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Stochastic heat transfer simulation
of the cure of advanced composites

TS Mesogitis1, AA Skordos1 and AC Long2

Abstract

A stochastic cure simulation approach is developed to investigate the variability of the cure process during resin infusion

related to thermal effects. Boundary condition uncertainty is quantified experimentally and appropriate stochastic

processes are developed to represent the variability in tool/air temperature and surface heat transfer coefficient. The

heat transfer coefficient presents a variation across different experiments of 12.3%, whilst the tool/air temperatures

present a standard deviation over 1�C. The boundary condition variability is combined with an existing model of cure

kinetics uncertainty and the full stochastic problem is addressed by coupling a cure model with Monte Carlo and the

Probabilistic Collocation Method and applied to the case of thin carbon epoxy laminates. The overall variability in cure

time reaches a coefficient of variation of about 22%, which is dominated by uncertainty in surface heat transfer and tool

temperature; with ambient temperature and kinetics contributing variability in the order of 1%.
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Introduction

The manufacturing of composite materials involves
many sources of uncertainty associated with material
properties and process parameters variability. These
uncertainties can considerably influence the properties
and the quality of the manufactured part, which in
many cases can result in a considerable amount of
scrap associated with significant cost and environmen-
tal implications. In addition, variability can signifi-
cantly affect the efficiency of process cycles in terms
of time and cost.

The effect of material properties variability has been
extensively investigated with a focus on reinforcement
geometry. This type of variability is mainly associated
with in-plane and out of plane fibre misalignment and
can affect all the manufacturing steps. Several experimen-
tal studies have indicated that in-plane fibre misalignment
can be represented by a normally distributed random
variable1–5 and can present strong spatial autocorrelation
over the textile. This can influence the forming process
introducing considerable variability in defect generation.5

In addition, fibre misalignment alongside nesting effects
can introduce significant variability in permeability lead-
ing to considerable flow induced defects such as void for-
mation and dry spots.6–8

The issue of variability during the cure step has
received limited attention so far in the literature. The
cure process can be potentially affected by material
properties variability related to fibre misalignment
and resin behaviour uncertainty as well as environmen-
tal/boundary condition uncertainty. These effects can
influence the risk of the occurrence of cure process
defects such as temperature overshoot, under-cure,
and shape distortion degrading potentially the overall
quality of composite parts. Very limited data and
results exist concerning variability during the cure
step, whilst the parameters introducing uncertainty
into the cure process have not been explicitly charac-
terised and evaluated. The effect of cure kinetics uncer-
tainty and cure temperature uncertainty on cure time
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has been studied based on hypothesised levels of vari-
ability showing that cure temperature variations tend to
dominate cure time variability.9 Furthermore, consid-
eration of variability in the optimisation of the cure
time has shown that optimal cure time increases with
increasing variability.10 A study preceding the work
presented here has shown that even in the case of
high specification epoxies cure kinetics variability can
influence significantly the occurrence of exothermic
effects leading to temperature overshoots in thick and
ultra-thick components.11 These findings have high-
lighted the considerable potential practical importance
of uncertainty in the cure step and the need for
an approach that can be utilised to simulate the over-
all effect of variability in the outcome of this stage of
the process.

This study aims at the investigation of the influence
of variability on heat transfer effects occurring during
the cure process focusing on cure time. Cure time is of
crucial importance since it determines the duration of
the manufacturing process which in turn dictates the
efficiency and the cost of the process. In addition, vari-
ability in cure time can lead to significant amount of
scrap since underestimation of the cure time can lead in
under-cure resulting in deterioration in the mechanical
properties of the part.

A methodology to characterise and model boundary
conditions uncertainty related to tool temperature,
ambient temperature and surface heat transfer coeffi-
cient is developed and the propagation of this variabil-
ity during the curing process is investigated. This
information is combined with existing models of
cure kinetics variability11 and the overall stochastic
simulation problem is addressed by coupling a finite
element based cure simulation model with a Monte
Carlo scheme (MC) and an implementation of the
Probabilistic Collocation Method (PCM). The method-
ology is demonstrated in the case of flat thin carbon
fibre-epoxy laminates fabricated by resin infusion.
During the curing stage of resin infusion processes
heat is applied on the surface of the laminate in contact
with the mould defined by a cure profile initiating
curing reactions. Heat is dissipated due to natural air
convection between the vacuum bag and the air result-
ing to a degree of cure and temperature gradient
through the thickness of the laminate. This can result
in significant variations in cure time.

