
 

 

 

 

Abstract—Spatio-temporal images are a class of complex 

dynamical systems that evolve over both space and time. With 

increased interest in the investigation of nonlinear complex 

phenomena, especially spatio-temporal data analysis governed 

by evolutionary laws that are dependent on both spatial and 

temporal dimensions, there has been an increased need to 

investigate data-driven modeling methods for this class of 

complex systems. Compared with pure temporal processes, the 

identification of spatio-temporal models from observed images 

is much more difficult and quite challenging. Starting with an 

assumption that there is no a priori information about the true 

model but only observed data are available, this work 

introduces a new type of wavelet network that utilizes the easy 

tractability and exploits the good properties of multiscale 

wavelet decompositions to represent the rules of the associated 

spatio-temporal evolutionary system. An application to a 

chemical reaction exhibiting a spatio-temporal evolutionary 

behaviour, is investigated to demonstrate the application of the 

proposed modeling and learning approaches.          

     

I. INTRODUCTION 

N the real world, spatio-temporal (ST) phenomena exist 

widely in biology, chemistry, ecology, geography, 

medicine, physics, and sociology and so on. To simulate 

and analyze spatio-temporal phenomena, several efficient 

representations, for example the well known cellular 

automata (CA) [1], cellular neural networks (CNNs) [2] and 

coupled map lattice (CML) models [3], have been proposed. 

In these representations, it is often assumed that the 

associated mathematical model structure, along with the 

model parameters, is known, so that the model can be used 

to describe or analyze some specific phenomena. However, 

the evolution laws associated with real-world ST phenomena 

may not always be completely known, and evolution rules 

need to be acquired from observed data of images or 

patterns. Hence, in recent years, the identification of ST 

models from observed data has received much attention and 

several efficient identification methods and algorithms have 

been proposed, see for example [4],[5]. 
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This study considers the ST model identification problem, 

where it is assumed that there is no a priori information 

about the true model structure and only imaged data are 

available. Motivated by the successful applications of the 

multiscale and multiresolution analysis approaches in 

classical signal and image processing [6], as well as in 

dynamical process modeling [7]-[12], and also inspired by 

the easy tractability of  conventional coupled map lattice 

models [3], this study aims to introduce a new type of 

wavelet network model that utilizes the easy tractability and 

exploits the good properties of multiscale wavelet 

decompositions for ST system identification. Unlike in a 

typical wavelet based multiscale or multiresolution 

dynamical modeling approaches, where the elementary 

building blocks are strictly chosen to be some dyadic 

wavelets, in the new wavelet model, the choice of the 

prototype functions are permitted to be very flexible, any 

functions including wavelets, B-splines and Gaussian type 

functions can be chosen as the elementary building blocks as 

long as there is strong evidence that the functions possess 

desirable properties and can lead to a good model for a given 

modeling problem. In most existing wavelet models for 

dynamical systems, the scale and shift parameters are 

restricted to a dyadic lattice. Dyadic wavelet models are 

proved to be perfect for general static signal representation, 

in that dyadic wavelets, along with associated scale 

functions, can often form orthogonal (orthonormal) bases 

that play an important role in wavelet multiresolution 

analysis (MRA)[6]. An important property of an 

orthonormal decomposition is that the well known Pareval’s 

theorem holds, that is, the energy of a signal is conserved, 

without any loss, in the wavelet coefficients. For the ST 

dynamical system modeling problem, where observations 

are often sparse in the problem space, a dyadic lattice may 

not usually be an optimal choice. In addition, data used in 

dyadic wavelet models for nonlinear dynamical systems 

often need to be compressed or normalized to some specific 

finite interval, to simplify the associated modeling 

procedures. Although data normalization is frequently used 

in many modeling approaches and can often simplify the 

associated modeling procedures, normalization may, at the 

same time, change the physical meanings of the signals to be 

modeled. This may be undesirable for some applications 

where variables are required to preserve their physical 

dimension. In this study, data normalization is unnecessary.      

