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SUITIMary 

Digital analysis of the free-free bending vibrations of a 

propeller shaft and a beam-type rear axle are compared, for different 

theoretical models, with the results of rig tests. The relative im-

portance of distributed mass, the coupling between the bending and 

torsional modes and the half shafts of the rear axle are discussed. 

The relation between the work completed and the programme of work in 

progress is given briefly at the end of the report. 



Nomenclature 

4 
Lliw

2 
a 	 per inch 

Youngs Aoculus, lbf/in2  

fo 	Fundamental frequency, cycle /sec. 

-11 	nth order natural frequency, cycles/sec. 

Modulus of rigidity, lbf/in2  

I 	Area moment of iAertia, in4  

lY 	Polar second area moment, in4  

I 	Mass moment of inertia of mass B about an axis perpendicular to 
aB 

of B, lbf.sec2.in. 
the plane of bending, and passing through the centre of gravity 

Moment of rotational inertia, lbf.sec2.in. 

Length (of ehaft), ins. 

LA,B Length of shaft between sections A and B, ins. 

PSI 	Bonding moment, lbf.in. 

Mass of the concentrated mass at B, lbf.sec2/in. 

rB 	Eccentricity of mass B about system axis, in. 

S 	Shear force, ibf. 

Torque, lbf.in. 

t 	Time, seconds 

Displacement at B due to unit shear force at A, in/lbf. 

Displacement at B caused by unit bending moment acting at A, UNA,B 

	

	
in/lbf.in. 

Slope at B due to unit shear force at A, rad/lbf. 
A B 

Slope at B due to unit bending moment acting at A, rad/lbf.in. 
MA,B 

Distance along axis of shaft, ins. x 	

Vertical displacement, ins. y 

Slope (dx
dy radians 

Torsional deflections, radians 

p 	Mass per unit length, lbf.sec2/in2  

Frequency of bending vibrations, radians/sec. 



Introduction 

The vibrations of the drive-line of a motor vehicle, with a simple 

Hotchkiss drive, may be divided broadly into those that involve bodily 

displacement of the rear axle and those that involve flexure of the rear 

axle. Vibrations of the second kind, which are the subject of this in-

vestigation, are usually at a higher frequency and smaller amplitude and 

associated more with the interior noise level than the performance or ride 

of the vehicle. This note reports on the progress of an investigation of 

theoretical and experimental methods of assessing the flexural vibrations 

of the drive-line. 

It is well known that the flexural vibrations of drive-line are 

coupled with the vibrations of the engine block, clutch housing, gearbox 

and gearbox extension. Staffeld, in a 1960 paper to the S.A.E. (Ref.1), 

showed the effect of this coupling on the natural frequencies and critical 

speeds of a propshaft. To evaluate the natural frequencies of the drive-

line complete, he divides the system at the roar universal joint and equates 

the boundary conditions at that joint for the two sub-systems. From the rear 

universal joint forward to and including the power unit was analysed theoret-

ically with a computer programme. The boundary condition for the rear axle 

assembly was found experimentally by forcing at the universal joint over a 

range of frequencies. This semi-empirical method of approach has been used 

by others in the British meter industry. 

It is quite obvious that the measurement of the vibrational 

characteristics of the rear axle obscures the understanding of tae problem 

and reduces the value of analyses at the design stage of the vehicle. For 

this reason, the first phase of the investigation was concentrated on the 

problem of obtaining a better understanding of the rear axle assembly. 

From the beginning it was recognised that parts of. the system may not yield 

to an analytical approach and, in such cases, recourse may be necessary to a 

semi-empirical method. It seemed possible that the road wheels and tyres 

would fall into this category. To avoid the introduction of these complex-

ities at an early stage, the rear axle, without the road wheels, springs and 

shock absorbers, and the propshaft were considered in isolation from the 

rest of the system. This note is restricted to the work done with this 

limited objective - other work with a wider objective is also in progress. 



