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Residual stress of as-deposited and rolled wire
+arc additive manufacturing Ti–6Al–4V
components
F. Martina1 , M. J. Roy2, B. A. Szost3 , S. Terzi4 , P. A. Colegrove∗1,
S. W. Williams1, P. J. Withers5, J. Meyer6 and M. Hofmann7

Wire + arc additive manufacturing components contain significant residual stresses, which
manifest in distortion. High-pressure rolling was applied to each layer of a linear Ti–6Al–4V wire
+ arc additive manufacturing component in between deposition passes. In rolled specimens,
out-of-plane distortion was more than halved; a change in the deposits’ geometry due to plastic
deformation was observed and process repeatability was increased. The Contour method of
residual stresses measurements showed that although the specimens still exhibited tensile
stresses (up to 500MPa), their magnitude was reduced by 60%, particularly at the interface
between deposit and substrate. The results were validated with neutron diffraction
measurements, which were in good agreement away from the baseplate.
Keywords: Titanium, Additive manufacturing, 3D printing

This paper is part of a Themed Issue on Measurement, modelling and mitigation of residual stress.

Introduction
Wire+arc additive manufacturing (WAAM) is a tech-
nique which utilises arc-welding processes, in combi-
nation with wire feeding, for additive manufacturing
(AM) purposes.[1] Tungsten inert gas or plasma processes
can be used for titanium, aluminium and refractory
metals;[2–4] and metal inert gas welding for aluminium
and steel.[5–7] Benefits of this AM technique include
high deposition rates and therefore lower cost of depo-
sition compared to powder-based processes, greatly
reduced lead times, and potentially limitless part size.[1]

WAAM components are affected by residual stress and
distortion.[8] These two issues threaten to undermine the
adoption of AM in industry; consequently, numerous pro-
jects are targeting their mitigation. In welding, various
techniques have been investigated to reduce residual
stress.[9] Ultrasonic impact treatment is the combination
of ultrasonic waves with mechanical impact by means of
an ultrasonic transducer. When applied to the toes of a

six-pass weld, ultrasonic impact treatment (UIT) was
found to be effective in reducing the tensile stress,
especially close to the centreline of the weld.[10]

Global mechanical tensioning involves tensile loading
of the weld;[11],[12] it could be done either during the weld-
ing process (in situ global mechanical tensioning (GMT))
or after (post weldGMT). These techniques are successful
with linear welds or simple geometries, and the equipment
is large and heavy.[13] If the load is applied only to a small
region around the welding tool, mechanical tensioning is
defined as local; one of the local tensioning techniques is
rolling. Due to a much more compact set-up, rolling has
the potential to overcome some of the impracticalities
of GMT.[13–16] Rolling was found to result in a dramatic
reduction of tensile stresses along the weld line of hot
rolled S355JR structural steel plates, and for high rolling
loads tensile weld stresses have even turned into compres-
sive ones.[12],[17] It has also been shown that in situ rolling,
in which the roller is placed immediately behind the weld-
ing torch and the load is applied as soon as the material
solidifies, has negligible effect on residual stress.[17]

Previously, high-pressure interpass rolling was success-
fully tried on steel WAAM structures.[7] When applied to
Ti–6Al–4V WAAM linear deposits, a refined equiaxed
microstructure throughout the whole height of the com-
ponents was obtained.[18–20] In this paper, the effect of
high-pressure rolling on distortion, geometry and residual
stress of Ti–6Al–4V WAAM linear deposits are evalu-
ated. The residual stresses are measured with the contour
method[21] and validated using neutron diffraction
measurements. It must be pointed out that some of the
work reported here was initially presented in a conference
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publication,[22] however both the contour method and
neutron diffraction results have been refined in the present
work, in which more details are also provided.

