a and 6b illustrate the probability distribution

of corner distortion of the lower flange, and twist angle

of the upper flange of the subcomponent. It should be

noted that corner distortion refers to the angle observed at

the edge of the lower flange 100 mm distance from the

corner and it is a combination of spring-in and bowing

effects, whilst twist refers to the angle observed at the

edge of the upper flange. The distortion angle exhibits a

small variation with a standard deviation not higher than

0.058 for all lay-ups and can be represented by a normally

distributed variable. The mean values of both distortion

angle and twist converge to values close to the corre-

sponding results from the deterministic simulation for all

FIG. 5. Convergence of MC simulation: (a) mean and standard deviation of maximum longitudinal residual stress (b) probability distribution of maxi-

mum longitudinal residual stress.
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three lay-ups. In addition, small differences exist between

the mean values of distortion angle for the different lay-

ups. Given that the effective in-plane CTE is the same for

the three lay-ups this can be attributed to the presence of

twist and bowing. Examination of the deterministic model

results illustrated in Fig. 6b suggest that the quasi-

isotropic laminate presents a small but finite twist with

the bias-ply and cross-ply laminate showing negligible

twist. In the case of the deterministic model the perfect

cross ply laminate presents no twist due to the fact that

no twisting moment is generated. In the case of the per-

fect bias-ply lay-up twisting is counteracted by the 6458

layers, whereas in the case of the perfect quasi-isotropic

lay-up the twisting moment is not resisted sufficiently at

the bias direction showing the highest levels of twist.

This explains the deterministic model results for the max-

imum longitudinal stress shown in Fig. 5b; higher levels

of distortion result in higher stress levels. The twist has a

standard deviation of 0.48, 0.018, and 0.088, for the cross

ply, bias ply and quasi-isotropic laminate respectively.

This is attributed to the differences in stiffness in the bias

direction in each lay-up. Therefore, the cross ply laminate

is most susceptible to local deviations from the perfect

nominal orientations presenting the highest variability in

twist given that no fibers are aligned in the 6458 direc-

tions. In addition, the different levels of variability in

twist can explain the differences in standard deviation of

maximum stress between the three lay-ups (Fig. 5a).

Although for small levels of misalignment the bias ply

laminate is expected to show the highest variability in the

effective in plane CTE, the quasi-isotropic laminate

exhibits the lowest variation in corner angle, whilst the

other two lay-ups show higher and similar levels of vari-

ability. This is due to the fact that the cross ply and bias

ply laminates have high levels of variability in twist and

bowing, resulting to higher levels of variability in corner

FIG. 6. Shape distortion: (a) probability distribution and deterministic results of corner angle in the lower flange (b) probability distribution and

deterministic results of twist angle in the upper flange.
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angle, given that the variations are a combination of

spring-in, twist and bowing. In the case of the quasi-

isotropic laminate the low levels of variability in twist

and bowing lead to small variations in corner angle.

The results presented here indicate that fiber misalign-

ment in the order of 18 can introduce significant variabili-

ty in residual stresses, implying that in the case of higher

levels of variability phenomena such as matrix pre-

cracking may be affected at a local level. In addition, it is

shown that fiber misalignment can considerably alter the

final shape of the formed part depending on the lay-up

sequence.

Sensitivity of Residual Stress and Distortion to Variance
and Autocorrelation Length

Three case scenarios were investigated to study the

effect of different levels of variance by setting a standard

deviation of 2.58, 58 and 7.58, whilst the experimental val-

ues of correlation lengths were used in all three cases. In

addition, four different case scenarios were studied to

investigate the effect of different autocorrelation structure

by setting zero correlation lengths, correlation lengths

half, double and quadruple the corresponding experimen-

tal values, whilst the experimental value of standard devi-

ation was used in all four cases. These results were used

alongside the results of the deterministic model and the

results of the variability corresponding to the experimen-

tal results.

The dependence of output variability on standard devi-

ation of fiber misalignment is illustrated in Figure 7. Both

the maximum longitudinal stress average and standard

deviation increase with increasing the standard deviation.

The mean of maximum residual stress increases due the

fact that twist is more pronounced due to higher levels of

variability; higher levels of distortion result in higher

stresses. The increase of the maximum stress average is

non-linear and convex, i.e. the sensitivity of maximum

stress on standard deviation of fiber misalignment

increases with increasing input variability. This can be

explained by the local character of the generation of

residual stress, which results in higher maximum stress

over the whole component as the probability of extreme

local variability increases. The trend of maximum residual

stress standard deviation is linear as a function of the

standard deviation of tow orientation (Fig. 7a), with a

sensitivity of about 1 MPa per 18 of misalignment. This

observation points to a generic behavior of a strong

dependence of maximum stress and of the likelihood of

potential damage on increased variability with the effect

being accentuated as variability reaches higher levels.