Ex2orinontal methods  

To excite the free-free mode of flexural vibrations the propshaft 

and rear axle were suspended by soft rubber bungees from massive I-section 

beams, see Plates l and 2. Isolation from ground disturbances was improved 

by mounting the beam on rubber mounts at the supporting pedestals. Light 

aluminium clamps on the shaft or axle tube were used to connect, through a 

push rod and force transducer, to an electromagnetic moving-coil vibrator. 

Vibro-meter piezo-electric force transducers with charge amplifiers were 

used for all tests. 

New and more convenient instrumentation became available during 

the progress of the work. For this reason the equipment and measuring 

techniques that were used, particularly in the early stages, are now obsolete. 

Nevertheless, the methods are outlined for completeness and for reference 

purposes. 

The propshaft was vibrated with a Derritron vibrator controlled 

by a Dawe 2 phase sweep oscillator and powered by a Derritron 300 watt 

amplifier. The shaft displacements in response to the excitation were 

transduced with a Wayne Kerr capacitance probe and meter and the signal was 

measured with a Bruel and Kjoer valve voltmeter. By a comparison of the 

signals from the force and displacement transducers in turn with a signal 

from the main oscillator, with the phase changed by a Dawe variable adaptor, 

the phase between the forcing and response was found from the difference in 

setting of the variable phase adaptor. A Lisajou figure technique was used 

to match the output of the variable phase adaptor with the appropriate 

signal from the transducer. A block diagram of the instrumentation is 

given in Fig.l. 

Experiments on the rear axle were conducted in two stages firstly 

without the half shafts and secondly with the half shafts fitted. The system 

was vibrated with an E.M.I. vibrator powered by a 1 kilowatt amplifier and 

controlled by a Solartron decade oscillator. At the early stages of the 

experiments the response was recorded with displacement transducers, as 

described for the propeller shaft, but, for high frequencies the output 

was too small and small piezo-lelectric accelerometers were found to be more 

suitable. Signals from the accelerometer, made by Electromechanisms Ltd., 

and a signal from the force transducer were resolved and compared with the 

signal from the oscillator by the use of a Solartron resolved component 

indicator which gave reference and quadrature readings directly for each case. 



alysiLofExperimental _ Data 

Some of the problems that arise in the interpretation of resonance 

tests were discussed by Bishop and Gladwell in a paper to the Royal Society 

(Ref.2). Since the natural frequencies of th propshaft are well separated, 

the maeimum-amplitude method was thought to be adequate. However, for 

checking purposes, the phase difference between the forcing and response 

signals were also plotted. The frequencies of the propshaft where the 

receptance or displacement per unit force is a maximum and where the phase 

difference is 90°  are tabulated in Table 1. 

For the roar axle experiments, the complex receptance was plotted 

and the frequencies determined by the Kennedy-Pancu method. These values, 

with the results of the maximum amplitude and 900  phase methods, are tabulated 

in Table 2. 

Theoretical Methods 

A. Propeller Shaft 

No difficulty was expected with the prediction of the natural 

frequencies of free-free vibration. Nevertheless, at the very early stages 

of the investigation, it was thought to be a necessary and worthwhile check 

on the experimental methods that they should be capable of measuring the 

natural frequencies and modal shapes of a simple beam or shaft. 

For analytical purposes the propshaft was considered to be a simple 

uniform tube with concentrated point masses at each end to represent the joint 

yokes and flanges, see Fig 	The method of analysis is similar to that of 

the rear-axle and will be discussed under the next heading. 

B. Rear Axle 

(1) Without the half shafts 

For this case the system was represented by a model consisting 

of simple uniform tubes connecting five point masses A, B, C, Li and a, as 

illustrated by Fig.3. The idealisation of the system for the theoretical 

treatment of distributed mass and shaft elasticity is illustrated by Fig.4. 

Masses A ard E represent the brake drum assemblies, B and D the spring 

anchor brackets, and C the differential case, differential gears and a 

stiffening plate which replaces a sheet metal cover that encloses the gears. 