The proposed model is composed of a number of basis 

functions; the feature of each individual function is 

determined by three factors: the scale (dilation) parameter, 

the shift (translation) parameter, and the coefficient 

weighted on the associated function. For a chosen 
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TABLE I 

THE (2 1) (2 1)r r    NEIGHBORHOOD CELLS, REPRESENTED  BY 

VARIABLES 
kx , WITH 

21,2,..., (2 1)k r  .   

C(i-r, j-r) 

x1 

 

… 
C(i-r, j) 

xr 

 

… 
C(i-r,j+r) 

x2r+1 

… … …   … … 

C(i, j-r) 

xr(2r+1)+1 

 

… 
C(i,j) 

xr(2r+1)+(r+1) 

 

… 
C(i,j+r) 

x(r+1)(2r+1) 
… … …   … … 

C(i+r,j-r) 
x2r(2r+1)+1 

… C(i+r,j) 
x2r(2r+1)+(r+1) 

… C(i+r,j+r) 
x(2r+1) (2r+1) 

  

elementary building block (the prototype function), the task 

of the model identification involves as least three aspects: 

the determination of the scale and shift parameters; the 

determination of the model structure and complexity, that is,  

the determination of which and how many basis functions 

should be included in the model; and the estimation of the 

weight coefficients. A new simple unsupervised histogram-

based clustering algorithm is introduced, which can be used 

to determine the scale and shift parameters of individual 

functions that will be used to form an initial full network 

model. The initial full model is in general highly redundant. 

A forward orthogonal regression learning algorithm [13]-

[15], implemented using a mutual information method, is 

then applied to refine and improve the initial full model by 

removing redundant basis functions.  

II. WAVELET-BASED ADDITIVE NEURAL NETWORKS 

The 2D case, which has obvious physical meanings and is 

widely applied in practice, is taken as an example to 

illustrate how to construct the network model. For 

simplicity, only the autonomous case is considered. In an 

autonomous ST system, no external input image is imposed, 

and the output image at any time t is due exclusively to the 

initial conditions and the evolution of the pattern. Model 

representations for these situations can easily be extended in 

a straightforward way to other more complex cases. 

A. Lattice Cell Model 

Assume that the 2-D image or pattern produced by an ST 

system, at the time instant t, consists of an I×J rectangular 

array of cells, C
t
(i, j), with Cartesian coordinates (i,j), i=1,2, 

…, I, j=1,2, …, J.  Following [1], let ),( jiS t
r be the sphere 

of influence of the radius r of cell C
t
(i, j), at the time instant 

t, defined as 

}|}||,{|max:),({),(
1,1

rqjpijiCjiS
JqIp

tt
r 
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where t=1,2…, i=1,2, …, I, j=1,2, …, J, and r is a non-

negative integer number indicating how many neighborhood 

cells are involved in the evolution procedure. The sphere

),( jiS t
r

 is sometimes referred to as the (2r+1) ×(2r+1) 

neighbourhood. Let R)(, ts ji
be the state variable 

representing the cell ),(),( jiSjiC t
r

t  . From the definition of 

),( jiS t
r

, a total of (2r+1)
2 

state variables are involved in (1), 

see Table I, where the symbol C(i,j) will be used to indicate 

cells at an arbitrary evolution time instant. 

Let )(, ts ji  be the (i,j)th cell to be updated at time t. A 

wide range of ST systems can be described by the discrete-

time, discrete-space and continuous-state spatio-temporal 

difference equation of the form below 
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where f is some nonlinear function, lagn is the time lag, 

defined as a positive integer, indicating how many past 

images or patterns are involved in the evolution procedure, 

and )( kt s  is the state vector formed by the (2r+1)
2
 state 

variables relative to the patterns at the time instant (t-k) with 

k=1,2, …, lagn , that is, 

, , ,( ) [ ( ),..., ( ), ( )]i r j r i j i r j rt k s t k s t k s t k       s  (3)  

Note that the general lattice cell representation (2) includes, 

as special cases, most typical coupled map lattice models. 