Methodology

Cure simulation

A thermal cure simulation model was implemented in
the finite element analysis solver MSC.Marc. The
model is three dimensional and transient. The modelling

approach used in this study was based on 3D iso-para-
metric 8-node composite brick elements; 175 MSC.Marc
element type for thermal analysis. These elements allow
modelling of layered materials; different material proper-
ties, fibre orientation and thickness can be assigned to
different layers within the same element. Each layer con-
tains four integration points and a numerical integration
scheme based on Gaussian quadrature is employed. In
the case of a flat laminate, the heat transfer problem is
solved as a 1D problem with a stack of 3D elements,
since the geometry is fully symmetric in the in-plane dir-
ection. Therefore, the model of this study comprised six
elements as shown in Figure 1; each element comprised
of two layers of 0.3mm thickness, which is the nominal
thickness of the fabric used.13

The materials considered were Hexcel RTM612

epoxy resin and Hexcel G115713 pseudo unidirectional
carbon fibre reinforcement. The material properties of
the curing composite depend on both temperature and
degree of cure. The material sub-models of cure kin-
etics, specific heat capacity and thermal conductivity,
were implemented in user defined subroutines UCURE,
USPCHT and ANKOND,14 respectively. The cure kin-
etics model used in this study is a combination of an nth

order model and an autocatalytic model,15 whilst the
specific heat capacity is calculated based on the rule of
mixtures. A geometry-based model is applied to com-
pute the thermal conductivity.16 The specific heat cap-
acity and thermal conductivity of the fibres depend
linearly on temperature, whilst the specific heat cap-
acity and thermal conductivity of the resin depend on
both temperature and degree of cure. In the cure
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Figure 1. Temperature colour maps; deterministic model.
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kinetics model, the cure reaction rate is computed as
follows15

da

dt
¼ k1 1� að Þ

n1þk2 1� að Þ
n2am ð1Þ

where a is the current degree of cure, k1, k2 the reac-
tion rate constants following an Arrhenius law
(k1 ¼ A1exp �E1=RTð Þ, k2 ¼ A2exp �E2=RTð ÞÞ, and
m, n1, n2 the reaction orders. The specific heat capacity
is computed using the rule of mixtures as follows11

cp ¼ wfcpf þ 1� wf

� �
cpr ð2Þ

where wf is the fibre weight fraction, cpf the fibre specific
heat capacity and cpr the specific heat capacity of the
resin. The thermal conductivity in the longitudinal dir-
ection is calculated as follows16

K11 ¼ vfKlf þ 1� vf
� �

Kr ð3Þ

where vf is the fibre volume fraction and Klf and Kr are
the thermal conductivity of the fibre in the longitudinal
direction and of the resin, respectively. In the transverse
direction, the thermal conductivity is computed as
follows16

K22 ¼ K33 ¼ vfKr
Ktf

Kr
� 1

� �
þ Kr

1

2
�

Ktf

2Kr

� �

þ Kr
Ktf

Kr
� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2f � vf þ

Ktf

Kr
þ 1

� �2
2Ktf

Kr
� 2

� �2

vuuuut
ð4Þ

where Ktf is the conductivity of the fibre in the trans-
verse direction.

Details concerning the material sub-models presented
in equations (1)–(4) as well the constants required for
these models are reported in the literature.11

Experimental setup for the analysis of boundary
conditions uncertainty

Investigation of boundary conditions uncertainty was
carried out by a series of experiments using an infusion
set-up. These experiments aim at characterising the
behaviour of stochastic parameters with time as well
as across different experimental runs. The information
produced forms the basis for the selection and develop-
ment of appropriate stochastic models of tool tempera-
ture, ambient temperature and surface heat transfer
coefficient between the vacuum bag and the air.

Ten tests were carried out using the experimental set-up
illustrated in Figure 2. It comprises an ELKOM 8.4KW
electrical heating platen, a 10mm thick aluminium tooling
plate, a nylon N64PS-x VAC INNOVATION peel ply
fabric, a nylon VAClease xR1.2 VAC INNOVATION
vacuum bag, two K-type thermocouples and two RdF
micro-foil heat flux sensors.17 A 4.5mm thick carbon
fibre-epoxy flat panel fabricated by infusion was used to
produce thermal conditions similar to those during the
cure of a part. The matrix system of the panel was
Hexcel RTM6, whilst the reinforcement was Hexcel AS7
12k carbon fibre18 with an areal density of 268g/m2. The
composite panel was placed on the tooling plate, covered
with the peel ply and the vacuum bag and sealed before
testing. Two heat flux sensors were mounted on the
vacuum bag to measure natural air convection variability
as well as its spatial dependence. A K-type thermocouple
was placed on the tool (T/C1) to quantify tool temperature
uncertainty and a second one (T/C2) away from the
apparatus to measure ambient temperature variability.
The temperature was equilibrated at 160�C in all tests.
The experimental set-up was identical between the differ-
ent runs, i.e. all the components remained at the same
position to ensure maximum possible repeatability in the
experimental procedure.

Moreover, additional datasets were acquired to
study the effect of signal noise on the experimental

Composite
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Bag

Tooling plate

Hot plate
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Figure 2. Schematic representation of cross-section of experimental set-up used for quantification of boundary condition

uncertainty.
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results. In particular, two thermocouples and the two
heat flux sensors were mounted on the aluminium tool-
ing plate, where one of the thermocouples and one of
the heat flux sensors were sealed using a sealing tape
used in resin infusion processes. The temperature was
equilibrated at 160�C as well.