The appropriate values of the mass and the angular inertia and, where necessary, 

the position of the centre of gravity were calculated from the manufacturers 

drawings. 
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The chosen method of analysis for the free-free natural frequencies 

and the modal shape of the axle is an adaption of the Myklestad method (Ref.6) 

for bending with an allowance for a torsional coupling. Consider a typical 

element between two stations along the shaft or axle, see Fig.5, with a 

point mass, and msu =mato of inertia at the left hand of a shaft 
element with flexibility but no mass. Assuming that the motion is simple 

harmonic, the equations fcr the displacements, shear forces, moments and 

torques can be written:- 
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the shaft is assumed to behave according to the classical wave equation for 

bending, neglecting the effects of angular inertia and transverse shear 

deformation, that is 

LF 

171.  
Dx4 

2v  p -4. 

ate  

(2) 

A solution of the wave equation is used to define the change of displacement, 

shear force and bending moment along the element, that is: 
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The Myklestad method is given elsewhere Refs. 3, 4 and 6) and 

will not be described in detail here. For 'an element with a uniformly 

distributed mass, behaving according to equation 3, the values of y, m, 

S and M at the right hand end are known from previous calculations on elements 

to the right according to the specified boundary conditions. Substituting 

these values in equation 3 gives four simultaneous equations that are solved 

for the coefficients A, B, C and D. With the known coefficients the 

corresponding values of y, 	S and H can- be calculated for the left 

hand end of the element. These may be the 'starting' values in equation 1 

for the next element. 

The method requires that trial frequencies of vibration are used 

and the values adjusted until a 'residual' force or moment becomes zero or 

negligible. A digital: programme has been written in Algol for the analysis 

of any beam-type structure. A cubic interpolation scheme is used to 'home' 

quickly on to the frequency where the residual is zero or zero within a pre-

set limit. Before calculating and printing out the modal shape at the 

natural frequency, a check is made to see whether the change of the residual 

from positive to negative is occurring at a true natural frequency or whether 

it is an-anti-resonance frequency where the residual changes sign between 

positive and negative infinity. 

For the purposes of assessing the relative importance of continuous 

mass the calculations were repeated, in some cases, with the continuous 

elements broken down into several discrete point masses.  connected by massless 

beams. Also, the effect of the torsional coupling was assessed by comparison 

of the frequencies with and without the terms of equation 1 that include the 

angle of twist 	or the torque T. Tabulated in Table 2 are the results 

of these alternatives. 

(11) Rear axle with the half shaft fitted 

(a) An adaption of Myklestad's Method 

illustrated by Fig.6 is a simplified model of the rear axle with 

the half shafts fitted sc that between P al  and vb °, and 'c' and 'd' the half 

shafts are in parallel with the axle tubes. By an adaption of the Myklestad 

method the parallel systems may be treated by a distribution of the shear 

force and bending moment between the two paths with end conditions assumed 

for the half shaft. For a first analysis the assumption is that the half 

shafts are 'built-in' at each end, that is, the deflections ane slopes at 

the ends are the same as the rear axle tubes at the branching points. For 



example, at section 2 2.1  the deflection ya  and the slope as  will be the same 

for both paths, say path A and path B. A fraction x of the shear force 

Sa  will be carried by path A and. the remainder (1 - x) by path B. Similarly, 

a fraction Z of the bending moment at 'a' will be carried by path A and a 

fraction (1 - Z) by path B. 

Four pairs of end conditions at 'a' are taken in turn for a 

calculation by the parallel paths A & B, that is: 
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if 43'",by 9(YA,b)= 	YA,b)S 
and  (yA,13 m 

are the displacements at b, by path A, calculated with the boundary conditions 

(1) to (iv) respectively, then for a linear system the deflection at b may 

be computed by: 
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With a similar notation the following equations will apply also: 

+ 	(1 v x)(yB,b)s 
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With the boundary condition 

equations (4) to (7) are solved for x and Z. For the particular trial 

frequency the boundary conditions for the beginning of each path are now 

known completely so that equations similar to (1) or (3) can be applied to 

find the values of y, cc, S and H  at the section 'b 2 9  th-e end of the parallel 

system. 