For convenience of description, introduce d single-indexed 

variables )(txk as below 

1 2( ) [ ( ), ( ),..., ( )] [ ( 1), ( 2),..., ( )]d lagt x t x t x t t t t n    x s s s  (4) 

where 
2 21 ( 1)(2 1) (2 1)

( ) [ ( ),..., ( )]
k r k r

t k x t x t
   

 s  for k=1,2, …, 

lagn . Also, let y(t) represent the state variable )(, ts ji  

corresponding to the central cell ),( jiC t . Then, Eq. (2) 

becomes 

))(()( tfty x 1 2( ( ), ( ),..., ( ))df x t x t x t                 (5) 

In conventional coupled map lattice models, the nonlinear 

function f in model (2) is often assumed to be known as 

some deterministic function. However, for real-word 

complex ST systems, a pre-determined function f may not 

sufficiently characterize the underlying dynamics. It may be 

better to learn, from available real observations, an 

appropriate model for a given ST system. The task of ST 

system identification is to construct, based on available data, 

a model that can represent, as close as possible, the observed 

evolution behavior. Unlike constructing static models for 

typical data fitting, the objective of dynamical modeling is 

not merely to seek a model that fits the given data well, it 

also requires, at the same time, that the model should be 

capable of capturing the underlying system dynamics carried 

by the observed data, so that the resultant model can be used 

in simulation, analysis, and control studies. 



 

 

 

B. New Multiscale Wavelet Based Lattice Cell Model 

Inspired by the idea behind the traditional coupled map 

lattice models [3], the present study employs an additive 

model structure to approximate the nonlinear function (5) 

1 1 2 2

ˆ( ) ( ( )) ( )

      ( ( )) ( ( )) ... ( ( )) ( )d d

y t f t t

f x t f x t f x t e t

 

    

x e
   (6) 

where )(if  are some univariate nonlinear functions that 

need to be identified, and e(t) is some modeling error that 

can be treated as an independent identical distributed noise 

sequence. A common approach used for effectively 

reconstructing the nonlinear functions )(if  is to construct a 

nonlinear approximator if̂ using some specific types of basis 

functions. 

The present study, however, employs a family of shifted 

multiscale basis functions to approximate the nonlinear maps

1 2, ,..., df f f  in (6). Let  be a chosen mother wavelet and 

consider the family 
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where 
Ra , Rb , and the wavelet is admissible. 

The admissibility condition is depicted using the Fourier 

transform )(ˆ  of  as  
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of these d functional components )( ii xf  can now be 

represented as 
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where
)(
,
i

jka and 
)(

,
i

jkb  are pre-determined scale and shift 

parameters, and 
)(
,
i

jkw are the associated weight coefficients. 

Equation (6) can now be written as 
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This is the initial full model for the associated ST system 

(2). In this model the scale and shift parameters 
)(
,
i

jka and 

)(
,
i

jkb  are restricted to a pre-specified non-dyadic lattice, 

which is directly determined by using the information given 

by the original observation dataset. The weight coefficients
)(
,
i

jkw , however, need to be estimated by solving the 

associated regression equation problem. 

III. DETERMINATION OF SHIFT AND SCALE PARAMETERS 

A. Data  Grouping 

Consider a given time series 
0{ ( ) : 1, , }x t t N . Let

0

1min )}(min{
N
ttxx  , 0

1max )}(max{
N
ttxx   and ],[ maxmin xxR  . 

Now the objective is to partition all the data points in the 

time series )}({ tx into K groups. The grouping criterion and 

the associated partitioning procedure are as follows: 

●  Divide the interval R into k equally-spaced subintervals 

(bins); the kth bin is defined as ),[ 1 kkk rrR (1≤ k ≤K-1) 

and ],[ 1 kkk rrR for k=K, where hkxrk )1(min   and 

Kxxh /)( minmax  (h is referred to as the bin width).  

●  If kRtx )( , then the data point is included in the kth bin. 

●  Denote the number of data points in the kth bin kR by kg . 