The micro-foil heat flux sensor consists of a thin
layer as shown in Figure 2 and is a differential thermo-
couple type sensor using T-type thermocouples.17 The
T-type thermocouples were used to measure the tem-
perature at the vacuum bag. Given that the same heat
flux should flow through the sensor and the surface
where the sensor is mounted, the sensor is directly mea-
suring the heat loss or gain through the thin layer by
measuring the temperature difference between opposite
sides of the thin layer. This sensor produces a voltage
output which is proportional to heat flux. In particular,
the heat-flux _Q is given by the following relation

_Q ¼ HFð Þ=ðCM TCFÞ ð5Þ

where HF is the sensor output, CM a calibration
multiplier provided by the manufacturer and TCF a
temperature compensation factor. The calibration
multiplier (unique to each sensor) is measured at 21�C
and is not linear with temperature. The sensors used in

this study had a calibration multiplier of 0.15 mV per
W/m2. The temperature compensation factor is a func-
tion of temperature and can be found in17. In the case
of the two K-type thermocouples as well as the T-type
thermocouples incorporated in the sensors an output in
�C is produced, whilst in the case of the sensors a volt-
age output is produced and therefore equation (5) was
utilised to calculate the heat flux. Subsequently, the
heat transfer coefficient h was computed using the
measurements of bag and air temperature TA

h ¼
_Q

Ts � TA
ð6Þ

where Ts is the temperature at the surface of the bag.
A National Instruments LABVIEW in house code was

used for data acquisition and the data were acquired
with a frequency of 0.8 Hz.

Stochastic process development

The procedure for selecting and developing the bound-
ary condition stochastic models uncertainty is illustrated
in Figure 3. The first step is to estimate the autocorrel-
ation structure of the raw data for each variable in order
to investigate the dependence of variability on time.

Figure 3. Schematic representation of methodology for modelling of boundary conditions uncertainty.
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In the case of a stationary process, no trend is present in
the data and the autocorrelation decays close to the zero
value within several time increments. If the autocorrel-
ation is close to zero on average, the time series is con-
sidered a random sequence of observations that are
independent and therefore can be modelled as a
random variable. If the autocorrelation does not decay
towards a negligible plateau in the long term, i.e. the
population shows strong autocorrelation with time (the
population presents a trend over time) then the process is
considered non-stationary and de-trending needs to be
applied in order to generate a stationary stochastic pro-
cess (Figure 3). After removing the trends, the residual
variability is modelled using a stationary stochastic pro-
cess. This procedure is repeated for every experimental
curve of the three parameters to model variability across
the different experimental runs.

Stochastic simulation approach

Investigation of variability in thermal effects during
the curing process requires the development and imple-
mentation of a stochastic simulation methodology.
Here the focus is to estimate the influence of variability
on cure time. Cure time is considered as the time at
which the minimum degree of cure of the laminate is
greater than 0.9.

The simulation is carried out using the Monte Carlo
(MC) method. This is based on the generation of real-
isations of the random variables involved in the simu-
lation which are output to the cure model through a
programmatic interface which interacts with the text
files implementing the finite element solution. The inter-
face calls the execution of the cure model solution and
upon completion reads the corresponding output which
is translated to cure time and stored. The implementa-
tion of the Monte Carlo method includes a step of
Cholesky decomposition19 which is activated when
some of the variables are correlated. In the simulation
executed in this study this was only necessary for the
stochastic parameters of the cure kinetics models as
detailed in the literature.11

The use of crude Monte Carlo is computationally
intensive and could limit applicability of stochastic
simulation in cases the cure model involves a large
number of degrees of freedom or iterative execution is
necessary, e.g. when the stochastic simulation is used
alongside numerical optimisation. The Probabilistic
Collocation Method (PCM) was tested as an efficient
modification. The main concept of the collocation
method is to construct a response surface for each
output parameter as a function of the uncertain param-
eters in the form of orthogonal polynomials and then
carry out uncertainty analysis using this surrogate
model. The unknown polynomial coefficients are

computed using the probabilistic collocation approach
at a set of collocation points.20 The collocation points
are the roots of the next higher order orthogonal poly-
nomial than the order of the response surface and are
chosen so that the residuals between each response sur-
face and the actual model output are zero.20

In the implementation of the collocation method in this
study, a third order response surface was constructed to
represent cure time as a function of the stochastic param-
eters. A modified regression-based collocation approach
was implemented to improve accuracy. In modified regres-
sion collocation, the number of collocation points used is
larger than the number of the unknown polynomial coef-
ficients, implying that the effect of each collocation point is
reduced.20 In the particular application of PCM addressed
here, which involved three stochastic parameters, the
number of the unknown coefficients for a three dimen-
sional third order polynomial is 2020 and 39 collocation
points were used. As a result, 19 additional deterministic
model runs were required, however; the additional compu-
tational cost for the given case was negligible since the
running time of one deterministic model run was only a
few seconds.