At a natural frequency the programme computes the values of y and 

Q at suitable points along the axle and half shafts. Computed frequencies 

for the free-free vibrations of the rear axle with the half shafts fitted 

are tabulated in Table 2. • 



TABLE 

Natural Frequencies of Propater Shaft (cyeles par tecond) 

Theoretical Experimental 

At Max. Amplitude At 90°  phase difference 

Vibrator at: Vibrator at: 

Mid-length End 
1 3  — of length ',:id-length End 

1 length 
_ 

180 

583 

1242 

2114 

196 

1050 

1525t  

18C 

205 

610 

1150 

1450 

199 

575 

967 

1000 

1250 

194 207 

607 

950* 

1156 

1462 

203 

563 

1040 

1257 

t  SMALL PEAK 

NOT_A_TRUE_HASE DIFFERENCE OF 

OR A DISTORTED CURVE 



TABLE 2 

latural Frequencies of Rear Axle (cycles per second) 

Without Half-Shafts With Half-Shafts 

Theoretical Experimental Theoretical Experimental 

Pura Bending Bending 
& &  Torsion 

At 
Maximum 

Amplitude 

At 
90° Phase 
Difference 

Kennedy 
& Pancu 
Method 

By 

Myklestad 

At 
Maximum 
Amplitude 

At 
900  Phase 
Difference 

Kennedy 
& Pancu 
Method 

Lumned Lumped  Luanpa&-  

77 

286 

608 

895 

77 

288 

612 

900 

77 

285 

617 

893 

71 

255 

312 

605 

636 

71 

310 

634 

71 

310 

632 

641 

74 

245 

450 

561 

646 

301 

68 

259 

68 

258 

68 

258 
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Results 

See Tables 1 & 2 

Discussion of Results 

It would appear, according to the comparison of results in Table 1, 

that she prediction and measurement of the free-free natural frequencies of 

a propshaft is more difficult than one might expect. At the fundamental 

frequency, for example, the difference between the theoretical value and the 

measured value is about 10%. This difference is somewhat greater than one 

would expect considering that the analysis takes account of the distributed 

mass along the shaft and neglects the angular inertia and shear deflections. 

At the second natural frequency there is a somewhat better comparison 

particularly when the vibrator is away from the end of the shaft. At higher 

frequencies the range of measured values is such that a comparison with the 

theoretical result has little meaning. It is possible that one or two of
f  the measured resonances at high frequencies are caused by a distortion of 

the forcing signal and resonance of the forcing overtones with higher modes 

of vibration of the shaft. 

Because the mass of the propshaft is comparatively small, about 

15 lbm, and the length is long, about 51 inches, it is possible that the 

restraints caused by the shaft suspension and the attachment of the vibrator 

were sufficient to prevent a free-free vibration. • This may be particularly 

so when the vibrator is attached at a point where the angular deflection, 

due to flexure of the shaft, is appreciable because the method of clamping 

does not give full freedom of movement in this direction. For future 

experiments on similar shafts it suggests that more care should be taken to 

clamp the vibrator in the region of an anti-node and to suspend from the 

regions of the nodes. 

Another possibility was that the 'effective' mass of the moving 

coil of the vibrator and the light aluminium clamps were sufficient to 

affect the natural frequency of the propshaft. The calculations were 

repeated with the effective mass, determined experimentally, positioned at 

the end of the shaft and at the mid-length. The computed frequencies were 

as follows: 

Mass at End 	 Mass at mid-length 

fl 	178 cps 	 f1 = 172 cps 

f2 = 585 cpS 	 f2 = 589 cps 

1237 cps 	 f3 	1180 cps 

= 2103 cps 	 f4 	2115 cps 
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These results partially explain the small differences that are 

observed when the vibrator is positioned at different places along the 

shaft but do not account for the significant difference between the measured 

and calculated frequencies for the fundamental mode. Figure 7 also illustrates 

that the measured modal shape is somewhat ' different to the calculated values 

at the fundamental frequency. 