These are the basic ideas of a histogram method used for 

data grouping. However, the determination of the bin width 

and bin number K is still an open issue in histogram 

analysis. The famous Sturges’ rule [17], which has been 

used in default in some popular software, suggests that the 

total bin number be chosen as )(log1 02 NK  . It has been 

pointed out [18] that the Sturges’ rule is more of a number-

of-bins rule rather than a bin-width-oriented rule itself, and it 

has been shown that the bin width produced by the Sturges’ 

rule leads to an over-smoothed histogram, especially when 

the number of samples is large. In [18], a cross-validation 

(CV) criterion, called the biased CV function, was suggested 

for bin width choice 
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where KxxKh /)()( minmax  is the bin width of K 

partitions. The bin width for the associated dataset is defined 

to be the one that minimises the BCV criterion. This cross 

validation criteria can be used to determine the scale and 

shift parameters of the associated basis functions. 

B. Choice of the Shift and Scale Parameters  

For a given time series },,2,1:)({ 0Nttx  , assume 

that a total of K groups have been determined using the 

above histogram-based grouping algorithm, and let kc be the 

centre (midpoint) of the kth interval kR . In the present study, 

wavelet shift parameters are chosen to be these K centers. 

It is known that wavelet basis functions are compactly 

supported or nearly compactly supported.  For example the 

B-splines and associated wavelets [19] are compactly 

supported, while the Gaussian and the Mexican hat wavelets 

[16] are nearly compactly supported. Hence, to the wavelet 

transform (7), for any scale and shift parameters a and b, 

there must exist a positive number such that 

0|),;(| 
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For example, for the Mexican hat wavelet

)2/exp()1()( 22 xxx  , 0001.0|)(| x  for 5|| x .  

Thus, for a fixed shift parameter b, the scale parameter a 

should not be chosen too small, because a very scale will 

‘disable’ many useful data points. On the other hand, the 

scale parameter a should not be chosen too large, because a 

very large scale could make the associated functions become 

too smooth to capture detailed dynamics of the signal. 

From the above discussion, the shift and scale parameters 

b and a are chosen as follows: 

●   The number of wavelet shift parameters is chosen to be 

K, which is defined using the histogram-based grouping 

algorithm. 

●  The K shift parameters b1,b2,…,bk are chosen to be the 

centers of the K bins (groups). 

●  For each shift parameter bk, allocate a total of J scale 

parameters to the associated basis functions, denote these 

scale parameters by a1,a2,…,aJ, where 4/2 0aa j
j   for 

j=1,2, …, J and KKha 2/)(0  .  

Here, the idea of choosing KKha 2/)(0  comes from 

[20], where it is suggested that the scale (bandwidth) 

parameter be chosen as Kbb ji
Kji

2/|}{|max
1
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Applying the above procedure to equation (6), yields, 
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where 
)(i

ja  and 
)(i

kb  are the scale and shift parameters, 

relative to the ith variable )(txi . In model (12), it is assumed 

that the time series )}({ txi produced by the ith variable )(txi

has been partitioned into iK  groups, and thus a total of Ki 

shift parameters are involved for the variable )(txi ; for each 

of these shift parameters, there are a total of J scale 

parameters associated with the wavelets. Therefore, the 

initial full wavelet model (12) contains a total of M=J(K1+ 

K2+…+Kd) basis functions. Model (12) can easily be 

converted to a linear-in-the-parameters form 





M

m

mm tty
1

)()(  )(te θφ )(tT )(te             (13) 

where ( ) ( )

,{ ( ; , ) : 1,..., ; 1,..., ; 1,..., }i i

m i k k j ix b a i d k K j J     ,

m are model parameters, and 
1( ) [ ( ),..., ( )]T

Mt t t φ  and 

θ  are the associated regressor and parameter vectors, 

respectively. Notice that in most cases the initial full 

regression equation (13) might be highly redundant, some of 

the regressors or model terms can thus be removed from the 

initial regression equation without any effect on the 

predictive capability of the model, and this elimination of 

the redundant regressors usually improves the model 

performance. Generally, only a relatively small number of 

model terms need to be included in the regression model for 

most nonlinear dynamical system identification problems. 