Experimental methods
The deposition and rolling experiments were performed
on a custom-made rolling rig, equipped with a Lincoln
Electric Invertec V310-T AC/DC tungsten inert gas
(TIG) power supply. A schematic view of the set-up is
shown in Fig. 1a (the X, Y and Z directions are defined
in this figure). The electrode to workpiece distance was
3.5 mm. The parameters for the pulsed TIG process, pre-
sented in Table 1, produced a wall width (WW) of 6 mm.
A 200-mm long trailing shield with a single inlet

(20 l min−1) located at its midpoint, attached to the
TIG torch, was used to provide an argon environment
behind the deposit to protect it from oxidation. Because
this trailing shield was designed for welding applications,
in which it works relatively close to the plates that are
being welded, aluminium tape was attached to both its
long edges to contain argon and improve the device’s shield-
ing capability. For additional protection, 1× 100× 300
mm3 aluminium plates were stacked on either side of the
deposit as the build progressed in height, to prevent ingress
of argon from underneath; this improved shielding perform-
ance further. It must be pointed out that a WAAM-specific
trailing shield is now available and will be used for future
experiments.[23]

Aerospace grade 5 Ti–6Al–4V welding wire was sup-
plied by VBC; its diameter was 1.2 mm and its compo-
sition is shown in Table 2. Two rollers were investigated:
(A) a ‘profiled’ one, which approximately conformed to
the profile of the deposit as shown in Fig. 1c, and (B) a
‘flat’ one (not shown) which did not have any machined
feature. Both rollers were made of case-hardened H13
tool steel and a rolling speed of 0.5 m min−1 was used.

The deposition of a layer and the application of rolling
were alternated; the temperature of the top layer was
monitored with a pyrometer and the part was allowed
to cool below 40°C before rolling was applied.

Evaluation of geometry and distortion
Ti–6Al–4V baseplates were 405 mm long, 60 mm wide
and 6mm thick, and were clamped by countersunk
bolts along each side of the plate (Fig. 1b). Five 20
single-pass-layer walls were built: a ‘control’ reference
sample deposited without rolling, but incorporating the
same cooling stages between passes; two samples treated
with the profiled roller using loads of 50 and 75 kN; and
two that were treated with the flat roller using loads of
50 and 75 kN.
Deposition was initiated 20 mm from the end of the

baseplate and stopped 15 mm from the other end (Fig.
1b), giving a total wall length of 370 mm. Each layer
was deposited in the same direction. Rolling began and
ended 35 mm from the ends of the deposit.
The WW was measured from optical microscopy

images of three cross-sections extracted at the points
labelled M1, M2 and M3 (WWj, where j is the point of

1 Experimental set-up for layer deposition and rolling: a schematic of experimental set-up, b details of base plate including
holes for clamping and c dimensions of the profiled roller (A).

Table 1 Deposition and rolling parameters

Wire feed speed 1.6m min−1

TIG torch travel speed 4.5mm s−1

TIG peak current 150 A
TIG background current 70 A
TIG average current 110 A
TIG pulse duration 0.05 s
TIG pulse frequency 10 Hz
TIG torch gas flow rate 10 l min−1

TIG torch stand-off 3.5 mm
Rolling speed 0.5m min−1
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measurement, as indicated in Fig. 1b), using Adobe
Photoshop CS4.

∗
The three measured values were then

averaged for each sample:

WW = 1
3

∑3
i=1

WWj (1)

The standard deviation was calculated as

sWW =
������������������������
1
3

∑3
i=1

(WWj −WW)2
√√√√ (2)

As described in a previous publication,[19] the layer
height (LH) from the baseplate was measured with a digi-
tal calliper also at three points labelled M1, M2 and M3
(lhi,j) during building of the part, before and after rolling;
i is the layer number, and j the point of measurement. The
height of each individual layer (LHi), mean layer height
(LH) and standard deviation (sLH) were calculated from

LHi = 1
3

∑3
j=1

lhi,j

( )
− 1

3

∑3
j=1

lhi−1,j

( )
(3a)

LH = 1
16

∑20
i=5

LHi (3b)

sLH =
�����������������������
1
16

∑20
i=5

LHi − LH
( )2√√√√ (3c)

The thermal effect of the baseplate led to a reduction in
WW and an increase in LH, for the first few layers.
Consequently, the first four layers are excluded from the
calculation of LH and sLH in equations (3b) and (3c).
The calculation of the average total engineering strains

(ey and ez) introduced by rolling was based on the average
changes in WW and LH, respectively:

ey = WWrolled

WWcontrol
× 100− 100

∣∣∣∣
∣∣∣∣ (4a)

ez = LHrolled

LHcontrol
× 100− 100

∣∣∣∣
∣∣∣∣ (4b)