According to the results at the lower frequencies, there is little 

to choose between the maximum amplitude method and 900  phase difference for 

the natural frequencies of a propshaft in isolation. At frequencies cf about 

1000 cycles per second and higher, however, the distortion of the phase plots 

suggest that Kennedy-Pancu receptance plots may be worthwhile. 

Rear Axle 

In genaral, the sinter:est b tween'the experimental and the theoretical 

results. fos. the rear-axle is better than that for the propallar shaft. It 

would be expected that the restraints of the suspension and vibrator would 

be far less significant for the more massive system. The main difficulty 

in the assessment of the validity of the theoretical model is the lack of 

experimental data at frequencies above the third mode of the rear axle with- 

out the half-shafts and above the second mode when the half-shafts are fitted. 

All attempts to excite resonances at higher frequencies have so far been 

unsuccessful. 

Where a comparison is possible the differences between the theoreti- 

cal and experimental results are comparatively small. The measured fundamental 

frequency is about 6 cycles per second or 8. percent less than the calculated 

value. The most likely explanation of this difference is the inadequacy of 

the theoretical model to allow for the flexibility of the differential casing. 

This flexibility could be assessed by a simple bending test of a casing which 

is similar to the design shape and casting thickness. If the assessment is 

to be complete at the design stage or a bending test is impractical, a use- 

ful estimate could be made by finite ele-sent analyses as used for bell 

housings (Ref.5). Fortunately, the accuracy required of the estimate of the 

flexibility of a relatively stiff member is not great. 

For the second mode of vibratien the calculated frequencies are 

lower, but not greatly so, than the measured values. Bending across the 

differential casing is not greatly significant for the second mode because 

the node is near to the mid-length of the axle, see Figure 20. Low values 

are usual for a lumped mass model of a continuous system. On the other hand 



the allowance for the continuous mass of the axle tubes in the calculation 

only alters the calculated frequency by 2 cycles per second or less than 

1 percent relative to the value when the tUbe is considered as several lumped 

masses. A likely explanation of the discrepancy is the errors that arise 

in the estimation. of the masses and angular inertias of a complex shape, such 

as the differential casing, and the stiffness of the axle tubes in the region 

of the casing, brake drum, and spring anchor brackets. 

At the third mode of vibration, where one would expect the flexibility 

of the differential casing to become significant again, the theoretical and 

experimental values for the rear axle without the half-shafts compare very 

closely - within about 3%. There is little doubt that this accuracy is 

fortuitous and that two or more errors are tending to cancel at this frequency 

in p4rticularm One would expect to find greater discrepancies at high fre-

quencies as the walls of the differential casing etc. become more signifi-

cant in the modal shape of the vibration. 

Referring TIOU to Cho theoretical ana v' 	it uould 

that the distribution of mass along the axle is only slightly significant at 

high frequencies and a negligible effect at low frequencies. The inclusion 

of a torsional coupling, present as a consequence of the offset of the 

centres of gravity from the bending axis, also has only a small effect for 

this particular axle. Torsional coupling for the first modes of vibration 

is exhibited by a bodily roll or 'nodding' of the axle about the polar axis 

of the axle tubes. In the installed situation this motion would be restrained 

by the road springs and wheels. 

Although the parallel system chosen to represent the half-shafts 

has yet to be confirmed by experimental results, the theoretical results 

suggest strongly that the half-shafts have a very significant effect on the 

vibrations of the system. For the particular axle, see Appendix I for the 

dimensions, the half-shafts tend to vibrate in phase with the axle at the 

fundamental and second mode of vibration. Above the second frequency the 

half-shafts exhibit motion which is out-of-phase with the axle. Compared 

with the axle alone many other natural frequencies are introduced to the 

system above the second mode of vibration 

When attempts were made to simplify the Model by ignoring the 

effects of the spring anchor brackets the fundamental frequency and the second 

natural frequency were not affected greatly but the higher frequencies were 

changed appreciably. This suggests that care should be taken to avoid over-

simplified models that could be misleading. 