An efficient model term selection algorithm is thus highly 

desirable to detect and select the most significant regressors. 

IV. MODEL REFINEMENT 

Let [ (1),...,m mφ  
T

m N )]( be a vector formed by 

the mth candidate model term in the initial full model (13), 

where m=1,2, …, M. Let },,{ 1 MD φφ   be a dictionary 

composed of the M candidate bases. Note that the set D is 

often highly redundant. The model refinement problem 

amounts to finding, from the vector dictionary D, a full 

dimensional subset 1{ ,..., }m mD  p p
1

{ ,..., }
mi i φ φ , 

where
kik φp  , ki  {1,2,…,M} and k=1,2,…,m (generally 

m << M), so that y is satisfactorily approximated using a 

linear combination of 1 2, ,..., mp p p  as 

1 1 2 2 ... m m m      y p p p e                   (14) 

where me is the associated model residual vector. 

The orthogonal least squares (OLS) algorithm [21],[22] 

can be used to determine model basis functions (model 

terms). In this study, however, a variation of the OLS 

algorithm, called the forward orthogonal regression (FOR) 

algorithm, implemented using a mutual information method 

[13],[14], is employed for model refinement. 

V. AN APPLICATION IN CHEMICAL REACTIONS 

The proposed multiscale additive wavelet regression 

model can be applied to identify some SP phenomena, where 

the true models are unknown and the initial full model 

involves a great number of ‘input’ or ‘independent’ 

variables. To illustrate the application of the new modeling 

method, the Belousov-Zhabotinsky [23] reaction was 

considered here as an example. As a classical example of 

nonequilibrium thermodynamics, the BZ reaction provides 

an interesting chemical model of nonequilibrium 

phenomena, and the modeling and identification of these 

types of reactions is of extreme interest for theoretical 

analysis of such phenomena. 

By adopting the recipe given by Winfree [24], an 

experiment resulting in a thin layer BZ reaction was carried 

out in the laboratory, and a set of images were sampled with 

equal time intervals during the experiment, using a digital 

video camera that is connected to a PC via a USB socket. 

The sampled images were processed and saved as patterns 

with a resolution of 300 by 500 pixels. Some of these 

patterns are shown in Fig. 1. These sampled images were 

used to estimate a parsimonious wavelet network model. 



 

 

 

 
Fig. 1.  Sampled snapshots for the BZ reaction at different time 
instants. The size of each template is 300×500 (300 pixels in the 

vertical direction and 500 pixels in the horizontal direction). (a) t=10; 

(b) t=20;  (c) t=30;  (d) t=40. 
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Fig. 2.  The BCV criterion versus the number of groups, produced 
using the histogram-based clustering algorithm. 

 

A.  Experimental Data  

Consider the model of form (2), where the total number of 

model variables is determined by two factors: the radius of 

the neighbourhood, r, and the time lag, nlag. In the present 

study, the two coefficients were chosen to be r=1 and nlag=2. 

Thus, the model involves a total of 18 model variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The state variable )(, ts ji , at the present time instant t, was 

initially assumed to be associated with state variables in the 

past two adjacent neighbourhoods at the previous time 

instants t-1 and t-2. Any two patterns, at the abutting time 

instants t and t-1 are called an adjacent pattern group. For an 

arbitrary time instant, the data pair, {x(t), y(t)}, where x(t) 

and y(t) are defined by (4) and (5), is called a data pair. 

Notice that x(t) and y(t) are also implicitly associated with 

the spatial location indices i and j. As a consequence, for any 

given time instant t, there would be a large number of data 

pairs available. 

A training dataset, consisting of a total of N=6000 data 

pairs, {x(t),y(t)}( t=1,2,…,N), was generated for model 

identification, where y(k) represents the value of the relevant 

central cell at the present time instant, and 

1 2 18( ) [ ( ), ( ), , ( )]Tt x t x t x tx  represent the values of the 18 

involved cells on a squared lattice, at the previous time 

instants. Data pairs {x(t),y(t)} in the training dataset were 

randomly chosen from ten adjacent pattern groups that were 

also randomly selected from the first 40 sampled patterns. 