The sign was then assigned according to whether the
material was compressed (−) or elongated (+). Their
uncertainty was calculated as a fraction of the percentage

change, considered the sum of relative errors:

sy = ey
sWWrolled

WWrolled
+ sWWcontrol

WWcontrol

( )
(5a)

sz = ez
sLHrolled

LHrolled
+ sLHcontrol

LHcontrol

( )
(5b)

Furthermore, strains on a layer-by-layer basiswere calcu-
lated only for the LH (Z direction) by comparing the LHi of
the rolled specimens with the LHi of the control one.
Because of the manual start and stop of the arc, and the

manual operation of the motion system which manipu-
lated both the welding torch and the rolling tool, there
were inaccuracies in the length of deposits which made the
calculation of the change in the deposits’ length (ex) mean-
ingless; hence, these values are not reported in this paper.
After manufacturing each sample, the maximum out-

of-plane distortion (D) was assessed as shown in Fig. 2.

Characterisation of residual stress
The same equipment was used to manufacture titanium
deposits onto 250-mm long, 60-mm wide and 6-mm
thick Ti–6Al–4V substrates, which were also clamped
by countersunk bolts. Each linear deposit began and
ended on the edge of the substrate, and comprised 40
layers. Starting the deposition on cold material results in
slight humping.[4] Equally, because of the lack of heat
sink ahead of the torch, sloping is observed when a
layer is finished.[4] These errors accumulate as the build
progresses, and while acceptable for a limited number of
layers (such as those required to produce the samples
for evaluation of geometry and distortion), for taller
structures the deviation is such that at the beginning of
the deposition, the TIG electrode can crash into solid
material, and at the end a massive amount of spatter is
produced due to a substantial increase in the arc length
and voltage. Consequently, when producing samples for
residual stress measurements, the direction of deposition
was alternated, so that the lack of material at the end
was compensated by the additional material produced
at the beginning of the new layer, which started where
the last one ended. This was also described in Martina
et al.[4] To avoid rotation of the torch, the wire was fed
90W to the direction of the travel. The profiled roller was
used (Fig. 1c), and four samples were built: two unrolled

Table 2. Chemical composition of Ti–6Al–4V wire used in the experiments (wt%)

Ti Al V Fe O C N H TOE Y Others

Bal. 6.08 4 0.18 0.16 0.035 0.011 0.0017 <0.2 <0.001 <0.05

2 Measurement of out-of-plane distortion

∗
Photoshop is a registered trademark of Adobe Systems Inc.
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(control), one rolled at 50 kN and a final one rolled at 75
kN. All other manufacturing parameters were the same as
above.

Contour method of residual stress measurements

The contour method of residual stress measurement was
employed to assess how the residual stresses evolved in
the component as a function of processing. Briefly, the
contour method is a destructive technique for assessing
residual stress whereby the component is experimentally
cut into two using the principles of elastic superposition.
The deformation of the newly created surface due to the
release of residual stress is then experimentally measured.
This deformed surface is flattened analytically on repre-
sentative geometry of the component to indicate the orig-
inal residual stress normal to the cut plane.[21],[24]

Samples were cut by wire electrical discharge machin-
ing (EDM) in a purpose-built fixture which was designed
to conform to the component (i.e. accounting for the dis-
tortion shown in Fig. 2 of each specimen) and provided
appropriate restraint during cutting (Fig. 3). The cutting
strategy and restraint employed followed the best prac-
tices to mitigate cutting artefacts.[25]

The cut started from the top of the deposit and into the
baseplate with the wire moving parallel to the part’s Y
-axis. The two matching resultant surfaces were scanned
using a NanoFocus μScan laser surface profilometer
with a rectangular grid of points spaced 30 μm apart.
These unregistered point clouds were then aligned and
averaged to produce a single point cloud. This point
cloud was then fitted with cubic B-splines to permit
interpolation. The average fitting error of the spline to
the averaged surface was 15.6 μm with a standard devi-
ation of 1.2 μm as calculated in the direction normal to
the cut surface.
The outline of the average surface was then used to gen-

erate a finite element model of the component consisting
of 20-noded quadrilateral elements in Abaqus† with elas-
tic properties of n = 0.342 for Poisson’s ratio and
E=113.8 GPa for Young’s modulus. Boundary conditions
were imposed at node locations as found from the fitted
spline, and stresses were calculated with an implicit static