Therefore, the final Monte Carlo simulation using
the surrogate model based on the PCM representation
requires only 39 evaluations of the cure model.

Enquiries for access to the data referred to in this art-
icle should be directed to researchdata@cranfield.ac.uk.

Boundary conditions uncertainty

Experimental results

Figures 4–6 summarise the experimental results of tool
temperature, ambient temperature and surface heat
transfer coefficient evolution for the ten tests. Note
that in all three figures, the x-axis starts at 100min
due to the fact that this was the amount of time the
controller required to reach a plateau around 160�C for
the different experimental runs. A variable level across
the different experimental runs is observed for all
three parameters. This implies that in addition to time
variations there is a dependence of the underlying level
of each parameter across the different runs. The results
obtained by the sensor noise investigation showed that
the short term variability presented in Figures 4–6 can
be attributed to the motion of air streams at a local
level rather than signal noise effects.

In terms of time dependence, the tool temperature
presents a periodic trend and short term variability as
shown in Figure 4. The periodic trend is more pro-
nounced and is governed by the temperature controller,
whilst short term variability is due to random vari-
ations. The periodic features presented here correspond
to the tooling set up of this study. It is expected that in
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the case of a larger components and more complex
geometries deviations from the nominal set point can
be higher resulting in a periodic trend of higher ampli-
tude. The ambient temperature measurements exhibit a
non-periodic long term trend and short term variability
(Figure 5). This behaviour is attributed to several fac-
tors including the local temperature conditions, humid-
ity, the use of heating or cooling systems and the

quality of the insulation of the laboratory. The differ-
ences between the results obtained by the two heat flux
sensors placed at different location on the vacuum bags
were negligible implying that for the given case there is
no spatial dependence of the surface heat transfer vari-
ability. The surface heat transfer coefficient shows short
term variability and a variable level. This type of vari-
ability can be attributed to the fact that natural air
convection is driven by buoyancy forces caused by
density differences due to temperature variations in
air. As temperature increases, the density of the fluid
in the boundary layer decreases which causes the fluid
to rise and be replaced by cooler fluid that also will heat
and rise. Consequently, natural air convection is
strongly influenced by the motion of air streams at a
local level. In addition, variability in radiation (win-
dows) caused by variations in day weather as well as
the presence of different people in the lab can introduce
variability in surface heat transfer coefficient. All these
effects reflect real life applications.

No correlation is expected between the three param-
eters since tool temperature is solely dependent on the
controller, ambient temperature is dictated by environ-
mental conditions such as weather, radiation from win-
dows, humidity, whilst natural air convection is mainly
influenced by the motion of air streams at a local level.
Indeed, the experimental results showed that there is no
correlation between the three variables presenting a
correlation coefficient below 0.03 implying that vari-
ability is generated independently between the three
variables.

Stochastic processes

Figure 7 illustrates the autocorrelation structure for
one experiment (Run 1) for the three variables. Each
variable has identical autocorrelation structure across
different runs. Both tool temperature and ambient tem-
perature present long term strong autocorrelation
(Figure 7(a) and (b)) implying non-stationary pro-
cesses. Autocorrelation measures the extent to which
variation of a variable behaves similarly for specific
time lags. A periodic and a constant autocorrelation
structure are observed in the case of tool temperature
and ambient temperature, reflecting the periodic trend
(Figure 4) and linear trend (Figure 5) in the experimen-
tal data, respectively. Note that the negative autocor-
relation presented in Figure 7 is due to the periodic
nature of tool temperature variability as shown in
Figure 4.

Consequently, de-trending needs to be applied to
generate stationary stochastic processes for these two
variables. The stationary stochastic process adopted to
represent the ambient and tool temperature residuals
after de-trending was the Ornstein-Uhlenbeck process
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(OU), which is a mean reverting second order station-
ary Gaussian random process. The stochastic differen-
tial equation of this process S is the following21

ds ¼ � �� Sð Þdtþ �dWt ð7Þ

Here Wt is a Brownian motion which follows a normal
distribution with mean 0 and standard deviation 1 so that
Wt � Nð0, 1Þ, whilst dWt follows a normal distribution
with mean 0 and standard deviation

ffiffiffiffi
dt
p

so that
dWt � Nð0,

ffiffiffiffi
dt
p
Þ, � controls the speed of reversion to

the long term mean of the process, � is the long term
mean of the stochastic process and � the process volatility.
The stochastic differential equation expressed by equation
(7) can be integrated analytically,21 which implies benefits
with respect to integration and the possibility for the use of
a relatively large time steps in simulation.