This is combined with a slow decrease in coefficient of

variation of the maximum residual stress, indicating that

the certainty of the highly non-desirable possibility of

damage due to the residual stress increases with increas-

ing variability.

Similarly to residual stresses, increasing the standard

deviation in local tow orientation induces an increase of

the standard deviation in both corner and twist angle (Fig.

7b). This effect is non-linear following a concave depend-

ence, i.e. the positive sensitivity of both corner and twist

angle on the standard deviation of fiber misalignment

decreases with increasing variability. This can be

explained by the stronger random character of variability

as standard deviation increases at the same level of auto-

correlation length. Since macroscopic manifestations of

variability, such as the twist and corner angle, are

affected by the misalignment over an area of the compo-

nent the increase in random misalignment, whilst global

imbalance of the lay-up is kept at the same level, results

in a lower sensitivity at higher levels of variability.

Figures 8a and 8b illustrate the effect of correlation

lengths. It can be observed that the influence on the mean

of maximum residual stress is negligible, whilst the stand-

ard deviation of maximum residual stress presents a slight

increase as the correlation length increases from zero to

the nominal values with a plateau occurring at higher val-

ues of correlation lengths (Fig. 8a). This can be attributed

FIG. 7. Sensitivity analysis results, standard deviation: (a) maximum longitudinal stress; (b) shape distortion.
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to the fact that formation of residual stresses is a local

phenomenon; therefore it is governed by local tow orien-

tation rather than the dependence of fiber misalignment

over the space domain. The slight initial increase in

standard deviation of maximum residual stress is caused

as tail events are reinforced due to the increased correla-

tion; this influences the standard deviation but not the

mean as the effect is symmetric. The effect on standard

deviation becomes weaker at high correlation lengths

(over 20 mm in the x direction) as the characteristic

patches of variability reach a size similar to the width of

the component (40 mm).

The standard deviation of both corner and twist angles

increases as correlation lengths increase as shown in Fig.

8b. This is attributed to the fact that shape distortion is a

macroscopic phenomenon and it increases as imbalances

in lay-up introduced by variability increase in size. The

dependence is non-linear with a convex curvature at low

autocorrelation lengths and a concave curvature at high

lengths. The initial increase in sensitivity is due to the

stronger effect of macroscopic balances. The sensitivity

dependence reverses over 20 mm in the x direction as the

size of misaligned areas reached the size of the

component.

CONCLUSIONS

The methodologies developed in this work allow the

quantification of the influence of variability in fiber ori-

entation on the cure process outcome. The experimental

results show that high specification fabrics can involve

considerable geometrical variability, which in turn can

introduce significant variation to the process outcome. It

is found that tow orientation of high specification carbon

NCFs can vary with a standard deviation of 1.28. The sto-

chastic simulation results suggest that maximum residual

stress can present a coefficient of variation up to about

2%, whilst the average level of stress is higher than that

for the nominal fiber orientations, with potential implica-

tions in the performance of manufactured parts. Although

the variability in distortion angle is small in absolute

terms, considerable qualitative variations in shape can be

induced by the presence of fiber geometrical variability.

Moreover, shape distortion due to fiber misalignment is

significantly dependent on the lay-up, with fiber misalign-

ment having a stronger effect in modes of distortion man-

ifested in the most compliant direction of the component.

In addition, the dependence of maximum residual stress

and shape distortion on different levels of fiber misalign-

ment and autocorrelation highlight the significance of

fiber variability in the development of residual stress dur-

ing the process and final distortion of the component.

These findings are of crucial importance as shape varia-

tions lead to considerable part quality and assembly

issues, especially in the case of large components.

The modeling approach demonstrated in this study

can be extended to characterize and model out of plane

fiber misalignment and investigate its influence on heat

transfer effects and residual stress formation during the

cure process. Furthermore, an integrated framework can

be developed and implemented to study the combined

effect of different sources of variability such as fiber

misalignment, cure kinetics uncertainty and boundary

conditions uncertainty, as well as their relative impor-

tance on the process outcome. Investigation of quality

control data in a production line will allow validation of

the stochastic simulation results. This will allow mea-

surement of the statistics in process outcome and will

provide the necessary data for comparison with simula-

tion results. The large number or experimental data

required implies that his development can be carried out

more easily using results on part distortion, rather than

stress which would require potentially destructive inter-

ventions in manufactured parts.

FIG. 8. Sensitivity analysis results, autocorrelation: (a) maximum longitudinal stress; (b) shape distortion.
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In addition, incorporation of variability in process design

can minimize the amount of scrap inducing significant ben-

efits in terms of cost and part quality by minimizing vari-

ability in process defects such as severe temperature

overshoots, residual stresses and shape distortion, and thus,

can lead to efficient and robust process designs.

NOMENCLATURE

CHILE Cure Hardening Instantaneously Linear Elastic

FFT Fast Fourier Transform

MC Monte Carlo

NCF Non-crimp fabrics

OU Ornstein-Uhlenbeck sheet
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