B. Determining Shift and Scale Parameters   

Note that all the involved 18 variables come from the 

same system; in a statistical sense, these 18 variables, as 

well as the ‘output’ variable y(t), should obey the same 

distribution. Thus the 18 variables could be allocated the 

same shift parameters. It was noticed that the values of a 

great number of observations are exactly equivalent to the 

maximum value ymax=255. Thus, the one shift parameter was 

in default chosen to be 255, and other shift parameters were 

determined by performing the histogram-based grouping 

algorithm on the associated time series {y(t)} with t=1,2,…, 

N, where data points whose values are exactly equivalent to 

ymax, were excluded. The biased CV criterion defined by 

(10), shown in Fig. 2, suggests that the optimal number of 

groups for the associated dataset may be chosen to be 8. 

 

 

The Mexican hat wavelet function, 2/2 2

)1()( xexx  , 

was used as the elementary building block for constructing 

the wavelet network model, and the primary bandwidth for 

each group was chosen to be a0=6.25. For each shift 

parameter bk, a total of 6 scales were to used to perform 

associated wavelet transforms; denote these scale parameters 

by a1,a2,…,a6, where 
0

22 aa j
j

 . The initial full model was 

thus of the form 
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C. Model Refinement and Performance Evaluation  

The initial full wavelet network model (18) contains a 

total of 972 model terms; most of the model candidate model 

terms may be redundant. The initial full model thus needs to 

be refined. The FOR-MI algorithm was performed, over the 

given training dataset, to select significant individual basis 

functions from the initial model (15). An adjustable 

generalized cross-validation (readers are referred to [15] for 

the definition of the AGCV) suggests that a total of 26 basis 

functions should be included in the final model. 

To evaluate the performance of the identified additive 

wavelet models, the short-term predictive capability of the 

models was inspected. Denote the observation of the image 

(pattern) measured at the time instant t by X(t). The k-step-

ahead prediction, denoted by ));1(),(|(ˆ ftXtXktX  , 

where f represents the identified nonlinear function, is the 

iteratively produced result by the identified model, on the 

basis of X(t) and X(t-1), but without using information on 



 

 

 

observations for patterns at any other time instants. As an 

example, the measurements at the time instants t = 41 and 42 

were used to calculate the 1-step-ahead predictions for the 

values at the time instant t=43, and this is shown in Fig. 3, 

from which it is clear the identified model provide a perfect 

representation for the BZ reaction data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 

The proposed wavelet neural network model, by 

incorporating a multiscale wavelet decomposition approach 

into the traditional lattice cell model, provides a simple but 

powerful representation for spatio-temporal images. An 

initial full wavelet network model for a given model 

identification problem may involve a great number of basis 

functions. Experience has shown that in general only a 

relatively small number of basis functions are significant and 

need to be included in the model. This was achieved using 

the well known orthogonal least squares types of learning 

algorithms. 

The wavelet network model identification procedure is 

performed on some scaled and translated basis functions, 

where two types of parameters need to be determined: the 

shift and the scale parameters. Although the present study 

provides some tips for choosing these parameters, efficient 

optimization methods and algorithm for these parameters 

still need to be considered in a future study, to produce more 

efficient models for complex spatio-temporal systems. A 

challenging topic in spatio-temporal system identification 

and modeling is the determination of the neighborhood cells 

- e.g. which and how many neighborhood cells should be 

considered and included in the system evolution models, this 

is believed to be a most difficult problem to solve where 

only observed data or images are available but the inherent 

dynamics of the system is not clear. This challenging issue 

would be investigated in future research.  
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Fig. 3.  Model prediction (one step ahead) for the BZ reaction at  

time instant t=43. (a) Real measurement at t=43; (b) Predicted 

image from the model. 