In the case of surface heat transfer coefficient, the
autocorrelation structure shows a fast decay reaching
a value close to zero after the first lag of time, implying
that heat transfer coefficient shows no serial correlation
over time (Figure 7(c)). Therefore, the surface heat
transfer coefficient can be treated as a random series
of observations over time and modelled as follows

h ¼ Ah þ Bhy ð8Þ

where Ah expresses the level and is the mean value and
Bh the volatility of the process for each experimental
run, whilst y is a standard normal variable.

Figure 8 illustrates the results obtained in the differ-
ent steps of the analysis of tool temperature variability.
Fast Fourier transform (FFT) implemented in MATLAB

was used to estimate the frequency of the periodic com-
ponent of the process shown in Figure 3. A cosinusoi-
dal fit (Figure 8(a)) was performed using the generalised
reduced gradient non-linear optimisation method
implemented in Microsoft Excel22 to obtain an estimate
of the amplitude of the periodic component. The resi-
duals from the cosinusoidal fit present strong autocor-
relation; therefore linear regression was applied to the
residuals to remove the remaining trend as shown in
Figure 8(b). The residuals from the linear fit were mod-
elled using equation (7). Figure 8(d) illustrates the auto-
correlation of simulated residuals of tool temperature
generated using a time increment of 1.25 s. It can be
observed that the OU process reproduces the decay of
the autocorrelation structure successfully. There are
some discrepancies in the region of the plateau; how-
ever, this introduces a negligible error since the auto-
correlation is close to zero at this region.

This procedure was iterated for every experimental
run and yielded the following stochastic equation

TT ¼ AT þ BTtþ CT cos !Ttð Þ þ ST ð9Þ

The first two terms express the linear fit and represent
the level and slope of each experimental curve, whilst
CT and !T are the amplitude and the frequency of the
cosinusoidal fit, respectively. In addition, ST expresses
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the mean reverting stationary stochastic process (OU)
and can be calculated by integrating equation (7).

Figure 9 shows the analysis steps in the case of ambi-
ent temperature variability. As shown in Figure 9(a), a
linear fit was carried out to remove the long term trend
in ambient temperature over time. The residuals result-
ing from the linear fit presented strong autoregression
(Figure 9(b)) and were modelled using equation (7).
Figure 9(c) illustrates the autocorrelation of simulated
residuals of ambient temperature generated using a
time increment of 1.25 s. Similarly to tool temperature,
the OU process is capable of capturing the decay of the
autocorrelation structure successfully.

Ambient temperature variability was modelled using
the following stochastic relation

TA ¼ AA þ BAtþ SA ð10Þ

where AA and BA are the constants of the linear fit and
represent the level and slope of each experimental

curve, and SA is a mean reverting stochastic process
expressed by equation (7).

All terms in equations (8) to (10) were estimated for
each experimental curve for the three parameters and
were considered normal random variables across differ-
ent runs and constant with time.

Table 1 summarises their statistical properties.
Examination of Table 1 suggests that all three variables
(tool/ambient temperature, heat transfer coefficient)
present a significant variation in level (Ah, AT, AA)
across the different runs with the surface heat transfer
coefficient showing the highest variability. The mean
value of �A is considerably higher than that of �T,
implying that ambient temperature shows stronger
autoregression than tool temperature.

Stochastic cure simulation

The cure of a 3.6mm thick carbon fibre- epoxy laminate
fabricated by infusion was modelled using the stochastic
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simulation approach developed in this study. The lay-up
sequence of the laminate was [0�/90�/90�/0�]3. The model
comprised the laminate only (Figure 1) since the purpose of
this study was to investigate the influence of boundary
conditions variability on the process of cure. Therefore,
prescribed temperature boundary condition defined by
the cure profile was applied to the nodes in contact with

the mould, whereas a natural air convection boundary
condition was applied on the surface in contact with the
vacuum bag as shown in Figure 1. Variability in tool
temperature was measured at the surface of the alumin-
ium tool which was in direct contact with the laminate as
detailed in Experimental setup for the analysis of bound-
ary conditions uncertainty section . Therefore, the contact
resistance between the aluminium tool and the hot plate
was not modelled since it does not affect the process. The
heat transfer problem of this study is solved as a 1D
problem with a stack of 3D elements, therefore, adia-
batic boundary conditions were applied at the lateral
walls of the laminate assuming no heat loss due to the
high width to thickness ratio. The standard cure profile
for the epoxy system of this study (Hexcel RTM6) was
used comprising two dwells at two different tempera-
tures linked by two standard ramps of 1�C/min. The
temperature of the first dwell T1 as well as the post
cure temperature T2 are considered stochastic following
equation (9). In the case of T2 the mean value ofAT is set
at 180�C. The initial temperature was set at 120�C which
is the initial temperature of the nominal cure profile for
RTM6.