- 13 - 

Conclusions 

Vibrating a propeller shaft, in particular, has shown that the 

measurement of the free-free frequencies and the nodal shape is more 

difficult than one might expect. Great care is required, particularly for a 

low mass system, to avoid introducing extraneous constants by the supports 

or the connection to the vibrator. Where possible the vibrator should be 

placed at or near an anti-node and the suspensions at or near the nodes for 

the particular mode of vibration. A forcing signal which is free from 

distortion is essential if confusion from the break through of higher 

harmonics is to be avoided. 

The natural frequencies measured up to now are separated suffic-

iently to make the Kennedy-Pancu method unnecessary. At the higher frequencies, 

and for more complex systems, however, where the resonances become closer the 

value of the method becomes greater. It should be retained in subsequent 

work for this reason. 

It seems evident, at least from theoretical results, that the 

half-shafts cause many complex modes of vibration of the rear axle system. 

Although much has yet to be done before the theoretical model can be used with 

confidence to predict the behaviour of the system when the rear axle is 

installed in the vehicle, more attention to the stiffness of the half-shaft 

and axle tubes at the design stage may be very advantageous in moving the 

resonances to higher frequencies or dc-tuning the system from a forcing 

frequency that is particularly troublesome. 

wo-k ;r1 a  Progress ote-aa-aaaa a____ 

It is well known that the tyre of a road wheel is a very complex 

non-linear structure which imposes its own characteristics on the displace-

ments and loads transmitted from the road surface to the axle. How the tyre 

restrains an axle when the axle is vibrating with a small amplitude is not 

known. The restraint may be negligible. Tc check this possibility, a rig 

has been designed for the direct measurement of the receptances at the rim 

of a tyre when the wheel oscillates at a small amplitude at various fre-

quencies. In the early stages a solid disc will be used in place of the 

wheel to avoid wheel resonances. At a later stage the wheel will be isolated 

for a check on its natural frequencies. 

A digital programme is being developed for the analysis of leaf 

springs and their effect when these are coupled with the axle system. A 
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similar treatment will be used for the coupling of the axle to the suspension 

linkage, where this is necessary. When the rear axle system is complete 

the coupling with the propshaft and power unit will he included in the 

calculation. 
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APPENDIX I 

-SYSTEM PARAMETERS 

(Al REAR AXLE 

Masses 	Sib. sect/in) 

Brake Assembly (Right-hand) 0.0161 

Brake Assembly (Left-hand) 0.0160 

2 Brake Drums 0.0460 

4 Bolts (Brake drum to axle shaft) 0.00014 

Diff-case plus Rear Cover 0.1200 

Axle Tube Assembly (Right-hand) 0.0219 

Axle Tube Assembly (Left-hand) 0.0232 

Half-shaft (Right-hand) 0.0142 

Half-shaft (Left-hand) 0.0156 

Rear Spring Anchor 0.00568 

Length of Half-shaft (Right-hand) 19.65 ins 

Length of Half-shaft (Left-hand) 21.55 ins 

Dimensions_Sinsl 

4 

bz -7 11-cl,  

't; Zok 

I3 23/ 2% 

II 

Figures in brackets denote dimensions of identical element on right-hand side 

of the system, where this is different from left-hand element shown in the Fig. 

Mass 
No 

Mass (1b.sec2/in) J (1b.sec2.in) Ia  (lb.sec2.in) Eccentricity, r (ins) 

1 0.03914 0.46100 0.25500 0.0 

2 0.00171 0.00370 0.00150 0.0 

3 0.00568 0.05092 0.00148 2.2 

4 0.00634 0.01200 0.01245 0.0 

5 0.12000 0.80490 0.42300 3.0 

SB1  PROPSHAFT  

Length (centre of front yoke 
to centre of rear yoke) 

External Diameter 

Internal Diameter 

Weight 

51 ins 

3 ins 

2.872 ins 

15.1 lb. 
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