analysis. Further boundary conditions were imposed to
eliminate rigid body movement on corner nodes of the
baseplate; Z displacement was restricted on one and Z
and Y on the other. A mesh sensitivity was conducted to
ensure that an appropriate mesh density was employed.
The characteristic mesh contained over 15,000 reduced
integration elements, and resulting stresses were inferred
from stress values found at the four integration points
per element closest to the surface of the cut. The end result
of the analysis was a distribution of the sxx stresses over
the entirety of the component’s cross-section.
With regard to the measurement error associated with

this technique, there are conflicting opinions in the scien-
tific literature. In absolute terms, Prime et al.[26] provided
an estimate of 5MPa; Olson et al.[27] indicated 5–10MPa,
while Hosseinzadeh and Bouchard[28] described upwards
of 15–30MPa in certain regions of their sample. There-
fore as a very conservative estimate, 30MPa was chosen
as the uncertainty for the contour method results in Fig. 7.

Neutron diffraction residual stress measurements

In order to cross-validate the contour method measure-
ments, the residual stress was also measured in the control
sample by neutron diffraction at the Heinz Maier-Leib-
nitz Zentrum nuclear facility in Munich, Germany,
using a monochromatic neutron beam of wavelength of

l = 1.83 A
W

and a detector angle of sin(2u) = 85° to
identify the α-Ti(103) reflection, given that in lamellar
Ti–6Al–4V, the α phase accounts for around 90% of
the crystallographic structure at room temperature.[29]

The scans were made at the mid-length position on half
the original specimen length of 250 mm. Scans started 2
mm from the bottom of the baseplate, and finished at
the top of the wall, with a spacing of 2 mm between
each point, along the centreline of the wall.
The same set-up (Fig. 4a and b) was used to read the

diffraction peaks from the lattice spacings so as to
measure the elastic transverse (1y) and normal (1z) strains.
The longitudinal values required two changes of set-up in
order to minimise the beam attenuation through the
sample: diffraction peak positions of the points with their
gauge volume within the wall were measured with the
part placed horizontally (Fig. 4c), while for the interface
wall–baseplate, and for the baseplate itself, a 45° rotation
of the part around its X-axis was necessary (Fig. 4d).
For the transverse and normal directions strain

measurements, a matchstick gauge volume of
2× 2× 20 mm3 was used, with the long dimension paral-
lel to the X direction; for the longitudinal direction it was
3× 3× 2mm3. For each point, the scan time was at least
15 min. Direction specific lattice spacings (dk) were calcu-
lated using Bragg’s law:

dk = l

2 sin uk
(6)

where k indicates the points were lattice spacing
measurements were taken. The stress-free lattice spacings
(d0) might be expected to vary as a function of position.[30]

In such circumstances, one would normally cut a series of
stress-free cubes as matchsticks to determine d0 point by
point. However, given that the thickness of the deposit
was approximately 6 mm, plane stress in the XZ-plane
was assumed which means that it is possible to deduce

3 Clamping of components during wire EDM cut

†Abaqus is a registered trademark of Dassault Systèmes Simulia Corp.
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the variation of d0 from three elastic strains (1x, 1y and 1z)
at each point k. The following condition, whose validity is
discussed in the next section, is imposed:[31]

syy,k = (1− n)E103

(1+ n)(1− 2n) 1yy,k

+ nE103

(1+ n)(1− 2n) (1xx,k + 1zz,k) = 0

(7)

where E103 = 105.5 GPa is Young’s modulus for the α–Ti
(103) plane. This condition enables the calculation of the
stress-free lattice spacings (d0,k) parameters for the three
measured lattice spacings:

d0,k = 1− n

1+ n
dy
k +

n

1+ n
(dx

k + dz
k) (8)

Principal strains (ɛ) can then be calculated as

1xx,k = dx
k − d0,k
d0,k

(9a)

1zz,k = dz
k − d0,k
d0,k

(9b)

and finally in-plane principal stresses (σ) calculated using

the triaxial form of Hooke’s Law:

sxx,k = E103

1+ v( ) 1− 2v( ) 1− v( )1xx,k + v 1yy,k + 1zz,k
( )[ ]

(10a)

szz,k = E103

1+ v( ) 1− 2v( ) 1− v( )1zz,k + v 1xx,k + 1yy,k
( )[ ]