A time increment of 1min was used in the cure simu-
lation and the three parameters were set at the mean
values of Ah, AT and AA, respectively. Figure 1 presents
the final temperature distribution through the thickness of
the laminate for the deterministic simulation. A tempera-
ture gradient of about 4.4�C/mm is observed due to heat
dissipation at the top of the laminate caused by natural
air convection. Figure 10 presents deterministic cure simu-
lation results at three different points across the thickness
of the laminate. The three points are located at the lower
boundary (prescribed temperature boundary condition),
middle and top (natural air convection boundary condi-
tion) of the laminate. An out of plane degree of cure
gradient is present due to heat dissipation caused by nat-
ural air convection at the top of the laminate. This leads
to different degree of cure and cure reaction rate evolution
through the thickness of the laminate, as shown in Figure
10. The onset of the reaction is shifted towards higher
times from the lower side to the top of the laminate.
This is explained by the presence of a temperature gradi-
ent through the thickness of the laminate (Figure 1); the
temperature at the top of the laminate is lower than the
control temperature throughout the cycle resulting in a
lag in reaction progress. Similarly, the degree of cure at
the end of the cycle is maximised on the lower face with a
value of 0.95, in contrast to a final value of 0.91 at the
upper face of the curing component (Figure 10).

Short term variability

The effect of variability over time for the three param-
eters was investigated to study the influence of short

Table 1. Statistical properties of boundary conditions uncer-

tainty across different experimental runs.

Boundary

conditions

Stochastic

model

parameter Mean

Standard

deviation

h (W/m2/�C) Ah 13.47 1.65

Bh 1.16 0.04

TT (�C) AT 161.59 1.39

BT 0.004 0.0006

CT 0.16 0.02

!T 0.004 0.00006

�T 1.95 0.4

�T �0.00006 0.004

�T 0.21 0.004

TA (�C) AA 24.5 1.2

BA �0.011 0.007

�A 3.13 1.14

�A �0.055 0.18

�A 0.43 0.085
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term variability on the process outcome. This was car-
ried using equations (8) to (10) assuming constant
values for Ah, AT and AA equal to the corresponding
means. Three cases were considered; surface heat trans-
fer coefficient uncertainty over time only, tool tempera-
ture variability over time only and ambient temperature
variability over time only. A time increment of 1.25 s
was used in all three cases in order to reproduce
the dependence of variability on time for these param-
eters accurately, increasing significantly the computa-
tional cost.

Table 2 summarises the stochastic simulation results
for the three cases. Figures 11–13 present the evolution
of temperature and degree of cure for the three cases,
respectively.

In the case of surface heat transfer coefficient vari-
ability over time (Figure 11), the temperature at the
natural air convection boundary condition presents
variations governed by variations in surface heat trans-
fer coefficient with time. The temperature at the middle
of the laminate presents a considerably weaker vari-
ation with lower volatility, whilst the evolution of
degree of cure through the thickness of the laminate
is not affected implying that time variations in surface
heat transfer coefficient uncertainty introduce negligible

variability on the cure process outcome. In particular,
the absolute differences in the degree of cure between
this case and the deterministic model vary from
9� 10�8 to 5� 10�5.

In the case of tool temperature variability over time,
the temperature at the temperature boundary condition
shows a periodic trend reflecting the periodic trend of
tool temperature (Figure 12). Similar behaviour is
observed through the thickness of the laminate, imply-
ing that tool temperature variations propagate evenly
through the thickness of the laminate; however, the
evolution of degree of cure through the thickness of
the laminate is not influenced with the absolute differ-
ences in the degree of cure between this case and the
deterministic model varying from 8� 10�8 to 7� 10�5.

Time variations of ambient temperature uncertainty
introduce negligible variability in the temperature field
and consequently in the degree of cure of the laminate
(Figure 13) due to the fact that ambient temperature
plays a less important role in heat dissipation caused by
natural air convection. The absolute differences
between this case and the deterministic model vary
from 9� 10�8 to 5.5� 10�5.

These results show that time variability has a negli-
gible influence on the outcome of the process. This is
due to the fact that for the given spread of values, the
autoregressive nature of the stochastic parameters com-
pensates their instantaneous variations over time intro-
ducing negligible variability to the cure process
outcome. The stochastic simulation results indicate
that variability over time introduces negligible vari-
ations in cure time, with a coefficient of variation of
0.9%, 0.01% and 0.007% for the surface heat transfer
coefficient, tool temperature and ambient temperature,
respectively. In addition, the mean value of cure time
converges to the corresponding nominal value resulting
from the deterministic simulation in all three case
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Table 2. Stochastic simulation results; effect of variability over

time on cure time.

Case Mean (min)

Standard

deviation (min)

Deterministic 207.69 -

h 207.62 0.19

TT 207.68 0.021

TA 207.69 0.016
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studies, implying that the response of the model is not
biased by short term variability. Therefore, stochastic
simulation using the three levels as the only stochastic
parameters and a time increment of 1min in the simu-
lations is sufficient to capture variability propagation
accurately.