(10b)

Results and discussion
Distortion and manufactured geometry
The distortion results shown in Fig. 5a demonstrate that
distortion reduced with increased rolling load. This is
likely to be linked to the modification in residual stress,
discussed in the next section. Rolling has also significantly
affected the WW and LH, as shown in Fig. 5b and c. As
the rolling load increases, there is a substantial increase in
WW, which is accompanied by a concomitant reduction
in the LH.
The change in geometry as a consequence of rolling will

not affect the build-rate provided the final shape of the
deposit is known, i.e. as long as the change in WW and
LH produced by rolling is known beforehand, these can

4 Sample set-ups for neutron diffractionmeasurements. a Plan view of the set-up for the transverse (Y) direction; b plan view of
the set-up for the normal (Z ) direction; c elevation view of the set-up for the longitudinal (X ) direction for points within the
deposit and d elevation view of the set-up for the longitudinal (X ) direction for points within the substrate. Note that in c
and d the detectors are 45° out of plane
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be taken into account when selecting the process par-
ameters according to the desired geometry, using algor-
ithms such as those described in Martina et al.,[4]

Martina.[20] Therefore, if the buy-to-fly ratio and depo-
sition rate of the rolled part are similar to those of the
unrolled one, the build-rate will not be affected.
After rolling, the standard deviation of WW and LH

reduced from 0.18 to 0.14 and from 0.19 to 0.09, respect-
ively, for the profiled roller; andwas as little as 0.03 for the
flat roller, as shown by the error bars in this figure. The
reduction in the standard deviation for both WW and
LH values shown in Fig. 5 could simplify automation
of the deposition process, particularly the reduction in
variation of the wall height. Variation in the LH, unless
compensated by a control system, results in differences
in the electrode to workpiece distance, which leads to a
change in the heat input and ultimately to the geometric
characteristics of the deposit. Operating the rolling equip-
ment with position rather than load control could poss-
ibly reduce the height variation between passes further,
or even eliminate it. Other benefits could include reduced
material removal in post-manufacturing machining and
less non-conformance rejection.

The average engineering strains are shown in Table 3.
With regard to the profiled roller, the strains in the two
directions were very similar. On the other hand, the flat
roller produced much larger strains in the transverse (Y)
direction than in the normal (Z ) one, due to a more pro-
nounced modification of the shape of the deposit.[19]

Figure 6 shows a plot of the change in LH (ez)
measured after rolling each layer. Two clear features can
be seen: the first is the much larger reduction in layer
height for 75 kN compared to 50 kN. The second is the
much larger strain produced with the flat roller for a
load of 75 kN during the deposition of the first few layers.
For a rolling load of 50 kN, the difference is minimal.
The difference in strain for the first few layers when

rolling at 75 kN (Fig. 6) can be attributed to the lack
of lateral restraint of the flat roller. In the first few layers,
the profiled roller was also in contact with the baseplate,
because the depth of the machined groove was larger
than the height which was being rolled. The flat roller
was not affected by this problem which resulted in higher
strain.

Residual stress
Figure 7 shows a comparison of the residual stress in the
longitudinal (X ) direction, measured along the centreline
of the control and rolled specimens. Figure 8 shows con-
tour maps of the stresses for the same direction. The con-
trol specimen showed a substantial level of tensile stress
(500MPa) concentrated just above the interface between
the part and the baseplate. The magnitude of the stress
steadily decreased towards the top of the wall, where it
became compressive, peaking at around−250MPa.
These measurements are consistent with those reported
on steel WAAM structures,[7],[8] and on WAAM Ti–
6Al–4V structures,[32] but are different from those
reported by Moat et al.[33] on laser sintered structures.
Tensile stresses were generated throughout the depo-

sition due to shrinkage of the cooling material behind
the molten pool, as discussed in Coules et al.[34] for
welded joints. Bending distortion in WAAM parts was
described clearly in Colegrove et al.[7] During deposition,
the clamps applied a bending moment which kept the
baseplate flat; the baseplate also contained the balancing
compressive stress. Despite the differences in geometry in
WAAM specimens, the mechanisms were similar to those
discussed in welding. Upon releasing the baseplate from
the clamps, the specimen bent upwards so that the net
bending moment across the section was zero, turning
the tensile stress at the top of the wall into compressive
stress. This resulted in the tensile peak observed at the
baseplate–part interface. The difference with that
reported byMoat et al.[33] could be related to their deposit
height, which is much smaller relative to the substrate
they used, a scenario similar to having the wall still

5 a Distortion, b average wall width and c layer height vs.
rolling load. Note that the error bars in b and c represent
the standard deviation of the three measurements

Table 3. Average engineering strains (%)

Profiled roller Flat roller

ez sz ey sy ez sz ey sy

50 kN −8.0 2.3 8.1 0.4 −4.1 0.9 6.9 0.3
75 kN −17.9 4.7 17.5 0.9 −14.7 2.9 20.4 1.0

F. Martina et al. Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti–6Al–4V components

1444 Materials Science and Technology 2016 VOL 32 NO 14



clamped. In addition, their walls/parts were produced by
scanning rather than a single pass wall, which is also likely
to affect the generation of residual stress.
The 75 kN specimen had lower residual stresses par-

ticularly at the interface between the part and the base-
plate, and it had a peak tensile stress of 200MPa,
roughly 300MPa less than the control specimen. In
addition, the rolled specimen exhibited a much flatter
residual stress profile apart from the highly compressive
stresses at the top of the deposit. Rolling induces plastic

strain in the longitudinal (X ) direction, which reduced
the tensile residual stress in that same direction.[7],[17]

The reason why residual stresses were not fully eliminated,
but only reduced, is discussed below.
During part building, there was a competition between

the production of residual stress by each layer deposition
(‘welding stress’), and the compressive ones introduced by
each subsequent rolling pass. This was also evident in the
work of Colegrove et al.[7] The compressive stresses
associated with rolling were observed in the top of the

6 Plot of reduction in layer height (Z direction) using rolling vs. layer number

7 Longitudinal residual stress measured by contour method and comparison with the neutron diffractionmeasurements of the
control sample
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wall also in the present case and are 150–250MPa larger
than in the control specimens (see Fig. 7). The lack of
further deposition meant that these compressive stresses
could not be changed. This condition is similar to that
observed in rolled welds and reported by Coules
et al.,[17] in which the residual stress was fully compressive
throughout the thickness of the welded plates. However,
different from the welding case, in rolled WAAM deposits
the lower beads had their stress modified by the sub-
sequent deposition passes, and tensile stresses are still
observed, further from the top of the wall. Another differ-
ence in the welding case is that, in rolling of welds, the
parent material on either side of the weld acts as a con-
straint and allows little deformation in the transverse (Y
) direction, allowing more deformation in the longitudinal
one (X ), effectively reducing the tensile residual stresses in
the X direction. In WAAM structures, there is no con-
straint in the transverse (Y) direction (apart from near
the baseplate) so much more deformation occurs in the
Y direction as a consequence of rolling, which results in
less effective tensile stress reduction in the longitudinal
direction.

Alternatively, roller designs that limit the amount of
lateral deformation can be used such as the ‘slotted’
roller reported in Colegrove et al.[7], Additional side
rollers would have a similar effect, providing a more
effective reduction in residual stress.[7] Progressively
reducing the rolling load as the build approaches com-
pletion may avoid the large compressive stress in the
top of the wall.
Despite the lower rolling load, the specimen treated

with a 50-kN load showed higher compressive stress in
the top region of the deposit (Fig. 7). This observation
is linked to the different geometry of the specimens (the
sample rolled at 50 kN is taller than the one rolled at
75 kN) and to the stress redistribution that occurred
after unclamping: once the 50 kN sample was allowed
to bend, it exhibited more distortion, which resulted in
the greater compressive stress.
While a smaller gauge volume could have been chosen

to allow measurement of stress nearer to the surface, the
requirement for acceptable sampling statistics meant that
a 3× 3× 2mm3 interaction volume was necessary. Con-
sequently, in this particular case the contour method

8 Contour maps of residual stress: a control; samples rolled using the profiled roller with a load of b 50 kN and c 75 kN

9 Residual stress measured in the unrolled specimen by neutron diffraction
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enabled the measurement of stress much closer to the
surface than neutron diffraction. It was possible to
observe a tensile stress at the top of the wall, in the
material that had been in contact with the roller
(Fig.8). This tensile stress is likely to be due to the fric-
tion between the roller and the deposited material
which produces more deformation under the surface.[35]