Effect of level variability across different runs

Following from the results of the previous section, the
overall simulation can be carried out considering the
variability of the level of surface heat transfer coeffi-
cient and tool and air temperature. Thus, equations
(8) to (10) can be truncated to

h ¼ Ah ð11Þ

TT ¼ AT ð12Þ

TA ¼ AA ð13Þ

In addition to boundary conditions variability, the
effect of cure kinetics uncertainty can be considered
using the uncertainty model detailed in the literature.11

Variability in cure kinetics (equation (1)) is attribu-
ted in variations in the initial degree of cure ao, activa-
tion energy E2 and reaction order m.11 Tables 3 and 4
summarise the statistical properties and the correlation

matrix of the three stochastic variables, respectively.
The correlation matrix expresses the cross-correlations
between the three stochastic variables so that its i, j
entry is the correlation coefficient between the corres-
ponding cure kinetics parameters.

Five different cases were investigated using Monte
Carlo taking into account: (i) cure kinetics and

Table 3. Statistical properties of stochastic cure kinetics

parameters.11

Parameter Mean Standard deviation

ao 0.033 0.006

E2(J/mol) 57820 600

m 1.29 0.094

Table 4. Correlation matrix of stochastic cure kinetics

parameters.11

Parameter ao E2(J/mol) m

ao 1 �0.09 0.55

E2 �0.09 1 �0.84

m 0.55 �0.84 1
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boundary conditions uncertainty, (ii) cure kinetics
uncertainty only, (iii) ambient temperature variability,
(iv) tool temperature variability and (v) surface heat
transfer coefficient variability. The stochastic simula-
tion results for the five cases are summarised in Table
5. Considering a convergence criterion of 5% of coeffi-
cient of variation in the standard deviation of cure time,
satisfactory convergence is obtained in the Monte
Carlo simulation after 1000 iterations for the first and
last cases, whilst 500 iterations are required for the rest.
The relative difference between the mean of cure time
when considering variability in h and Tt and the mean
of cure time when considering all sources of variability

Table 5. Stochastic cure simulation results; effect of level vari-

ability on cure time.

Case Mean (min)

Standard deviation

(min)

Kinetics, h, TT , TA 217.97 (MC) 47.41 (MC)

h 215 (MC) 37.4 (MC)

TT 212.6 (MC) 25.7 (MC)

TA 207.7 (MC) 2.31 (MC)

Kinetics 208.3 (MC) 2.63 (MC)

h, TT 219.7 (MC),

218.6 (PCM)

49.5 (MC),

47.8 (PCM)
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is below 1% (Table 5), implying that there is no signifi-
cant bias when h and Tt are considered stochastic.

Figure 14 illustrates the probability distribution of
cure time for the five cases. The results suggest that cure
time presents a coefficient of variation of 21.8%, 1.2%,
1.1%, 12% and 17.4% (standard deviation of 47.4, 2.6,
2.3, 25.7 and 37.4min) for the five cases. Examination
of the probability distribution for the different cases
shown in Figure 14 indicates that cure time can be con-
sidered a normally distributed random variable. These
findings show that the surface heat transfer coefficient
and tool temperature dominates cure time variability.
Cure kinetics (Figure 14(b)) and ambient temperature
(Figure 14(c)) uncertainty affect cure time variability;
however, their influence is weak compared to variations
in surface heat transfer coefficient and tool temperature
as shown in Figure 14(a), (d) and (e), respectively.
Furthermore, the mean value of cure time converges
to the corresponding nominal value resulting from the
deterministic simulation in the second and third cases,
whilst is slightly higher in for the rest. This implies that
there is a non-linear relation between cure time and
surface heat transfer and tool temperature.

The propagation of variability can be explained con-
sidering the heat transfer mechanisms and kinetics fol-
lowed during the cure. When surface heat transfer
coefficient is higher the cure time increases due to
heat dissipation on the top of the laminate. In the
case of tool temperature variability, higher values of
tool temperature result in higher reaction rate which
in turn lead to lower cure times. The same behaviour
can be observed with ambient temperature due to the
fact that higher values of ambient temperature lead to
lower natural air convection resulting in lower cure
times. In the case of cure kinetics uncertainty low initial
degree of cure and low activation energy result in a shift
to the peak of reaction to lower times leading to lower
cure times.

Figure 15 illustrates the evolution of cure reaction
rate with time for two realisations of the stochastic
simulation model considering the combined effect of
boundary conditions and cure kinetics uncertainty
and for the deterministic model. The two stochastic
cases reported represent the extremes of maximum
and minimum cure time. Table 6 reports the values of
the stochastic parameters for the two realisations. In
realisation 1 (maximum cure time), the cure reaction
rate has lower peak values throughout the thickness
of the laminate with the peak of reaction at the top
of the laminate shifted considerably towards higher
times leading to longer cure time. This due to the
high surface heat transfer coefficient, low tool tempera-
ture and low initial degree of cure values corresponding
to this realisation. In contrast, in the case of realisation
2 (minimum cure time), the reaction starts considerably
earlier and the peak is higher than the other two
cases. Furthermore, the time lag of the onset of reaction
between the lower side and the top of the laminate
is significantly lower for minimum cure time case (realisa-
tion 2). This behaviour can be explained by the low surface
heat transfer coefficient, high tool temperature and high
initial degree of cure of this realisation (Table 6).
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Table 6. Values of stochastic parameters for two realisations of

stochastic model.