The tensile residual stress at the very top is not desirable
from a mechanical property viewpoint; however, this is
not an issue, since in real components the top of the
deposit would be machined off.
The contour maps in Fig. 8 show a gradient in the

transverse (Y ) direction, the lateral surfaces of the wall
having lower residual stress (often compressive) than the
bulk of the material. This is possibly related to the faster
cooling of the external surface compared to the internal
region. This could be beneficial from a lifetime viewpoint
in applications in which surface finish is not key and the
components do not need machining.
There are differences between the results obtained with

the contour method and those produced by neutron dif-
fraction (Fig. 7). Within the baseplate, the contour
method showed a low tensile stress, while the one
measured by neutron diffraction was considerably higher
(250–350MPa). From the interface up to a wall height of
20 mm, the initial offset of roughly 150MPabecomes pro-
gressively smaller; and above 20 mm there is very good
agreement. Two reasons could be proposed for the
observed differences. Firstly, when performing the con-
tour cut plasticity can occur ahead of the EDM wire.
This could be particularly severe when changes in cross-
section happen ahead of the wire: the EDM cutting set-
tings are based upon cutting a uniform thickness of
material; when the specimen geometry changes, so does
the wire contact length, resulting in instabilities of the cut-
ting conditions.[25] Secondly, with regard to the assump-
tion of plane stress, while reasonable in the wall well
away from the substrate, near the baseplate the stress
becomes triaxial and so this method for estimating d0 is
no longer valid. The plane stress assumption is only
valid for distances greater than 6mm from the substrate
where the multiaxial constraint is reduced sufficiently.
For completeness, Figure 9 presents the values of

residual stress for the three main directions, measured
by neutron diffraction. It must be pointed out that,
although the measured strains were used in another
publication,[36] the residual stresses reported in the pre-
sent paper are different due to an alternative method to
determine the stress-free lattice spacing (d0). Indeed,
due to the assumption of plane stress in the XZ plane,
Figure 9 shows null residual stress in the transverse
(Y) direction, while previous research[36] showed
residual stress ranging from −100MPa to 120MPa
for such directions. Unsurprisingly, residual stress in
WAAM parts are largest in the longitudinal (X ) direc-
tion, confirming what Colegrove et al.,[7] Hoye
et al.[32] reported previously.
Finally, there are applications in which the baseplate is

not part of the final structure. In these cases, it has been
shown that the separation of the component from the
baseplate resulted in elimination of residual stresses.[37]

Should the baseplate be part of the component (which
applies also to the repair or remanufacture of existing
parts) preheating of the substrate could minimise the gen-
eration of tensile stress.

Conclusions
High-pressure interpass rolling was investigated as a
mean of eliminating distortion and residual stress in
wire + arc additive manufacturing Ti–6Al–4V com-
ponents. It was found that:
. unrolled specimens were characterised by a strong
(� 500MPa) tensile residual stress peak at the interface
between the substrate and the linear deposit, which falls
linearly with the distance from the substrate becoming
compressive near the top of the wall; this is ascribed to
bending distortion of the wall;
. interpass rolling was successful in reducing the longi-
tudinal residual stress, particularly at the aforemen-
tioned interface, where it is just 200MPa;
. rolling resulted in higher compressive stresses near the
top of the wall;
. part geometry was modified by rolling resulting in an
increase in the wall widths and a reduction in layer
heights;
. the standard deviation of layer height was substantially
reduced by rolling, which could make it easier to auto-
mate the wire + arc additive manufacturing process and
to improve process repeatability. This may aid indus-
trial implementation of the process;
. rolling did not eliminate distortion; however, it did
reduce it to less than half the untreated level;
. while the neutron and contour methods agree well for
the stresses in the wall, the stresses in the baseplate dif-
fer significantly probably because the plane stress con-
dition used to estimate the stress-free lattice
parameters for the neutron measurements is not valid
in the baseplate. This could be corrected for by cutting
out stress-free reference samples.
Given that other work has shown that rolling can lead

to equiaxed microstructure,[18–20] this combined with the
reductions in residual stress and distortion discussed
here suggests that rolling is a useful tool for improving
the quality of additively manufactured parts.
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