Values Realisation 1 Realisation 2

ao 0.025 0.039

E2 (J/mol) 58045.2 58589.6

m 1.2 1.16

h (W/m2/�C) 18.6 8.75

TA (�C) 24.1 25.1

T1 (�C) 159.9 163.4

T2 (�C) 177.17 183.25

14 Journal of Composite Materials 0(0)

 at Cranfield University on May 10, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


Surface heat transfer coefficient and tool tempera-
ture uncertainty dominate cure time variability explain-
ing more than 90% of the overall variability. Therefore,
for carbon/epoxy composites stochastic simulation can
be limited to these two factors when efficiency is
important, e.g. in iterative use. In addition, utilisation
of a surrogate model based on PCM can reduce execu-
tion times further. This scenario is tested here with
the simulation of surface heat transfer and tool tem-
perature variability propagation using both MC and
PCM. The third order response surface expressing the
cure time as a function of three standard normal vari-
ables �1, �2 and �3 which represent the three stochastic
parameters (h, T1, T2) is reported in Table 7.

The stochastic simulation results are included in
Table 5. Figure 16 illustrates the probability distribution
of cure time and Figure 17 presents the convergence of the
mean and standard deviation of cure time for the two
stochastic simulation schemes. Satisfactory convergence
is obtained for the first and second statistical moments
of cure time after 1000 Monte Carlo iterations for both
stochastic simulation schemes. A very good agreement is
achieved between Monte Carlo and the collocation
method for the first two statistical moments of cure
time. Both stochastic simulation schemes are able to cap-
ture the combined effect of surface heat transfer

coefficient and tool temperature variability in cure time
accurately. The Monte Carlo shows a computationally
expensive and rich solution, whereas the PCM offers an
efficient approximation with tremendous benefits in terms
of computational cost (for the given case, the computa-
tional cost of the PCM is 3.9 % of that of the MC), and
comparable accuracy.

Concluding remarks

The methodologies developed in this study allow the
quantification of the influence of boundary conditions
variability, cure kinetics uncertainty and their com-
bined effect on the cure process outcome during resin
infusion processes. The experimental results show that
boundary conditions can show considerable variability,
which in turn can introduce significant variation to the
process outcome. It is found that the main source of
uncertainty in boundary conditions is caused by

Table 7. Third order

response surface of cure time.

Polynomial

coefficients

Uncertain

parameters

13168.4 –

2241.7 �1

�64.9 �2

�1665.2 �3

457.9 �2
1 � 1

�10.4 �1�2

�659 �1�3

3.4 �2
2 � 1

5.9 �2�3

292.9 �2
3 � 1

64.4 �3
1 � 3�1

1.7 �2
1�2 � �2

�181.8 �2
1�3 � �3

�3.9 �2
2�1 � �1

4.4 �1�2�3

114.4 �2
3�1 � �1

�0.4 �3
2 � 3�2

�3.4 �2
2�3 � �3

0.65 �2
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3 � 3�3
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variation in level across different runs. The stochastic
cure simulation results taking into account level vari-
ability suggest that surface heat transfer coefficient and
tool temperature dominate cure time variability intro-
ducing a coefficient of variation of about 22%, with
considerable implications in cost associated with pro-
cess duration and part quality. Cure kinetics and ambi-
ent temperature variations introduce negligible
variability in cure time in the case of thin high specifi-
cation epoxy carbon fibre composites. Variations over
time introduce negligible variability in cure time in this
type of application; however, the effect of variability
over time could be significant in which variations in
surface heat transfer coefficient and tool temperature
are more pronounced (e.g. wind turbine blade
manufacturing).

The results of this study show that even in the case of
controlled lab conditions where variability is less pro-
nounced than real life applications where less con-
trolled lab conditions are applied and complex
geometries can introduce additional variability, vari-
ability in boundary conditions can introduce significant
variability to the process outcome. Overall, the model-
ling approaches demonstrated in this study is a power-
ful tool to characterise and model boundary conditions
uncertainty as well as cure kinetics variability in indus-
trial scale applications and investigate its influence on
heat transfer effects and residual stress formation
during the cure process. Incorporation of variability
in process design can contribute towards the optimisa-
tion of the process inducing significant benefits in terms
of cost by minimising variability in cure time and pro-
cess defects such as under cure, severe temperature
overshoots, and shape distortion.
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